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 2 

Abstract 28 

 29 
Thermodynamic profiles in the planetary boundary layer (PBL) are important observations for a 30 
range of atmospheric research and operational needs.  These profiles can be retrieved from 31 
passively sensed spectral infrared (IR) or microwave (MW) radiance observations, or can be 32 
more directly measured by active remote sensors such as water vapor differential absorption 33 
lidars (DIALs).  This paper explores the synergy of combining ground-based IR, MW, and DIAL 34 
observations using an optimal estimation retrieval framework, quantifying the reduction in the 35 
uncertainty in the retrieved profiles and the increase in information content as additional 36 
observations are added to IR-only and MW-only retrievals.   37 
 38 
This study uses ground-based observations collected during the Perdigao field campaign in 39 
central Portugal in 2017 and during the DIAL demonstration campaign at the Atmospheric 40 
Radiation Measurement Southern Great Plains site in 2017.  The results show that the 41 
information content in both temperature and water vapor is higher for IR instrument relative to 42 
the MW instrument (thereby resulting in smaller uncertainties), and that the combined IR+MW 43 
retrieval is very similar to the IR-only retrieval below 1.5 km.  However, including the partial 44 
profile of water vapor observed by the DIAL increases the information content in the combined 45 
IR+DIAL and MW+DIAL water vapor retrievals substantially, with the exact impact vertically 46 
depending on the characteristics of the DIAL instrument itself.  Furthermore, there is slight 47 
increase in the information content in the retrieved temperature profile using the IR+DIAL 48 
relative to the IR-only; this was not observed in the MW+DIAL retrieval.   49 
  50 
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1. Introduction 51 

High temporal resolution thermodynamic profiles in the planetary boundary layer (PBL) 52 
are needed for a wide range of research and operational weather forecasting needs 53 
(Wulfmeyer et al. 2015).  For example, the vertical distribution of water vapor and temperature 54 
changes markedly over the diurnal cycle, the passage of synoptic features such as frontal 55 
boundaries and dry lines can cause very rapid changes in the thermodynamic structure of the 56 
PBL, and the evolution of convective weather with evaporation-driven cold pools impacts both 57 
the temperature and humidity profiles and feeds back on the storm’s evolution.  Indeed, a large 58 
number of groups have called for improvements in the thermodynamic profiling in the PBL, and 59 
the establishment of ground-based networks to provide these datasets to the atmospheric 60 
science community (e.g., Dabberdt et al. 2005; NRC 2009).   61 

Progress is being made, albeit perhaps slowly.  There are a large number of case studies 62 
using PBL thermodynamic profiling systems to gain insight into how the convective properties 63 
of atmosphere changes (e.g., Feltz et al. 2003; Cimini et al. 2015; Bluestein et al. 2017; Toms et 64 
al. 2017; Mueller et al. 2017), analyses of long-time series to show the capability of these 65 
systems (Löhnert and Maier 2012; Wagner et al. 2008), and utility for improving short-term 66 
nowcasts and forecasts (e.g., Cimini 2011; Caumont et al. 2016; Hu et al. 2019; Coniglio 2019).   67 

In Europe, there are a large number of microwave radiometers that are being 68 
characterized and assimilated (experimentally) into numerical weather prediction models 69 
(Cimini et al. 2018; De Angelis et al. 2017).  Activities in the US have focused primarily on field 70 
campaigns, and the Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) in 71 
particular, which deployed a small network of 6 infrared spectrometers in the central US.  The 72 
PECAN observations are being used to study a range of atmospheric phenomena both 73 
observationally (e.g., Gasmick et al. 2018; Loveless et al. 2019) and via use in numerical weather 74 
prediction models (Johnson et al. 2018; Degelia et al. 2019).   75 

However, these different ground-based remote sensors have generally not been 76 
collocated which makes evaluating the relative differences in the information content of the 77 
observations difficult.  This paper takes advantage of two field campaigns where multiple 78 
ground-based remote sensing systems were collocated to evaluate the relative strengths and 79 
weaknesses of these different observations for thermodynamic profiling in the PBL.  The two 80 
campaigns are Perdigao, which occurred in central Portugal in May-June of 2017 (Fernando et 81 
al. 2019), and a campaign at the ARM Southern Great Plains site (Sisterson et al. 2016) in May-82 
June 2017 to compare a newly developed broadband differential absorption lidar for water 83 
vapor profiling with other instruments (Newsom et al. 2020).  84 

2. Instruments 85 

While there are many different instruments that could be included in this analysis, we 86 
will focus on four instruments that have been demonstrated to run operationally in unattended 87 
modes for weeks or longer, and either already are or will likely soon become commercially 88 
available. Two of these instruments are passive remote sensors (i.e., they do not transmit 89 
electromagnetic energy to the atmosphere) while two are active remote sensors.    90 
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2.1. Microwave radiometer 91 

One type of passive thermodynamic profiler is a microwave radiometer (MWR).  MWRs 92 
used for thermodynamic profiling typically have multiple channels along the high frequency 93 
side of the 22.2 GHz water vapor absorption line (i.e., from 22.2 to 31 GHz) and on the low 94 
frequency side of the 60 GHz oxygen absorption complex (i.e., from 51 to 60 GHz).  Height 95 
dependent pressure broadening of the water vapor line allows the retrieval of a coarsely 96 
resolved water vapor profile, whereas temperature profile information is obtained from the 97 
frequency dependent optical depth.  Generally speaking, the more transparent frequencies 98 
provide information through a deeper portion of the atmosphere and the optically thick 99 
channels provide information closer to the MWR.  Oxygen is well mixed in the atmosphere and 100 
its concentration is known, thus the downwelling radiance observed in the channels that are 101 
primarily sensitive to oxygen can be used to infer the temperature profile.  Water vapor 102 
concentration profiles can be determined from the channels that have sensitivity to water 103 
vapor after the temperature profile is known.  However, there is some level of absorption due 104 
to oxygen in the 22-31 GHz range and water vapor in the 51-60 GHz range, so retrieval methods 105 
need to account for this ‘cross-talk’, and provide some estimate of the correlated errors in the 106 
retrieved profiles. 107 

For this study, we used a 14-channel Humidity and Temperature Profiling (HATPRO) 108 
microwave radiometer (Rose et al. 2005).  This is a fourth-generation system, which is part of 109 
the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS; Wagner et al. 2019). 110 
The instrument specifications are given in Table 1.  The radiometric uncertainty in these 111 
observations were determined via a time-series analysis of the observed brightness 112 
temperatures when the atmosphere could be assumed to be quasi-stationary.  These values are 113 
provided in Table 1.  These radiometric uncertainties are assumed to be uncorrelated between 114 
the different channels. 115 

2.2. AERI 116 

The second passive remote sensor studied here is the Atmospheric Emitted Radiance 117 
Interferometer (AERI).  The AERI is a Fourier transform spectrometer designed to measure 118 
infrared radiation emitted by the atmosphere between 3.3 and 19 µm in wavelength (3000 to 119 
520 cm-1) with a spectral resolution of 0.5 cm-1.  The AERI was designed specifically for the 120 
Department of Energy’s Atmospheric Radiation Measurement (ARM) program (Turner et al. 121 
2016a; Knuteson et al. 2004 a,b).  Its specifications can also be found in Table 1. 122 

The radiometric uncertainty in the AERI observations is derived from the imaginary 123 
component of the AERI’s calibration equation (Revercomb et al. 1988), and thus the noise 124 
spectrum can be derived for each sky observation period.  Turner and Blumberg (2019) have 125 
demonstrated that the radiometric noise in the AERI observations is spectrally uncorrelated. 126 

 127 

2.3. NCAR water vapor DIAL 128 

Water vapor differential absorption lidar (DIAL) work by transmitting pulsed laser energy at 129 
two wavelengths, one of which is selected to have markedly higher water vapor absorption 130 
than the other. These two frequencies are typically referred to as the on-line and off-line 131 
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frequencies. If the two wavelengths are spectrally close to each other (e.g., within a nm in 132 
wavelength), then many of the terms that describe the ratio of the strength of the 133 
backscattered signals cancel out.  The ratio of the on- to off-line return signals is directly related 134 
to the water vapor concentration profile. 135 

The National Center for Atmospheric Research (NCAR) has developed a micropulse water 136 
vapor DIAL.  The approach used by this lidar is the so-called “narrowband DIAL” approach 137 
wherein the laser emits monochromatic pulses of energy.  Thus, because the characteristics of 138 
the absorption line are well known, the method is self-calibrating and no external calibration 139 
source is needed.  Narrowband DIAL systems require extremely high spectral purity in the 140 
outgoing laser, as subtle changes in the wavelength (especially for the on-line channel) even for 141 
a small number of laser pulses in the averaging window can introduce biases in the derived 142 
water vapor profile because the incorrect absorption cross-section is used in the derivation. 143 

The laser in the NCAR DIAL, henceforth called the nDIAL, emits low pulse energies at high 144 
pulse repetition rate (Spuler et al 2015).  The outgoing laser beam is expanded by a portion of 145 
the primary telescope, which makes the lidar system eye-safe.  The nDIAL system has its origins 146 
at Montana State University (MSU), wherein commercially available laser diodes developed for 147 
telecommunications were used as the laser source (Nehrir et al. 2012), and MSU continues to 148 
collaborate with NCAR to advance the nDIAL technology.  A single photon counting detector is 149 
used to detect the backscattered signals in both the on-line and off-line channels.  High 150 
transmission, narrowband interference filters are used to reject energy (e.g., solar background) 151 
outside the desired frequency range of the desired signals.  The technical details of this system 152 
are provided in Table 1. 153 

The signal-to-noise ratio (SNR) in DIAL systems is strongly dependent upon the strength of 154 
the backscattering signal as a function of range.  Aerosol particles provide an efficient scattering 155 
source, and because aerosol concentration decreases markedly above the top of the PBL, the 156 
SNR also drops sharply above this level.  However, the actual range wherein the lidar makes 157 
good water vapor measurements is a function of the pulse energy, the efficiency of the 158 
detector system (e.g., size of the telescope, transmission of the detection optics, sensitivity of 159 
the detector), and the vertical profiles of both the aerosol and water vapor concentrations.  For 160 
this study, the backscattered photon data were coadded for 1-minute before deriving the water 161 
vapor profile. 162 

Virtually all lidar systems have difficulties accurately measuring atmospheric properties 163 
close to the lidar itself.  Ultimately, this is due to a mismatch between the outgoing laser beam 164 
and the detector and leads to a systematic error that varies with height.  This systematic error 165 
reduces to zero at some range, and the region were the error is nonzero is referred to as the 166 
“overlap” region.  For many lidar systems, an empirically determined correction can be applied 167 
to reduce the maximum range of the non-zero overlap error.  For the current version of the 168 
nDIAL, approximately the lowest 500 m suffers from a varying overlap correction (S. Spuler, 169 
personal communication), and thus is not used in this analysis. 170 

The uncertainty in the nDIAL observations is directly calculated by assuming that the 171 
detected backscatter signal follows a Poisson distribution, and propagating the uncertainty in 172 
the backscatter profile through the DIAL equation.  A similar approach was used for the SGP 173 
Raman lidar, and the noise estimate derived from Poisson statistics agrees with that derived 174 
using an autocovariance analysis (Turner et al. 2014). 175 
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The nDIAL has been deployed in a number of different field campaigns.  In particular, the 176 
water vapor profile observed by the nDIAL have been compared to water vapor profiles 177 
measured by radiosondes and independently retrieved from collocated AERI and MWR systems 178 
(Weckwerth et al. 2016). These comparisons demonstrate that the nDIAL agrees well with these 179 
other sensors (e.g., the bias error relative to radiosondes is less than 0.3 g/m3) and has no 180 
significant day vs. night differences in sensitivity (e.g, due to solar background).  In 2018, NCAR 181 
constructed 4 additional units (bringing the total number of nDIAL systems to five), which were 182 
deployed in a network configuration at the Department of Energy’s Atmospheric Radiation 183 
Measurement (ARM) Southern Great Plains site (SGP, Sisterson et al. 2016) from April through 184 
July 2019.   185 
 186 

2.4. Vaisala water vapor DIAL 187 

Vaisala is also developing a micropulse water vapor DIAL (henceforth called the vDIAL).  This 188 
lidar system is based upon the CL51 ceilometer design; this ceilometer is used operationally 189 
around the world.  Unlike the nDIAL, the vDIAL transmits a spectrally broad pulse of laser 190 
energy that encompasses several water vapor absorption lines (“on-line channel”) and in a 191 
nearby spectral window with no absorption lines (“off-line”).  This approach is less technically 192 
demanding on the laser specifications (e.g., the requirement for high spectral purity is much 193 
smaller), but the tradeoff is that the measurement is no longer self-calibrating (Newsom et al. 194 
2020).  For this particular broadband DIAL implementation, the reference measurement is a 195 
well-calibrated surface level in-situ sensor integrated into the DIAL, and measurements from 196 
this sensor are used in an iterative retrieval approach to derive the water vapor profile 197 
(Newsom et al. 2020).     198 

The vDIAL actually consists of two independent broadband DIAL systems integrated 199 
together. The first system has a wide field-of-view, thereby resulting in a very small overlap 200 
region and allowing the lidar to profile water vapor down to 50 m above ground level (AGL).  201 
However, this wide field-of-view results in additional solar background photons and the SNR 202 
decreases very rapidly with range.  The second system has a much narrower field of view, which 203 
results in a deeper overlap region but also enables the lidar to profile water vapor much higher.  204 
Cross-talk between the two independent systems is eliminated by operating one system for 5-s, 205 
and then operating the other for the next 5-s.  The water vapor profiles are derived 206 
independently for the wide and narrow field-of-view systems, and then they are merged 207 
linearly between 300 and 400 m.  Additional details on this system are provided in Newsom et 208 
al. (2020). 209 

The vDIAL system uses analog detection, and thus the uncertainties in the backscatter do 210 
not follow a Poisson distribution like in the nDIAL.  Instead, the uncertainties in the vDIAL water 211 
vapor profile are estimated by deriving water vapor profiles every 2-minutes, and computing 212 
the standard deviation from these data at each height across a 20-minute window to provide 213 
the uncertainty in the standard 20-min average water vapor profile.   214 

The vDIAL system was deployed to the ARM SGP in May-June 2017, where it was compared 215 
against water vapor profiles observed by the ARM Raman lidar (Turner et al. 2016b; Turner and 216 
Goldsmith 1999), radiosondes, and retrieved from the AERI.   217 
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3. Retrieval algorithm 218 

Passive spectral radiometers, such as the MWRs and AERIs, measure radiance, and 219 
thermodynamic profiles must be retrieved from these observations.  However, this is an ill-220 
posed problem, as there could exist multiple solutions (e.g., different thermodynamic profiles) 221 
that would yield the observed radiance.  Thus, the retrieval algorithm must incorporate 222 
additional information to constrain the solution to a potentially valid solution.  Here, we have 223 
elected to use the optimal estimation approach (Rodgers 2000; Maahn et al. 2020), which is a 224 
1-dimensional variational method.  We have modified the AERIoe optimal estimation retrieval 225 
algorithm (Turner and Löhnert 2014) to use AERI and/or MWR data, together with a priori 226 
dataset that specifies how temperature and humidity covary with height, as input.  This 227 
algorithm has already been modified to include additional observations, such as water vapor 228 
lidars (Turner and Blumberg 2019), and thus in these cases the retrieval is finding the 229 
temperature and humidity profiles that satisfies both the observed radiance and the (partial) 230 
profile of water vapor observed by the DIAL simultaneously.   231 

We desire to retrieve the thermodynamic profile 𝑋 (i.e., both the temperature and 232 
humidity profile, so 𝑋 = #$𝑇&, 𝑇(, … , 𝑇*+

,, $𝑞&, 𝑞(, … , 𝑞*+
,. where 𝑇/  and 𝑞/  are the temperature 233 

and water vapor mixing ratio in the ith vertical bin.  We will refer to 𝑋0 as the state vector on 234 
the nth iteration.  The observations from the AERI, MWR, and DIALs will form the observation 235 
vector 𝑌.  A forward model 𝐹 is used to compute a pseudo observation 𝐹(𝑋), which is then 236 
compared with 𝑌.  If they disagree, then the state vector is modified to provide a new estimate 237 
(𝑋05&) following 238 

𝑋05& = 𝑋6 + (𝛾𝑆6:& + 𝐾0,𝑆<:&𝐾0):&𝐾0,𝑆<:&=𝑌 − 𝐹(𝑋0) + 𝐾0(𝑋0 − 𝑋6)?        (Eq 1) 239 

where 𝐾 is the Jacobian of 𝐹, 𝑋6 is the mean a priori, and 𝑆6 is the covariance matrix of the a 240 
priori dataset (see Section 3.2). 𝑆<  denotes the combined forward model and observation error 241 
covariance matrix. The observation error for the single instruments is considered as described 242 
in the subsection of Section 2 and the forward model uncertainty is discussed in Section 3.1. 243 
The superscripts T and -1 denote matrix transpose and matrix inverse, respectively. Because 𝐹 is 244 
moderately non-linear in 𝑋, optimal estimation is formulated as an iterative method, where the 245 
subscript n indicates the iteration number; for our studies, we typically start with 𝑋@ = 𝑋6.  The 246 
scalar 𝛾 is used to stabilize the retrieval when n is small to improve the convergence rate and 247 
decreases to unity as n increases; the description on how 𝛾 is used is explained in Turner and 248 
Löhnert (2014).  Note that due to the non-linearity of the forward models applied for the 249 
microwave and infrared radiative transfer, the Jacobians are required to be recomputed for 250 
each iteration.  We continue to iterate Eq 1 until  251 

=𝐹(𝑋05&) − 𝐹(𝑋0)?
,(𝐾0𝑆6𝐾0, + 𝑆<):&=𝐹(𝑋05&) − 𝐹(𝑋0)? ≪ 𝑚	                   (Eq 2) 252 

where m is the dimension of 𝑌.   253 
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3.1. Forward models 254 

As shown by Eq 1, a forward model is needed to transform the current state vector 𝑋0 into 255 
the observational domain so it can then be compared to the observation vector 𝑌.  In this 256 
study, four different forward models are used (one for each instrument). 257 

For the passive radiometers, the forward models are line-by-line radiative transfer models. 258 
The monochromatic MonoRTM radiative transfer model (Clough et al. 2005; Payne et al. 2011) 259 
is used to simulate MWR observations, and the line-by-line radiative transfer model LBLRTM 260 
(Clough et al. 1995; Mlawer and Turner 2016) is used to simulate the AERI.  In the latter, the 261 
monochromatic spectra are convolved with a tophat function in the time domain and then 262 
transformed to the spectral domain via a Fourier transform; this applies the AERI’s lineshape 263 
function to the calculation.  The vertical grid used in these calculations is specified by the a 264 
priori data.  The pressure profile is computed from the temperature and humidity data from the 265 
current state vector using the hypsometric equation.  The spectral regions used in the retrieval 266 
are given in Table 1.  In the infrared, many trace gases have absorption bands, and while the 267 
spectral regions used in the retrieval are primarily sensitive to water vapor and carbon dioxide 268 
(where the latter provides the sensitivity to temperature), there are minor contributions to the 269 
downwelling radiance by other gases.  We utilize the US Standard Atmosphere to provide 270 
profiles of these other trace gases for this study, but our results are insensitive to this choice. 271 

To incorporate the DIAL data into the Eq 1, a forward model is needed for each lidar also.  272 
The purest forward model would simulate the profiles of backscatter energy that would be 273 
observed in both the on- and off-line channels for a given water vapor profile.  We have elected 274 
to use the derived water vapor concentration from each lidar in the observation vector.  This 275 
results in a trivial forward model for each lidar: essentially, the forward model just converts 276 
water vapor mixing ratio to water vapor number concentration for the nDIAL.  The output of 277 
the vDIAL is water vapor mixing ratio, so that forward model is just the unity function. 278 

3.2. The a priori dataset 279 

There has been only one campaign that had an AERI, HATPRO, and water vapor DIAL 280 
collocated with each other: the Perdigao campaign that was held in Portugal from 1 May to 15 281 
June 2017 (Fernando et al. 2019).  We specified a 48-level vertical grid for the retrievals, 282 
starting at 0 m above ground level (AGL), the next level at 10 m AGL, and each subsequent 283 
height bin is 10% thicker than the previous one. Although ~150 radiosondes were launched 284 
during Perdigao, these are not enough to accurately compute the level-to-level covariance for 285 
the 96-element state vector (i.e., 𝑋 has 48 levels for temperature, and 48 for water vapor).  286 
Therefore, we used 1571 radiosondes launched in the months of April, May, June, and July over 287 
the last decade by the Portuguese weather service at Lisbon to compute 𝑋6 and 𝑆6.  This a 288 
priori information was used in all of the retrievals shown here.  289 

The vDIAL was not part of the Perdigao deployment, so we are using AERI and vDIAL data 290 
collected between 15 May to 12 June 2017 at the SGP site instead.  Both the Perdigao and SGP 291 
datasets used here were collected in the spring, but the SGP climatology is different than that in 292 
Portugal necessitating the use of a different a priori dataset.  We have used over 2000 293 
radiosondes launched at the SGP during the months of April, May, and June over the past 294 
decade to derive the a priori information for this site. 295 
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3.3. Characterizing the information content in the retrieved profile 296 

One advantage of the optimal estimation framework is that the uncertainties in the 297 
retrieval, which includes contributions from both the uncertainties in the observations and a 298 
priori as well as the sensitivity of the forward model, is a direct output of the framework.  If the 299 
“optimal” solution is 𝑋D*, which is the solution after both 𝛾 = 1 and Eq 2 indicates that the 300 
solution has converged after nc iterations, then the covariance of the optimal solution is given 301 
by 302 

𝑆D* = (𝑆6:& + 𝐾0F, 𝑆<:&𝐾0F):&                                                (Eq 3) 303 
We will look at the square root of the diagonal elements of 𝑆D* to quantify how the 1-s 304 
uncertainties of the retrieved profiles change as different instrument combinations are used in 305 
the observation vector.   306 

A second advantage of this method is that the averaging kernel 𝐴 provides a direct estimate 307 
of the sensitivity of the retrieved profile at each height to perturbations at that height.  This 308 
matrix is computed as  309 

𝐴 = 	 (𝑆6:& + 𝐾0F, 𝑆<:&𝐾0F):&𝐾0F, 𝑆<:&𝐾0F = 𝐼 − 𝑆D*𝑆6:&                    (Eq 4) 310 
The diagonal components of 𝐴 provides the degrees of freedom for signal (DFS; Rodgers 2000) 311 
for each height in the retrieved profile.  If the observations had very high information content 312 
at each level of the retrieved profile, then the diagonal elements of 𝑆D* would be small relative 313 
to the diagonal elements of the a priori, and thus the trace of 𝐴 would approach the dimension 314 
of 𝑋.  The total DFS, which is equal to the trace of 𝐴, provides a metric for how many 315 
independent pieces of information exist in the observation.   316 

For this study, we recognize that the matrices 𝐴, 𝑆D*, and 𝑆6	really have four equal sized 317 
quadrants that correspond to  318 

I
(𝑇, 𝑇) (𝑇, 𝑞)
(𝑞, 𝑇) (𝑞, 𝑞)J 319 

We will look at the portions of 𝐴 and 𝑆D* that correspond to (T,T) and (q,q) independently. 320 
Furthermore, as we will see, the DFS is typically much smaller than unity, so we will look at the 321 
profile of the cumulative DFS (cDFS), as this allows us to quickly determine how many 322 
independent levels are below some specified height, which is advantageous when talking about 323 
where in the vertical the different instruments provide sensitivity to changes in temperature 324 
and water vapor. 325 

We want to highlight that even though lidars make explicitly range resolved measurements, 326 
their information content in the derived water vapor profile is not the same as the number of 327 
range bins.  The actual information content at height z depends strongly on the noise level of 328 
the observation there.  Even direct derivations of water vapor from lidar signals would benefit 329 
from being cast into a retrieval framework like what we’ve specified in Eq 1 because then the a 330 
priori information could be used to constrain the derived water vapor when the instrument’s 331 
SNR decreases (e.g., Sica and Haefele 2016).   332 

4. Results 333 

Several studies have demonstrated that ground-based thermodynamic retrievals in the PBL 334 
using only AERI observations have 2-4 times larger total DFS in both temperature and water 335 
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vapor than retrievals that use only microwave data (Löhnert et al. 2009; Blumberg et al. 2015; 336 
Wulfmeyer et al 2015).  However, what is not known is how the information content changes 337 
when partial profiles of water vapor from a differential absorption lidar (since the DIAL 338 
observations extend only from the top of the region where full overlap is achieved to a height 339 
where its SNR becomes small) are included in a retrieval considering the synergy of AERI, MWR, 340 
and nDIAL or vDIAL.  For example, does including a partial water vapor profile in the retrieval 341 
result in AERI+DIAL and MWR+DIAL having equivalent cDFS for water vapor?  Does including a 342 
partial water vapor profile in a simultaneous retrieval of T(z) and q(z) (as we are doing here in 343 
Eq 1) improve the temperature profile in any way? 344 

In order to answer these questions, we performed eight sets of retrievals using data from 345 
the Perdigao field campaign in Portugal (Table 2): four were using passive-only measurements 346 
(MWRz, MWRzo, AERI, and AERI+MWRz), and four included the nDIAL together with those 347 
passive measurements.  “MWRz” denotes the case when only zenith-pointing MWR brightness 348 
temperature observations were used in the retrieval, whereas “MWRzo” denotes the case were 349 
both zenith and off-zenith (i.e., “oblique” elevation scans) are used.  Crewell and Löhnert (2007) 350 
demonstrated that adding elevation scan observations at frequencies where the atmosphere is 351 
optically thick, and assuming horizontal homogeneity of the PBL, resulted in a marked increase 352 
in the information content and hence accuracy of the retrieved temperature profile.  However, 353 
only observations made at frequencies above 55 GHz are used in these elevation scans. Even at 354 
low elevation angles, frequencies channels below 55 GHz are too transparent and thus the 355 
assumption of horizonal homogeneity fails very frequently (Crewell and Löhnert 2007).   356 

As the vDIAL will soon be the first commercially available DIAL instrument for water vapor 357 
profiling (H. Winston, personal communication), a major objective is to evaluate how including 358 
this lidar dataset with passive observations changes the information content in the retrieved 359 
profiles. In addition, we show the impact of the vDIAL relative to the nDIAL on our retrievals. 360 
However, vDIAL (ARM SGP) and nDIAL (Perdigao) observations are only available at different 361 
locations with different a priori datasets. In order to overcome this issue, the comparisons were 362 
carried out in relation to the AERI instruments, which operated at both sites. The comparison of 363 
the AERI-only from ARM-SGP and Perdigao allows us to characterize the impact of the prior on 364 
the retrievals, since the two AERI instruments deployed in Portugal and at the SGP site have 365 
similar error characteristics (not shown).  Ultimately, we have looked at the differences 366 
between the AERI-only and AERI+xDIAL retrievals (where x is either “v” or “n”) at the two sites. 367 

4.1. Case study example 368 

To illustrate the differences between the various passive-only and passive+active retrievals, 369 
we selected a case during Perdigao on 15 May 2017 at 05:07 UTC.  This is a clear sky event, and 370 
is representative of the retrieval quality during the entire field campaign.  Figure 1 shows the 371 
retrieved temperature (panel A) and water vapor mixing ratio (WVMR, panel B), and the 372 
associated 1-𝜎 uncertainties of each (panels C and D, respectively) derived from the square root 373 
of the diagonal of the retrieval error covariance 𝑆D*.  The black line in panels A and B denote 374 
the coincident radiosonde, whereas the other colors denote the different passive-only 375 
retrievals.   376 

All three passive-only retrievals (MWRzo, AERI, and AERI+MWRzo) identify the surface-377 
based inversion, although the retrievals that include the AERI capture it more accurately (Fig 378 
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1A).  Furthermore, the retrievals that include the AERI are able to better match the radiosonde 379 
temperature observations above 1.5 km, whereas the MWRzo retrieval is showing a bias at 380 
those altitudes. None of the three retrievals are able to capture the small-scale variability in the 381 
vertical observed by the radiosonde due to the relatively coarse vertical resolution of the 382 
retrievals.  The uncertainties in the MWRzo temperature retrievals are about 50% larger (or 383 
more) over the lowest 3 km relative to the AERI retrievals (Fig 1C), which agrees qualitatively 384 
with the differences to the radiosonde seen in Fig 1A. 385 

The water vapor retrievals (Fig 1B) show two basic vertical patterns: the MWRzo retrieval is 386 
markedly drier than the radiosonde below 1 km, whereas the AERI and AERI+MWRzo retrieval 387 
starts dry, then becomes too wet (between 500 and 1000 m), and then becomes drier than the 388 
radiosonde above 1500 m.  Interestingly, the nDIAL water vapor profile is also drier than the 389 
radiosonde below 1500 m, and agrees better with the MWRzo profile.  However, the retrievals 390 
that use the AERI data have markedly smaller uncertainties than the MWRzo below 1.5 km; 391 
above that height, the uncertainty in the MWRzo is smaller than the AERI, although the 392 
AERI+MWRzo retrieval has the smallest uncertainties over the entire lowest 3 km as would be 393 
expected for a variational retrieval method. 394 

Including the nDIAL data above 500 m into the retrieval, and thus finding a solution that 395 
simultaneously fits both the observed radiance and the partial WVMR profile of the DIAL within 396 
their uncertainties, yields the results shown in Fig 2.  The largest impact, not surprisingly, is on 397 
the retrieved water vapor profile (Fig 2B).  The inclusion of the nDIAL data forces the retrievals 398 
that also include the AERI to reduce the amount of water vapor between 500 and 1000 m 399 
(where the AERI-based retrievals were too wet in Fig 1B), which has the impact of increasing 400 
the amount of water vapor in the AERI retrievals below 500 m (Fig 2B), resulting in the 401 
AERI+nDIAL and AERI+MWRzo+nDIAL agreeing much better with the radiosonde.  Between 800 402 
and 1500 m, the MWR+nDIAL retrieved profile is essentially the same as the nDIAL profile, 403 
suggesting that the MWR is not adding any significant information to the DIAL’s observation.  404 
The impact of the nDIAL data on the water vapor uncertainty profiles can clearly be seen in Fig 405 
2D, where all retrievals have the similar uncertainty above about 800 m where the DIAL data 406 
are being used.  Including the DIAL data into the retrievals has a minor impact on the retrieved 407 
temperature profiles, as all three seem to agree a bit better qualitatively with the radiosonde 408 
above 1000 m (comparing Fig 2A with Fig 1A), and the 1-𝜎 uncertainties in temperature are 409 
slightly smaller (Fig 2C with Fig 1C). 410 

4.2. Comparing mean uncertainty profiles 411 

While the case study above may be representative, the quality of a retrieval (i.e., its 412 
uncertainty and information content) is case specific.  To provide a more complete picture of 413 
how the different passive-only and active+passive retrievals compare, we computed the mean 414 
1-𝜎 uncertainty profiles from all of the retrievals performed during Perdigao, as a wide range of 415 
environmental conditions (e.g., the surface temperature ranged from approximately 9 to 33 °C 416 
and the precipitable water vapor from 1.1 to 3.1 cm) were observed during the 5-week 417 
campaign.  Figure 3 shows these mean uncertainty profiles for temperature (left) and water 418 
vapor (right) for the different passive-only (solid lines) and active+passive (broken lines), and 419 
Table 2 provides the mean values at 3 different heights.   420 
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Considering the passive-only retrievals, combining the AERI and MWR together has little 421 
impact on the resulting temperature retrieval in the lowest 3 km or on the water vapor retrieval 422 
below 1.5 km, compared to the AERI-only retrieval.  However, the MWRz and MWRzo 423 
outperform the AERI for water vapor above 2 km. Most strikingly, the benefit of the passive 424 
retrieval synergy can be seen for water vapor above 1.5 km, where the improvement is up to 425 
30% compared to the single sensor retrievals. Adding the elevation scanning data to the MWR 426 
retrieval (i.e., the MWRzo vs MWRz) results in a smaller uncertainty in the temperature profile, 427 
especially below 400 m.   428 

Including the nDIAL data into the retrievals greatly reduces the 1-𝜎 uncertainty in the water 429 
vapor profiles for all active+passive retrievals (relative to the passive-only results), and results 430 
in a slight decrease in the temperature uncertainty also.  The AERI-based retrievals show 431 
smaller uncertainties than the MWR-based retrievals, with the exception in the water vapor 432 
retrievals above 2 km where the MWR-based retrieval has a smaller uncertainty than the AERI 433 
retrieval.  The uncertainty in the AERI+nDIAL water vapor retrieval between 500 m and 2 km, 434 
where the nDIAL data are used, is slightly smaller than the uncertainty in the MWRz+nDIAL 435 
retrieval, suggesting that the AERI is adding more information to the DIAL observations than the 436 
MWR. However, above 2 km the combination of all sensors has distinguishably the best 437 
performance, indicating that all instruments are contributing to the sensor synergy. In 438 
quantitative numbers, the WVMR can be retrieved via sensor synergy with accuracies between 439 
0.4 and 0.6 g kg-1 in the lowest 3 km, which between 1 and 2 km (the region where DIAL shows 440 
its optimal performance), is an uncertainty reduction of up to 50% compared to the passive 441 
retrieval synergy.  442 

4.3. Comparing mean cDFS profiles 443 

The optimal estimation framework used in this study uses the a priori to help constrain the 444 
ill-posed retrieval, thereby allowing the algorithm to converge to a realistic solution more 445 
frequently.  Looking at the DFS profile, especially when summed with altitude from the surface 446 
(called here the cumulative DFS profile), enables one to understand where the independent 447 
data in the observations are located vertically.  Figure 4 shows the mean cumulative DFS 448 
profiles for the different retrievals; mean values at three specific heights are provided in Table 449 
3.   450 

There are several important features in this figure.  First, adding the elevation scanning data 451 
to the MWR retrieval (i.e., comparing the MWRz-only vs. MWRzo-only) increases the total DFS 452 
for temperature at 3 km by 0.4 (from 2.15 to 2.57), with almost all of this increase in the first 453 
500 m.  [Note, however, that we have only used a single elevation angle to the MWRzo (Table 454 
1), and the inclusions of additional elevation angles would result in a slight increase the cDFS for 455 
temperature.] The AERI-only temperature retrieval has more information (3.87) in the lowest 456 
500 m than the MWRzo-only retrieval has in the lowest 3 km (2.57).  Most of the information in 457 
the temperature retrievals is below 1.5 km, as the cDFS profiles become relatively constant 458 
above that level; this suggests that these passive-only and active+passive temperature 459 
retrievals will have limited ability to retrieve the structure of the temperature profile above 460 
that height. 461 

The passive-only retrievals of water vapor show less total DFS (using the value at 3 km 462 
height) during Perdigao relative to datasets at other field campaigns (e.g., Turner and Löhnert 463 
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2014; Blumberg et al. 2015).   This is likely due to the spread in the covariance of the prior, 464 
because if the prior had (hypothetically) negligible spread then the derived information content 465 
from the observations would be vanishingly small.  Nonetheless, we can still use this prior to 466 
demonstrate how the addition of the DIAL data to the retrievals changes the information 467 
content.  The cDFS profiles for the water vapor retrievals clearly show the impact of including 468 
the nDIAL data above 500 m, as the cDFS profiles for the active+passive retrievals are markedly 469 
larger above that height than the passive-only retrievals (i.e., with values between 6 to 7 470 
compared to 2 to 3 at 3 km).  The additional information on water vapor in the AERI below 500 471 
m relative to the MWR is clearly seen.  However, the lidar does not always provide data to the 472 
same altitude and its noise levels can depend on atmospheric conditions (e.g., if there is a cloud 473 
above the lidar or not), and thus the spread in the cumulative DFS profiles was quite large (e.g., 474 
from 2.0 to 9.4 for the MWRz+nDIAL at 3 km height; Table 3).   475 

4.4. Impact of clouds 476 

One of the often-stated advantages of MWR-based retrievals, relative to infrared-based 477 
retrievals, is the ability to profile through clouds because the optical thickness of the cloud is 478 
markedly smaller in the microwave relative to the infrared for a given liquid water path (LWP).  479 
Figure 5 shows cDFS profiles from the MWRz-only and AERI-only temperature and water vapor 480 
retrievals during a 2h period when the sky transitioned from virtually clear sky to overcast.  481 
Three profiles with different LWP amounts (2, 10, and 60 g m-2, where the infrared is essentially 482 
opaque for the last – Turner 2007) are shown.  The cloud base was at 1100 m and was assumed 483 
to be 100 m thick (there was no way to determine cloud top from other observations at the 484 
site).  First, notice that as the cloud becomes optically thicker, the retrievals have more 485 
information about the temperature at cloud base.  Second, the cloud becomes opaque in the 486 
infrared quickly, hence the cumulative DFS profile becomes essentially constant (especially for 487 
water vapor) above the cloud as the LWP values approach 60 g m-2.  Meanwhile, the cloud is 488 
semi-transparent in the microwave for all LWP values, which is seen by the increasing cDFS 489 
profile (especially for water vapor) above the cloud.  However, there is still only a small amount 490 
of information in the observations at heights above 1 km in the MWR (see left-hand panel of Fig 491 
4), and thus the increase in the information content in the MWR retrieval above the cloud is 492 
relatively limited.   493 

The accurate understanding of where the information exists vertically is useful in order to 494 
properly assimilate these profiles into a numerical weather prediction model.  There is often 495 
significant level-to-level correlation in the uncertainties of profiles retrieved from passive 496 
remote sensors (e.g., see Figure 10 of Turner and Blumberg 2019), and most data assimilation 497 
systems are not yet configured to handle correlated error in the observations.  Coniglio et al. 498 
(2019) used the cDFS profile to identify the heights that should be assimilated to minimize the 499 
amount of correlated error from the retrieved profiles.  Starting at a specified height (e.g., 50 500 
m), they identified heights where the cDFS had increased by 1 above that height, and this 501 
process continued until they either were unable to identify any other points or had reached the 502 
maximum height that they wanted to assimilate.  This is illustrated by the dots on the profiles in 503 
Fig 5, with the first height taken at 50 m.  For the AERI-retrieved profiles, three levels would be 504 
assimilated below the cloud with an additional level at cloud base or just above; the height of 505 
all of the temperature levels is pretty consistent for these three profiles.  For the MWR, only 506 
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two levels would be assimilated due to the lower information content in the microwave 507 
observations, with the height of the second point changing dramatically due to how the cloud 508 
influences the vertical distribution of the DFS profile.  Again, we remind the reader that the 509 
total DFS seen in this example is lower than that seen using this same retrieval framework in 510 
other field campaigns; we attribute this to the lack of spread in the a priori dataset used at 511 
Perdigao. 512 

4.5. Sensitivity to the nDIAL vs. vDIAL 513 

The impact of adding any new observation depends partially on its error covariance matrix, 514 
as observations with larger uncertainties will add less information to the retrieved profile than 515 
observations with smaller uncertainties.  For many lidars, coadding photon counting data in 516 
either time or altitude reduces the random errors, and thus would increase the information 517 
content and impact of using these lidar data in retrievals such as these.  However, other 518 
features of the observations are also important.  For example, during Perdigao, the lowest 519 
range gate that was considered useful from the nDIAL was at 500 m; data below that level 520 
suffered from systematic errors associated with the overlap function of the lidar (S. Spuler, 521 
personal communication).  However, the vDIAL was designed to make good measurements at 522 
50 m above the surface, although generally speaking its maximum range is much less (order 1 523 
km; Newsom et al. 2020) than the nDIAL system (which frequently makes good water vapor 524 
measurements to altitudes well above 2 km).  A natural question is how would the results 525 
already shown change if the vDIAL system was used instead of the nDIAL? 526 

Unfortunately, this isn’t straight-forward to answer as the vDIAL was not collocated with the 527 
other Perdigao instruments.  Instead, we use the 6-week deployment of the vDIAL at the ARM 528 
SGP site (Newsom et al. 2020), which has an AERI with similar noise characteristics as the AERI 529 
deployed at Perdigao, as a surrogate.  However, different a priori datasets were used for the 530 
retrievals at the two sites, which impacts the retrievals and hence the analysis.  To help adjust 531 
for the contribution of the two priors, we performed AERI-only retrievals and AERI+vDIAL 532 
retrievals at the SGP so that we could look at the difference between the two, and compare 533 
that to the difference between the AERI-only and AERI+nDIAL retrievals at Perdigao (Figure 6). 534 

The impact of the vDIAL data on the water vapor retrieval is most significant between 300 535 
and 1500 m and reaches relative values of up to 50% uncertainty reduction compared to the 536 
AERI-only retrieval.  Above 1500 m, the AERI+vDIAL WVMR uncertainties increase quickly with 537 
height and approach the AERI-only uncertainties at 3 km.  The AERI+nDIAL uncertainties are 538 
very similar to the AERI-only below 500 m (because the nDIAL data is not available at those 539 
levels), but are approximately 2x smaller than the AERI-only for all height between 500 m and 3 540 
km. Further, the change in the cDFS between 500 m and 3 km is larger for the nDIAL system 541 
relative to the vDIAL (Table 3). Thus, the ability of the nDIAL to see deeper into the troposphere 542 
than the vDIAL is clearly shown.  Interestingly, the water vapor uncertainty in the AERI+vDIAL is 543 
smaller than the AERI+nDIAL in the 500 to 900 m range; however, this could easily be changed 544 
by adjusting how the DIAL data were coadded in the nDIAL (which had 1-min temporal 545 
resolution relative to the 20-min temporal resolution of the vDIAL – see Table 1). 546 

Perhaps most noteworthy is the relative impact of the two DIALs on the retrieved 547 
temperature profile.  The addition of the vDIAL data has almost no impact on the uncertainty or 548 
the cDFS profile relative to the AERI-only (Fig 6, Tables 2 and 3), whereas the nDIAL has a 549 
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marked impact on the retrieved temperature profile in the range from 500 m to 2.5 km with an 550 
reduction of the uncertainty of up to 0.25 K compared to the AERI-only retrieval. Here, the 551 
instrument synergy is obtained through a more exact determination of the water vapor profile 552 
by the nDIAL, which enables the AERI to reach a higher DFS value for temperature. 553 

5. Conclusions 554 

Many applications require profiles of temperature and humidity in the PBL.  However, the 555 
accuracy and information content from different ground-based remote sensing instruments is 556 
not the same.  Previous work (e.g., Löhnert et al. 2009; Blumberg et al. 2015) demonstrated 557 
that there is more information content in both temperature and water vapor from spectral 558 
infrared measurements (such as made by the AERI) than in spectral microwave radiometer 559 
measurements.  These results depend strongly on the characteristics of the instrument systems 560 
being used; for example, if future generation MWRs are improved to have smaller random 561 
errors, then the information content in the observations would increase.  The on-line python 562 
modules provided by Maahn et al. (2020) can be used to explore how the information content 563 
would change for different assumed random error levels in the MWR.  564 

This study investigated the impact of ground-based sensor synergy for PBL thermodynamic 565 
profiling, and in particular, how the information content and random errors would change if an 566 
active remote sensor such as a water vapor DIAL was included into the retrieval.  An open 567 
question going into this research was whether the inclusion of the water vapor DIAL 568 
observations with MWR radiance observations would have the same information content as 569 
retrievals that used the DIAL with the AERI observations.  An important aspect of this study is 570 
that the same a priori data and retrieval framework were used for all of the different retrievals 571 
shown in this paper, which is crucial to truly quantify the differences as different retrieval 572 
frameworks can result in markedly different retrievals (Maahn et al. 2020).  We have shown 573 
that including the DIAL data increases the water vapor information content and reduces water 574 
vapor errors in both the AERI+DIAL and MWR+DIAL retrievals, relative to the passive-only 575 
retrievals.  However, the AERI+DIAL continues to have more information on water vapor than 576 
the MWR+DIAL.  The best retrieval performance is observed when all three instruments are 577 
combined in one retrieval. Improvements are shown that decrease the uncertainty by 50% 578 
compared to passive-only retrievals between 1 and 2 km.  At Perdigao, the AERI is shown to 579 
dominate retrieval accuracy in the lowest 500 m, from 500 m to 2 km it is the DIAL that 580 
primarily determines the accuracy, and above 2 km the three instruments complement each 581 
other optimally to obtain the best solution.  Furthermore, the addition of the water vapor DIAL 582 
observations (slightly) improves the information content in temperature retrievals from the 583 
AERI+DIAL, but has no impact on the temperature profiles for the MWR+DIAL.   584 

Passive ground-based remote sensors are relatively common, as these technologies are 585 
more mature, have been commercially available for several decades, and have been operated 586 
in networks (e.g., Caumont et al. 2016; Geerts et al. 2017; Yang and Min 2018).  The recent 587 
advances in water vapor DIAL (e.g., Spuler et al. 2015; Newsom et al. 2020) are leading to the 588 
possibility that the two DIALs used in this study could be commercially available in the next 589 
several years, which is why they formed the focus of this study.  There are other 590 
thermodynamic profiling active remote sensors that could be combined with MWRs and AERIs: 591 
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for example, Raman lidar and Radio Acoustic Sounding Systems (RASS).  Studies have been 592 
conducted combining Raman lidar with both MWR data (e.g., Barrera-Verdejo et al 2016; Foth 593 
and Pospichal 2017) and AERI data (e.g., Turner and Blumberg 2019); however, these studies 594 
were in different environments using different a priori datasets, which makes quantitatively 595 
comparing their accuracy and information content problematic.  There are currently efforts 596 
underway to evaluate the impact of RASS virtual temperature profiles observations on both 597 
AERI and MWR observations.   598 

Sensor synergy does not have to just involve ground-based sensors.  Ground-based MWR 599 
and AERI observations can also be combined with satellite observations to improve information 600 
content and accuracy, especially in the middle- and upper troposphere.  Feltz et al. (2003) 601 
showed the impact on AERI retrievals and how these improved profiles could be used for 602 
evaluating thermodynamic structure near storms, while Ebell et al. (2013) performed a more 603 
classical information content study.  Additional efforts (e.g., such as Toprov and Löhnert 2020) 604 
are needed, which show the impact of the high-temporal and high-spectral resolution 605 
geostationary infrared sounders with ground-based remote sensing systems and the impact on 606 
stability indices and other parameters.   607 

It is possible that readers will consider this study as a suggestion about the optimal ground-608 
based solution for thermodynamic profiling, especially for future operational networks.  This 609 
paper provides insights into only one aspect of the cost-benefit solution (i.e., the relative 610 
differences of information content); considerations as to ease of use, durability and hardiness, 611 
calibration stability, and other scientific traits (e.g., does the instrument provide information on 612 
macro- or microphysical cloud properties, aerosol properties, trace gases, etc.) also need to be 613 
considered.   614 

 615 
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 809 
Table 1: 810 
Important specifications of the instruments used in this paper 811 

Instrument Specifications 
MWR (HATPRO G4) • 7 frequencies between 22.2 and 31.4 GHz 

• 7 frequencies between 51.2 and 58.0 GHz 
• Off-zenith data collected at elevations of 18° and 162° 
• 1-s sky average, with elevation scans performed every 5 min; 

retrieval used single spectrum (both zenith and off-zenith) at 
desired time (e.g., close to sonde launch time 

• Reference: Rose et al. 2005 
AERI • 324 wavenumbers in these intervals: 612-618, 624-660, 674-713, 

713-722, 538-588, 860.1-864.0, 872.2-877.5, 898.2-905.4 cm-1 
• 15-s sky average every 30-s; retrieval used single spectrum at 

desired time (e.g., close to sonde launch time) 
• Principal component noise filter used to reduce random error 

(Turner et al. 2006) 
• Reference: Knuteson et al. 2004 a,b 

nDIAL • Narrowband DIAL, transmitting at 830 nm 
• Temporal resolution: 1-min  
• Vertical resolution: 75-m  
• Minimum height: 500 m; Maximum height was approx. 3 km 

(typical) 
• Telescope receiver area (far field): 935 cm2 
• Average transmitted pulse power: 5 µJ pulses at 9 kHz (45 mW) 
• Reference: Spuler et al. 2015; Weckwerth et al. 2016 

vDIAL • Broadband DIAL, transmitting at 911 nm 
• Temporal resolution: 20-min  
• Vertical resolution: variable from 100 m at 100 m AGL to 200 m at 1 

km 
• Minimum height: 50 m; Maximum height was approx. 1 km (typical) 
• Telescope receiver area (far field): 615 cm2 
• Average transmitted pulse power: 5.5 µJ pulses at 8 kHz (44 mW) 
• Reference: Newsom et al. 2020 
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 815 
Table 2: Average uncertainty values (derived from 𝑆D*) at three levels for temperature and 816 
humidity for the different instrument combinations used in this study.  The passive-only 817 
retrievals are highlighted in gray, whereas the active+passive are in white.  The values in 818 
parentheses at 3 km show the 10th and 90th percentile at that height, thereby providing a 819 
measure of the amount of variability in these statistics for each retrieval.   820 

 Temperature Uncertainty [°C] Water Vapor Uncertainty [g kg-1] 
 500 m 1000 m 3000 m 500 m 1000 m 3000 m 
MWRz-only 1.07 1.58 1.36 (1.34,1.36) 1.11 1.35 0.87 (0.83,0.87) 
MWRzo-only 1.06 1.49 1.36 (1.34,1.36) 1.11 1.34 0.87 (0.82,0.87) 
AERI-only 0.56 0.87 0.97 (0.86,1.22) 0.73 1.01 0.96 (0.82,1.07) 
AERI+MWRz 0.56 0.86 0.94 (0.84,1.29) 0.69 0.97 0.71 (0.64,0.78) 
MWRz+nDIAL 0.97 1.35 1.32 (1.28,1.35) 0.73 0.67 0.68 (0.47,0.85) 
MWRzo+nDIAL 0.97 1.29 1.31 (1.27,1.35) 0.73 0.66 0.68 (0.46,0.84) 
AERI+nDIAL 0.51 0.75 0.91 (0.81,1.22) 0.57 0.62 0.74 (0.49,1.05) 
AERI+MWRz+nDIAL 0.51 0.75 0.91 (0.82,1.16) 0.55 0.61 0.60 (0.42,0.75) 
AERI-only (SGP) 0.36 0.60 1.02 (0.82,1.41) 0.65 1.00 1.17 (0.90,1.45) 
AERI+vDIAL (SGP) 0.35 0.57 1.01 (0.80,1.39) 0.39 0.68 1.10 (0.81,1.42) 

 821 
 822 
 823 
 824 
 825 
 826 
Table 3: Average cDFS values at three levels for temperature and humidity for the different 827 
instrument combinations used in this study.  The passive-only retrievals are highlighted in gray, 828 
whereas the active+passive are in white. The values in parentheses at 3 km show the 10th and 829 
90th percentile at that height, thereby providing a measure of the amount of variability in these 830 
statistics for each retrieval.   831 

 Temperature cDFS value [unitless] Water vapor cDFS value [unitless] 
 500 m 1000 m 3000 m 500 m 1000 m 3000 m 
MWRz-only 1.51 1.82 2.15 (2.15,2.16) 0.94 1.14 1.92 (1.71,2.03) 
MWRzo-only 1.85 2.22 2.57 (2.56,2.59) 0.94 1.13 1.92 (1.71,2.03) 
AERI-only 3.87 4.55 5.50 (5.02,5.66) 1.45 1.83 2.70 (1.88,3.41) 
AERI+MWRz 3.89 4.58 5.56 (5.15,5.66) 1.53 1.97 3.17 (2.70,3.81) 
MWRz+nDIAL 1.51 1.82 2.16 (2.14,2.20) 1.11 2.62 6.23 (1.97,9.44) 
MWRzo+nDIAL 1.84 2.20 2.57 (2.54,2.61) 1.10 2.61 6.22 (1.99,9.41) 
AERI+nDIAL 3.87 4.52 5.48 (5.25,5.63) 1.67 3.25 7.00 (2.80,10.14) 
AERI+MWRz+nDIAL 3.87 4.52 5.49 (5.25,5.63) 1.71 3.28 7.21 (3.21,10.15) 
AERI-only (SGP) 4.80 5.53 6.58 (5.36,7.16) 1.72 2.08 2.97 (1.90,3.83) 
AERI+vDIAL (SGP) 4.82 5.53 6.64 (5.45,7.13) 2.54 4.17 5.50 (2.42,8.40) 
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Figures: 835 
 836 

 
Fig 1: The retrieved profiles of temperature (A) and water vapor (B), with the uncertainties in 
these profiles (panels C and D, respectively), for the passive-only retrievals with the MWRzo 
only (red), AERI only (green), and AERI+MWRzo (blue) on 05:07 UTC on 15 May 2017 during 
Perdigao.  The collocated radiosonde temperature and water vapor profiles are shown in 
black in (A) and (B), respectively.  The water vapor observed by the DIAL and its uncertainty 
are included in the figure, although it is not used in any of these retrievals.   
 

 837 
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 839 
 840 
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 842 
 843 

 
Fig 2: Same as Fig 1, except that the retrievals combine active and passive data with the 
MWRzo+DIAL (red), AERI+DIAL (green), and AERI+MWRzo+DIAL (blue).  The water vapor 
observed by the DIAL and its uncertainty are included in the retrievals.  See text for more 
details. 
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 846 

 
Fig 3: The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for 
passive-only (solid lines) and active+passive (broken lines) retrievals during Perdigao.   
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 854 

 
Fig 4: The mean cumulative degrees of DFS for temperature (left) and water vapor mixing 
ratio (right) for passive-only (solid lines) and active+passive (broken lines) retrievals during 
Perdigao.  Note that the water vapor cumulative DFS profiles for MWRz and MWRzo 
retrievals are virtually identical (see Table 3) and hence overlap. 
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 856 

 
Fig 5: Profiles of cumulative degrees of freedom of signal from MWRz-only (dashed curves 
with dots) and AERI-only (solid curves with squares) temperature (left) and water vapor 
(right) retrievals for three samples between 03:00 and 05:00 UTC on 27 May 2017 during 
Perdigao.  The different colors correspond to different LWP path values in the overhead 
cloud, whose height is indicated with the horizontal gray bar.  The solid symbols indicate 
heights that would be assimilated, if the first level started at 50 m AGL and each level was 
separated by a unit of DFS.  See the text for more details. 
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Fig 6: The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for 
AERI-only (solid lines) and AERI+xDIAL (broken lines) retrievals during Perdigao (black) and 
SGP (purple), where the former used nDIAL data and the latter used vDIAL data.  Note that 
different priors were used for the two locations; this impact is seen in the AERI-only retrievals 
as the noise levels of the two AERIs were similar. 
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