Error analyses of a multistatic meteor radar system to obtain a 3-dimensional spatial resolution distribution

Wei Zhong ${ }^{1,2}$, Xianghui Xue ${ }^{1,2,3}$, Wen $\mathrm{Yi}^{1,2}$, Iain M. Reid ${ }^{4,5}$ Tingdi Chen ${ }^{1,2,3}$, Xiankang Dou ${ }^{1,6}$
${ }^{1}$ CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science
${ }^{2}$ Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
${ }^{3}$ CAS Center for Excellence in Comparative Planetology, Hefei, China
${ }^{4}$ ATRAD Pty Ltd., Thebarton, South Australia, Australia
$10 \quad{ }^{5}$ School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia ${ }^{6}$ Wuhan University, Wuhan, China
Correspondence to: Xianghui Xue (xuexh@ustc.edu.cn)

Abstract

In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the mesosphere and lower thermosphere (MLT-). region. Recently, there have been some notable experiments using such multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all parameter inversion processes rely on the accurate location of the meteor trail specular point. It is timely then for a careful discussion focussed on the error distribution of multistatic meteor radar systems. In this study, we discuss the measurement errors that affect the spatial resolution and obtain the spatial resolution distribution in 3-dimensional space for the first time. The spatial resolution distribution can both help design a multistatic meteor radar system and improve the performance of existing radar systems. Moreover, the spatial resolution distribution allows the accuracy of retrieved parameters such as the wind fieldsfield to be determined.

1 Introduction

The mesosphere and lower thermosphere (MLT) is a transition region from the neutral to the partially ionized atmosphere. It is dominated by the effects of atmospheric waves, including planetary waves, tides and gravity waves. It is also a relatively poorly sampled part of the Earth's atmosphere by ground-based instruments. One widely used approach to sample this region is the meteor radar technique. The ablation of incoming meteors in the MLT region, i.e., $\sim 80-110 \mathrm{~km}$, creates layers of metal atoms, which can be observed from the ground by photometry or lidar (Jia et al., 2016; Xue et al., 2013). During meteor ablation, the trails caused by small meteor particles provide a strong atmospheric tracer within the MLT region that can be continuously detected by meteor radarradars, regardless_-of weather conditions. Consequently, the meteor radar technique has been a powerful tool for studying the MLT region for decades_(Hocking et al., 2001; Holdsworth et al., 2004; Jacobi et al., 2008; Stober et al., 2013; Yi et al., 2018). Most modern meteor radars are monostatic, and this has two main limitations in
retrieving the complete wind fields. Firstly, limited meteor rates and relatively low measurement accuracies necessitate that all measurements in the same height range are processed to calculate a "mean" wind. Secondly, classic monostatic radars retrieve windwinds based on the assumption of a homogenous wind in the horizontal and usually a zero wind in the vertical direction.

The latter conditions can be partly relaxed if the count rates are high and the detections are distributed through a representative range of azimuths. If this is the case, a version of a Velocity Azimuth Display (VAD) analysis can be applied by expanding the zonal and meridional winds using a truncated Taylor expansion (Browning and Wexler, 1968). This is because each valid meteor detection yields a radial velocity in a particular lookviewing direction of the radar. The radar is effectively a multibeam Doppler radar where the "beams" are determined by the meteor detections. If there are enough suitably distributed detections in azimuth in a given observing period, the Taylor expansion approach using cartesian coordinates yields the mean zonal and meridional wind components (u_{0}, v_{0}), the horizontal divergence $\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$, the stretching $\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)$ and the shearing $\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)$ deformations of the wind fields from an analysis of the radial velocities. However, because the radar can only retrieve the wind projection in the radial direction as measured from the radar, the vorticity $\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$ of the wind fields is not available. This is common to all monostatic radar systems and a discussion of measurable parameters in the context of multiple fixed beam upper atmosphere Doppler radars is given by (Reid, 1987). Even by relaxing the assumption of a homogeneous wind fields and using the more advanced Volume Velocity Processing (VVP) (Philippe and Corbin, 1979) to retrieve the wind fields, the horizontal gradients of the wind fields cannot be recovered due to the lack of vorticity information. To obtain a better understanding of the spatial variation of the MLT region wind fields, larger area observations (and hence higher meteor count rates) and measurements ofsampling the nom homogenous wind fieldsobserved area from different viewing angles are needed. An extension of the classic monostatic meteor technique is required to satisfy these needs. To resolve the limitations outlined above, the concept of multistatic meteor radar systems, such as MMARIA (multi-static and multi-frequency agile radar for investigations of the atmosphere) (Stober and Chau, 2015) and SIMO (single input multiple output) (Spargo et al., 2019), MIMO (multiple input multiple output radar) (Chau et al., 2019; DOREY et al., 1984) have been designed and implemented (Stober et al., 2018). Multistatic systems can utilize the forward scatter of meteor trails, thus providing another perspective for observing the MLT. Multistatic meteor radar systems have manyseveral advantages over classic monostatic meteor radars, such as obtaining higher-order wind fieldsfield information and covering wider observation areas. There have been some particularly innovative studies using multistatic meteor radar systems in recent years. For example, by combining MMARIA and the continuous wave multistatic radar technique (Vierinen et al., 2016), Stober and Chatt et al. built a 5 station total 7 link multistatic radar network covering an approximately $600 \mathrm{~km} \times 600 \mathrm{~km}$ region in Germany to retrieve an arbitrary non homogenous wind fields with a $30 \mathrm{~km} \times 30 \mathrm{~km}$ horizontal resolution (Stober et al., 2018). Chat et at-et al. (2018) built a 5 -station 7 -link multistatic radar network covering an approximately $600 \mathrm{~km} \times 600 \mathrm{~km}$ observing region over Germany to retrieve an arbitrary non-homogenous wind field with a $30 \mathrm{~km} \times 30 \mathrm{~km}$ horizontal resolution. Chau et al.
(2017) used two adjacent classic monostatic specular meteor radars in northern Norway to obtain horizontal divergence and vorticity(Cham et al., 2017).. Other approaches, such as coded continuous wave meteor radar (Vierinen et al., 2019) and the compressed sense method in MIMO sparse signal recovery (Urco et al., 2019), are described in the corresponding references in these papers.

Analysing spatial resolution in interested areaslimits is a fundamental but difficult topic for meteor radar systems. Meteor radar systems transmit radio waves-and then receive radio waves reflected from meteor trails using a cluster of receiverreceiving antennas; commonly five antennas as in the Jones et al. (1998) configuration(Jones et al., 1998).. By analysing the cross correlationcorrelations of the signals received signals, one can determineon several pairs of antennas, the angle of arrivals ($\mathrm{A} 日 \mathrm{As}$) which ineludesarrival (AoA) of each return can be determined. The AoA is described by the zenith angle θ_{-}and azimuth angle denoted as θ and ϕ-respectively.. By measuring the wave propagation time, one can obtain from the meteor trail, range information can be determined. Most meteor radar systems rely on specular reflections from meteor trails. Thus, 75 by combining the AoAsAoA and the range information and then using geometric analysis, one can determine the location of a meteor trailstrail can be determined. Accurately locating the meteor trail specular point (MTSP hereafterhereinafter) is important since atmospheric parameter retrieval (such as the wind fieldsfield or the temperature) depends on the location information of meteor trails. The location accuracy, namely the spatial resolution, determines the reliability of the retrieved parameters. For multistatic meteor radar systems thatwhich can relax the assumption of a homogenous horizontal wind

80 fieldsfield, the location accuracy becomes a more important issue because the horizontal spatial resolution affects the accuracy of the retrieved horizontal wind fields gradientfield.

There are some discussions about measuringAlthough meteor radar systems have developed well experimentally in recent years, the reliability of the retrieved atmospheric parameters still requires further investigation for both the monostatic and multistatic meteor radar cases. In an attempt to investigate errors of the meteor radar. For example, a-in two radar techniques,
85 Wilhelm et al. (2017) compared 11 years of MLT region wind data from a partial reflection (PR) radar with collocated monostatic meteor radar winds and determined the 'correction factors' to bring the winds into agreement. Reid et al. (2018) reported a similar study for two locations for data obtained over several years. While the comparisons are interesting, partial reflection radars operating in the medium frequency (MF) and lower high frequency (HF) bands produce a height dependent bias in the measured winds (see e.g., Reid, 2015) which limits the ability to estimate errors in the meteor winds by comparing with them. However, the PR radar technique is one of very few that provides day and night coverage and data rates in the MLT comparable to that of meteor radars.
Meteor radars have largely replaced PR radars for MLT studies and are generally regarded as providing reference quality winds. It is essential then to know the reliability of atmospheric parameters determined by meteor radars and to do this, some quantitative error analyses are necessary.
95 A number of recent studies have discussed AoAs measuringAoA measurement errors for meteor radars (Kang, 2008; Vaudrin et al., 2018; Younger and Reid, 2017). However, thoseThese studies focus on the phase errors in receiver antennasantenna pairs; Younger and seldom diseussReid for the influence ofmonostatic case, and Vaudrin et al. for a more general case which
included multistatic eonfiguration on the spatial resolutionsmeteor radars. Hocking (2018) used another approach and developed a vertical resolution analysis method in afor the 2-dimensional baseline vertical section (Hocking, 2018), which
temperature.

2 Analytical Method

2.1 briefBrief introduction

The HM will be introduced ahead in shortbriefly here to help understand our methodgeneralization. In the HM, measuringmeasurement errors that affect the vertical resolution can be classified into two types(Hocking, 2018): one is those that-caused by the zenith angle measuring error $\delta \theta$ and another is those thatone caused by the pulse-length effect on the vertical resolution. The receivereceiving array is a simple antenna pair that is collinear towith the baseline (figure 1). The HM enly caleulatecalculates the vertical resolution in a two-dimensional vertical section which pass thoughpasses through the baseline. The receiver antenna pair is equivalent to one receiver arm in a Jones configuration which is comprised of three collinear antennas and is-usually in a $2 \lambda \backslash 2.5 \lambda$ eonfiguration. Phasespacing. The phase difference of the received radio wave between the receiving antenna pairspair is denoted as $\Delta \Psi$. In meteor radar systems, there are is generally an 'acceptable' phase difference measuring error (PDME hereafterhereinafter) $\delta(\Delta \Psi)$. A higher value of $\delta(\Delta \Psi)$ means that more detected signals will be judged as a-meteor event meanwhileevents, but with more misidentifications and bigger errors as well. $\delta(\Delta \Psi)$ is set to approximately 30° (Hocking, 2018; Younger and Reid, 2017) in most meteor radar systems. In the HM, the zenith angle

MTSP , if(denoted as point A). If $\alpha, \mathrm{d}_{\mathrm{i}}$ and R are known, R_{s} willcan be calculated easily using the Cosine Law as:
$R_{S}=\frac{R^{2}-d_{i}^{2}}{2\left(R-d_{i} \cos \alpha\right)}$
α is the angle between the baseline (i.e. \underline{A}) and the dine denoted as point A. The multistatic configuration will influence the accuracy of R_{s} (denoted as δR_{s}). This is because that α, d and R are determined by the multistatic configuration. We consider the error term δR_{s} in our method, which is ignored in the $\mathrm{HM} . \delta R_{s}$ is a function of the AoAsAoA measuring errors ($\delta \theta$ and $\delta \phi$) and the radio wave propagation path length measuring error (denoted as δR). δR is caused by the measuring error of the wave propagation time δt, which is approximately $21 \mu s$ (Kang, 2008). Thus, δR can be set as a constant and the default value in our program is $\delta R=\epsilon \delta t c \delta t=6.3 \mathrm{~km}$. It is worth noting that the maximum unambiguous range for pulse meteor radars is determined by the pulse repetition frequency (PRF) (Hocking et al., 2001; Holdsworth et al., 2004). For multistatic meteor radars utilizing forward scatter, the maximum unambiguous range is c/PRF (where c is the speed of light). For the area where R exceedexceeds the maximum unambiguous range, δR is set to positive infinity.

2.2 threeThree kinds of coordinate systems and their transformations

To better depict the multistatic system configuration, three kinds of right-hand coordinate systems (figure 3) need to be established, which as shown in figure 3. These are $X_{0} Y_{0} Z_{0}, X_{i} Y_{i} Z_{i}$ and XYZ. $X_{0} Y_{0} Z_{0}$ is the ENU (east-north-up) coordinate system andwhere axis- X_{0}, Y_{0}, Z_{0} represent the east, north, up directions respectively. Another two coordinate systems are established to facilitate different error propagations. All types of errors need to be transformed to the ENU coordinate system $X_{0} Y_{0} Z_{0}$ in the end. Coordinate system XYZ is established to depict the spatial configuration of the receiver. XYZ is fixed on
receiving array and has its the receiver. See figure 3, the coordinate-origin of XYZ is on the receiver.there as shown in figure 3. Axis- Z is collinear with the antenna boresight and perpendicular to the receiver horizontal plane on which the receiving array lies. Axis- X and axis- Y are collinear with the arms of the two orthogonal antenna arrays. AoAs will be represented in XYZ for convenience. SeeInspection of figure 4 , indicates that it is convenient to analyse the range information in a plane that goes through the baseline and the MTSP. Thus, a coordinate system $X_{i} Y_{i} Z_{i}$ is established for a transmitter T_{i}. The coordinate origins of $X_{i} Y_{i} Z_{i}$ are all on the receiver.receiving array. We stipulate that axis- X_{i} points to transmitter $\boldsymbol{i}\left(\mathrm{T}_{\mathrm{i}}\right)$. Each pair of $-T_{i}$ and the receiver R_{X} eenstittteconstitutes a radar link, which is referred to as L_{i}. The range related information for each L_{i} will be calculated in $X_{i} Y_{i} Z_{i}$. Different types of errors need to propagate to and be compared in $X_{0} Y_{0} Z_{0}$ which is convenient for retrieving wind fields.
We stipulate that clockwise rotation satisfies the right-hand corkscrew rule. By rotating-eleckwise in order of $\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}$ and $\psi_{Z}^{Z, \mathrm{i}}$ about axis- X, Y and Z, respectively, one can transform XYZ to $X_{i} Y_{i} Z_{i}$. It is worth mentioning that $X_{i} Y_{i} Z_{i}$ is non-unique because any rotation about axis- X_{i} can obtain another satisfactory $X_{i} Y_{i} Z_{i}$. Hence, $\psi_{x}^{\mathrm{X}, \mathrm{i}}$ can be set to any valuesvalue. Similarly, by rotating-eleckwise in order of $\psi_{x}^{\mathrm{i}, 0}, \psi_{y}^{i, 0}$ and $\psi_{z}^{i, 0}$ about axis- X, Y and Z, respectively, one can transform $X_{i} Y_{i} Z_{i}$ to $\mathrm{X}_{0} Y_{0} Z_{0}$. To realize the coordinate transformation between thesethese three coordinate systems, a coordinate rotation matrix $A_{R}\left(\psi_{x}, \psi_{y}, \psi_{z}\right)$ is introduced. Using A_{R}, one can transform the coordinate point or vector presentation from one coordinate system to another. The details of the coordinate rotation matrix $A_{R}\left(\psi_{x}, \psi_{y}, \psi_{z}\right)$ can be seenfound in Appendix (A.1).

2.3 two Two types of measuring errors

The analytical method of the spatial resolution of for each radar link is the same. The difference between thesethese radar links areis only the value of the six eerrdinatescoordinate rotation angleangles $\left(\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}\right.$ and $\psi_{z}^{Z, \mathrm{i}} ; \psi_{x}^{\mathrm{i}, 0}, \psi_{y}^{i, 0}$ and $\psi_{z}^{i, 0}$) and the baseline distance d_{i}. The spatial resolution related measurement errors which will cause location errors of the MTSP $=$ can be classified into two types: E_{1} is caused by measurement errors inat the receiver, and E_{2} is due to the pulse length. These two errors are mutually independent. Hence, the total error ($E_{\text {total }}$) can be expressed as:
$\mathrm{E}_{\text {total }}^{2}=\mathrm{E}_{1}^{2}+\mathrm{E}_{2}^{2}$
E_{1} is related to three indirect measuring errors. They are zenith, azimuth and radial distance measuring errors, denoted as $\delta \theta$, $\delta \phi$ and δR_{s} respectively. In XYZ, E_{1} can be decomposed into three orthogonal error vectors using $\delta \theta, \delta \phi$ and δR_{s} (see figure $4(\mathrm{c})$). Nowt) $)$ which we now explain itin more detail. PDMEs, i.e-., $\delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$, are caused by some practical factors, such as phase calibration mismatch and the fact that the specular point is not actually a point but hasis a few Fresnel zones in length. A meteor radar system calculates phase difference ofdifferences between different pairpairs of antennas though cross-correlations and then fitfits them to get the most likely AoAs. Therefore, the system needs to setbe assigned a tolerantolerance value of $\delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$. Different meteor radar systems have different AoAsAoA-fit algorithms and thus different AoAsAoA measuring error distribution-distributions. To analysesanalyse the spatial resolution for a SIMO

190
meteor radar system as eommongenerally as possible and to avoid tedious error propagation in receiverat the receiving array, we start the error propagation from $\delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$ and set them as eonstant. AoAsconstants. AoA measuring errors; i.e. $\delta \theta$ and $\delta \phi$ can then be expressed as:
$\delta \theta=\frac{\lambda}{2 \pi \mathrm{D}_{1}} \frac{\cos \phi}{\cos \theta} \delta\left(\Delta \Psi_{1}\right)+\frac{\lambda}{2 \pi \mathrm{D}_{2}} \frac{\sin \phi}{\cos \theta} \delta\left(\Delta \Psi_{2}\right)$
$\delta \phi=\frac{\lambda}{2 \pi \mathrm{D}_{2}} \frac{\cos \phi}{\sin \theta} \delta\left(\Delta \Psi_{2}\right)-\frac{\lambda}{2 \pi \mathrm{D}_{1}} \frac{\sin \phi}{\sin \theta} \delta\left(\Delta \Psi_{1}\right)$
where λ is the radio wave length.wavelength, D_{1} and D_{2} are the length of the two orthogonal antenna arms-, and θ and ϕ are the zenith angle and the azimuth angle, respectively. The details can be seenfound in Appendix (A.2). It is worth noting that $\delta \theta$ and $\delta \phi$ are not mutually independent. The Expectationexpectation value of their product is not identical to zero unless $\frac{E\left(\delta^{2}\left(\Delta \Psi_{1}\right)\right)}{D_{1}^{2}}$ is equal to $\frac{E\left(\delta^{2}\left(\Delta \Psi_{2}\right)\right)}{D_{2}^{2}}$.
δR_{s} can be expressed as a function of $\delta R, \delta \theta$ and $\delta \phi$ as:
$200 \delta R_{s}=F(\delta R, \delta \theta, \delta \phi)=f_{R}(\theta, \phi) \delta R+f_{\theta}(\theta, \phi) \delta \theta+f_{\phi}(\theta, \phi) \delta \phi$
$f_{R}(\theta, \phi), f_{\theta}(\theta, \phi)$ and $f_{\phi}(\theta, \phi)$ are the weightweighting functions of δR_{s}. The details about the weightweighting function and deduction can be found in Appendix (A.3). See Inspection of figure 4(c), indicates that E_{1} can be decomposed into three orthogonal error vectors in coordinate XYZ, denoted as $\overrightarrow{\delta R_{s}}, \overrightarrow{R_{s} \delta \theta}$ and $\overrightarrow{R_{s} \sin \theta \delta \phi}$. These three vectors can be expressed in XYZ as:

205
$\overrightarrow{\delta R_{\mathrm{s}}}=\delta \mathrm{R}_{\mathrm{s}}(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)^{\mathrm{T}}$
$\overrightarrow{\mathrm{R}_{\mathrm{s}} \delta \theta}=\mathrm{R}_{\mathrm{s}} \delta \theta(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta)^{\mathrm{T}}$
$\overrightarrow{\mathrm{R}_{\mathrm{S}} \sin \theta \delta \phi}=\mathrm{R}_{\mathrm{S}} \sin \theta \delta \phi(-\sin \phi, \cos \phi, 0)^{\mathrm{T}}$
E_{2} is related to the radio wave propagatingpropagation path. A pulse might be reflected anywhere within a pulse length (see figure $4(\mathrm{~b})$). This causes a location error efin the MTSP, represented as an error vector $\overrightarrow{D A} . \mathrm{D}$ is the median point of the isosceles triangle $\triangle \mathrm{ABC}$'s side BC . The representation of the error vector $\overrightarrow{D A}$ can be solved in $X_{i} Y_{i} Z_{i}$ by using geometry relationshipgeometrical relationships as:
$\overrightarrow{D A}=\left(\frac{\left(2-a_{1}-a_{2}\right) x_{i}+d_{i}\left(a_{2}-1\right)}{2}, \frac{\left(2-a_{1}-a_{2}\right) y_{i}}{2}, \frac{\left(2-a_{1}-a_{2}\right) z_{i}}{2}\right)^{T}$
where S is the half-wave pulse length and $a_{1}=\frac{R_{S}-S}{R_{S}} . a_{2}=\frac{R_{i}-S}{R_{i}} . \mathrm{d}_{\mathrm{i}}$ is the baseline length. ($\mathrm{x}_{\mathrm{i}}, y_{i}, z_{i}$) is the coordinate value of a MTSP (i.e. point A in figure 4) in $X_{i} Y_{i} Z_{i}$. DetailsMore details can be seenfound in Appendix (A4)

2.4 transformTransformation to ENU coordinatecoordinates

HereThus far, two types of errors in different coordinate systems have been introduced. Now they need to be transformed to ENU coordinates $X_{0} Y_{0} Z_{0}$, which is convenient for comparing betweenin order to compare different radar linklinks and analysingto analyse the wind fields. E_{1} related error vectors, which are three orthogonal vectors $\overrightarrow{\delta R_{S}}, \overrightarrow{R_{S} \delta \theta}$ and $\overrightarrow{R_{S} \sin \theta \delta \phi}$ and represented in $X Y Z$ as eq.(6)-(8), and need to be transformed from $X Y Z$ to $X_{0} Y_{0} Z_{0}$.To project $\overrightarrow{\delta R_{s}}, \overrightarrow{R_{s} \delta \theta}$ and $\overrightarrow{R_{s} \sin \theta \delta \phi}$ towards axis- X_{0}, Y_{0}, Z_{0} respectively, and reassemble them to form three new error vectors in axis- X_{0}, Y_{0}, Z_{0}. Using the coordinate rotation matrix $\mathrm{A}_{\mathrm{R}}^{\left(X Y Z, X_{0} Y_{0} Z_{0}\right)}=\mathrm{A}_{\mathrm{R}}\left(\Psi_{x}^{i, 0}, \Psi_{y}^{i, 0}, \Psi_{z}^{i, 0}\right) \cdot A_{R}\left(\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}, \psi_{z}^{Z, \mathrm{i}}\right)$ and eq.(6)-(8), the unit vectors of those three vectors can be represented in $X_{0} Y_{0} Z_{0}$ as:
$\left(\begin{array}{ccc}\mathrm{X}_{0}^{\prime}\left(\delta \mathrm{R}_{\mathrm{s}}\right) & \mathrm{X}_{0}^{\prime}(\delta \theta) & \mathrm{X}_{0}^{\prime}(\delta \phi) \\ \mathrm{Y}_{0}^{\prime}\left(\delta \mathrm{R}_{\mathrm{s}}\right) & \mathrm{Y}_{0}^{\prime}(\delta \theta) & \mathrm{Y}_{0}^{\prime}(\delta \phi) \\ \mathrm{Z}_{0}^{\prime}\left(\delta \mathrm{R}_{\mathrm{s}}\right) & \mathrm{Z}_{0}^{\prime}(\delta \theta) & \mathrm{Z}_{0}^{\prime}(\delta \phi)\end{array}\right)=A_{R}^{\left(X Y Z, X_{0} Y_{0} Z_{0}\right)} \cdot\left(\begin{array}{ccc}\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \theta & 0\end{array}\right)$
$\left(\mathrm{X}_{0}^{\prime}\left(\delta \mathrm{R}_{\mathrm{s}}\right), \mathrm{Y}_{0}^{\prime}\left(\delta R_{s}\right), Z_{0}^{\prime}\left(\delta R_{s}\right)\right)^{T},\left(X_{0}^{\prime}(\delta \theta), Y_{0}^{\prime}(\delta \theta), Z_{0}^{\prime}(\delta \theta)\right)^{T},\left(X_{0}^{\prime}(\delta \phi), Y_{0}^{\prime}(\delta \phi), Z_{0}^{\prime}(\delta \phi)\right)^{T}$ are unit vectors of $\overrightarrow{\delta R_{S}}, \overrightarrow{R_{s} \delta \theta}$ and $\overrightarrow{R_{s} \sin \theta \delta \phi}$ in $X_{0} Y_{0} Z_{0}$ respectively. The 3×3 matrix inon the left hand side of the eq.(10) is denoted as P_{ij} for $\mathrm{i}, \mathrm{j}=$ 1,2,3.
SeeFrom eq.(6)-(8) and figure 4(c), we see that the length of those three vectors,-or (the error values-in other words, 2 are $\delta R_{S}, R_{s} \delta \theta, R_{s} \sin \theta \delta \phi$ as thea function of $\delta \mathrm{R}, \delta \theta, \delta \phi$. In order to reassemble them to form new error vectors, transformingtransformation of $\delta \theta$ and $\delta \phi$ into two independent errors $\delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$ areis needed because $\delta \theta$ and $\delta \phi$ are not independent. Using eq. (3) and (4), one can transform vector ($\delta R, \delta \theta, \delta \phi)^{T}$ to three independent measuring errors $\delta R, \delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$. And thus $\left(\delta R_{s}, R_{s} \delta \theta, R_{s} \sin \theta \delta \phi\right)^{\mathrm{T}}$ can be expressed as:

$$
\left(\begin{array}{c}
\delta \mathrm{R}_{\mathrm{s}} \tag{11}\\
\mathrm{R}_{\mathrm{s}} \delta \theta \\
\mathrm{R}_{\mathrm{s}} \sin \theta \delta \phi
\end{array}\right)=\left(\begin{array}{ccc}
f_{R}(\theta, \phi) & f_{\theta}(\theta, \phi) & f_{\phi}(\theta, \phi) \\
0 & R_{S} & 0 \\
0 & 0 & R_{s} \sin \theta
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
& \frac{\frac{\lambda}{2 \pi}}{\cos \theta} \frac{\cos \phi}{D_{1}} & \frac{\frac{\lambda}{2 \pi}}{\cos \theta} \frac{\sin \phi}{D_{2}} \\
0 & -\frac{\lambda}{2 \pi} \sin \phi & \frac{\lambda}{\sin \theta D_{1}} \\
\frac{2 \pi}{\sin \theta D_{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
\delta R \\
\delta\left(\Delta \Psi_{1}\right) \\
\delta\left(\Delta \Psi_{2}\right)
\end{array}\right)
$$

The product of the first and the second term inon the right hand side of eq.(11) is a 3×3 matrix, denoted as W_{ij} for $\mathrm{i}, \mathrm{j}=$ $1,2,3$. SeenFrom eq.(11), we see that the three error values δ values $\delta R_{s}, R_{S} \delta \theta, R_{S} \sin \theta \delta \phi$ are the linear combinations of three basis $\delta \mathrm{R}, \delta\left(\Delta \Psi_{1}\right)$, and $\delta\left(\Delta \Psi_{2}\right)$ with their corresponding linear coefficients $\mathrm{W}_{1 \mathrm{j}}, \mathrm{W}_{2 \mathrm{j}}, \mathrm{W}_{3 \mathrm{j}}$ and $\mathrm{W}_{3 \mathrm{j}}$. Those three error values can be projected toward new directions (i.e.g., axis- X_{0}, Y_{0}, Z_{0}) by using P_{ij}. It worth noting that in a new direction, a same basis's projected linear coefficients from different error values should be used to calculate their sum of squares (SS). And then the square root of SS will be used as a new linear coefficient for that basis in the new direction. For example, in X_{0} directions, basis $\delta\left(\Delta \Psi_{1}\right)$'s projected linear coefficients are $\mathrm{X}_{0}^{\prime}\left(\delta R_{s}\right) W_{12}, \mathrm{X}_{0}^{\prime}(\delta \theta) \mathrm{W}_{22}, \mathrm{X}_{0}^{\prime}(\delta \phi) \mathrm{W}_{32}$ from $\overrightarrow{\delta R_{s}}, \overrightarrow{R_{s} \delta \theta}$ and $\overrightarrow{R_{S} \sin \theta \delta \phi}$ respectively. Therefore, the new linear coefficient for $\delta\left(\Delta \Psi_{1}\right)$ in the X_{0} direction is $\mathrm{W}_{\mathrm{x}_{0}^{\prime}}^{\delta\left(\Delta \Psi_{1}\right)}=$
$\pm \sqrt{\left(\mathrm{X}_{0}^{\prime}\left(\delta R_{s}\right) W_{12}\right)^{2}+\left(\mathrm{X}_{0}^{\prime}(\delta \theta) \mathrm{W}_{22}\right)^{2}+\left(\mathrm{X}_{0}^{\prime}(\delta \phi) \mathrm{W}_{32}\right)^{2}}$. Similarly, one can get $\delta \mathrm{R}$ and $\delta\left(\Delta \Psi_{2}\right)$'s new linear coefficients in X_{0}^{\prime}, denoted as $\mathrm{W}_{\mathrm{X}_{0}^{\prime}}^{\delta \mathrm{R}}$ and $\mathrm{W}_{\mathrm{x}_{0}^{\prime}}^{\delta\left(\Delta \Psi_{2}\right)}$._Thus, the true error valuesvalue in the X_{0} direction is $\mathrm{W}_{\mathrm{X}_{0}^{\prime}}^{\delta \mathrm{R}} \delta R+\mathrm{W}_{\mathrm{X}_{0}^{\prime}}^{\delta\left(\Delta \Psi_{1}\right)} \delta\left(\Delta \Psi_{1}\right)+$ $\mathrm{W}_{\mathrm{X}_{0}^{\prime}}^{\delta\left(\Delta \Psi_{2}\right)} \delta\left(\Delta \Psi_{2}\right)$. Because $\delta \mathrm{R}, \delta\left(\Delta \Psi_{1}\right)$, and $\delta\left(\Delta \Psi_{2}\right)$ are mutually independent, $\mathrm{E}_{1} \underline{\text { is related to the mean square error (MSE) }}$ values in the X_{0} direction, denoted as $\delta_{(1)} X_{0}$, and can be expressed as $\delta_{(1)} X_{0}=$ $\pm \sqrt{\left(W_{X_{0}^{\prime}}^{\delta R} \delta R\right)^{2}+\left(W_{X_{0}^{\prime}}^{\delta\left(\Delta \Psi_{1}\right)} \delta\left(\Delta \Psi_{1}\right)\right)^{2}+\left(W_{X_{0}^{\prime}}^{\delta\left(\Delta \Psi_{2}\right)} \delta\left(\Delta \Psi_{2}\right)\right)^{2}}$.
In short, E_{1} related errors in ENU coordinate's three axis directions (denoted as $\delta_{(1)} X_{0}, \delta_{(1)} Y_{0} \delta_{(1)} Y_{0}$ and $\delta_{(1)} Z_{0}$) can be expressed in the form of a matrix as:
$\left(\begin{array}{c}\delta_{(1)}^{2} X_{0} \\ \delta_{(1)}^{2} Y_{0} \\ \delta_{(1)}^{2} Z_{0}\end{array}\right)=P_{i j}^{2} \cdot W_{i j}^{2} \cdot\left(\begin{array}{c}\delta^{2} R \\ \delta^{2}\left(\Delta \Psi_{1}\right) \\ \delta^{2}\left(\Delta \Psi_{2}\right)\end{array}\right)$

The E_{2} related error vector $\overrightarrow{D A}$ needs transformation from $X_{i} Y_{i} Z_{i}$ to $X_{0} Y_{0} Z_{0}$. Therefore, E_{2} related errors in the ENU coordinate's three axis directions (denoted as $\delta_{(2)} X_{0}, \delta_{(2)} \delta_{(2)} Y_{0}$ and $\delta_{(2)} Z_{0}$) can be expressed in the form of a matrix as:
$\left(\begin{array}{l}\delta_{(2)} X_{0} \\ \delta_{(2)} Y_{0} \\ \delta_{(2)} Z_{0}\end{array}\right)= \pm A_{R}\left(\Psi_{x}^{i, 0}, \Psi_{y}^{i, 0}, \Psi_{z}^{i, 0}\right) \cdot \overrightarrow{\mathrm{DA}}$
E_{1} and E_{2} are mutually independent. By using eq.(1), the total MSE values in ENU coordinate's three axis directions (denoted as $\delta_{\text {total }} X_{0}, \delta_{\text {total }} Y_{0}$ and $\delta_{\text {total }} Z_{0}$) can be expressed in the form of matrix as:
$\left(\begin{array}{c}\delta_{\text {total }}^{2} X_{0} \\ \delta_{\text {total }}^{2} Y_{0} \\ \delta_{\text {total }}^{2} Z_{0}\end{array}\right)=\left(\begin{array}{c}\delta_{(1)}^{2} X_{0} \\ \delta_{(1)}^{2} Y_{0} \\ \delta_{(1)}^{2} Z_{0}\end{array}\right)+\left(\begin{array}{c}\delta_{(2)}^{2} X_{0} \\ \delta_{(2)}^{2} Y_{0} \\ \delta_{(2)}^{2} Z_{0}\end{array}\right)$

In conclusion, for a radar link L_{i} and a MTSP represented as $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ in the ENU coordinate system $X_{0} Y_{0} Z_{0}$, as sketched in figure 4 (a) sketched, , the location errors of this point in east, north and up directions $\left(\pm \delta_{\text {total }} X_{0}, \pm \delta_{\text {total }} Y_{0}\right.$ and $\pm \delta_{\text {total }} Z_{0}$) can be calculated as follows: firstly, for a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ in $\mathrm{X}_{0}^{\prime} \mathrm{Y}_{0}^{\prime} \mathrm{Z}_{0}^{\prime}$, usinguse A_{R} to transform it to $X_{i} Y_{i} Z_{i}$ and denoteddenote it as $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$. Then in $X_{i} Y_{i} Z_{i}$ calculate AoAsthe AoA (θ and ϕ) and the range information $\left(\mathrm{R}_{\mathrm{s}}\right.$ and R_{i}). Details of AoAsAoA and range calculation can be seenfound in Appendix (A.5). It's worth noting that AoAs arethe AoA is given by the angles relative to axisthe axes of XYZ. Secondly, in XYZ using AoAsthe AoA and eq.(3)-(8) to calculate E_{1} 's three orthogonal error vectors asshown in figure 4(c) sketched; ; in $X_{i} Y_{i} Z_{i}$ use the range information and eq.(9) to calculate E_{2} 's error vector $\overrightarrow{D A}$ as shown in figure 4 (b) sketehed.). Thirdly, project E_{1} 's three error vectors to $X_{0} Y_{0} Z_{0}$ by using eq.(10) and use eq.(11)-(12) to reassemble them to calculate E_{1} related MSE values in the direction of
X_{0}, Y_{0}, Z_{0}; use eq.(13) to transform the E_{2} error vector from $X_{i} Y_{i} Z_{i}$ to $X_{0} Y_{0} Z_{0}$. Finally, use eq. (14) to get the total location errors of a MTSP in ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$). Figure 5(a) deseribesshows the flow chart for the process above. -we have just described.

3 Results and Discussion

We wrote aThe program to study the method we have described above. The program_ is written in the python language and is presented in the supplement. To calculate a special configuration of a multistatic radar system, we initially need to set six coordinate transformation angles $\left(\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}\right.$ and $\psi_{z}^{Z, \mathrm{i}} ; \psi_{x}^{\mathrm{i}, 0}, \psi_{y}^{i, 0}$ and $\psi_{z}^{i, 0}$) and the baseline length (i.e. $\mathbf{d}_{\mathbf{i}}$) for each radar link L_{i}. For example $\overline{-}_{; i} \psi_{x}^{\mathrm{i}, 0}=\psi_{y}^{i, 0}=0, \psi_{z}^{i, 0}=30^{\circ}$ and $\mathrm{d}_{\mathrm{i}}=250 \mathrm{~km}$ means athat transmitter T_{i} is $250 \mathrm{~km} 250 \mathrm{~km}, 30^{\circ}$ east by south of the receiver R_{X}; Further, $\psi_{\mathrm{x}}^{\mathrm{X}, \mathrm{i}}=5^{\circ}, \psi_{y}^{Y, \mathrm{i}}=0, \psi_{z}^{Z, \mathrm{i}}=0$ means one receiver arm (axis-Y) points to east by north 60° with 5° elevation. The interested-detection area of interest for a multistatic meteor radar is usually from 70 km 70 km to 110 km 110 km in height and tager thanaround $300 \mathrm{~km} \times 300 \mathrm{~km}$ in the horizontal. In our program, this area needs to be divided into a spatial grid for sampling. The default value of the sampling grid length is 4 km 1 km in height and 5 km 5 km in meridianthe meridional and zonal directions-, respectively. After selecting the desired settings mentioned above, the program will traverse these steps though the sampling grid nodes and ealeulatecalculates the location errors efat each nedesnode as described in figure 5(a). Figure 5(b) describedescribes the parameter settings and traversalthe transversal calculation process-above. For a given setting of radar link L_{i}, the program will output the squared values of E_{1} related, E_{2} related and total MSE ($E_{\text {total }}^{2}$: $\left.\delta_{\text {total }}^{2} X_{0}, \delta_{\text {total }}^{2} Y_{0}, \delta_{\text {total }}^{2} Z_{0} ; E_{1}^{2}: \delta_{(1)}^{2} X_{0}, \delta_{(1)}^{2} Y_{0}, \delta_{(1)}^{2} Z_{0} ; E_{2}^{2}: \delta_{(2)}^{2} X_{0}, \delta_{(2)}^{2} Y_{0}, \delta_{(2)}^{2} Z_{0}\right)$. The location errors can be positive or negative and thus the spatial resolutions are twice the absolute value of the location errors. For an example, Seesee figure 5(c), for). For a detected MTSP represented as ($\mathrm{x}_{0}, y_{0}, Z_{0}$) in $X_{0} Y_{0} Z_{0}$, if with $\delta_{\text {total }}^{2} X_{0}, \delta_{\text {total }}^{2} Y_{0}, \delta_{\text {total }}^{2} Z_{0}$ equalsequal to 25 , 16 and $9 \mathrm{~km}^{2}$, respectively, means that the actual position of the MTSP could occur in an area which is $\pm 5 \mathrm{~km}, \pm 4 \mathrm{~km}, \pm 3 \mathrm{~km}$ around ($\mathrm{x}_{0}, y_{0}, z_{0}$) with equallyequal probability. TheConsequently, the zonal, meridianmeridional and vertical resolutionresolutions are $10 \mathrm{~km}, 8 \mathrm{~km}$ and 6 km respectively.

The HM analyses the vertical resolution (corresponding to δZ_{0} in our paper)-only in a 2 -dimensional vertical section (corresponding to the $X_{0} Z_{0}$ plane in our paper). To compare with Hocking's work, except $\psi_{z}^{i, 0}$ is set to be -180°, and the other five coordinate transformation angles are all set to zero with \mathbf{d} is equal to 300 km . The half wave pulse length S is set to 2 km and $\delta\left(\Delta \Psi_{1}\right)$ to 35°. Calculating in enly-the $X_{0} Y_{0}$ plane only should have degraded our method into Hocking's 2dimensional analysis method, but the settings above doesn't work because Hocking'sthe HM method ignores δR_{s}. In fact, Hocking's methodthe HM considers only E_{2} and $\overrightarrow{R_{s} \delta \theta}$ in the $X_{0} Y_{0}$ plane. HenceConsequently, we need to further set $f_{R}(\theta, \phi), f_{\theta}(\theta, \phi)$ and $f_{\phi}(\theta, \phi)$ to be zero. ThusWhen this is done, our method deally degrades into Hocking's method-the HM. Hocking's results are shown mas the absolute value of vertical location error normalized relative to the half wave-pulse width, i.e. $\left|\delta Z_{0}\right| / S$. HereafterHereinafter, $|E| / S$ is referred to as the normalized spatial resolutionsresolution such as $\delta_{(1)} X_{0}$
and $\delta_{\text {total }} Y_{0}$, where E representrepresents the location errors in a direction. Thus, Spatialthe spatial resolutions are $2 S$ times the normalized spatial resolutions. The
Our normalized vertical resolution distributions are shown in figure 6(a). Our results) and are the same as those presented in Hocking's work (Hocking, 2018). The distribution of $\overrightarrow{R_{S} \delta \theta}$ related, E_{2} related, and total normalized vertical resolution distributions are shown in figure 6 from left to right, respectively. In most cases, E_{2} is an order of magnitude smaller than $\overrightarrow{R_{s} \delta \theta}$. Only in the region directly above the receiver does E_{2} have the same magnitude as $\overrightarrow{R_{s} \delta \theta}$. In other words, only in the region directly above the receiver can E_{2} influence the total resolution. E_{2} is related to the bistatic configuration, but $\overrightarrow{R_{S} \delta \theta}$ is not. Therefore, in the HM, the distribution of the total vertical resolution is changedvaries slightly varying with d. After adding the error term $\overrightarrow{\delta R_{t}}$, which is related to the bistatic configuration, the normalized total vertical spatial resolution distribution will change visibly varyingchanges more obviously with d, as figure 7's first two rows show. The region between the two black lines represents a trustworthy the sampling volume for the receiver becausewhere the elevation angle is beyond $\mathbf{3 0}^{\circ}$-with less influence of potential mutual antenna coupling or other obstacles in the surrounding. However, with. As the transmitter/receiver distance become longer, resolutions in thistrustworthy sampling volume are not always acceptable. In figure 7's first row, the transmitter/receiver distance is 300 km and about half of the region between two black line have normalized vertical resolution values lagerlarger than 3 km . Because our analytical method can obtain spatial resolutions in 3dimensional space, figure 7's third row showshows a perspective to the horizontal section inat 90 km altitude for figure 7's second row.

To get an intuitionistic-a perspective toon the spatial resolution distribution in 3-dimensional space, figure 8 shows the normalized zonal, meridianmeridional and vertical spatial resolution distribution ofdistributions for a multistatic radar link whose transmitter/receiver separation is 180 km away and the transmitter is south by east 30° of the receiver. ClassicThe classic monostatic meteor radar is a special case of a multistatic meteor radar system whose baseline length is zero. By setting the transmitter/receiver distance to be zero in our program, a monostatic meteor radar's spatial resolution can also be obtained. TheIn this case, the spatial resolution distributions are highly symmetrical and correspond to the real characteristics of monostatic meteor radar (this is not shown in the text,here, but can be seenfound in the supplement SF 1). In the discussion above, the receiver and transmitter antennas are all coplanar. By settingvarying $\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}$ and $\psi_{z}^{\mathrm{Z}, \mathrm{i}}$ in our program, the-noncoplanar receiver/transmitter-antennas situations can also be studied. Slightly tilting of the receiver horizontal plane (for example, set $\psi_{x}^{\mathrm{X}, \mathrm{i}}=\psi_{y}^{Y, \mathrm{i}}=5^{\circ}$) will causecauses the horizontal spatial distributions to change (seensee SF 2 and SF 3 in the supplement). In practical applications, likepractice, the Earth's curvature and local topography will lead to tilts in the receiver horizontal planetilting. Thus, this. This kind of tiltingtilt should also-be taken into account for multistatic meteor radar systemsThe and details efrelating to the parameter settingselections for this can be seenfound in the supplement.
The AoAsAoA error propagation process in the receiver-has been simplified to yield eq.(3)-(4) by using the-constant PDMEs as the start of error propagation.. This is for the sake of the adaptableproviding the most general example of our method. If

2018), the error propagation process will change with awould depend on the specific receiver interferometer configuration and athe specific signal processing method. In practical situations for an unustathe approach used here can be applied to different receiver antenna eonfigurationconfigurations or new original-signal processing algorithm, an error propagation process based on the specific circumstances needs to be established. Substitutealgorithms. This would involve substitution of $\delta\left(\Delta \Psi_{1}\right)$ and $\delta\left(\Delta \Psi_{2}\right)$ into other mutually independent measuring errors in a practical sittation,to suit the experimental arrangement and then establishing a new AoAsAoA error propagation to obtain $\delta \theta$ and $\delta \phi$. Or in other words, rewriteThis means rewriting the second and third term in eq. (11) to the determine a new established AoAsAoA error propagation matrix and new mutually independent measuring errors, respectively. Our analytical method can still work. the mathematicmathematical error propagations. PDMEs include the uncontrolled errors, such as the those resulting from the returned wave being scattered fave from a few Fresnel zones along the meteor trailstrail, phase calibration inaccuracy, and noisesnoise. However, there are other error sources in practical situation.practice. For example, planesaircraft or lightning may make troubles for meteor radar's discrimination system. And-interference efand fading clutter from obstacles in surroundings will can cause further measurement errors of AoAsin the AoA. These issues are related to actual physical situations and beyond the scope of this text.
The trustworthy sampling volume-Knowing the valid observational volume for meteor detections and the errors associated with each detection is vital for a meteor radar system andas it determines the detection area and-which meteors couldcan be used into calculate wind retrievals-velocities and also the uncertainties associated with the winds themselves. To avoidreduce the influence of the-mutual antenna coupling or the-ground clutter, the elevation angle of a detection should beyondbe above a threshold, for exampleand 30° in general. The spatial resolution-is another thing that affects the trustworthy samplingtypically used, and this sets the basic valid observational volume. See-Within this, the normalised vertical resolution varies, and in Figure 7 and SF4 in the supplement, only the areareas of normalized vertical resolution with values below 3 km are shown, which we argue represents an acceptable sampling volume. WithIn addition, as the transmitter/receiver distance increasing, this-increases, the sampling volume becomes smaller along withand the vertical resolution in this volume is reduced. This facteffect limits the practically usable transmitter/receiver distancedistances for multistatic meteor radar. Measurement response is important for measuring meteor trails' Doppler shift caused by the background wind. Theradars.

The geometry of the multistatic meteor radar case also impacts on the ability of the radar to measure the Doppler shifts associated with drifting meteor trails within the observational volume. This is because the measured Doppler shift is eatsedproduced by the component of the wind fieldsfield in the direction of the Bragg Vector-, which in the multistatic configuration is divergent from the receiver's line of sight (see e.g., Spargo et al., 2019). The smaller the angle between the Bragg vector and the wind fields-is, the lager thislarger is the Doppler shift is-(and meanwhile-the higher SNR. The Bragg vector of the multistatic configuration is divergent from the receiver's line of sight. Monostatic meteor radars can only detect winds in radial direction, thus only the mean wind can be solved. By synthesizing monostatic and multistatic the high order component of the wind fields can be solved. The bigger the angle between the Bragg vector and radial direction is, or more trustworthy sampling volume, measurement response andthe SNR). This means that within the observational volume, the angular diversity of the Bragg vector should both be taken into account in the wind retrievals. Theretrieval process. A discussion of wind retrievals is beyond the scope of this text and will be considered in a-future work.-

4 Conclusion

In this study, we have presented the-preliminary results of ourfrom an analytical error analytic-method-Our analysis of multistatic meteor radar system measurements of angles of arrival. The method can calculate the spatial resolution (the spatial uncertainty) in the zonal, meridianmeridional and vertical directiondirections for an arbitrary receiving antenna array configuration in three-dimensional space. A given detected MTSP ean locateis located within the spatial resolution volume with an equal probability. Higher values of spatial resolution mean that this region needs more meteor counts or longer averaging to obtain a reliable accuracy. Our method shows that the spatial configuration of a multistatic system will greatly influence the spatial resolution distribution in ENU coordinates and thus will in turn influence the retrieval accuracy of atmospheric parameters such as the wind fieldsfield. The multistatic meteor radar system's spatial resolution analysis is a key point in analysing the accuracy of retrieved wind and other parameters. The influence of the spatial resolutionsresolution on wind retrieval will be discussed in the-future work.

Multistatic radar systems come in many types, and ourthe work in this paper considers only single-input (single-antenna transmitter) and multi-output (5-antenna interferometric receiver) pulse radar systems. Although the single-input multi-output (SIMO) pulse meteor radar is a classic meteor radar system, other meteor radar systems, such as continuous wave radar systems and MISO (multiple-antenna transmitter and single-antenna receiver), also show good experimental results-and have some advantages over SIMO systems., Using different types of meteor radar systems to constitute thea meteor radar network is the future trend and so we will add the spatial resolution analysesanalysis of other system to the frame oftypes using our method in the future. We will also validate and apply the error analyses of spatial resolution analysis in the horizontal wind determination into a multistatic meteor radar system, which that will be built-soon be installed in China.

Code availability. The program to calculate the 3D spatial resolution distributions areis available in the supplement.

Author contributions: W.Z, X.X, W.Y designed the study. W.Z deduced the formulas and wrote the program. W.Z wrote the paper for the first version. X.X supervised the work and provided valuable comments. I.M.R revised the paper. All of the authors discussed the results and commented on the paper.

Competing interest. The authors declare no conflicts of interests

Acknowledgements. This work is supported by the B-type Strategic Priority Program of CAS Grant No. XDB41000000, the
395 National Natural Science Foundation of China (41774158, 41974174, 41831071 and 41904135), the CNSA pre-research Project on Civil Aerospace Technologies No. D020105, the Fundamental Research Funds for the Central Universities, and the Open Research Project of Large Research Infrastructures of CAS "Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project." Thanks for $\underline{W} Z$ advisesfor useful discussions and Zeng jie to checkJie for checking the equations in thisthe manuscript.

Reference

Browning, K. A., and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, Journal of Applied Meteorology, 7, 105-113, 10.1175/1520-0450(1968)007<0105:Tdokpo>2.0.Co;2, 1968.
Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., and Šimek, M.: Meteor Phenomena and Bodies, Space Science Reviews, 84, 327-471, 10.1023/A:1005069928850, 1998.

Jones, J., Webster, A. R., and Hocking, W. K.: An improved interferometer design for use with meteor radars, Radio Science, 33, 55-65, 10.1029/97rs03050, 1998.
Kang, C.: Meteor radar signal processing and error analysis, 2008.
Philippe, W., and Corbin, H.: On the Analysis of Single-Doppler Radar Data, Journal of Applied Meteorology - J APPL METEOROL, 18, 532-542, 10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2, 1979.

A. 1 Coordinates rotation matrix

For a right-handed rectangular coordinate system $X Y Z$, we rotate clockwise Ψ_{x} about the axis-x to obtain a new coordinate. We specify that clockwise rotation satisfies in the right-hand screw rule. A vector in $X Y Z$, denoted as $(x, y, z)^{T}$, is represented as $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$ in the new coordinate. The relationship between $(x, y, z)^{T}$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$ is:
$465\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=A_{x}\left(\psi_{x}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \psi_{x} & \sin \psi_{x} \\ 0 & -\sin \psi_{x} & \cos \psi_{x}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

Similarly, we rotate clockwise Ψ_{y} is about the axis-y to obtain a new coordinate. The presentation for a vector in new coordinates and the original can be linked by a matrix, $A_{y}\left(\psi_{y}\right)$:
$A_{y}\left(\psi_{y}\right)=\left(\begin{array}{ccc}\cos \psi_{y} & 0 & -\sin \psi_{y} \\ 0 & 1 & 0 \\ \sin \psi_{y} & 0 & \cos \psi_{y}\end{array}\right)$
we rotate clockwise Ψ_{z} about axis-z to obtain a new coordinate. The presentation for a vector in new coordinates and original can be linked by a matrix $A_{z}\left(\psi_{z}\right)$:

$$
A_{z}\left(\psi_{z}\right)=\left(\begin{array}{ccc}
\cos \psi_{z} & \sin \psi_{z} & 0 \tag{A1.3}\\
-\sin \psi_{z} & \cos \psi_{z} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For any two coordinate systems $X Y Z$ and $X^{\prime} Y^{\prime} Z^{\prime}$ with co-origin, one can always rotate clockwise Ψ_{x}, Ψ_{y} and ψ_{z} in order of axis-X, Y, Z respectively, transforming $X Y Z$ to $X^{\prime} Y^{\prime} Z^{\prime}$ (figure A.1). The presentation for a vector in $X^{\prime} Y^{\prime} Z^{\prime}$ and $X Y Z$ can be linked by a matrix, $A_{R}\left(\psi_{x}, \psi_{y}, \psi_{z}\right)$:

$$
\begin{align*}
& A_{R}\left(\psi_{x}, \psi_{y}, \psi_{z}\right)=A_{z}\left(\psi_{z}\right) A_{y}\left(\psi_{y}\right) A_{x}\left(\psi_{x}\right)= \\
& \left(\begin{array}{ccc}
\cos \psi_{y} \cos \psi_{z} & \sin \psi_{x} \sin \psi_{y} \cos \psi_{z}+\cos \psi_{x} \sin \psi_{z} & -\cos \psi_{x} \sin \psi_{y} \cos \psi_{z}+\sin \psi_{x} \sin \psi_{z} \\
-\cos \psi_{y} \sin \psi_{z} & -\sin \psi_{x} \sin \psi_{y} \sin \psi_{z}+\cos \psi_{x} \cos \psi_{z} & \cos \psi_{x} \sin \psi_{y} \sin \psi_{z}+\sin \psi_{x} \cos \psi_{z} \\
\sin \psi_{y} & -\sin \psi_{x} \cos \psi_{y} & \cos \psi_{x} \cos \psi_{y}
\end{array}\right) \tag{A1.4}
\end{align*}
$$

We call $A_{R}\left(\psi_{x}, \psi_{y}, \psi_{z}\right)$ as the coordinates rotation matrix.

A. 2 AoAsAoA measuring errors

In coordinate $X Y Z$, AoAs includes zenith angle θ and azimuth angle ϕ. In the plane wave approximation, the radio wave is at angle γ_{1} and γ_{2} with an antenna array (figure A.2). There is a phase difference $\Delta \Psi_{1}$ and $\Delta \Psi_{2}$ between two antennas (figure 1). See figure $1, \Delta \Psi_{1}$ and $\Delta \Psi_{2}$ can be expressed as:
$\Delta \Psi_{1}=\frac{2 \pi D_{1} \cos \gamma_{1}}{\lambda}$
$\Delta \Psi_{2}=\frac{2 \pi D_{2} \cos \gamma_{2}}{\lambda}$
Using γ_{1}, γ_{2} the AoAstoA can be expressed as:
$\cos ^{2} \gamma_{1}+\cos ^{2} \gamma_{2}+\cos ^{2} \theta=1$
$\tan \phi=\frac{\cos \gamma_{2}}{\cos \gamma_{1}}$
Or in another expression:
$\cos \gamma_{1}=\sin \theta \cos \phi$
$\cos \gamma_{2}=\sin \theta \sin \phi$
490
substitute $\cos \gamma_{1}$ and $\cos \gamma_{2}$ in (A2.3) and (A2.4) by using (A2.1) and (A2.2):
$\cos ^{2} \theta=1-\left(\frac{\lambda}{2 \pi}\right)^{2}\left(\frac{\Delta^{2} \Psi_{1}}{D_{1}^{2}}+\frac{\Delta^{2} \Psi_{2}}{D_{2}^{2}}\right)$
$\ln (\tan \phi)=\ln \left(D_{1} \Delta \Psi_{2}\right)-\ln \left(D_{2} \Delta \Psi_{1}\right)$
(A2.7) and (A2.8) link the phase difference with the AoAstoA and expanding θ and $\phi, \Delta \Psi_{1}$ and $\Delta \Psi_{2}$ to first order:
$2 \cos \theta \sin \theta \delta \theta=\left(\frac{\lambda}{2 \pi}\right)^{2}\left[\frac{2 \Delta \Psi_{1} \delta\left(\Delta \Psi_{1}\right)}{D_{1}^{2}}+\frac{2 \Delta \Psi_{2} \delta\left(\Delta \Psi_{2}\right)}{D_{2}^{2}}\right]$
495
$\delta \phi=\frac{\sin \phi \cos \phi}{\Delta \Psi_{2}} \delta\left(\Delta \Psi_{2}\right)-\frac{\sin \phi \cos \phi}{\Delta \Psi_{1}} \delta\left(\Delta \Psi_{1}\right)$
For (A2.9) and (A2.10), substitute $\Delta \Psi_{1}$ and $\Delta \Psi_{2}$ using (A2.1), (A2.2) and (A2.5), (A2.6) to the functions of θ, ϕ. Now, eq. (3) and eq. (4) have been proven. If the zenith angle $\theta=0^{\circ}$, we stipulate that $\frac{\cos \phi}{\sin \theta}$ and $\frac{\sin \phi}{\sin \theta}$ are 1 .

A. 3 Radial distance measuring error

Expand R_{S}, R and $\cos \alpha$ in eq.(1) to first order, $\delta \mathrm{R}_{\mathrm{s}}$ can be expressed as a function of $\delta \mathrm{R}$ and $\delta(\cos \alpha)$:
$500 \quad \delta \mathrm{R}_{\mathrm{s}}=\frac{\mathrm{R}^{2}-2 \mathrm{Rd} \cos \alpha+\mathrm{d}^{2}}{2(\mathrm{R}-\mathrm{d} \cos \alpha)^{2}} \delta \mathrm{R}+\frac{\mathrm{d}\left(\mathrm{R}^{2}-\mathrm{d}^{2}\right)}{2(\mathrm{R}-\mathrm{d} \cos \alpha)^{2}} \delta(\cos \alpha)$
α is the angle between R_{s} and axis- X_{i}. We denote the zenith and azimuth angles in coordinate $-X_{i} Y_{i} Z_{i}$ as θ^{\prime} and ϕ^{\prime}, respectively. And the relationship between α and $\theta^{\prime}, \phi^{\prime}$ is
$\cos \alpha=\sin \theta^{\prime} \cos \phi^{\prime}$
Using coordinates rotation matrix $A_{R}\left(\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathbf{i}}, \psi_{z}^{Z, \mathbf{i}}\right), \sin \theta^{\prime} \cos \phi^{\prime}$ can be expressed as the function of AoAsAoA:
$\sin \theta^{\prime} \cos \phi^{\prime}=\mathrm{A}_{11} \sin \theta \cos \phi+\mathrm{A}_{12} \sin \theta \sin \phi+\mathrm{A}_{13} \cos \theta$
(A3.3)
$A_{i j}$ are represent the elements in matrix $A_{R}\left(\psi_{x}^{X, \mathbf{i}}, \psi_{y}^{Y, \mathbf{i}}, \psi_{z}^{Z, \mathbf{i}}\right)$ for $i, j=1,2,3$.
Using (A3.2) and (A3.3), $\delta(\cos \alpha)$ can be expressed as a function of $\delta \theta$ and $\delta \phi$ as:
$\delta(\cos \alpha)=\left(\mathrm{A}_{11} \cos \theta \cos \phi+\mathrm{A}_{12} \cos \theta \sin \phi-\mathrm{A}_{13} \sin \theta\right) \delta \theta+\left(-\mathrm{A}_{11} \sin \theta \sin \phi+\mathrm{A}_{12} \sin \theta \cos \phi\right) \delta \phi$
510 Finally, $\delta \mathrm{R}_{\mathrm{s}}$ can be expressed as the function of $\delta R, \delta \theta, \delta \phi$ as:
$\delta R_{s}=F(\delta R, \delta \theta, \delta \phi)=f_{R}(\theta, \phi) \delta R+f_{\theta}(\theta, \phi) \delta \theta+f_{\phi}(\theta, \phi) \delta \phi$
(A3.5)
For:
$f_{R}(\theta, \phi)=\frac{d^{2}+R^{2}-2 R d\left(A_{11} \sin \theta \cos \phi+A_{12} \sin \theta \sin \phi+A_{13} \cos \theta\right)}{2\left[R-d\left(A_{11} \sin \theta \cos \phi+A_{12} \sin \theta \sin \phi+A_{13} \cos \theta\right)\right]^{2}}$
(A3.6)
$f_{\theta}(\theta, \phi)=\frac{d\left(R^{2}-d^{2}\right)\left(A_{11} \cos \theta \cos \phi+A_{12} \cos \theta \sin \phi-A_{13} \sin \theta\right)}{2\left[R-d\left(\mathrm{~A}_{11} \sin \theta \cos \phi+A_{12} \sin \theta \sin \phi+A_{13} \cos \theta\right)\right]^{2}}$
(A3.7)
$f_{\phi}(\theta, \phi)=\frac{d\left(R^{2}-d^{2}\right)\left(-A_{11} \sin \theta \sin \phi+A_{12} \sin \theta \cos \phi\right)}{2\left[R-d\left(\mathrm{~A}_{11} \sin \theta \cos \phi+A_{12} \sin \theta \sin \phi+A_{13} \cos \theta\right)\right]^{2}}$
(A3.8)

A. 4 True error of \boldsymbol{E}_{2}

See figure 4 (b), ; the total length of side $A C$ and side $A B$ represents the pulse width. Side $A C$ equals side $C B$ and they are both equal to half of the pulse width S . In $X_{i} Y_{i} Z_{i}$, the presentation of point A is $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$, the receiver is $(0,0,0)$ and T_{i} is ($\mathrm{d}, 0,0$). The distance between T_{i} and A is $R_{i}=R-R_{s}$. We denote that the presentation of point B and C in $X_{i} Y_{i} Z_{i}$ isas $\left(x_{B}, y_{B}, z_{B}\right)$ and (x_{C}, y_{C}, z_{C}), respectively. We use vector collinear to establish equations for B and C . Therefore, one can obtain the coordinates of point B and C by the following equations:
$\left(x_{B}, y_{B}, z_{B}\right)^{T}=\frac{R_{s}-S}{R_{S}}\left(x_{\mathrm{i}}, y_{\mathrm{i}}, z_{\mathrm{i}}\right)^{T}$
$\left(x_{C}-d, y_{C}, z_{C}\right)^{T}=\frac{R_{\mathrm{i}}-S}{R_{\mathrm{i}}}\left(x_{\mathrm{t}}-d, y_{i}, z_{\mathrm{i}}\right)^{T}$
$\left(x_{\mathrm{i}}-d, y_{\mathrm{i}}, z_{\mathrm{i}}\right)^{T}$ \qquad
For isosceles triangle ABC , the perpendicular line AD intersects side CB in middle pointat the midpoint D . Then, we obtain the coordinate value of D in $X_{i} Y_{i} Z_{i}$ as:

$$
\begin{equation*}
\left(x_{D}, y_{D}, z_{D}\right)=\frac{1}{2}\left(x_{B}+x_{c}, y_{B}+y_{c}, z_{b}+z_{c}\right)=\frac{1}{2}\left(\left(a_{1}+a_{2}\right) x_{i}-a_{2} d+d,\left(a_{1}+a_{2}\right) y_{i},\left(a_{1}+a_{2}\right) z_{i}\right) \tag{A4.3}
\end{equation*}
$$

We denote $a_{1}=\frac{R_{s}-S}{R_{s}}, a_{2}=\frac{R_{i}-S}{R_{i}}$. Finally, one can obtain the error vector of E_{2} as vector $\overrightarrow{D A}$ in $X_{i} Y_{i} Z_{i}$:
$\overrightarrow{D A}=\left(\frac{\left(2-a_{1}-a_{2}\right) x_{\mathrm{i}}+d\left(a_{2}-1\right)}{2}, \frac{2-a_{1}-a_{2}}{2} y_{\mathrm{i}}, \frac{2-a_{1}-a_{2}}{2} \mathrm{z}_{\mathrm{i}}\right)^{T}$

535 A. 5 calculate A0AsCalculate AoA and range information in $X_{i} Y_{i} Z_{i}$

For a space point ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$) in $X_{i} Y_{i} Z_{i}$ which representrepresents a MTSP, R_{s} can be solved easily as:
$\overrightarrow{R_{\mathrm{s}}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$
$\mathrm{R}_{\mathrm{s}}=\sqrt{x_{i}^{2}+y_{i}^{2}+z_{i}^{2}}$
The distance between transmitter T_{i} and receiver R_{X} is d_{i} as sketchedshown in figure 4(a). Thus, the coordinate value of $540 \mathrm{~T}_{\mathrm{i}}$ in $X_{i} Y_{i} Z_{i}$ is $\left(\mathrm{d}_{\mathrm{i}}, 0,0\right)$ and R_{i} can be solved as:
$\mathrm{R}_{\mathrm{i}}=\sqrt{\left(x_{i}-d_{i}\right)^{2}+y_{i}^{2}+z_{i}^{2}}$
Before we calculate the AoAs in $X_{i} Y_{i} Z_{i}$, the representation of unit vectors of axis-X, Y, Z in $X_{i} Y_{i} Z_{i}$ needneeds to knowbe known. In XYZ those unit vectors are easily represented as $(1,0,0)^{\mathrm{T}},(0,1,0)^{\mathrm{T}},(0,0,1)^{\mathrm{T}}$. Though eoordinatesthe coordinate rotation matrix $\left.A_{R}\left(\psi_{x}^{X, i}, \psi_{y}^{Y, i}, \psi_{z}^{Z, \mathrm{i}}\right)_{-}\right)$, one can get those unit vector's representation in $X_{i} Y_{i} Z_{i}$ as:
$\overrightarrow{n_{x}}=\left(A_{11}, A_{21}, A_{31}\right)^{T}$
$\overrightarrow{n_{y}}=\left(A_{12}, A_{22}, A_{32}\right)^{T}$
$\overrightarrow{n_{z}}=\left(A_{13}, A_{23}, A_{33}\right)^{T}$
For $\overrightarrow{n_{x}}, \overrightarrow{n_{y}}$ and $\overrightarrow{n_{z}}$ are unit vectors of Axis-X, Y, Z respectively. And, and $A_{i j}$ are the elements ina 3×3 matrix $A_{R}\left(\psi_{x}^{\mathrm{X}, \mathrm{i}}, \psi_{y}^{Y, \mathrm{i}}, \psi_{z}^{Z, \mathrm{i}}\right)$ for $i, j=1,2,3$. Now AoAsthe AoA can getbe obtained as:
$\cos \theta=\frac{\overrightarrow{R_{s}}}{R_{s}} \cdot \overrightarrow{n_{z}}$
$\sin \theta=\sqrt{1-\cos ^{2} \theta}$
(A6.5)
$\cos \phi=\frac{\overrightarrow{R_{s}}}{R_{s}} \cdot \frac{\overrightarrow{n_{x}}}{\sin \theta}$
(A6.6)
$555 \sin \phi=\frac{\overrightarrow{R_{s}}}{R_{s}} \cdot \frac{\overrightarrow{n_{y}}}{\sin \theta}$
For $0^{\circ}<\theta<180^{\circ}$ and $0^{\circ} \leq \phi<360^{\circ}$. When $\theta=0^{\circ}$, we handle it as same as in Appendix (A.2).

Figure 1: Schematic diagram of athe simplified bistatic configuration used in Hocking's vertical resolution analysis_(Hocking, 2018). The two receiverreceiving antennas and a transmitterthe transmitting antenna are collinear. The analysis is in a 2 -dimensional vertical section through the baseline-_joining the antennas. The radio wave is scattered byfrom a few Fresnel zones of several kilometres fong' length around the specular point inon the meteor trail and received by receiverthe receiving antennas. The crosscorrelation analysis between receiverthe receiving antennas can be used to solve for the AoAs. The fact that Because the radio wave bounced backis reflected from a region a few Fennel zones will causein length the measured phase difference between the receiver antenna pair deviatingpairs to deviates from the ideal phase difference. The ideal phase difference will solve an AoAs pointing to MTSP. This deviation from the ideal phase difference is one of the error sources ofin the PDME. In this work, we solve for the ideal phase difference associated with the AoA directed to the MTSP.

Figure 2: Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three transmitters (T_{1}, T_{2} and T_{3}) and one receiver (R_{X}) in the picture. The transmitter/receiver distance is usually approximatelytypically $\mathbf{1 0 0 - 2 0 0} \mathrm{km} . X_{0}, Y_{0}, Z_{0}$ represents the east, north and up directions of the receiver.receiving antenna. Over $\mathbf{9 0} \%$ of the received energy comes from about one kilometre around the specular point of the meteor trail, which is slightly less than the length of the central Fresnel zone (Ceplecha et al., 1998).

Figure 3: (a) Schematic diagram of the three introduced-coordinate systems used in this work. $X_{i} Y_{i} Z_{i}$ are a class of coordinate systems whose axis- X_{i} peintpoints to transmitter I, with, i. And in this picture, i are $\equiv \mathbf{1 , 2 , 3} . X_{0} Y_{0} Z_{0}$ is the ENU coordinate system andto which all errors will beare compared-in this coordinate., (b) Magnified plot of the receiver.receiving array. $X Y Z$ is fixed on the receiver horizontal plane. Axis- X and Y are collinear towith the two arms of the antenna arraysarray.

Figure 4: (a) Schematic diagram of athe forward scatter geometry for the radar link between T_{i} and R_{X}. Point-A is the MTSP. (b)
Magnified plot of specular point A. The red line represents a radio wave pulse, and S is the half wave pulse length. $\overrightarrow{k_{b}}$ is the Bragg vector which halves the forward scatter angle β. (c) Schematic diagram of E_{1} in $X Y Z$, which can be decomposed into three orthogonal vectors.

Figure 5: (a) the flow chart of the location error calculation process for a point in $X_{0} Y_{0} Z_{0}$. The marksnotation beside arrows represent the corresponding equations (black) or coordinate rotation matrix (blue) in the paper. " \odot " is the Hadamard product. Thus $E_{2} \odot E_{2}$ will getyield $\left(\delta_{(2)}^{2} X_{0}, \delta_{(2)}^{2} Y_{0}, \delta_{(2)}^{2} Z_{0}\right)^{T}$. (b) the flow chart of the program to calculate the location errors distributions for a radar link L_{i}. This process includes parameters settings for a radar link, generating; the generation of the sampling grid nodes and the traversing of all the nodes. For each node, the program uses the calculation method described in (a). MC $\underline{\text { is the multistatic }}$ configuration, $I C=$ is the interferometer (receiver antennasreceiving antenna) configuration. (c) Schematic diagram of the relationship between the spatial resolution and the total location errors of the MTSP. For a detected point in space, the MSE of MTSP's location errors is $\pm\left|\delta_{\text {total }} X_{0}\right|, \pm\left|\delta_{\text {total }} Y_{0}\right|, \pm\left|\delta_{\text {total }} Z_{0}\right|$ in the zonal, meridianmeridional and vertical directions, respectively. This means that the actual specular point might occur in a region which formforms a $2\left|\delta_{\text {total }} X_{0}\right| \times 2\left|\delta_{\text {total }} Y_{0}\right| \times$ $2\left|\delta_{\text {total }} Z_{0}\right|$ cube and the detected point is on the centralcentroid of this cube.

Figure 6: the normalized vertical resolution distribution in a vertical section from 50 km to $\mathbf{6 0 1 2 0} \mathbf{~ k m}$ height when ignore-the error term " $\delta R_{s} "{ }_{\nabla}$ is ignored. Panels (a), (b), and (c) are the total, $R_{s} \delta \theta$ related, and E_{2} related normalized resolution distributiondistributions, respectively. The These results is theasare the same as those produced in Hocking's work (Hocking, 2018). Two The two black arrows represent the positions right above the transmitter (Tx) and the receiver $\underline{(R x)}$ and the transmitter/receiver are-separation is 300 km -away. The region between the two black oblique lines is a-the trustworthy sampling volume for the receiverreceiving array because the elevation angle is beyond 30° with littleto reduce influence of from potential mutual antenna coupling or from other obstacles in the surrounding area. Except the region inat large elevation angleangles (i.e ${ }_{-i,} \mathbf{9 0}^{\circ}$), the E_{2} related resolution values are much lower than the $R_{s} \delta \boldsymbol{\theta}$ related errors. The $\mathbf{R}_{s} \delta \boldsymbol{\theta}$ related resolution distribution isdepends only depend on the receiver.receiving antennas. Thus, the total vertical resolution distribution is nearly unchanged with the variation of the transmitter/receiver distance-varying. The normalized. Normalized resolution values that exceed 3 km (which correspond 12 km vertical resolution-aren' \ddagger are not shown.

Figure 7: the normalized vertical resolution distribution using the analytical method described in this paper. The first and second rowrows represent a vertical section fromof height from 50 km to 120 km . The third row representrepresents the horizontal section inat 90 km and the receiverreceiving array is onat the origin with positive coordinate value represent eastvalues representing the eastward or north directionnorthward directions, respectively. The first row has the same parameters settings as Figure 6 and is used to compare with Figure 6. The E_{1} related resolution will change with the transmitter/receiver configuration because it
considerconsiders the error term " δR_{s} ". Thus, the total vertical resolution will change with the transmitter/receiver configuration. With the transmitter/receiver distance varying from 300 km (the first row) to 150 km (the second row), the total vertical resolution distribution is clearly changed. The third row is the perspective to the horizontal section inat 90 km altitude for the second row. The normalizedNormalized resolution values that exceed $\mathbf{3} \mathbf{~ k m}$ aren'tare not shown.
(a)Zonal direction

(b)Meridian direction

(c)Vertical direction

685 Figure 8: the 3D centourfcontour plot of the normalized resolution distribution for a multistatic radar link whose baseline length is 180 km and whose transmitter is south by east 30° of the receiver. The black dots represent the position right above the transmitter and the receiverreceiving array is onat the origin of the axes. (a), (b) and (c) are the normalized resolution distributiondistributions in the zonal, meridianmeridional and vertical directions, respectively. The subplot's four slice circlecircles from bottom to top are the horizontal section in $50 \mathrm{~km}, 70 \mathrm{~km}, 90 \mathrm{~km}$ and 110 km height-, respectively. The region whose elevation angle of the receiver is less than 30° isn'tis not shown and therefore the slice circles become larger from the bottom to the top. The normalizedNormalized resolution values that exceed 4 km (which correspondcorresponds to $\mathbf{1 6} \mathbf{~ k m}$ resolution-aren't) are not shown.

Figure A. 1

700 Figure A. 2 (two The receiving array geometry (only three antennas are not shown for conciseclarity)

