
1 

 

Error analyses of a multistatic meteor radar system to obtain a  

3-dimensional spatial resolution distribution 

Wei Zhong1, Xianghui Xue1,2,3, Wen Yi1,2, Iain M. Reid4,5 Tingdi Chen1,2,3, Xiankang Dou1,6  

1CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science 

and Technology of China, Hefei, China 5 
2Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology 

of China, Hefei, China 
3CAS Center for Excellence in Comparative Planetology, Hefei, China 
4ATRAD Pty Ltd., Thebarton, South Australia, Australia 

5School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia 10 
6Wuhan University, Wuhan, China  

Correspondence to: Xianghui Xue (xuexh@ustc.edu.cn) 

Abstract：In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar 

community, focusing on the mesosphere and lower thermosphere (MLT). Recently, there have been some notable experiments 

using multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all parameter inversion 15 

processes rely on the accurate location of the meteor trail reflecting points the meteor trail specular point. It is timely then for 

a careful discussion focussed on the error distribution of multistatic meteor radar systems. In this study, we discuss the 

measurement errors that affect the spatial resolution and obtain the spatial resolution distribution in 3-dimensional space for 

the first time. The spatial resolution distribution can both help design a multistatic meteor radar system and improve the 

performance of existing radar systems. Moreover, the spatial resolution distribution allows the accuracy of retrieved parameters 20 

such as the wind fields to be determined. 

1 Introduction 

The mesosphere and lower thermosphere (MLT) is a transition region from the neutral to the partially ionized atmosphere. It 

is dominated by the effects of atmospheric waves, including planetary waves, tides and gravity waves. It is also a relatively 

poorly sampled part of the Earth’s atmosphere by ground-based instruments. One widely used approach to sample this region 25 

is the meteor radar technique. The ablation of incoming meteors in the MLT region, i.e., ~80 – 110 km, creates layers of metal 

atoms, which can be observed from the ground by photometry or lidar (Jia et al., 2016; Xue et al., 2013). During meteor 

ablation, the trails caused by small meteor particles provide a strong atmospheric tracer within the MLT region that can be 

continuously detected by meteor radar regardless of weather conditions. Consequently, the meteor radar technique has been a 

powerful tool for studying MLT for decades(Hocking et al., 2001; Holdsworth et al., 2004; Jacobi et al., 2008; Stober et al., 30 

2013; Yi et al., 2018). Most modern meteor radars are monostatic and this has two main limitations in retrieving the complete 
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wind fields. Firstly, limited meteor rates and relatively low measurement accuracies necessitate that all measurements in the 

same height range are processed to calculate a “mean” wind. Secondly, traditional classic monostatic radars retrieve wind 

fields based on the assumption of a homogenous wind fields in horizontal direction and a zero wind in the vertical direction.  

The latter conditions can be partly relaxed if the count rates are high and the detections are distributed through a representative 35 

range of azimuths. If this is the case, a version of a Velocity Azimuth Display (VAD) analysis as first applied to scanning 

weather radars for longer period motions can be applied by expanding the zonal and meridional winds using a truncated Taylor 

expansion (Browning and Wexler, 1968). This is because each valid meteor detection yields a radial velocity in a particular 

look direction of the radar. The radar is effectively a multi-beam Doppler radar where the “beams” are determined by the 

meteor detections. If there are enough suitably distributed detections in azimuth in a given observing period, the Taylor 40 

expansion approach using cartesian coordinates yields the mean zonal and meridional wind components (𝑢0, 𝑣0), the horizontal 

divergence (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
), the stretching (

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
) and the shearing (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) deformations of the wind fields from an analysis 

of the radial velocities. If a measure of the vertical wind is available, then the horizontal divergence (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) can also be 

obtained (assuming a uniform vertical wind over the observing volume). Generally, meteor radars do not provide a reliable 

measure of the vertical wind 45 component. In addition, because the radar can only retrieve the wind projection in the radial 45 

direction as measured from the radar, the vorticity (
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) of the wind field is not available. However, because the radar can 

only retrieve the wind projection in the radial direction as measured from the radar, the vorticity (
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) of the wind fields 

is not available. This is common to all monostatic radar systems and a discussion of measurable parameters in the context of 

multiple fixed beam upper atmosphere Doppler radars is given by (Reid, 1987). Even by relaxing the assumption of a 

homogeneous wind fields and using the more advanced Volume Velocity Processing (VVP) (Philippe and Corbin, 1979) to 50 

retrieve the wind fields, the horizontal gradients of the wind fields cannot be recovered due to the lack of vorticity information. 

To obtain a better understanding of the spatial variation of the MLT region wind fields, larger area observations (and hence 

higher meteor count rates) and measurements of the non-homogenous wind fields are needed. An extension of the classic 

monostatic meteor technique is required to satisfy these needs. 

To resolve the limitations outlined above, the concept of multistatic meteor radar systems, such as MMARIA (multi-static and 55 

multi-frequency agile radar for investigations of the atmosphere) (Stober and Chau, 2015) and SIMO (single input multiple 

output) (Spargo et al., 2019), MIMO (multiple input multiple output radar) (Chau et al., 2019) have been designed and 

implemented (Stober et al., 2018). Multistatic systems can utilize the forward scatter of meteor trails, thus providing another 

perspective for observing the MLT. Multistatic meteor radar systems have many advantages over classic monostatic meteor 

radars, such as obtaining higher-order wind fields information and covering wider observation areas. There have been some 60 

particularly innovative studies using multistatic meteor radar systems in recent years. For example, by combining MMARIA 

and the continuous wave multistatic radar technique (Vierinen et al., 2016), Stober and Chau et al. built a 5-station total 7-link 

multistatic radar network covering an approximately 600 km×600 km region in Germany to retrieve an arbitrary non-
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homogenous wind fields with a 30 km×30 km horizontal resolution (Stober et al., 2018). Stober et al. Chau et al. used two 

adjacent classic monostatic specular meteor radars in northern Norway to obtain horizontal divergence and vorticity (Chau et 65 

al., 2017). Other approaches, such as the novel multistatic meteor radar data processing method coded continuous wave meteor 

radar (Vierinen et al., 2019) and the compressed sense method in MIMO sparse signal recovery (Urco et al., 2019), are 

described in the references in these papers. 

Analysing spatial resolution in regions of interest interested areas is a fundamental but difficult topic for meteor radar systems. 

Meteor radar systems transmit radio waves and then receive radio waves using a cluster of receiver antennas; commonly five 70 

antennas as in the Jones et al. configuration (Jones et al., 1998). By analysing the cross correlation of received signals, we one 

can determine the angle of arrivals (AoAs) , that is, which includes the zenith angle and azimuth angle denoted as θ and ϕ 

respectively. By measuring the wave propagation time, one can obtain the range information. Most meteor radar systems rely 

on specular reflections from meteor trails. Thus, by combining the AoAs and the range information and then using geometric 

analysis, we one can determine the location of meteor trails. Accurately locating the meteor trail specular point (MTSP 75 

hereafter) is important since atmospheric parameter retrieval (such as the wind fields or the temperature) depends on the 

location information of meteor trails. The location accuracy, namely the spatial resolution, determines the reliability of the 

retrieved parameters. For multistatic meteor radar systems that can relax the assumption of a homogenous horizontal wind 

fields, the resolution distribution location accuracy becomes a more important issue because the horizontal spatial resolution 

affects the accuracy of the retrieved horizontal wind fields gradient. 80 

There are some discussions about measuring errors of the meteor radar. There are For example, a number of studies have 

discussed AoAs measuring errors (Kang, 2008; Vaudrin et al., 2018; Younger and Reid, 2017). However, those error analyses 

discussions emphasize focus on the errors in receiver antennas and seldom discuss the influence of a multistatic configuration 

on the spatial resolutions. And those analyses consider the error propagation starting from the original signals received by the 

cluster of antennas.Therefore, the results of AoAs measuring errors become too intricate to utilize in further resolution analyses. 85 

Hocking developed a vertical resolution analysis method in a 2-dimensional baseline vertical section (Hocking, 2018), which 

simplifies the error propagation process in receiver antennas and put emphasis on how a bistatic meteor radar configuration 

would affect the vertical resolution in a vertical section. However, Hocking’s mothed (HM hereafter) can barely show bistatic 

configurations’ influence on spatial resolution distribution due to ignore the discussion of radial distance measuring error. 

Moreover, HM is only a demo about vertical resolution in a specific vertical section, not in real three-dimensional space. Hence, 90 

for practical purposes, the 3-dimensional spatial distribution of both horizontal resolution and vertical resolution should be 

considered. 

Although multistatic meteor radar systems have developed well experimentally in recent years, the reliability of retrieved 

atmospheric parameters lacks discussion both for monostatic and multistatic meteor radar. A large part of the reason is that no 

other measurement technology can provide contrast data for meteor radars in MLT region. To better understand the reliability 95 

of the obtained atmospheric parameters, quantitative error analyses are necessary. On the one hand it proves that meteor radars 

are irreplaceable in MLT region as a measurement technology; on the other hand, to know the reliability of meteor radars 
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obtained atmospheric parameters and to get better understanding of the dynamic process in MLT region, some quantitative 

error analyses are necessary and helpful. In this paper, we analyse the multistatic meteor radar resolution distribution in a three-

dimensional space for both vertical and horizontal resolution for the first time. And spatial resolution is a prerequisite for 100 

evaluating the reliability of retrieved atmospheric parameters, such as wind fields and temperature.  

2 Analytical Method 

2.1 brief introduction 

The HM will be introduced ahead in short to help understand our method. In the HM, measuring errors that affect vertical 

resolution can be classified into two types (Hocking, 2018) : one is those that caused by the zenith angle measuring error 𝛿𝜃 105 

and another is those that caused by the pulse-length effect on vertical resolution. The receiver is reduced to a simple antenna 

pair that is collinear to the baseline (figure 1).HM only calculate vertical resolution in a two-dimensional vertical section 

which pass though the baseline. The receiver antenna pair is equivalent to one receiver arm in Jones configuration which is 

comprised of three collinear antennas and is usually in a 2𝜆\2.5𝜆 configuration. The radio wave Phase difference of received 

radio wave between antenna pairs is denoted as ΔΨ. In meteor radar systems, there are is an acceptable phase difference 110 

measuring error (PDME hereafter) 𝛿(ΔΨ). A higher value of 𝛿(ΔΨ) means that more detected signals will be judged as a 

meteor event meanwhile more misidentifications and bigger errors as well. 𝛿(ΔΨ)  is usually set to approximately 30° 

(Hocking, 2018; Younger and Reid, 2017) in meteor radar systems. In the HM, the AoAs error the zenith angle measuring 

error 𝛿𝜃 is due to 𝛿(ΔΨ) and 𝛿(ΔΨ) is a constant. Therefore, the error propagation in the receiver is very simple, and 𝛿𝜃 

is inversely proportional to the cosine of the zenith angle. 115 

Now introduce our analytical method. Our method considers a multistatic system with multiple transmitters and one receiver 

in 3-dimensional space (figure 2). The receiving array receiver is in the Jones configuration, which can be “cross-shaped”, “T-

shaped” or “L-shaped” in a plan view layout. The five receiver antennas are in the same horizontal plane and constitute two 

orthogonal antenna arms. To avoid a complex error propagation process in receiver and to place emphasis on multistatic 

configurations, the PDMEs in the two orthogonal antenna arms (𝛿(ΔΨ1) and 𝛿(ΔΨ2)) are constants. Therefore, the AoAs 120 

measuring errors (including zenith and azimuth angle measuring errors 𝛿𝜃, 𝛿𝜙 respectively) can be expressed as a simple 

function of zenith and azimuth angle. The radial distance is the distance between the MTSP and the receiver, which denoted 

as 𝑅𝑠. 𝑅𝑠 can be determined by combining the AoAs, baseline length di, and the radio wave propagating path length R (Stober 

and Chau, 2015). See figure 4(a), if 𝛼，di and R are known, 𝑅𝑠 will be calculated easily using Cosine Law as: 

𝑅𝑠 =
𝑅2−𝑑𝑖

2

2(𝑅−𝑑𝑖𝑐𝑜𝑠𝛼)
 (1) 125 
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𝛼 is the angle between the baseline (i.e. axis-𝑋𝑖) and the line from the receiver to the MTSP denoted as point A. The multistatic 

configuration will influence the accuracy of 𝑅𝑠 (denoted as 𝛿𝑅𝑠). This is because that 𝛼，d and R are determined by the 

multistatic configuration. We consider the error term 𝛿𝑅𝑠 in our method, which is ignored in the HM. 𝛿𝑅𝑠 is a function of 

the AoAs measuring errors (𝛿𝜃 and 𝛿𝜙) and the radio wave propagation distance path length measuring error (denoted as 

𝛿𝑅). 𝛿𝑅 is caused by the measuring error of the wave propagation time 𝛿𝑡, which is approximately 21𝜇𝑠 (Kang, 2008). Thus, 130 

𝛿𝑅 can be set as a constant and the default value in our program is 𝛿𝑅 = 𝑐 𝛿𝑡 = 6.3𝑘𝑚. It is worth noting that the maximum 

unambiguous range for pulse meteor radars is determined by the pulse repetition frequency (PRF) (Hocking et al., 2001; 

Holdsworth et al., 2004). For multistatic meteor radars utilizing forward scatter, the maximum unambiguous range is c/PRF 

(where c is the speed of light). For the region area where R exceed the maximum unambiguous range, 𝛿𝑅 is set to positive 

infinity.  135 

2.2 three kinds of coordinate systems and their transformations  

To better depict the multistatic system configuration, we need to establish appropriate coordinate systems (figure 3). The 

spatial configuration of the receiver horizontal plane is determined by the local topography and the antenna configuration. We 

establish a left-hand coordinate system XYZ to depict the receiver horizontal plane. XYZ is fixed on the receiver and thus will 

rotate with the 5-antenna horizontal plane. The coordinate origin of XYZ is on the receiver. Axis-Z is collinear with the antenna 140 

boresight and perpendicular to the horizontal plane. Axis-X and axis-Y are in the horizontal plane and collinear with the arms 

of the two orthogonal antenna arrays. Therefore, the zenith angle and azimuth angle are conveniently represented in the XYZ 

coordinate system. For different transmitters 𝑇𝑖 , the baseline direction and distance between 𝑇𝑖 and the receiver are different. 

It is convenient to analyse the range information in the plane that goes through the baseline and meteor trail reflection points 

(figure 4). Thus, we establish a class of coordinate systems 𝑋𝑖
′𝑌𝑖
′𝑍𝑖
′ for each 𝑇𝑖 . The coordinate origins of 𝑋𝑖

′𝑌𝑖
′𝑍𝑖
′ are all on 145 

the receiver. We stipulate that axis-𝑋𝑖
′  points to transmitter  𝒊  (Ti ). Axis-𝑌𝑖

′  and axis-𝑍𝑖
′  need to satisfy the right-hand 

corkscrew rule with axis-𝑋𝑖
′. Each transmitter, 𝑇𝑖 , and the receiver constitute a radar link, which is referred to as 𝐿𝑖. We will 

deal with the range information for each 𝐿𝑖 in 𝑋𝑖
′𝑌𝑖
′𝑍𝑖
′. Spatial resolution distributions for every 𝐿𝑖 need to be compared in 

the same coordinate system, and this coordinate system needs to be convenient for retrieving wind fields. Therefore, we 

establish a local WNU (west-north-up) coordinate system 𝑋0
′𝑌0
′𝑍0
′  on the receiver. The origin of 𝑋0

′𝑌0
′𝑍0
′  is on the receiver 150 

with axis-X pointing to the west, axis-Y to the north, and axis-Z pointing up. All spatial resolution distributions for each 𝐿𝑖 

will ultimately be converted to 𝑋0
′𝑌0
′𝑍0
′ . 

To better depict the multistatic system configuration, three kinds of right-hand coordinate systems (figure 3) need to be 

established, which are 𝑋0𝑌0𝑍0, 𝑋𝑖𝑌𝑖𝑍𝑖 and XYZ. 𝑋0𝑌0𝑍0 is the ENU (east-north-up) coordinate system and axis-𝑋0, 𝑌0, 𝑍0 

represent the east, north, up directions respectively. Another two coordinate systems are established to facilitate different error 155 

propagations. All types of errors need to be transformed to the ENU coordinate system 𝑋0𝑌0𝑍0 in the end. Coordinate system 

XYZ is established to depict the spatial configuration of the receiver. XYZ is fixed on the receiver. See figure 3, the coordinate 
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origin of XYZ is on the receiver. Axis-Z is collinear with the antenna boresight and perpendicular to the receiver horizontal 

plane. Axis-X and axis-Y are collinear with the arms of the two orthogonal antenna arrays. AoAs will be represented in XYZ 

for convenience. See figure 4, it is convenient to analyse the range information in a plane that goes through the baseline and 160 

MTSP. Thus, a coordinate system 𝑋𝑖𝑌𝑖𝑍𝑖 is established for a transmitter 𝑇𝑖 . The coordinate origins of 𝑋𝑖𝑌𝑖𝑍𝑖 are all on the 

receiver. We stipulate that axis-𝑋𝑖 points to transmitter 𝒊 (Ti). Each pair of 𝑇𝑖  and the receiver RX constitute a radar link, 

which is referred to as 𝐿𝑖. The range related information for each 𝐿𝑖 will be calculated in 𝑋𝑖𝑌𝑖𝑍𝑖. Different types of errors 

need to propagate to and be compared in 𝑋0𝑌0𝑍0 which is convenient for retrieving wind fields.  

We specify stipulate that clockwise rotation is satisfies the right-hand corkscrew rule. By rotating clockwise in order of ψ𝑥
X,i

, 165 

𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i

 about axis-𝑋, 𝑌 and 𝑍, respectively, one can transform XYZ to 𝑋𝑖𝑌𝑖𝑍𝑖. It is worth mentioning that 𝑋𝑖𝑌𝑖𝑍𝑖 is 

non-unique because any rotation about axis-𝑋𝑖 can obtain another satisfactory 𝑋𝑖𝑌𝑖𝑍𝑖. Hence, ψ𝑥
X,i

 can be set to any values. 

Similarly, by rotating clockwise in order of ψ𝑥
i,0

, 𝜓𝑦
𝑖,0

 and 𝜓𝑧
𝑖,0

 about axis-𝑋, 𝑌 and 𝑍, respectively, one can transform 

𝑋𝑖𝑌𝑖𝑍𝑖  to X0𝑌0𝑍0. To realize the coordinate transformation between those three coordinate systems, coordinate rotation matrix 

𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) is introduced. Using 𝐴𝑅, one can transform the coordinate point or vector presentation from one coordinate 170 

system to another. The details of the coordinate rotation matrix 𝐴𝑅(𝜓𝑥, 𝜓𝑦 , 𝜓𝑧) can be seen in Appendix (A.1). 

2.3 two types of measuring errors  

The analytical method of the spatial resolution of for each radar link is the same. The difference between those radar links is 

are only the value of the six coordinates rotation angle (ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and baseline distance di. In 

the following, we analyse the spatial resolution of one radar link, 𝐿𝑖 as an example. The measurement errors, which affect the 175 

spatial resolution, cause a location bias in the specular reflection point. These errors The spatial resolution related measurement 

errors which will cause location errors of MTSP, can be classified into two types: 𝐸1 is caused by measurement errors in the 

receiver, and 𝐸2 is due to the pulse length. These two errors are mutually independent. Hence, the total error (𝐸𝑡𝑜𝑡𝑎𝑙) in the 

form of the mean square error (MSE) can be expressed as: 

Etotal
2 = E1

2 + E2
2 (2) 180 

𝐸1  is related to three indirect measuring errors. 𝛿𝜃 , 𝛿𝜙  and 𝛿𝑅𝑠 , which They are zenith, azimuth and radial distance 

measuring errors, denoted as 𝛿𝜃, 𝛿𝜙 and 𝛿𝑅𝑠  respectively. In XYZ, 𝐸1  can be decomposed into three orthogonal error 

vectors using 𝛿𝜃, 𝛿𝜙 and 𝛿𝑅𝑠 (figure 4(c)). Now we explain it in detail. 𝛿𝜃 and 𝛿𝜙 are the functions of PDMEs 𝛿(ΔΨ1) 

and 𝛿(ΔΨ2) . ΔΨ1  and ΔΨ2  are theoretical phase difference of two orthogonal antenna arrays respectively. Those two 

PDMEs 𝛿(ΔΨ1)  and 𝛿(ΔΨ2)  are treated as two independent measuring errors. PDMEs, i.e. 𝛿(ΔΨ1)  and 𝛿(ΔΨ2),are 185 

caused by some practical factors, such as phase calibration mismatch and the fact that specular point is not actually a point but 

has a few Fresnel zones length. A meteor radar system calculates phase difference of different pair of antennas though cross-

correlations and then fit them to get the most likely AoAs. Therefore, the system needs to set a tolerant value of 𝛿(ΔΨ1) and 
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𝛿(ΔΨ2) . Different meteor radar systems have different AoAs-fit algorithms and thus different AoAs measuring error 

distribution. To analyses the spatial resolution for a SIMO meteor radar system as common as possible and to avoid tedious 190 

error propagation in receiver, we start error propagation from 𝛿(ΔΨ1) and 𝛿(ΔΨ2) and set them as constant. AoAs measuring 

errors, i.e. 𝛿𝜃 and 𝛿𝜙 can be expressed as: 

δθ =
λ

2πD1

cosϕ

cosθ
δ(ΔΨ1) +

λ

2πD2

sinϕ

cosθ
 δ(ΔΨ2) (3) 

δϕ =
λ

2πD2

cosϕ

sinθ
δ(ΔΨ2) −

λ

2πD1

sinϕ

sinθ
δ(ΔΨ1)  (4) 

𝜆 is wavelength used in the radar system the radio wave length. D1 and D2 are the length of the two orthogonal antenna 195 

arms. 𝜃 and 𝜙 are the zenith angle and the azimuth angle, respectively. The details can be seen in Appendix (A.2). It is worth 

noting that 𝛿𝜃 and 𝛿𝜙 are not mutually independent. The Expectation value of their product is not identical to zero unless 

𝐸(𝛿2(ΔΨ1))

𝐷1
2  is equal to 

𝐸(𝛿2(ΔΨ2))

𝐷2
2 .   

The true error of 𝛿𝑅𝑠 can be expressed as a function of 𝛿𝑅, 𝛿𝜃 and 𝛿𝜙 as: 

𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙   (5)  200 

𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) and 𝑓𝜙(𝜃, 𝜙) are the weight functions of 𝛿𝑅𝑠. 𝛿𝑅 is the wave propagating distance measuring error. The 

details about the weight function and deduction can be found in Appendix (A.3). Obviously, 𝛿𝑅𝑠 is related to the geometry 

of the multistatic meteor radar system. Thus far, the true error vectors of See figure 4(c), 𝐸1 can be decomposed into three 

orthogonal error vectors in coordinate XYZ, which are denoted as  𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (figure 4(c)). These three 

vectors can be expressed in XYZ as: 205 

δRs ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = δRs(sinθcosϕ, sinθsinϕ, cosθ)
T  (6) 

Rsδθ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rsδθ(cosθcosϕ, cosθsinϕ,−sinθ)
T  (7) 

Rssinθδϕ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rssinθδϕ(−sinϕ, cosϕ, 0)
T    (8) 

𝐸2  is related to the geometry of the radio wave propagating path. A pulse transmitted by transmitter might be reflected 

anywhere within the a pulse length (figure 4(b)). Hence, there exists an unclear area, and we denote it as This causes a location 210 

error of MTSP, represented as an error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗. where D is the median point of isosceles triangle ΔABC’s side BC. From 

the geometry relationship, the representation of the error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ can be solved in 𝑋𝑖𝑌𝑖𝑍𝑖 by using geometry relationship 

as:   

DA⃗⃗⃗⃗  ⃗= (
(𝟐−𝐚𝟏−𝐚𝟐)𝐱𝐢+𝐝𝐢(𝐚𝟐−𝟏)

𝟐
 ,  
(𝟐−𝐚𝟏−𝐚𝟐)𝐲𝐢

𝟐
 ,
(𝟐−𝐚𝟏−𝐚𝟐)𝐳𝐢

𝟐
)
𝐓

  (9) 
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S is half wave pulse length and 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
. 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. di is the straight-line distance between the receiver and 𝑇𝑖  (baseline 215 

length). di is the baseline length. (xi, 𝑦𝑖 , 𝑧𝑖) is the coordinate value of a MTSP (i.e. point A in figure 4) in 𝑋𝑖𝑌𝑖𝑍𝑖. Details can 

be seen in Appendix (A4) 

2.4 transform to ENU coordinate  

Here, we introduced two types of errors in different coordinate systems, and we now need to transform them into local 

coordinates 𝑋0
′𝑌0
′𝑍0′, which is convenient for analysing wind fields. The true error vectors  𝛿𝑅𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑡𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑡𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   need 220 

two coordinate transformations, that is, from 𝑋𝑌𝑍 to 𝑋𝑖
′𝑌𝑖
′𝑍𝑖
′ and then to 𝑋0

′𝑌0
′𝑍0
′ . By deducing, the true error of 𝐸1 can be 

expressed as vector (𝛿(1)𝑋0
′  , 𝛿(1)𝑌0

′ , 𝛿(1)𝑍0
′ )
𝑇
  in 𝑋0

′
𝑌0
′
𝑍0
′
 

(

δ(1)X0
′

δ(1)Y0
′

δ(1)Z′0

) =  (

X0
′ (δRt) X0

′ (δθ) X0
′ (δϕ)

Y0
′(δRt)

Z0
′ (δRt)

Y0
′(δθ)

Z0
′ (δθ)

Y0
′(δϕ)

Z0
′ (δϕ)

    ) ∙ (

fR(θ, ϕ) fθ(θ, ϕ) fϕ(θ, ϕ)

0
0

Rt
0

0
Rtsinθ

    ) ∙ (
δR 
δθ
δϕ
)  (10) 

We denote the first term in the right formula as the error projection matrix, which transforms 𝛿𝑅𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑡𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑡𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in 

XYZ to axis 𝑋0
′ , 𝑌0

′ 𝑎𝑛𝑑 𝑍0
′    The second matrix term is referred to as the error weight matrix, which can assemble 𝑅,𝛿𝜃 225 

and 𝛿𝜙 to 𝛿𝑅𝑡⃗⃗ ⃗⃗⃗⃗  ⃗, 𝑅𝑡𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑡𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   . The matrix details can be seen in Appendix (A.5). However, 𝛿𝜃 and 𝛿𝜙 are not 

independent. To calculate the mean square error (MSE), we need to transform 𝛿𝜃  and 𝛿𝜙  into two independent 

errors:  𝛿(ΔΨ1)  and 𝛿(ΔΨ2) . Using eq. (3) and (4), we can transform vector (𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙)𝑇  to three independent 

measuring errors 𝛿𝑅, 𝛿(ΔΨ1) and 𝛿(ΔΨ2) as: 

(
𝛿𝑅 
𝛿𝜃
𝛿𝜙
) =  

(

 
 

1 0 0

0

0

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙

𝐷1

−
𝜆

2𝜋
𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃𝐷1

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜙

𝐷2
𝜆

2𝜋
𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜃𝐷2

    

)

 
 
(

𝛿𝑅 
𝛿(𝛥𝛹1)

𝛿(𝛥𝛹2)
) (11) 230 

We denote the first term on the right as the base transformation matrix. We denote the dot product of the error projection 

matrix, error weight matrix and base transformation matrix as 𝑊𝐸𝑃. We refer to 𝑊𝐸𝑃 as the error propagation matrix. 𝑊𝐸𝑃 is 

a 3 × 3 matrix, and we denote the element in it as 𝑊𝑖𝑗. Then, we define 𝑆𝑊𝐸𝑃 = 𝑊𝑖𝑗
2. Thus, 𝐸1 in the form of MSE square 

can be expressed as vector (𝛿(1)
2 𝑋0

′  , 𝛿(1)
2 𝑌0

′ , 𝛿(1)
2 𝑍0

′ )
𝑇
 in 𝑋0

′𝑌0
′𝑍0
′  

(

 
 
𝛿(1)
2 𝑋0

′

𝛿(1)
2 𝑌0

′

𝛿(1)
2 𝑍′

0)

 
 
=  𝑆𝑊𝐸𝑃 (

𝛿2𝑅 
𝛿2(𝛥𝛹1)

𝛿2(𝛥𝛹2)
)                                                                   (12) 235 
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Here, two types of errors in different coordinate systems have been introduced. Now they need to be transformed to ENU 

coordinates 𝑋0𝑌0𝑍0, which is convenient for comparing between different radar link and analysing wind fields. E1 related 

error vectors, which are three orthogonal vectors 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and represented in XYZ as eq.(6)-(8), need to 

be transformed from 𝑋𝑌𝑍  to 𝑋0𝑌0𝑍0 .To project 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗ , 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   towards axis-𝑋0, 𝑌0, 𝑍0  respectively and 240 

reassemble them to form three new error vectors in axis-𝑋0, 𝑌0, 𝑍0 . Using coordinate rotation matrix AR
(𝑋𝑌𝑍,𝑋0𝑌0𝑍0) =

AR(Ψ𝑥
𝑖,0, Ψ𝑦

𝑖,0, Ψ𝑧
𝑖,0) ∙ 𝐴𝑅(ψ𝑥

X,i, 𝜓𝑦
𝑌,i ,𝜓𝑧

𝑍,i) and eq.(6)-(8), the unit vectors of those three vectors can be represented in 

𝑋0𝑌0𝑍0 as:  

(

X0
′ (δRs) X0

′ (δθ) X0
′ (δϕ)

Y0
′(δRs)

Z0
′ (δRs)

Y0
′(δθ)

Z0
′ (δθ)

Y0
′(δϕ)

Z0
′ (δϕ)

    ) = 𝐴𝑅
(𝑋𝑌𝑍, 𝑋0𝑌0𝑍0) ∙ (

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜙
0

    )                       (10) 

(X0
′ (δRs), Y0

′(𝛿𝑅𝑠), 𝑍0
′ (𝛿𝑅𝑠))

𝑇
, (𝑋0

′(𝛿𝜃), 𝑌0
′(𝛿𝜃), 𝑍0

′ (𝛿𝜃))
𝑇
, (𝑋0

′(𝛿𝜙), 𝑌0
′(𝛿𝜙), 𝑍0

′ (𝛿𝜙))
𝑇
 are unit vectors of 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 245 

𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in 𝑋0𝑌0𝑍0 respectively. We denote the 3 × 3 matrix in left side of the eq.(10) is denoted as Pij for i, j =

1,2,3. 

See eq.(6)-(8) and figure 4(c), the length of those three vectors, or error values in other words, are 𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙 as 

the function of δR, δθ, δϕ. In order to reassemble them to new error vectors, transforming 𝛿𝜃 and 𝛿𝜙 into two independent 

errors 𝛿(ΔΨ1) and 𝛿(ΔΨ2) are needed because 𝛿𝜃 and 𝛿𝜙 are not independent. Using eq. (3) and (4), one can transform 250 

vector (𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙)𝑇  to three independent measuring errors 𝛿𝑅 , 𝛿(ΔΨ1)  and 𝛿(ΔΨ2) . And thus 

(𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙)
T can be expressed as: 

(

δRs
Rs𝛿𝜃

Rs𝑠𝑖𝑛𝜃𝛿𝜙
) = (

𝑓𝑅(𝜃, 𝜙) 𝑓𝜃(𝜃, 𝜙) 𝑓𝜙(𝜃, 𝜙)

0
0

𝑅𝑠
0

0
𝑅𝑠𝑠𝑖𝑛𝜃

    ) ∙

(

 
 

1 0 0

0

0

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙

𝐷1

−
𝜆

2𝜋
𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃𝐷1

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜙

𝐷2
𝜆

2𝜋
𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜃𝐷2

    

)

 
 
∙ (

𝛿𝑅 

𝛿(𝛥𝛹1)

𝛿(𝛥𝛹2)
)                 (11) 

The product of the first and the second term in right side of eq.(11) is a 3 × 3 matrix, denoted as Wij for i, j = 1,2,3. Seen 

eq.(11), three error values𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙 are the linear combinations of three basis δR, 𝛿(𝛥𝛹1), 𝛿(𝛥𝛹2) with their 255 

corresponding linear coefficients W1j,W2j,W3j. Those three error values can be projected toward new directions (i.e. axis-

𝑋0, 𝑌0, 𝑍0) by using Pij. It worth noting that in a new direction, a same basis’s projected linear coefficients from different 

error values should be used to calculate their sum of squares (SS). And then the square root of SS will be used as a new linear 

coefficient for that basis in the new direction. For example, in 𝑋0 directions, basis 𝛿(𝛥𝛹1)’s projected linear coefficients are 

X0
′ (𝛿𝑅𝑠)𝑊12, X0

′ (𝛿𝜃)W22 ,X0
′ (δϕ)W32 from 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   respectively. Therefore, the new linear coefficient 260 

for 𝛿(𝛥𝛹1) in 𝑋0 direction is W
X0
′
δ(ΔΨ1) = ±√(X0

′ (𝛿𝑅𝑠)𝑊12)
2 + (X0

′ (𝛿𝜃)W22)
2 + (X0

′ (δϕ)W32)
2. Similarly, one can get 

δR and 𝛿(𝛥𝛹2)’s new linear coefficients in X0
′ , denoted as W

X0
′
δR  and W

X0
′
δ(ΔΨ2) .Thus true error values in 𝑋0 direction 
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is  W
X0
′
δR𝛿𝑅 +W

X0
′
δ(ΔΨ1)𝛿(𝛥𝛹1) + WX0′

δ(ΔΨ2)𝛿(𝛥𝛹2) . Because δR, 𝛿(𝛥𝛹1), 𝛿(𝛥𝛹2)  are mutually independent, E1  related 

mean square error (MSE) values in 𝑋0  direction, denoted as δ(1)𝑋0 , can be expressed as δ(1)𝑋0 =

 ±√( 𝑊
𝑋0
′
𝛿𝑅𝛿𝑅)

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹1)𝛿(𝛥𝛹1))

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹2)𝛿(𝛥𝛹2))

2

.  265 

In short, E1  related errors in ENU coordinate’s three axis directions (denoted as δ(1)𝑋0, 𝛿(1)𝑌0 𝑎𝑛𝑑 𝛿(1)𝑍0 ) can be 

expressed in the form of matrix as: 

(

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) =  𝑃𝑖𝑗
2 ∙ 𝑊𝑖𝑗

2 ∙ (
𝛿2𝑅 

𝛿2(𝛥𝛹1)

𝛿2(𝛥𝛹2)
)   (12) 

𝐸2 related error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ needs transformation from 𝑋𝑖𝑌𝑖𝑍𝑖 to 𝑋0𝑌0𝑍0. Therefore, 𝐸2 related errors in ENU coordinate’s 

three axis directions (denoted as δ(2)𝑋0, 𝛿(2)𝑌0 𝑎𝑛𝑑 𝛿(2)𝑍0) can be expressed in the form of matrix as: 270 

(

δ(2)𝑋0
𝛿(2)𝑌0
𝛿(2)𝑍0

) = ±𝐴𝑅(Ψ𝑥
𝑖,0, Ψ𝑦

𝑖,0, Ψ𝑧
𝑖,0) ∙ DA⃗⃗⃗⃗  ⃗   (13) 

E1  and E2  are mutually independent. By using eq.(1), the total MSE values in ENU coordinate’s three axis directions 

(denoted as δtotal𝑋0, δtotal𝑌0 and δtotal𝑍0) can be expressed in the form of matrix as: 

(

δtotal
2 𝑋0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑌0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0

)  =  (

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) + (

δ(2)
2 𝑋0

𝛿(2)
2 𝑌0

𝛿(2)
2 𝑍0

)   (14) 

In conclusion, for a radar link 𝐿𝑖 and a MTSP represented as (x0, y0, z0) in ENU coordinate system 𝑋0𝑌0𝑍0, as figure 4(a) 275 

sketched, the location errors of this point in east, north and up directions (±δtotal𝑋0, ±δtotal𝑌0 and ±δtotal𝑍0) can be 

calculated as follows: firstly, for a point (x0, y0, z0) in X0
′ Y0
′Z0
′ , using AR to transform it to 𝑋𝑖𝑌𝑖𝑍𝑖 and denoted as 

(xi, yi, zi). Then in 𝑋𝑖𝑌𝑖𝑍𝑖 calculate AoAs (θ and ϕ) and range information (Rs and Ri). Details of AoAs and range 

calculation can be seen in Appendix (A.5). It’s worth noting that AoAs are the angles relative to axis of XYZ. Secondly, in 

XYZ using AoAs and eq.(3)-(8) to calculate E1’s three orthogonal error vectors as figure 4(c) sketched; in 𝑋𝑖𝑌𝑖𝑍𝑖 use range 280 

information and eq.(9) to calculate E2’s error vector DA⃗⃗⃗⃗  ⃗ as figure 4(b) sketched. Thirdly, project E1’s three error vectors to 

𝑋0𝑌0𝑍0 by using eq.(10) and use eq.(11)-(12) to reassemble them to calculate E1 related MSE values in direction of 

𝑋0, 𝑌0, 𝑍0; use eq.(13) to transform E2 error vector from 𝑋𝑖𝑌𝑖𝑍𝑖 to 𝑋0𝑌0𝑍0. Finally, use eq. (14) to get the total location 

errors of a MTSP in (x0, y0, z0). Figure 5(a) describes the process above.    
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3 Results and Discussion 285 

We wrote a program to study the method above. The program is written in python language and is presented in supplement. 

To calculate a special configuration of a multistatic radar system, we initially need to set six coordinate transformation angles 

(ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and baseline length (straight-line distance 𝐝𝐢) for each radar link 𝐿𝑖. For example, 

ψ𝑥
i,0 = 𝜓𝑦

𝑖,0 = 0, 𝜓𝑧
𝑖,0

= 30° and di = 250𝑘𝑚  means a transmitter Ti  is 250km, 30° east by south of the receiver RX ; 

Further, ψx
X,i = 5°, 𝜓𝑦

𝑌,i = 0,𝜓𝑧
𝑍,i = 0 means one receiver arm (axis-Y) points to east by north 60° with 5° elevation. The 290 

interested detection area of multistatic meteor radar is usually from 70km to 110km in height and lager than 300km×300km 

in horizontal. In our program, this area needs to be divided into a spatial grid for sampling. The default value of the sampling 

grid length is 1km in height and 5km in meridian and zonal directions. After the settings mentioned above, the program will 

traverse those sampling grid nodes and calculate the location errors of each nodes as described in figure 5(a). Figure 5(b) 

describe the parameter settings and traversal calculation process above. For a given setting of radar link Li, the program will 295 

output the squared values of E1  related, E2  related and total MSE (𝐸𝑡𝑜𝑡𝑎𝑙
2 : δtotal

2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑍0 ; 𝐸1
2 :  𝛿(1)

2 𝑋0 , 

𝛿(1)
2 𝑌0 , 𝛿(1)

2 𝑍0; 𝐸2
2: 𝛿(2)

2 𝑋0 , 𝛿(2)
2 𝑌0 , 𝛿(2)

2 𝑍0). The location errors can be positive or negative and thus the spatial resolutions 

are twice the absolute value of location errors. For example, See figure 5(c), for a detected MTSP represented as (x0, 𝑦0, 𝑧0) 

in 𝑋0𝑌0𝑍0, if δtotal
2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0 equals 25, 16 and 9 km2 respectively, it means that the actual position of MTSP 

could occur in an area which is ±5 km,±4 km,±3 km around (x0, 𝑦0, 𝑧0) with equally probability. The zonal, meridian  300 

and vertical resolution are 10 km, 8 km and 6 km respectively.           

The HM analyses vertical resolution (corresponding to 𝛿𝑍0  in our paper) only in a 2-dimensional vertical section 

(corresponding to the 𝑋0𝑍0 plane in our paper). To compare with Hocking’s work, except 𝜓𝑧
𝑖,0

 set to be 180°, other five 

coordinate transformation angles are all set to zero with d is equal to 300 km. The half wave pulse length S is set to 2 km and 

𝛿(ΔΨ1) to 35°. Setting 𝛿(ΔΨ2) to zero and calculating in only the 𝑋0𝑌0  plane should have degraded our method into 305 

Hocking’s 2-dimensional analysis method, but the settings above doesn’t work because Hocking’s method ignores 𝛿𝑅𝑠. In 

fact, Hocking’s method considers only 𝐸2 and 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the 𝑋0𝑌0 plane. Hence, we need to further set 𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) 

and 𝑓𝜙(𝜃, 𝜙) to be zero. Thus, our method totally degrades into Hocking’s method. Hocking’s results are shown in the 

absolute value of vertical location error normalized relative to half wave pulse width, i.e. |𝛿𝑍0|/𝑆. Hereafter, |𝐸|/𝑆 is referred 

to normalized spatial resolutions such as 𝛿(1)𝑋0 and 𝛿𝑡𝑜𝑡𝑎𝑙𝑌0, where E represent location errors in a direction. Thus, Spatial 310 

resolutions are 2𝑆 times normalized spatial resolutions. The normalized vertical resolution distributions are shown in figure 

6(a). Our results are the same as those in Hocking’s work (Hocking, 2018). The distribution of  𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ related, 𝐸2 related and 

total normalized vertical resolution distributions are shown in figure 6 from left to right, respectively. In most cases, 𝐸2 is an 

order of magnitude smaller than 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Only in the region directly above the receiver does 𝐸2 have the same magnitude as 

𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. In other words, only in the region directly above the receiver can 𝐸2 influence the total resolution. E2 is related to the 315 
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bistatic configuration, but 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is not. Therefore, in the HM, the distribution of the total vertical resolution is changed slightly 

varying with d. After adding the error term 𝛿𝑅𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗, which is related to the bistatic configuration, the normalized total vertical 

spatial resolution distribution will change visibly varying with d, as figure 7’s first two rows show. The region between two 

black lines represents a trustworthy sampling volume for receiver because the elevation angle is beyond 𝟑𝟎° with less 

influence of potential mutual antenna coupling or other obstacles in the surrounding. However, with the transmitter/receiver 320 

distance become longer, resolutions in this trustworthy sampling volume are not always acceptable. In figure 7’s first row, the 

transmitter/receiver distance is 300 km and about half of the region between two black line have normalized vertical resolution 

values lager than 3 km. Because our analytical method can obtain spatial resolutions in 3-dimensional space, figure 7’s third 

row show a perspective to the horizontal section in 90 km altitude for figure 7’s second row.  

To get an intuitionistic perspective to spatial resolution distribution in 3-dimensional space, figure 8 shows the normalized 325 

zonal, meridian and vertical spatial resolution distribution of a multistatic radar link whose transmitter/receiver is 180 km away 

and the transmitter is south by east 30° of the receiver. Classic monostatic meteor radar is a special case of a multistatic meteor 

radar system whose baseline length is zero. By setting the transmitter/receiver distance to be zero in our program, a monostatic 

meteor radar’s spatial resolution can also be obtained. The spatial resolution distributions are highly symmetrical and 

correspond to the real characteristics of monostatic meteor radar (not shown in the text, can be seen in the supplement SF1). 330 

In the discussion above, the receiver and transmitter antennas are all coplanar. By setting ψ𝑥
X,i

, 𝜓𝑦
𝑌,i and ψ𝑧

Z,i
 in our program, 

the non-coplanar receiver/transmitter-antennas situations can also be studied. Slightly tilting of the receiver horizontal plane 

(for example, set ψ𝑥
X,i

=𝜓𝑦
𝑌,i = 5°) will cause horizontal spatial distributions to change (seen SF2 and SF3 in the supplement). 

In practical applications, like the Earth’s curvature and local topography or receiver horizontal plane calibration error all will 

lead to the receiver horizontal plane tilting. Thus, this kind of slant tilting should also be taken into account for multistatic 335 

meteor radar systems. The details of parameter setting can be seen in the supplement. 

As mentioned above, the AoAs errors analysis can be complex. Hence, We have greatly The AoAs error propagation process 

in the receiver has been simplified to eq.(3)-(4) by using the constant PDMEs as the start of error propagation. This is for the 

sake of the adaptable of our method. Put emphasis on the multistatic configuration. If analysing AoAs errors starts from the 

original voltage signals, the error propagation process will change with a specific receiver interferometer configuration and a 340 

specific signal processing method. In practical situations for an unusual receiver antenna configuration or new original signal 

processing algorithm, we can establish an error propagation process based on the specific circumstances needs to be established. 

Substitute 𝛿(ΔΨ1) and 𝛿(ΔΨ2) into other mutually independent direct measuring errors in a practical situation, and then 

establishing a new AoAs error propagation to obtain 𝛿𝜃 and 𝛿𝜙. Or in other words, rewrite the second and third term in eq. 

(11) to the new established AoAs error propagation matrix and new mutually independent measuring errors respectively. Our 345 

analytical method can still work. 

It worth noting that except the PDMEs as the start of the error propagation, all the analytical processes are built on the 

mathematic error propagations. PDMEs include the uncontrolled errors, such as the scattered wave from a few Fresnel zones 
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along meteor trails, phase calibration inaccuracy and noises. However, there are other error sources in practical situation. For 

example, planes or lightning may make troubles for meteor radar’s discrimination system. And interference of obstacles in 350 

surroundings will cause further measurement errors of AoAs. These issues are related to actual situations and beyond the scope 

of this text.  

The trustworthy sampling volume is vital for a meteor radar system and it determines the detection area and which meteors 

could be used in wind retrievals. To avoid the influence of the mutual antenna coupling or the ground clutter, the elevation 

angle of detection should beyond a threshold, for example 30° in general. The spatial resolution is another thing that affects 355 

the trustworthy sampling volume. See Figure 7 and SF4 in supplement, only the area of normalized vertical resolution values 

below 3 km are shown, which represents an acceptable sampling volume. With transmitter/receiver distance increasing, this 

sampling volume becomes smaller along with the vertical resolution in this volume reduced. This fact limits the 

transmitter/receiver distance for multistatic meteor radar. Measurement response is important for measuring meteor trails’ 

Doppler shift caused by the background wind. The measured Doppler shift is caused by the component of the wind fields in 360 

the Bragg Vector. The smaller the angle between Bragg vector and the wind fields is, the lager this Doppler shift is and 

meanwhile the higher SNR. The Bragg vector of the multistatic configuration is divergent from the receiver’s line of sight. 

Monostatic meteor radars can only detect winds in radial direction, thus only the mean wind can be solved. By synthesizing 

monostatic and multistatic the high order component of the wind fields can be solved. The bigger the angle between the Bragg 

vector and radial direction is, or more diversified Bragg vectors in other words, the more complete and accurate the wind fields 365 

will be observed. In short, the trustworthy sampling volume, measurement response and the angular diversity of the Bragg 

vector should both be taken into account in wind retrievals. The discussion of wind retrievals is beyond the scope of this text 

and will be in a future work.  

                       

4 Conclusion 370 

In this study, we presented the preliminary results of our error analytic method. Our method can calculate the spatial resolution  

in the zonal, meridian and vertical direction for an arbitrary configuration in three-dimensional space. The true location of a 

detected MTSP can locate within the spatial resolution with equal probability. Higher values of spatial resolution mean that 

this region needs more meteor counts or averaging to obtain a reliable accuracy. Our method shows that the spatial 

configuration of a multistatic system will greatly influence the spatial resolution distribution in ENU coordinates and thus will 375 

in turn influence the retrieval accuracy of atmospheric parameters such as wind fields. The multistatic meteor radar system’s 

spatial resolution analysis is a key point in analysing the accuracy of retrieved wind and other parameters. The influence of 

spatial resolutions on wind retrieval will be discussed in the future work. Multistatic radar systems come in many types, and 

our work in this paper considers only single-input (single-antenna transmitter in each 𝑇𝑖 ) and multi-output (5-antenna 

interferometric receiver) pulse radar systems. Although single-input multi-output (SIMO) pulse meteor radar is a classic meteor 380 
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radar system, other meteor radar systems, such as continuous wave radar systems and MISO (multiple-antenna transmitter and 

single-antenna receiver), show good experimental results and have some advantages over SIMO systems. Using different types 

of meteor radar systems to constitute the meteor radar network is the future trend and we will add the spatial resolution analyses 

of other system to the frame of our method in the future. We will validate and apply the error analyses of spatial resolution in 

horizontal wind determination in a multistatic meteor radar system, which will be built soon in China. 385 
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Appendix 

A.1 Coordinates rotation matrix 

For a right-handed rectangular coordinate system 𝑋𝑌𝑍, we rotate clockwise Ψ𝑥 about axis-x to obtain a new coordinate 𝑍′. 460 

We specify that clockwise rotation satisfies in the right-hand screw rule. A vector in 𝑋𝑌𝑍, denoted as (𝑥, 𝑦, 𝑧)𝑇 , is represented 

as (𝑥′, 𝑦′, 𝑧′)𝑇 in the new coordinate 𝑍′. The relationship between (𝑥, 𝑦, 𝑧)𝑇  and (𝑥′, 𝑦′, 𝑧′)𝑇  is: 

(
𝑥′

𝑦′

𝑧′
) = 𝐴𝑥(𝜓𝑥) (

𝑥
𝑦
𝑧
) = (

1 0 0
0 𝑐𝑜𝑠𝜓𝑥 𝑠𝑖𝑛𝜓𝑥
0 −𝑠𝑖𝑛𝜓𝑥 𝑐𝑜𝑠𝜓𝑥

)(
𝑥
𝑦
𝑧
)   (A1.1)   

Similarly, we rotate clockwise Ψ𝑦 is about axis-y to obtain a new coordinate. The presentation for a vector in new coordinates 

and original can be linked by a matrix, 𝐴𝑦(𝜓𝑦): 465 

𝐴𝑦(𝜓𝑦) = (

𝑐𝑜𝑠𝜓𝑦 0 −𝑠𝑖𝑛𝜓𝑦
0 1 0

𝑠𝑖𝑛𝜓𝑦 0 𝑐𝑜𝑠𝜓𝑦

)                                                                 (A1.2) 

we rotate clockwise Ψ𝑧 about axis-z to obtain a new coordinate. The presentation for a vector in new coordinates and original 

can be linked by a matrix, 𝐴𝑧(𝜓𝑧): 

 𝐴𝑧(𝜓𝑧) = (−
𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑧 0
𝑠𝑖𝑛𝜓𝑧 𝑐𝑜𝑠𝜓𝑧 0
0 0 1

)       (A1.3) 
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For any two coordinate systems 𝑋𝑌𝑍 and 𝑋′𝑌′𝑍′ with co-origin, one can always rotate clockwise Ψ𝑥, Ψ𝑦  and 𝜓𝑧 in order 470 

of axis-X, Y, Z respectively, transforming 𝑋𝑌𝑍 to 𝑋′𝑌′𝑍′ (figure A.1). The presentation for a vector in 𝑋′𝑌′𝑍′ and 𝑋𝑌𝑍 

can be linked by a matrix, 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧): 

𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) = 𝐴𝑧(𝜓𝑧)𝐴𝑦(𝜓𝑦)𝐴𝑥(𝜓𝑥) =

  (

𝑐𝑜𝑠𝜓𝑦𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑧 −𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑧
−𝑐𝑜𝑠𝜓𝑦𝑠𝑖𝑛𝜓𝑧 −𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑐𝑜𝑠𝜓𝑧 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑧

𝑠𝑖𝑛𝜓𝑦 −𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑦 𝑐𝑜𝑠 𝜓𝑥𝑐𝑜𝑠𝜓𝑦

)  (A1.4) 

We call 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) as the coordinates rotation matrix.      475 

A.2 AoAs measuring errors 

In coordinate 𝑋𝑌𝑍, AoAs includes zenith angle 𝜃 and azimuth angle 𝜙. The AoAs is determined by two phase difference 

ΔΨ1 and ΔΨ2. Taking one antenna array as an example and Assuming In the plane wave approximation, the radio wave is at 

angle 𝛾1 and 𝛾2 with an antenna array (figure A.2). There is a phase difference ΔΨ1 and ΔΨ2 between two antennas (figure 

1). See figure 1, ΔΨ1 and ΔΨ2 can be expressed as: 480 

ΔΨ1 =
2𝜋𝐷1𝑐𝑜𝑠𝛾1

𝜆
     (A2.1) 

ΔΨ2 =
2𝜋𝐷2𝑐𝑜𝑠𝛾2

𝜆
  (A2.2) 

Using 𝛾1, 𝛾2 the AoAs can be expressed as: 

cos2 𝛾1 + cos
2 𝛾2 + cos

2 𝜃 = 1   (A2.3) 

𝑡𝑎𝑛𝜙 =
𝑐𝑜𝑠𝛾2

𝑐𝑜𝑠𝛾1 
   (A2.4) 485 

Or in another kind of expression: 

cosγ1 = sinθcosϕ   (A2.5) 

cosγ2 = sinθsinϕ     (A2.6) 

substitute 𝑐𝑜𝑠𝛾1 and 𝑐𝑜𝑠𝛾2 in (A2.3) and (A2.4) by using (A2.1) and (A2.2): 

cos2𝜃 = 1 − (
λ

2π
)
2

(
Δ2Ψ1

𝐷1
2 +

Δ2Ψ2

𝐷2
2 )   (A2.7) 490 

ln(tan𝜙) = ln(𝐷1ΔΨ2) − ln(𝐷2𝛥𝛹1)    (A2.8) 

(A2.7) and (A2.8) are the equations that link the phase difference with the AoAs and  For (A2.7) and (A2.8), Using Taylor 

expanding 𝜃 and 𝜙, ΔΨ1 and ΔΨ2 to first order: 
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2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝛿𝜃 = (
𝜆

2𝜋
)
2

[
2ΔΨ1𝛿(ΔΨ1)

𝐷1
2 +

2ΔΨ2𝛿(ΔΨ2)

𝐷2
2 ]  (A2.9) 

𝛿𝜙 =
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ2
𝛿(ΔΨ2) −

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ1
𝛿(ΔΨ1)  (A2.10)  495 

For (A2.9) and (A2.10), substitute ΔΨ1 and ΔΨ2 using (A2.1), (A2.2) and (A2.5), (A2.6) to the functions of 𝜃, 𝜙. we get eq. 

(3) and eq. (4). Now, eq. (3) and eq. (4) have been proven. If the zenith angle θ = 0°, we stipulate that 
cosϕ

sinθ
 and 

sinϕ

sinθ
 are 1.                                              

A.3 Radial distance measuring error 

 Expand 𝑅𝑠, 𝑅 and 𝑐𝑜𝑠𝛼 in eq.(1) to first order, δRs can be expressed as a function of δR and δ(cosα): 

δRs =
R2−2Rdcosα+d2

2(R−dcosα)2
 δR +

d(R2−d2)

2(R−dcosα)2
δ(cosα)    (A3.1) 500 

𝛼  is the angle between 𝑅𝑠  and axis-𝑋𝑖 . We denote the zenith and azimuth angles in coordinate-𝑋𝑖𝑌𝑖𝑍𝑖  as 𝜃′ and 𝜙′, 

respectively. And the relationship between 𝛼 and 𝜃′, 𝜙′ is 

𝑐𝑜𝑠𝛼 =  𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′    (A3.2) 

Using coordinates rotation matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

), 𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′ can be expressed as the function of AoAs: 

sinθ′cosϕ′ = A11sinθcosϕ + A12sinθsinϕ + A13cosθ                                        (A3.3) 505 

𝐴𝑖𝑗  are represent the elements in matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

) for 𝑖, 𝑗 = 1,2,3.  

Using (A3.2) and (A3.3), δ(cosα) can be expressed as a function of 𝛿𝜃 and 𝛿𝜙 as: 

δ(cosα) = (A11cosθcosϕ + A12cosθsinϕ − A13sinθ)δθ + (−A11sinθsinϕ + A12sinθcosϕ)δϕ                (A3.4) 

Finally, δRs can be expressed as the function of 𝛿𝑅, 𝛿𝜃, 𝛿𝜙 as: 

𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙                                 (A3.5) 510 

For: 

𝑓𝑅(𝜃, 𝜙) =
𝑑2+𝑅2 −2𝑅𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                        (A3.6) 

𝑓𝜃(𝜃, 𝜙) =
𝑑(𝑅2−𝑑2)(𝑨𝟏𝟏𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝝓+𝑨𝟏𝟐𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝝓−𝑨𝟏𝟑𝒔𝒊𝒏𝜽)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                       (A3.7) 

𝑓𝜙(𝜃, 𝜙) =  
𝑑(𝑅2−𝑑2)(−𝑨𝟏𝟏𝒔𝒊𝒏𝜽𝒔𝒊𝒏𝝓+𝑨𝟏𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝓)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                                          (A3.8) 
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A.4 True error of 𝑬𝟐 515 

See figure 4 (b), the total length of side AC and side AB represents the pulse width. Side AC equals side CB and they both 

equal to half of the pulse width denoting as S. In 𝑋𝑖𝑌𝑖𝑍𝑖, the presentation of point A is (xi, yi, zi), the receiver is (0,0,0) and 

𝑇𝑖  is (d,0,0). The distance between 𝑇𝑖  and A is 𝑅𝑖 = 𝑅 − 𝑅𝑠. We denote that the presentation of point B and C in 𝑋𝑖𝑌𝑖𝑍𝑖 is 

(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵) and (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶), respectively. We use vector collinear to establish equations for B and C. Therefore, one can 

obtain the coordinates of point B and C by the following equations: 520 

(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵)
𝑇 =

𝑅𝑠−𝑆

𝑅𝑠
 (𝑥i, 𝑦i, 𝑧i)

𝑇     (A4.1) 

(𝑥𝐶 − 𝑑, 𝑦𝐶 , 𝑧𝐶)
𝑇 =

𝑅i−𝑆

𝑅i
 (𝑥i − 𝑑, 𝑦i, 𝑧i)

𝑇    (A4.2)                                                            

For isosceles triangle ABC, the perpendicular line AD intersects side CB in middle point D. Then, we obtain the coordinate 

value of D in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 

 (xD, yD, zD) =
1

2
(xB + xc, yB + yc, zb + zc) =

1

2
((a1 + a2)xi − a2d + d, (a1 + a2)yi, (a1 + a2)zi)  (A4.3) 525 

We denote 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
, 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. Finally, one can obtain the error vector of E2 as vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ in 𝑋𝑖𝑌𝑖𝑍𝑖: 

𝑫𝑨⃗⃗⃗⃗⃗⃗ = (
(𝟐−𝒂𝟏−𝒂𝟐)𝒙𝐢+𝒅(𝒂𝟐−𝟏)

𝟐
 ,  
𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒚𝐢 ,

𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒛𝐢)

𝑻

     (A4.4) 

 

A.5 calculate AoAs and range information in 𝑿𝒊𝒀𝒊𝒁𝒊 

For a space point (xi, yi, zi) in 𝑋𝑖𝑌𝑖𝑍𝑖 which represent a MTSP, Rs can be solved easily as: 530 

Rs⃗⃗⃗⃗ = (xi, yi, zi)   

Rs = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                             (A6.1) 

The distance between transmitter Ti  and receiver RX  is di  as sketched in figure 4(a). Thus, coordinate value of Ti  in 

𝑋𝑖𝑌𝑖𝑍𝑖 is (di, 0,0) and Ri can be solved as: 

Ri = √(𝑥𝑖 − 𝑑𝑖)
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                       (A6.2) 535 

Before we calculate AoAs in 𝑋𝑖𝑌𝑖𝑍𝑖, the representation of unit vectors of axis-X, Y, Z in 𝑋𝑖𝑌𝑖𝑍𝑖 need to know. In XYZ 

those unit vectors are easily represented as (1,0,0)T , (0,1,0)T , (0,0,1)T . Though coordinates rotation matrix 

𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) , one can get those unit vector’s representation in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 

𝑛𝑥⃗⃗⃗⃗ = (𝐴11, 𝐴21, 𝐴31)
𝑇    
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𝑛𝑦⃗⃗ ⃗⃗  = (𝐴12, 𝐴22, 𝐴32)
𝑇  540 

𝑛𝑧⃗⃗⃗⃗ = (𝐴13, 𝐴23, 𝐴33)
𝑇                                                                              (A6.3) 

For 𝑛𝑥⃗⃗⃗⃗ , 𝑛𝑦⃗⃗ ⃗⃗  and 𝑛𝑧⃗⃗⃗⃗  are unit vectors of Axis-X, Y, Z respectively. And Aij  are the elements in 3 × 3  matrix 

𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) for 𝑖, 𝑗 = 1,2,3. Now AoAs can get as: 

cos 𝜃 =
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙ 𝑛𝑧⃗⃗⃗⃗                                                                                    (A6.4) 

sinθ = √1 − cos2 𝜃                                                                               545 

(A6.5) 

cos 𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑥⃗⃗ ⃗⃗  ⃗

sin𝜃
                                                                                 

(A6.6) 

sin𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑦⃗⃗ ⃗⃗  ⃗

sin 𝜃
                                                                                 (A6.7) 

For 0° < θ < 180° and 0° ≤ ϕ < 360°. When θ = 0° , we handle it as same as in Appendix (A.2). 550 

 

 

 

 

 555 
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Figure 1：Schematic diagram of a simplified bistatic configuration used in Hocking’s vertical resolution analysis(Hocking, 2018). 

The two receiver antennas and a transmitter antenna are collinear. The analysis is in a 2-dimensional vertical section through the 

baseline. The radio wave is scattered by a few Fresnel zones of several kilometres long around specular point in meteor trail and 

received by receiver antennas. The cross-correlation analysis between receiver antennas can solve the AoAs. The fact that the radio 560 
wave bounced back from a few Fennel zones will cause the measured phase difference between the receiver antenna pair deviating 

from the ideal phase difference. The ideal phase difference will solve an AoAs pointing to MTSP. This deviation from the ideal phase 

difference is one of the error sources of PDME. 

 

 565 
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 570 

Figure 2: Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three 

transmitters (𝑻𝟏, 𝑻𝟐 𝒂𝒏𝒅 𝑻𝟑) and one receiver (𝑹𝑿) in the picture. The transmitter/receiver distance is usually approximately 100-

200 km. 𝑿𝟎, 𝒀𝟎, 𝒁𝟎 represents the east, north and up directions of the receiver. Over 𝟗𝟎% of the received energy comes from 

about one kilometre around specular point of the meteor trail, which is slightly less than the length of the central Fresnel zone 

(Ceplecha et al., 1998).   575 
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 590 

Figure 3: (a) Schematic diagram of the three introduced coordinate systems. 𝑿𝒊𝒀𝒊𝒁𝒊 are a class of coordinate systems whose axis-

𝑿𝒊 point to transmitter i. And in this picture, i are 1,2,3. 𝑿𝟎𝒀𝟎𝒁𝟎 is the ENU coordinate system and all errors will be compared in 

this coordinate. (b) Magnified plot of the receiver. 𝑿𝒀𝒁 is fixed on the receiver horizontal plane. Axis-X and Y are collinear to two 

antenna arrays. 
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 605 

Figure 4: (a) Schematic diagram of a forward scatter geometry for the radar link between 𝑻𝒊 and 𝑹𝑿. Point-A is the MTSP. (b) 

Magnified plot of specular point A. The red line represents a radio wave pulse, and S is the half wave pulse length. 𝒌𝒃⃗⃗ ⃗⃗   is the Bragg 

vector which halves forward scatter angle 𝜷. (c) Schematic diagram of 𝑬𝟏 in 𝑿𝒀𝒁, which can be decomposed into three orthogonal 

vectors. 
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 620 

Figure 5: (a) the flow chart of the location error calculation process for a point in 𝐗𝟎𝒀𝟎𝒁𝟎. The marks beside arrows represent the 

corresponding equations (black) or coordinate rotation matrix (blue) in the paper. “” is the Hadamard product. Thus 𝐄𝟐𝑬𝟐 

will get (𝛅(𝟐)
𝟐 𝑿𝟎, 𝜹(𝟐)

𝟐 𝐘𝟎, 𝜹(𝟐)
𝟐 𝐙𝟎)

𝐓
. (b) the flow chart of the program to calculate the location errors distributions for a radar link 𝑳𝒊. 

This process includes parameters settings for a radar link, generating sampling grid nodes and traversing all the nodes. For each 

node, the program uses the calculation method described in (a). MC: multistatic configuration, IC: interferometer (receiver antennas) 625 

configuration. (c) Schematic diagram of relationship between the spatial resolution and the total location errors of the MTSP. For a 

detected point in space, the MSE of MTSP’s location errors is ±|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎|, ±|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎|, ±|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎| in zonal, meridian and vertical 

respectively. This means that the actual specular point might occur in a region which form a 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎| × 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎| × 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎| 

cube and the detected point is on the central of this cube.     

 630 
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Figure 6：the normalized vertical resolution distribution in a vertical section from 50 km to 60 km height when ignore the error term “𝜹𝑹𝒔”. 

(a), (b), (c) are total, 𝐑𝐬𝜹𝜽 related and 𝐄𝟐 related normalized resolution distribution respectively. The results is theas same as Hocking’s 

work (Hocking, 2018). Two black arrows represent the positions right above transmitter and receiver and transmitter/receiver are 300 km 

away. The region between two black oblique lines is a the trustworthy sampling volume for the receiver because the elevation angle is 640 
beyond 𝟑𝟎° with little influence of from potential mutual antenna coupling or other obstacles in the surrounding. Except the region in large 

elevation angle (i.e. 𝟗𝟎°), 𝐄𝟐 related resolution values are much lower than 𝐑𝐬𝜹𝜽 related. 𝐑𝐬𝜹𝜽 related resolution distribution is only 

depend on the receiver. Thus, the total vertical resolution distribution is nearly unchanged with transmitter/receiver distance varying. The 

normalized resolution values exceed 3 km which correspond 12 km vertical resolution aren’t shown.       

 645 
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Figure 7：the normalized vertical resolution distribution using the analytical method in this paper. The first and second row represent a 

vertical section from height 50 km to 120 km. The third row represent the horizontal section in 90 km and the receiver is on the origin with 

positive coordinate value represent east or north direction. The first row has the same parameters settings as Figure 6 and is used to compare 

with Figure 6. 𝐄𝟏 related resolution will change with transmitter/receiver configuration because it consider the error term “𝜹𝑹𝒔”. Thus, the 660 
total vertical resolution will change with transmitter/receiver configuration. With transmitter/receiver distance varying from 300 km (the 
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first row) to 150 km (the second row), the total vertical resolution distribution is changed. The third row is the perspective to the horizontal 

section in 90 km altitude for the second row. The normalized resolution values exceed 3 km aren’t shown.  

 

 665 

 

 

 

 

 670 

Figure 8 the 3D contourf plot of normalized resolution distribution for a multistatic radar link whose baseline length is 180 km and 

transmitter is south by east 𝟑𝟎° of the receiver. The black dots represent the position right above transmitter and the receiver is on the origin 

of axes. (a), (b) and (c) are the normalized resolution distribution in zonal, meridian and vertical respectively. The subplot’s four slice circle 

from bottom to top are the horizontal section in 50 km, 70 km, 90 km and 110 km height. The region whose elevation angle of the receiver 

is less than 𝟑𝟎° isn’t shown and therefore the slice circles become larger from the bottom to the top. The normalized resolution values 675 
exceed 4 km which correspond 16 km resolution aren’t shown.  
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Figure A.1 680 
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Figure A.2 (two antennas are not shown for concise) 685 

 


