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Abstract：In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar 

community, focusing on the mesosphere and lower thermosphere (MLT).) region. Recently, there have been some notable 

experiments using such multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all 15 

parameter inversion processes rely on the accurate location of the meteor trail specular point. It is timely then for a careful 

discussion focussed on the error distribution of multistatic meteor radar systems. In this study, we discuss the measurement 

errors that affect the spatial resolution and obtain the spatial resolution distribution in 3-dimensional space for the first time. 

The spatial resolution distribution can both help design a multistatic meteor radar system and improve the performance of 

existing radar systems. Moreover, the spatial resolution distribution allows the accuracy of retrieved parameters such as the 20 

wind fieldsfield to be determined. 

1 Introduction 

The mesosphere and lower thermosphere (MLT) is a transition region from the neutral to the partially ionized atmosphere. It 

is dominated by the effects of atmospheric waves, including planetary waves, tides and gravity waves. It is also a relatively 

poorly sampled part of the Earth’s atmosphere by ground-based instruments. One widely used approach to sample this region 25 

is the meteor radar technique. The ablation of incoming meteors in the MLT region, i.e., ~80 – 110 km, creates layers of metal 

atoms, which can be observed from the ground by photometry or lidar (Jia et al., 2016; Xue et al., 2013). During meteor 

ablation, the trails caused by small meteor particles provide a strong atmospheric tracer within the MLT region that can be 

continuously detected by meteor radarradars, regardless  of weather conditions. Consequently, the meteor radar technique has 

been a powerful tool for studying the MLT region for decades (Hocking et al., 2001; Holdsworth et al., 2004; Jacobi et al., 30 

2008; Stober et al., 2013; Yi et al., 2018). Most modern meteor radars are monostatic, and this has two main limitations in 
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retrieving the complete wind fields. Firstly, limited meteor rates and relatively low measurement accuracies necessitate that 

all measurements in the same height range are processed to calculate a “mean” wind. Secondly, classic monostatic radars 

retrieve windwinds based on the assumption of a homogenous wind in the horizontal and usually a zero wind in the vertical 

direction.  35 

The latter conditions can be partly relaxed if the count rates are high and the detections are distributed through a representative 

range of azimuths. If this is the case, a version of a Velocity Azimuth Display (VAD) analysis can be applied by expanding 

the zonal and meridional winds using a truncated Taylor expansion (Browning and Wexler, 1968). This is because each valid 

meteor detection yields a radial velocity in a particular lookviewing direction of the radar. The radar is effectively a multi-

beam Doppler radar where the “beams” are determined by the meteor detections. If there are enough suitably distributed 40 

detections in azimuth in a given observing period, the Taylor expansion approach using cartesian coordinates yields the mean 

zonal and meridional wind components (𝑢0, 𝑣0 ), the horizontal divergence (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
), the stretching (

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
) and the 

shearing (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) deformations of the wind fields from an analysis of the radial velocities. However, because the radar can 

only retrieve the wind projection in the radial direction as measured from the radar, the vorticity (
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) of the wind fields 

is not available. This is common to all monostatic radar systems and a discussion of measurable parameters in the context of 45 

multiple fixed beam upper atmosphere Doppler radars is given by (Reid, 1987). Even by relaxing the assumption of a 

homogeneous wind fields and using the more advanced Volume Velocity Processing (VVP) (Philippe and Corbin, 1979) to 

retrieve the wind fields, the horizontal gradients of the wind fields cannot be recovered due to the lack of vorticity information. 

To obtain a better understanding of the spatial variation of the MLT region wind fields, larger area observations (and hence 

higher meteor count rates) and measurements ofsampling the non-homogenous wind fieldsobserved area from different 50 

viewing angles are needed. An extension of the classic monostatic meteor technique is required to satisfy these needs. 

To resolve the limitations outlined above, the concept of multistatic meteor radar systems, such as MMARIA (multi-static and 

multi-frequency agile radar for investigations of the atmosphere) (Stober and Chau, 2015) and SIMO (single input multiple 

output) (Spargo et al., 2019), MIMO (multiple input multiple output radar) (Chau et al., 2019; DOREY et al., 1984) have been 

designed and implemented (Stober et al., 2018). Multistatic systems can utilize the forward scatter of meteor trails, thus 55 

providing another perspective for observing the MLT. Multistatic meteor radar systems have manyseveral advantages over 

classic monostatic meteor radars, such as obtaining higher-order wind fieldsfield information and covering wider observation 

areas. There have been some particularly innovative studies using multistatic meteor radar systems in recent years. For example, 

by combining MMARIA and the continuous wave multistatic radar technique (Vierinen et al., 2016), Stober and Chau et al. 

built a 5-station total 7-link multistatic radar network covering an approximately 600 km×600 km region in Germany to 60 

retrieve an arbitrary non-homogenous wind fields with a 30 km×30 km horizontal resolution (Stober et al., 2018). Chau et 

al.et al. (2018) built a 5-station 7-link multistatic radar network covering an approximately 600 km×600 km observing region 

over Germany to retrieve an arbitrary non-homogenous wind field with a 30 km×30 km horizontal resolution. Chau et al. 
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(2017) used two adjacent classic monostatic specular meteor radars in northern Norway to obtain horizontal divergence and 

vorticity (Chau et al., 2017).. Other approaches, such as coded continuous wave meteor radar (Vierinen et al., 2019) and the 65 

compressed sense method in MIMO sparse signal recovery (Urco et al., 2019), are described in the corresponding references 

in these papers. 

Analysing spatial resolution in interested areaslimits is a fundamental but difficult topic for meteor radar systems. Meteor radar 

systems transmit radio waves and then receive radio waves reflected from meteor trails using a cluster of receiverreceiving 

antennas; commonly five antennas as in the Jones et al. (1998) configuration (Jones et al., 1998).. By analysing the cross 70 

correlationcorrelations of the signals received signals, one can determineon several pairs of antennas, the angle of arrivals 

(AoAs) which includesarrival (AoA) of each return can be determined. The AoA is described by the zenith angle θ and 

azimuth angle denoted as θ and ϕ respectively.. By measuring the wave propagation time, one can obtain from the meteor 

trail, range information can be determined. Most meteor radar systems rely on specular reflections from meteor trails. Thus, 

by combining the AoAsAoA and the range information and then using geometric analysis, one can determine the location of 75 

a meteor trailstrail can be determined. Accurately locating the meteor trail specular point (MTSP hereafterhereinafter) is 

important since atmospheric parameter retrieval (such as the wind fieldsfield or the temperature) depends on the location 

information of meteor trails. The location accuracy, namely the spatial resolution, determines the reliability of the retrieved 

parameters. For multistatic meteor radar systems thatwhich can relax the assumption of a homogenous horizontal wind 

fieldsfield, the location accuracy becomes a more important issue because the horizontal spatial resolution affects the accuracy 80 

of the retrieved horizontal wind fields gradientfield. 

There are some discussions about measuringAlthough meteor radar systems have developed well experimentally in recent 

years, the reliability of the retrieved atmospheric parameters still requires further investigation for both the monostatic and 

multistatic meteor radar cases. In an attempt to investigate errors of the meteor radar. For example, a in two radar techniques, 

Wilhelm et al. (2017) compared 11 years of MLT region wind data from a partial reflection (PR) radar with collocated 85 

monostatic meteor radar winds and determined the ‘correction factors’ to bring the winds into agreement. Reid et al. (2018) 

reported a similar study for two locations for data obtained over several years. While the comparisons are interesting, partial 

reflection radars operating in the medium frequency (MF) and lower high frequency (HF) bands produce a height dependent 

bias in the measured winds (see e.g., Reid, 2015) which limits the ability to estimate errors in the meteor winds by comparing 

with them. However, the PR radar technique is one of very few that provides day and night coverage and data rates in the MLT 90 

comparable to that of meteor radars. 

Meteor radars have largely replaced PR radars for MLT studies and are generally regarded as providing reference quality 

winds. It is essential then to know the reliability of atmospheric parameters determined by meteor radars and to do this, some 

quantitative error analyses are necessary.  

A number of recent studies have discussed AoAs measuringAoA measurement errors for meteor radars (Kang, 2008; Vaudrin 95 

et al., 2018; Younger and Reid, 2017). However, thoseThese studies focus on the phase errors in receiver antennasantenna 

pairs; Younger and seldom discussReid for the influence ofmonostatic case, and Vaudrin et al. for a more general case which 
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included multistatic configuration on the spatial resolutionsmeteor radars. Hocking (2018) used another approach and 

developed a vertical resolution analysis method in afor the 2-dimensional baseline vertical section (Hocking, 2018), which 

bistatic case. Hocking’s method (HM hereinafter) simplifies the error propagation process in receiverthe receiving antennas 100 

and putputs emphasis on how a bistatic meteor radar configuration would affectaffects the vertical resolution in a vertical 

section. However, Hocking’s mothed (HM hereafter) can barely show bistatic configurations’ influence on spatial resolution 

distribution due to ignore the discussion ofIt does not consider the radial distance measuring error. Moreover, HM is only a 

demo about vertical resolution in a specific vertical section, not in real three-dimensional space. Hence, for practical purposes, 

the In this paper, we consider the more general 3-dimensional case and determine the spatial distribution of both the horizontal 105 

resolution and vertical resolution should be considereduncertainties. 

Although multistatic meteor radar systems have developed well experimentally in recent years, the reliability of retrieved 

atmospheric parameters lacks discussion both for monostatic and multistatic meteor radar. A large part of the reason is that no 

other measurement technology can provide contrast data for meteor radars in MLT region. On the one hand it proves that 

meteor radars are irreplaceable in MLT region as a measurement technology; on the other hand, to know the reliability of 110 

meteor radars obtained atmospheric parameters and to get better understanding of the dynamic process in MLT region, some 

quantitative error analyses are necessary and helpful. In this paper, weWe analyse the multistatic meteor radar resolution 

distribution in a three-dimensional space for both vertical and horizontal resolution for the first time. AndThis spatial resolution 

is a prerequisite for evaluating the reliability of retrieved atmospheric parameters, such as the wind fieldsfield and the 

temperature.  115 

2 Analytical Method 

2.1 briefBrief introduction 

The HM will be introduced ahead in shortbriefly here to help understand our method.generalization. In the HM, 

measuringmeasurement errors that affect the vertical resolution can be classified into two types (Hocking, 2018) : one is those 

that caused by the zenith angle measuring error 𝛿𝜃 and another is those thatone caused by the pulse-length effect on the 120 

vertical resolution. The receiverreceiving array is a simple antenna pair that is collinear towith the baseline (figure 1). The 

HM only calculatecalculates the vertical resolution in a two-dimensional vertical section which pass thoughpasses through the 

baseline. The receiver antenna pair is equivalent to one receiver arm in a Jones configuration which is comprised of three 

collinear antennas and is usually in a 2𝜆\2.5𝜆 configuration. Phasespacing. The phase difference of the received radio wave 

between the receiving antenna pairspair is denoted as ΔΨ. In meteor radar systems, there are is generally an ‘acceptable’ phase 125 

difference measuring error (PDME hereafterhereinafter) 𝛿(ΔΨ). A higher value of 𝛿(ΔΨ) means that more detected signals 

will be judged as a meteor event meanwhileevents, but with more misidentifications and bigger errors as well. 𝛿(ΔΨ) is set 

to approximately 30° (Hocking, 2018; Younger and Reid, 2017) in most meteor radar systems. In the HM, the zenith angle 
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measuring error 𝛿𝜃 is due to 𝛿(ΔΨ) and 𝛿(ΔΨ) is a constant. Therefore, the error propagation in the receiver is very simple, 

and 𝛿𝜃 is inversely proportional to the cosine of the zenith angle. 130 

NowWe now introduce our analytical method. Our method considers a multistatic system with multiple transmitters and one 

receiverreceiving array in 3-dimensional space (as shown in figure 2).. The receiverreceiving array is in the Jones configuration, 

which can bethat is, “cross-shaped”, “but it may also be “T-shaped” or “L-shaped” in plan view. The five receiver antennas 

are in the same horizontal plane and constitute two orthogonal antenna arms. To avoid a complex error propagation process in 

receiverthe receiving array and to place emphasis on multistatic configurations, the PDMEs in the two orthogonal antenna 135 

arms (𝛿(ΔΨ1) and 𝛿(ΔΨ2)) are constants. Therefore, the AoAsAoA measuring errors (including the zenith and azimuth angle 

measuring errors 𝛿𝜃, 𝛿𝜙 respectively) can be expressed as a simple functionfunctions of zenith and azimuth angle. The radial 

distance is the distance between the MTSP and the receiver, which is denoted as 𝑅𝑠. 𝑅𝑠 can be determined by combining the 

AoAsAoA, baseline length di, and the radio wave propagatingpropagation path length R (Stober and Chau, 2015). SeeThe 

geometry is shown in figure 4(a). 𝛼 is the angle between the baseline (i.e., axis-𝑋𝑖) and the line from the receiver to the 140 

MTSP ), if(denoted as point A). If 𝛼，di and R are known, 𝑅𝑠 willcan be calculated easily using the Cosine Law as: 

𝑅𝑠 =
𝑅2−𝑑𝑖

2

2(𝑅−𝑑𝑖𝑐𝑜𝑠𝛼)
 (1) 

𝛼 is the angle between the baseline (i.e.A axis-𝑋𝑖) and the line from the receiver to the MTSP denoted as point A. The 

multistatic configuration will influence the accuracy of 𝑅𝑠 (denoted as 𝛿𝑅𝑠). This is because that 𝛼，d and R are determined 

by the multistatic configuration. We consider the error term 𝛿𝑅𝑠 in our method, which is ignored in the HM. 𝛿𝑅𝑠 is a function 145 

of the AoAsAoA measuring errors (𝛿𝜃 and 𝛿𝜙) and the radio wave propagation path length measuring error (denoted as 𝛿𝑅). 

𝛿𝑅 is caused by the measuring error of the wave propagation time 𝛿𝑡, which is approximately 21𝜇𝑠 (Kang, 2008). Thus, 𝛿𝑅 

can be set as a constant and the default value in our program is 𝛿𝑅 = 𝑐 𝛿𝑡𝑐𝛿𝑡 = 6.3𝑘𝑚. It is worth noting that the maximum 

unambiguous range for pulse meteor radars is determined by the pulse repetition frequency (PRF) (Hocking et al., 2001; 

Holdsworth et al., 2004). For multistatic meteor radars utilizing forward scatter, the maximum unambiguous range is c/PRF 150 

(where c is the speed of light). For the area where R exceedexceeds the maximum unambiguous range, 𝛿𝑅 is set to positive 

infinity.  

2.2 threeThree kinds of coordinate systems and their transformations  

To better depict the multistatic system configuration, three kinds of right-hand coordinate systems (figure 3) need to be 

established, which as shown in figure 3. These are 𝑋0𝑌0𝑍0, 𝑋𝑖𝑌𝑖𝑍𝑖 and XYZ. 𝑋0𝑌0𝑍0 is the ENU (east-north-up) coordinate 155 

system andwhere axis-𝑋0, 𝑌0, 𝑍0 represent the east, north, up directions respectively. Another two coordinate systems are 

established to facilitate different error propagations. All types of errors need to be transformed to the ENU coordinate system 

𝑋0𝑌0𝑍0 in the end. Coordinate system XYZ is established to depict the spatial configuration of the receiver. XYZ is fixed on 
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receiving array and has its the receiver. See figure 3, the coordinate origin of XYZ is on the receiver.there as shown in figure 

3. Axis-Z is collinear with the antenna boresight and perpendicular to the receiver horizontal plane on which the receiving 160 

array lies. Axis-X and axis-Y are collinear with the arms of the two orthogonal antenna arrays. AoAs will be represented 

in XYZ for convenience. SeeInspection of figure 4, indicates that it is convenient to analyse the range information in a plane 

that goes through the baseline and the MTSP. Thus, a coordinate system 𝑋𝑖𝑌𝑖𝑍𝑖  is established for a transmitter 𝑇𝑖 . The 

coordinate origins of 𝑋𝑖𝑌𝑖𝑍𝑖 are all on the receiver.receiving array. We stipulate that axis-𝑋𝑖 points to transmitter 𝒊 (Ti). Each 

pair of 𝑇𝑖  and the receiver RX constituteconstitutes a radar link, which is referred to as 𝐿𝑖. The range related information for 165 

each 𝐿𝑖 will be calculated in 𝑋𝑖𝑌𝑖𝑍𝑖. Different types of errors need to propagate to and be compared in 𝑋0𝑌0𝑍0 which is 

convenient for retrieving wind fields.  

We stipulate that clockwise rotation satisfies the right-hand corkscrew rule. By rotating clockwise in order of ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 

𝜓𝑧
𝑍,i

 about axis-𝑋, 𝑌 and 𝑍, respectively, one can transform XYZ to 𝑋𝑖𝑌𝑖𝑍𝑖. It is worth mentioning that 𝑋𝑖𝑌𝑖𝑍𝑖 is non-unique 

because any rotation about axis-𝑋𝑖 can obtain another satisfactory 𝑋𝑖𝑌𝑖𝑍𝑖. Hence, ψ𝑥
X,i

 can be set to any valuesvalue. Similarly, 170 

by rotating clockwise in order of ψ𝑥
i,0

, 𝜓𝑦
𝑖,0

 and 𝜓𝑧
𝑖,0

 about axis-𝑋 , 𝑌 and 𝑍, respectively, one can transform 𝑋𝑖𝑌𝑖𝑍𝑖  to 

X0𝑌0𝑍0. To realize the coordinate transformation between thosethese three coordinate systems, a coordinate rotation matrix 

𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) is introduced. Using 𝐴𝑅, one can transform the coordinate point or vector presentation from one coordinate 

system to another. The details of the coordinate rotation matrix 𝐴𝑅(𝜓𝑥, 𝜓𝑦 , 𝜓𝑧) can be seenfound in Appendix (A.1). 

2.3 twoTwo types of measuring errors  175 

The analytical method of the spatial resolution of for each radar link is the same. The difference between thosethese radar links 

areis only the value of the six coordinatescoordinate rotation angleangles (ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and the 

baseline distance di. The spatial resolution related measurement errors which will cause location errors of the MTSP, can be 

classified into two types: 𝐸1 is caused by measurement errors inat the receiver, and 𝐸2 is due to the pulse length. These two 

errors are mutually independent. Hence, the total error (𝐸𝑡𝑜𝑡𝑎𝑙) can be expressed as: 180 

Etotal
2 = E1

2 + E2
2 (2) 

𝐸1 is related to three indirect measuring errors. They are zenith, azimuth and radial distance measuring errors, denoted as 𝛿𝜃, 

𝛿𝜙 and 𝛿𝑅𝑠 respectively. In XYZ, 𝐸1 can be decomposed into three orthogonal error vectors using 𝛿𝜃, 𝛿𝜙 and 𝛿𝑅𝑠 (see 

figure 4(c)). Now)) which we now explain it in more detail. PDMEs, i.e.., 𝛿(ΔΨ1) and 𝛿(ΔΨ2),are caused by some practical 

factors, such as phase calibration mismatch and the fact that the specular point is not actually a point but hasis a few Fresnel 185 

zones in length. A meteor radar system calculates phase difference ofdifferences between different pairpairs of antennas though 

cross-correlations and then fitfits them to get the most likely AoAs. Therefore, the system needs to setbe assigned a 

toleranttolerance value of 𝛿(ΔΨ1) and 𝛿(ΔΨ2). Different meteor radar systems have different AoAsAoA-fit algorithms and 

thus different AoAsAoA measuring error distribution.distributions. To analysesanalyse the spatial resolution for a SIMO 
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meteor radar system as commongenerally as possible and to avoid tedious error propagation in receiverat the receiving array, 190 

we start the error propagation from 𝛿(ΔΨ1) and 𝛿(ΔΨ2) and set them as constant. AoAsconstants. AoA measuring errors, 

i.e. 𝛿𝜃 and 𝛿𝜙 can then be expressed as: 

δθ =
λ

2πD1

cosϕ

cosθ
δ(ΔΨ1) +

λ

2πD2

sinϕ

cosθ
 δ(ΔΨ2) (3) 

δϕ =
λ

2πD2

cosϕ

sinθ
δ(ΔΨ2) −

λ

2πD1

sinϕ

sinθ
δ(ΔΨ1)  (4) 

where 𝜆 is the radio wave length.wavelength, D1 and D2 are the length of the two orthogonal antenna arms., and 𝜃 and 195 

𝜙 are the zenith angle and the azimuth angle, respectively. The details can be seenfound in Appendix (A.2). It is worth 

noting that 𝛿𝜃 and 𝛿𝜙 are not mutually independent. The Expectationexpectation value of their product is not identical to 

zero unless 
𝐸(𝛿2(ΔΨ1))

𝐷1
2  is equal to 

𝐸(𝛿2(ΔΨ2))

𝐷2
2 .   

𝛿𝑅𝑠 can be expressed as a function of 𝛿𝑅, 𝛿𝜃 and 𝛿𝜙 as: 

𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙   (5)  200 

𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) and 𝑓𝜙(𝜃, 𝜙) are the weightweighting functions of 𝛿𝑅𝑠. The details about the weightweighting function 

and deduction can be found in Appendix (A.3). SeeInspection of figure 4(c),) indicates that 𝐸1 can be decomposed into three 

orthogonal error vectors in coordinate XYZ, denoted as  𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . These three vectors can be expressed in 

XYZ as: 

δRs ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = δRs(sinθcosϕ, sinθsinϕ, cosθ)
T  (6) 205 

Rsδθ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rsδθ(cosθcosϕ, cosθsinϕ,−sinθ)
T  (7) 

Rssinθδϕ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rssinθδϕ(−sinϕ, cosϕ, 0)
T    (8) 

𝐸2 is related to the radio wave propagatingpropagation path. A pulse might be reflected anywhere within a pulse length (see 

figure 4(b)). This causes a location error ofin the MTSP, represented as an error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗. D is the median point of the 

isosceles triangle ΔABC’s side BC. The representation of the error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ can be solved in 𝑋𝑖𝑌𝑖𝑍𝑖 by using geometry 210 

relationshipgeometrical relationships as:   

DA⃗⃗⃗⃗  ⃗= (
(𝟐−𝐚𝟏−𝐚𝟐)𝐱𝐢+𝐝𝐢(𝐚𝟐−𝟏)

𝟐
 ,  
(𝟐−𝐚𝟏−𝐚𝟐)𝐲𝐢

𝟐
 ,
(𝟐−𝐚𝟏−𝐚𝟐)𝐳𝐢

𝟐
)
𝐓

  (9) 

where S is the half wave pulse length and 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
. 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. di is the baseline length. (xi, 𝑦𝑖 , 𝑧𝑖) is the coordinate value 

of a MTSP (i.e. point A in figure 4) in 𝑋𝑖𝑌𝑖𝑍𝑖. DetailsMore details can be seenfound in Appendix (A4) 
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2.4 transformTransformation to ENU coordinatecoordinates  215 

HereThus far, two types of errors in different coordinate systems have been introduced. Now they need to be transformed to 

ENU coordinates 𝑋0𝑌0𝑍0 , which is convenient for comparing betweenin order to compare different radar linklinks and 

analysingto analyse the wind fields. E1 related error vectors, which are three orthogonal vectors 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

and represented in XYZ  as eq.(6)-(8), and need to be transformed from 𝑋𝑌𝑍  to 𝑋0𝑌0𝑍0 .To project 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗ , 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 

𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   towards axis-𝑋0, 𝑌0, 𝑍0 respectively, and reassemble them to form three new error vectors in axis-𝑋0, 𝑌0, 𝑍0. Using 220 

the coordinate rotation matrix AR
(𝑋𝑌𝑍,𝑋0𝑌0𝑍0) = AR(Ψ𝑥

𝑖,0, Ψ𝑦
𝑖,0, Ψ𝑧

𝑖,0) ∙ 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) and eq.(6)-(8), the unit vectors of 

those three vectors can be represented in 𝑋0𝑌0𝑍0 as:  

(

X0
′ (δRs) X0

′ (δθ) X0
′ (δϕ)

Y0
′(δRs)

Z0
′ (δRs)

Y0
′(δθ)

Z0
′ (δθ)

Y0
′(δϕ)

Z0
′ (δϕ)

    ) = 𝐴𝑅
(𝑋𝑌𝑍, 𝑋0𝑌0𝑍0) ∙ (

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜙
0

    )                       (10) 

(X0
′ (δRs), Y0

′(𝛿𝑅𝑠), 𝑍0
′ (𝛿𝑅𝑠))

𝑇
, (𝑋0

′(𝛿𝜃), 𝑌0
′(𝛿𝜃), 𝑍0

′ (𝛿𝜃))
𝑇
, (𝑋0

′(𝛿𝜙), 𝑌0
′(𝛿𝜙), 𝑍0

′ (𝛿𝜙))
𝑇
 are unit vectors of 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in 𝑋0𝑌0𝑍0 respectively. The 3 × 3 matrix inon the left hand side of the eq.(10) is denoted as Pij for i, j =225 

1,2,3. 

SeeFrom eq.(6)-(8) and figure 4(c), we see that the length of those three vectors, or (the error values in other words,) are 

𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙  as thea function of δR, δθ, δϕ . In order to reassemble them to form new error vectors, 

transformingtransformation of 𝛿𝜃 and 𝛿𝜙 into two independent errors 𝛿(ΔΨ1) and 𝛿(ΔΨ2) areis needed because 𝛿𝜃 and 

𝛿𝜙 are not independent. Using eq. (3) and (4), one can transform vector (𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙)𝑇 to three independent measuring 230 

errors 𝛿𝑅, 𝛿(ΔΨ1) and 𝛿(ΔΨ2). And thus (𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙)
T can be expressed as: 

(

δRs
Rs𝛿𝜃

Rs𝑠𝑖𝑛𝜃𝛿𝜙
) = (

𝑓𝑅(𝜃, 𝜙) 𝑓𝜃(𝜃, 𝜙) 𝑓𝜙(𝜃, 𝜙)

0
0

𝑅𝑠
0

0
𝑅𝑠𝑠𝑖𝑛𝜃

    ) ∙

(

 
 

1 0 0

0

0

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙

𝐷1

−
𝜆

2𝜋
𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃𝐷1

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜙

𝐷2
𝜆

2𝜋
𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜃𝐷2

    

)

 
 
∙ (

𝛿𝑅 

𝛿(𝛥𝛹1)

𝛿(𝛥𝛹2)
)                 (11) 

The product of the first and the second term inon the right hand side of eq.(11) is a 3 × 3 matrix, denoted as Wij for i, j =

1,2,3. SeenFrom eq.(11), we see that the three error values𝛿values 𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙 are the linear combinations of 

three basis δR, 𝛿(𝛥𝛹1), and 𝛿(𝛥𝛹2) with their corresponding linear coefficients W1j,W2j,W3j and W3j. Those three error 235 

values can be projected toward new directions (i.e.g., axis-𝑋0, 𝑌0, 𝑍0) by using Pij. It worth noting that in a new direction, a 

same basis’s projected linear coefficients from different error values should be used to calculate their sum of squares (SS). 

And then the square root of SS will be used as a new linear coefficient for that basis in the new direction. For example, in 𝑋0 

directions, basis 𝛿(𝛥𝛹1)’s projected linear coefficients are X0
′ (𝛿𝑅𝑠)𝑊12, X0

′ (𝛿𝜃)W22 ,X0
′ (δϕ)W32 from 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   respectively. Therefore, the new linear coefficient for 𝛿(𝛥𝛹1)  in the 𝑋0  direction is W
X0
′
δ(ΔΨ1) =240 
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±√(X0
′ (𝛿𝑅𝑠)𝑊12)

2 + (X0
′ (𝛿𝜃)W22)

2 + (X0
′ (δϕ)W32)

2. Similarly, one can get δR and 𝛿(𝛥𝛹2)’s new linear coefficients in 

X0
′ , denoted as W

X0
′
δR and W

X0
′
δ(ΔΨ2). Thus, the true error valuesvalue in the 𝑋0 direction is W

X0
′
δR𝛿𝑅 +W

X0
′
δ(ΔΨ1)𝛿(𝛥𝛹1) +

W
X0
′
δ(ΔΨ2)𝛿(𝛥𝛹2). Because δR, 𝛿(𝛥𝛹1), and 𝛿(𝛥𝛹2) are mutually independent, E1 is related to the mean square error (MSE) 

values in the 𝑋0  direction, denoted as δ(1)𝑋0 , and can be expressed as δ(1)𝑋0 =

 ±√( 𝑊
𝑋0
′
𝛿𝑅𝛿𝑅)

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹1)𝛿(𝛥𝛹1))

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹2)𝛿(𝛥𝛹2))

2

.  245 

In short, E1 related errors in ENU coordinate’s three axis directions (denoted as δ(1)𝑋0, 𝛿(1)𝑌0 𝛿(1)𝑌0 𝑎𝑛𝑑 𝛿(1)𝑍0) can be 

expressed in the form of a matrix as: 

(

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) =  𝑃𝑖𝑗
2 ∙ 𝑊𝑖𝑗

2 ∙ (
𝛿2𝑅 

𝛿2(𝛥𝛹1)

𝛿2(𝛥𝛹2)
)   (12) 

𝑇ℎ𝑒 𝐸2  related error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ needs transformation from 𝑋𝑖𝑌𝑖𝑍𝑖  to 𝑋0𝑌0𝑍0 . Therefore, 𝐸2  related errors in the ENU 

coordinate’s three axis directions (denoted as δ(2)𝑋0, 𝛿(2) 𝛿(2)𝑌0 𝑎𝑛𝑑 𝛿(2)𝑍0) can be expressed in the form of a matrix as: 250 

(

δ(2)𝑋0
𝛿(2)𝑌0
𝛿(2)𝑍0

) = ±𝐴𝑅(Ψ𝑥
𝑖,0, Ψ𝑦

𝑖,0, Ψ𝑧
𝑖,0) ∙ DA⃗⃗⃗⃗  ⃗   (13) 

E1  and E2  are mutually independent. By using eq.(1), the total MSE values in ENU coordinate’s three axis directions 

(denoted as δtotal𝑋0, δtotal𝑌0 and δtotal𝑍0) can be expressed in the form of matrix as: 

(

δtotal
2 𝑋0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑌0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0

)  =  (

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) + (

δ(2)
2 𝑋0

𝛿(2)
2 𝑌0

𝛿(2)
2 𝑍0

)   (14) 

In conclusion, for a radar link 𝐿𝑖 and a MTSP represented as (x0, y0, z0) in the ENU coordinate system 𝑋0𝑌0𝑍0, as 255 

sketched in figure 4(a) sketched,), the location errors of this point in east, north and up directions (±δtotal𝑋0, ±δtotal𝑌0 and 

±δtotal𝑍0) can be calculated as follows: firstly, for a point (x0, y0, z0) in X0
′ Y0

′Z0
′ , usinguse AR to transform it to 𝑋𝑖𝑌𝑖𝑍𝑖 

and denoteddenote it as (xi, yi, zi). Then in 𝑋𝑖𝑌𝑖𝑍𝑖 calculate AoAsthe AoA (θ and ϕ) and the range information (Rs and 

Ri). Details of AoAsAoA and range calculation can be seenfound in Appendix (A.5). It’s worth noting that AoAs arethe 

AoA is given by the angles relative to axisthe axes of XYZ. Secondly, in XYZ using AoAsthe AoA and eq.(3)-(8) to 260 

calculate E1’s three orthogonal error vectors asshown in figure 4(c) sketched;); in 𝑋𝑖𝑌𝑖𝑍𝑖 use the range information and 

eq.(9) to calculate E2’s error vector DA⃗⃗⃗⃗  ⃗ as shown in figure 4(b) sketched.). Thirdly, project E1’s three error vectors to 

𝑋0𝑌0𝑍0 by using eq.(10) and use eq.(11)-(12) to reassemble them to calculate E1 related MSE values in the direction of 
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𝑋0, 𝑌0, 𝑍0; use eq.(13) to transform the E2 error vector from 𝑋𝑖𝑌𝑖𝑍𝑖 to 𝑋0𝑌0𝑍0. Finally, use eq. (14) to get the total location 

errors of a MTSP in (x0, y0, z0). Figure 5(a) describesshows the flow chart for the process above.   we have just described. 265 

3 Results and Discussion 

We wrote aThe program to study the method we have described above. The program  is written in the python language and is 

presented in the supplement. To calculate a special configuration of a multistatic radar system, we initially need to set six 

coordinate transformation angles (ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and the baseline length (i.e. 𝐝𝐢) for each radar link 

𝐿𝑖. For example,; ψ𝑥
i,0 = 𝜓𝑦

𝑖,0 = 0, 𝜓𝑧
𝑖,0

= 30° and di = 250𝑘𝑚 means athat transmitter Ti is 250km250 km, 30° east by 270 

south of the receiver RX; Further, ψx
X,i = 5°, 𝜓𝑦

𝑌,i = 0,𝜓𝑧
𝑍,i = 0 means one receiver arm (axis-Y) points to east by north 60° 

with 5° elevation. The interested detection area of interest for a multistatic meteor radar is usually from 70km70 km to 

110km110 km in height and lager thanaround 300km×300km in the horizontal. In our program, this area needs to be divided 

into a spatial grid for sampling. The default value of the sampling grid length is 1km1 km in height and 5km5 km in meridianthe 

meridional and zonal directions., respectively. After selecting the desired settings mentioned above, the program will traverse 275 

those steps though the sampling grid nodes and calculatecalculates the location errors ofat each nodesnode as described in 

figure 5(a). Figure 5(b) describedescribes the parameter settings and traversalthe transversal calculation process above. For a 

given setting of radar link Li, the program will output the squared values of E1 related, E2 related and total MSE (𝐸𝑡𝑜𝑡𝑎𝑙
2 : 

δtotal
2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0; 𝐸1

2: 𝛿(1)
2 𝑋0, 𝛿(1)

2 𝑌0 , 𝛿(1)
2 𝑍0; 𝐸2

2: 𝛿(2)
2 𝑋0 , 𝛿(2)

2 𝑌0 , 𝛿(2)
2 𝑍0). The location errors can be positive 

or negative and thus the spatial resolutions are twice the absolute value of the location errors. For an example, Seesee figure 280 

5(c), for). For a detected MTSP represented as (x0, 𝑦0, 𝑧0) in 𝑋0𝑌0𝑍0, ifwith δtotal
2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0 equalsequal to 25, 

16 and 9 km2 , respectively, it means that the actual position of the MTSP could occur in an area which is 

±5 km,±4 km,±3 km  around (x0, 𝑦0, 𝑧0)  with equallyequal probability. TheConsequently, the zonal, 

meridianmeridional and vertical resolutionresolutions are 10 km, 8 km and 6 km respectively.           

The HM analyses the vertical resolution (corresponding to 𝛿𝑍0  in our paper) only in a 2-dimensional vertical section 285 

(corresponding to the 𝑋0𝑍0 plane in our paper). To compare with Hocking’s work, except 𝜓𝑧
𝑖,0

 is set to be 180°, and the 

other five coordinate transformation angles are all set to zero with d is equal to 300 km. The half wave pulse length S is set 

to 2 km and 𝛿(ΔΨ1) to 35°. Calculating in only the 𝑋0𝑌0 plane only should have degraded our method into Hocking’s 2-

dimensional analysis method, but the settings above doesn’t work because Hocking’sthe HM method ignores 𝛿𝑅𝑠. In fact, 

Hocking’s methodthe HM considers only 𝐸2  and 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  in the 𝑋0𝑌0  plane. HenceConsequently, we need to further set 290 

𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) and 𝑓𝜙(𝜃, 𝜙) to be zero. ThusWhen this is done, our method totally degrades into Hocking’s method.the 

HM. Hocking’s results are shown inas the absolute value of vertical location error normalized relative to the half wave pulse 

width, i.e. |𝛿𝑍0|/𝑆. HereafterHereinafter, |𝐸|/𝑆 is referred to as the normalized spatial resolutionsresolution such as 𝛿(1)𝑋0 
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and 𝛿𝑡𝑜𝑡𝑎𝑙𝑌0, where E representrepresents the location errors in a direction. Thus, Spatialthe spatial resolutions are 2𝑆 times 

the normalized spatial resolutions. The 295 

Our normalized vertical resolution distributions are shown in figure 6(a). Our results) and are the same as those presented in 

Hocking’s work (Hocking, 2018). The distribution of  𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ related, 𝐸2  related, and total normalized vertical resolution 

distributions are shown in figure 6 from left to right, respectively. In most cases, 𝐸2 is an order of magnitude smaller than 

𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Only in the region directly above the receiver does 𝐸2 have the same magnitude as 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. In other words, only in the 

region directly above the receiver can 𝐸2 influence the total resolution. E2 is related to the bistatic configuration, but 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 300 

is not. Therefore, in the HM, the distribution of the total vertical resolution is changedvaries slightly varying with d. After 

adding the error term 𝛿𝑅𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗, which is related to the bistatic configuration, the normalized total vertical spatial resolution 

distribution will change visibly varyingchanges more obviously with d, as figure 7’s first two rows show. The region between 

the two black lines represents a trustworthy the sampling volume for the receiver becausewhere the elevation angle is beyond 

𝟑𝟎° with less influence of potential mutual antenna coupling or other obstacles in the surrounding. However, with. As the 305 

transmitter/receiver distance become longer, resolutions in this trustworthy sampling volume are not always acceptable. In 

figure 7’s first row, the transmitter/receiver distance is 300 km and about half of the region between two black line have 

normalized vertical resolution values lagerlarger than 3 km. Because our analytical method can obtain spatial resolutions in 3-

dimensional space, figure 7’s third row showshows a perspective to the horizontal section inat 90 km altitude for figure 7’s 

second row.  310 

To get an intuitionistic a perspective toon the spatial resolution distribution in 3-dimensional space, figure 8 shows the 

normalized zonal, meridianmeridional and vertical spatial resolution distribution ofdistributions for a multistatic radar link 

whose transmitter/receiver separation is 180 km away and the transmitter is south by east 30° of the receiver. ClassicThe 

classic monostatic meteor radar is a special case of a multistatic meteor radar system whose baseline length is zero. By setting 

the transmitter/receiver distance to be zero in our program, a monostatic meteor radar’s spatial resolution can also be obtained. 315 

TheIn this case, the spatial resolution distributions are highly symmetrical and correspond to the real characteristics of 

monostatic meteor radar (this is not shown in the text,here, but can be seenfound in the supplement SF1). In the discussion 

above, the receiver and transmitter antennas are all coplanar. By settingvarying ψ𝑥
X,i

, 𝜓𝑦
𝑌,i and ψ𝑧

Z,i
 in our program, the non-

coplanar receiver/transmitter-antennas situations can also be studied. Slightly tilting of the receiver horizontal plane (for 

example, set ψ𝑥
X,i

=𝜓𝑦
𝑌,i = 5°) will causecauses the horizontal spatial distributions to change (seensee SF2 and SF3 in the 320 

supplement). In practical applications, likepractice, the Earth’s curvature and local topography will lead to tilts in the receiver 

horizontal plane tilting. Thus, this . This kind of tiltingtilt should also be taken into account for multistatic meteor radar systems. 

The and details ofrelating to the parameter setting selections for this can be seenfound in the supplement. 

The AoAsAoA error propagation process in the receiver has been simplified to yield eq.(3)-(4) by using the constant PDMEs 

as the start of error propagation.. This is for the sake of the adaptableproviding the most general example of our method. If 325 

analysing AoAsthe analysis of AoA errors starts were to start from the original received voltage signals, (e.g., Vaudrin et al., 
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2018), the error propagation process will change with awould depend on the specific receiver interferometer configuration and 

athe specific signal processing method. In practical situations for an unusualThe approach used here can be applied to different 

receiver antenna configurationconfigurations or new original signal processing algorithm, an error propagation process based 

on the specific circumstances needs to be established. Substitutealgorithms. This would involve substitution of 𝛿(ΔΨ1) and 330 

𝛿(ΔΨ2) into other mutually independent measuring errors in a practical situation,to suit the experimental arrangement and 

then establishing a new AoAsAoA error propagation to obtain 𝛿𝜃 and 𝛿𝜙. Or in other words, rewriteThis means rewriting 

the second and third term in eq. (11) to the determine a new established AoAsAoA error propagation matrix and new mutually 

independent measuring errors, respectively. Our analytical method can still work. 

It worth noting that except for using the PDMEs as the start of the error propagation, all the analytical processes are built on 335 

the mathematicmathematical error propagations. PDMEs include the uncontrolled errors, such as the those resulting from the 

returned wave being scattered wave from a few Fresnel zones along the meteor trailstrail, phase calibration inaccuracy, and 

noisesnoise. However, there are other error sources in practical situation.practice. For example, planesaircraft or lightning may 

make troubles for meteor radar’s discrimination system. And interference ofand fading clutter from obstacles in surroundings 

will can cause further measurement errors of AoAsin the AoA. These issues are related to actual physical situations and beyond 340 

the scope of this text.  

The trustworthy sampling volume Knowing the valid observational volume for meteor detections and the errors associated 

with each detection is vital for a meteor radar system andas it determines the detection area and which meteors couldcan be 

used into calculate wind retrievals.velocities and also the uncertainties associated with the winds themselves. To avoidreduce 

the influence of the mutual antenna coupling or the ground clutter, the elevation angle of a detection should beyondbe above 345 

a threshold, for exampleand 30°  in general. The spatial resolution is another thing that affects the trustworthy 

samplingtypically used, and this sets the basic valid observational volume. See Within this, the normalised vertical resolution 

varies, and in Figure 7 and SF4 in the supplement, only the areaareas of normalized vertical resolution with values below 3 

km are shown, which we argue represents an acceptable sampling volume. WithIn addition, as the transmitter/receiver distance 

increasing, this increases, the sampling volume becomes smaller along withand the vertical resolution in this volume is reduced. 350 

This facteffect limits the practically usable transmitter/receiver distancedistances for multistatic meteor radar. Measurement 

response is important for measuring meteor trails’ Doppler shift caused by the background wind. Theradars.  

The geometry of the multistatic meteor radar case also impacts on the ability of the radar to measure the Doppler shifts 

associated with drifting meteor trails within the observational volume. This is because the measured Doppler shift is 

causedproduced by the component of the wind fieldsfield in the direction of the Bragg Vector., which in the multistatic 355 

configuration is divergent from the receiver’s line of sight (see e.g., Spargo et al., 2019). The smaller the angle between the 

Bragg vector and the wind fields is, the lager thislarger is the Doppler shift is (and meanwhile the higher SNR. The Bragg 

vector of the multistatic configuration is divergent from the receiver’s line of sight. Monostatic meteor radars can only detect 

winds in radial direction, thus only the mean wind can be solved. By synthesizing monostatic and multistatic the high order 

component of the wind fields can be solved. The bigger the angle between the Bragg vector and radial direction is, or more 360 
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diversified Bragg vectors in other words, the more complete and accurate the wind fields will be observed. In short, the 

trustworthy sampling volume, measurement response andthe SNR). This means that within the observational volume, the 

angular diversity of the Bragg vector should both be taken into account in the wind retrievals. Theretrieval process. A 

discussion of wind retrievals is beyond the scope of this text and will be considered in a future work.  

                       365 

4 Conclusion 

In this study, we have presented the preliminary results of ourfrom an analytical error analytic method. Our analysis of 

multistatic meteor radar system measurements of angles of arrival. The method can calculate the spatial resolution (the spatial 

uncertainty) in the zonal, meridianmeridional and vertical directiondirections for an arbitrary receiving antenna array 

configuration in three-dimensional space. A given detected MTSP can locateis located within the spatial resolution volume 370 

with an equal probability. Higher values of spatial resolution mean that this region needs more meteor counts or longer 

averaging to obtain a reliable accuracy. Our method shows that the spatial configuration of a multistatic system will greatly 

influence the spatial resolution distribution in ENU coordinates and thus will in turn influence the retrieval accuracy of 

atmospheric parameters such as the wind fieldsfield. The multistatic meteor radar system’s spatial resolution analysis is a key 

point in analysing the accuracy of retrieved wind and other parameters. The influence of the spatial resolutionsresolution on 375 

wind retrieval will be discussed in the future work.  

Multistatic radar systems come in many types, and ourthe work in this paper considers only single-input (single-antenna 

transmitter) and multi-output (5-antenna interferometric receiver) pulse radar systems. Although the single-input multi-output 

(SIMO) pulse meteor radar is a classic meteor radar system, other meteor radar systems, such as continuous wave radar systems 

and MISO (multiple-antenna transmitter and single-antenna receiver),) also show good experimental results and have some 380 

advantages over SIMO systems.. Using different types of meteor radar systems to constitute thea meteor radar network is the 

future trend and so we will add the spatial resolution analysesanalysis of other system to the frame oftypes using our method 

in the future. We will also validate and apply the error analyses of spatial resolution analysis in the horizontal wind 

determination into a multistatic meteor radar system, which that will be built soon be installed in China. 

 385 
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Appendix 460 

A.1 Coordinates rotation matrix 

For a right-handed rectangular coordinate system 𝑋𝑌𝑍, we rotate clockwise Ψ𝑥 about the axis-x to obtain a new coordinate. 

We specify that clockwise rotation satisfies in the right-hand screw rule. A vector in 𝑋𝑌𝑍, denoted as (𝑥, 𝑦, 𝑧)𝑇 , is represented 

as (𝑥′, 𝑦′, 𝑧′)𝑇 in the new coordinate. The relationship between (𝑥, 𝑦, 𝑧)𝑇 and (𝑥′, 𝑦′, 𝑧′)𝑇 is: 

(
𝑥′

𝑦′

𝑧′
) = 𝐴𝑥(𝜓𝑥) (

𝑥
𝑦
𝑧
) = (

1 0 0
0 𝑐𝑜𝑠𝜓𝑥 𝑠𝑖𝑛𝜓𝑥
0 −𝑠𝑖𝑛𝜓𝑥 𝑐𝑜𝑠𝜓𝑥

)(
𝑥
𝑦
𝑧
)   (A1.1)   465 
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Similarly, we rotate clockwise Ψ𝑦  is about the axis-y to obtain a new coordinate. The presentation for a vector in new 

coordinates and the original can be linked by a matrix, 𝐴𝑦(𝜓𝑦): 

𝐴𝑦(𝜓𝑦) = (

𝑐𝑜𝑠𝜓𝑦 0 −𝑠𝑖𝑛𝜓𝑦
0 1 0

𝑠𝑖𝑛𝜓𝑦 0 𝑐𝑜𝑠𝜓𝑦

)                                                                 (A1.2) 

we rotate clockwise Ψ𝑧 about axis-z to obtain a new coordinate. The presentation for a vector in new coordinates and original 

can be linked by a matrix 𝐴𝑧(𝜓𝑧): 470 

 𝐴𝑧(𝜓𝑧) = (−
𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑧 0
𝑠𝑖𝑛𝜓𝑧 𝑐𝑜𝑠𝜓𝑧 0
0 0 1

)       (A1.3) 

For any two coordinate systems 𝑋𝑌𝑍 and 𝑋′𝑌′𝑍′ with co-origin, one can always rotate clockwise Ψ𝑥, Ψ𝑦  and 𝜓𝑧 in order 

of axis-X, Y, Z respectively, transforming 𝑋𝑌𝑍 to 𝑋′𝑌′𝑍′ (figure A.1). The presentation for a vector in 𝑋′𝑌′𝑍′ and 𝑋𝑌𝑍 

can be linked by a matrix, 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧): 

𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) = 𝐴𝑧(𝜓𝑧)𝐴𝑦(𝜓𝑦)𝐴𝑥(𝜓𝑥) =475 

  (

𝑐𝑜𝑠𝜓𝑦𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑧 −𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑧
−𝑐𝑜𝑠𝜓𝑦𝑠𝑖𝑛𝜓𝑧 −𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑐𝑜𝑠𝜓𝑧 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑧

𝑠𝑖𝑛𝜓𝑦 −𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑦 𝑐𝑜𝑠 𝜓𝑥𝑐𝑜𝑠𝜓𝑦

)  (A1.4) 

We call 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) as the coordinates rotation matrix.      

A.2 AoAsAoA measuring errors 

In coordinate 𝑋𝑌𝑍, AoAs includes zenith angle 𝜃 and azimuth angle 𝜙. In the plane wave approximation, the radio wave is 

at angle 𝛾1 and 𝛾2 with an antenna array (figure A.2). There is a phase difference ΔΨ1 and ΔΨ2 between two antennas 480 

(figure 1). See figure 1, ΔΨ1 and ΔΨ2 can be expressed as: 

ΔΨ1 =
2𝜋𝐷1𝑐𝑜𝑠𝛾1

𝜆
     (A2.1) 

ΔΨ2 =
2𝜋𝐷2𝑐𝑜𝑠𝛾2

𝜆
  (A2.2) 

Using 𝛾1, 𝛾2 the AoAsAoA can be expressed as: 

cos2 𝛾1 + cos
2 𝛾2 + cos

2 𝜃 = 1   (A2.3) 485 

𝑡𝑎𝑛𝜙 =
𝑐𝑜𝑠𝛾2

𝑐𝑜𝑠𝛾1 
   (A2.4) 

Or in another expression: 

cosγ1 = sinθcosϕ   (A2.5) 
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cosγ2 = sinθsinϕ     (A2.6) 

substitute 𝑐𝑜𝑠𝛾1 and 𝑐𝑜𝑠𝛾2 in (A2.3) and (A2.4) by using (A2.1) and (A2.2): 490 

cos2𝜃 = 1 − (
λ

2π
)
2

(
Δ2Ψ1

𝐷1
2 +

Δ2Ψ2

𝐷2
2 )   (A2.7) 

ln(tan𝜙) = ln(𝐷1ΔΨ2) − ln(𝐷2𝛥𝛹1)    (A2.8) 

(A2.7) and (A2.8) link the phase difference with the AoAsAoA and expanding 𝜃 and 𝜙, ΔΨ1 and ΔΨ2 to first order: 

2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝛿𝜃 = (
𝜆

2𝜋
)
2

[
2ΔΨ1𝛿(ΔΨ1)

𝐷1
2 +

2ΔΨ2𝛿(ΔΨ2)

𝐷2
2 ]  (A2.9) 

𝛿𝜙 =
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ2
𝛿(ΔΨ2) −

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ1
𝛿(ΔΨ1)  (A2.10)  495 

For (A2.9) and (A2.10), substitute ΔΨ1 and ΔΨ2 using (A2.1), (A2.2) and (A2.5), (A2.6) to the functions of 𝜃, 𝜙. Now, eq. 

(3) and eq. (4) have been proven. If the zenith angle θ = 0°, we stipulate that 
cosϕ

sinθ
 and 

sinϕ

sinθ
 are 1.                                              

A.3 Radial distance measuring error 

Expand 𝑅𝑠, 𝑅 and 𝑐𝑜𝑠𝛼 in eq.(1) to first order, δRs can be expressed as a function of δR and δ(cosα): 

δRs =
R2−2Rdcosα+d2

2(R−dcosα)2
 δR +

d(R2−d2)

2(R−dcosα)2
δ(cosα)    (A3.1) 500 

𝛼  is the angle between 𝑅𝑠  and axis-𝑋𝑖 . We denote the zenith and azimuth angles in coordinate-𝑋𝑖𝑌𝑖𝑍𝑖  as 𝜃′ and 𝜙′, 

respectively. And the relationship between 𝛼 and 𝜃′, 𝜙′ is 

𝑐𝑜𝑠𝛼 =  𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′    (A3.2) 

Using coordinates rotation matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

), 𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′ can be expressed as the function of AoAsAoA: 

sinθ′cosϕ′ = A11sinθcosϕ + A12sinθsinϕ + A13cosθ                                                   505 

(A3.3) 

𝐴𝑖𝑗  are represent the elements in matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

) for 𝑖, 𝑗 = 1,2,3.  

Using (A3.2) and (A3.3), δ(cosα) can be expressed as a function of 𝛿𝜃 and 𝛿𝜙 as: 

δ(cosα) = (A11cosθcosϕ + A12cosθsinϕ − A13sinθ)δθ + (−A11sinθsinϕ + A12sinθcosϕ)δϕ                (A3.4) 

Finally, δRs can be expressed as the function of 𝛿𝑅, 𝛿𝜃, 𝛿𝜙 as: 510 
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𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙                                          

(A3.5) 

For: 

𝑓𝑅(𝜃, 𝜙) =
𝑑2+𝑅2 −2𝑅𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                               

(A3.6) 515 

𝑓𝜃(𝜃, 𝜙) =
𝑑(𝑅2−𝑑2)(𝑨𝟏𝟏𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝝓+𝑨𝟏𝟐𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝝓−𝑨𝟏𝟑𝒔𝒊𝒏𝜽)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                              

(A3.7) 

𝑓𝜙(𝜃, 𝜙) =  
𝑑(𝑅2−𝑑2)(−𝑨𝟏𝟏𝒔𝒊𝒏𝜽𝒔𝒊𝒏𝝓+𝑨𝟏𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝓)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                                                      

(A3.8) 

A.4 True error of 𝑬𝟐 520 

See figure 4 (b),); the total length of side AC and side AB represents the pulse width. Side AC equals side CB and they are 

both equal to half of the pulse width S. In 𝑋𝑖𝑌𝑖𝑍𝑖, the presentation of point A is (xi, yi, zi), the receiver is (0,0,0) and 𝑇𝑖  is 

(d,0,0). The distance between 𝑇𝑖  and A is 𝑅𝑖 = 𝑅 − 𝑅𝑠. We denote that the presentation of point B and C in 𝑋𝑖𝑌𝑖𝑍𝑖 isas 

(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵) and (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶), respectively. We use vector collinear to establish equations for B and C. Therefore, one can 

obtain the coordinates of point B and C by the following equations: 525 

(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵)
𝑇 =

𝑅𝑠−𝑆

𝑅𝑠
 (𝑥i, 𝑦i, 𝑧i)

𝑇     (A4.1) 

(𝑥𝐶 − 𝑑, 𝑦𝐶 , 𝑧𝐶)
𝑇 =

𝑅i−𝑆

𝑅i
 (𝑥i − 𝑑, 𝑦i, 𝑧i)

𝑇    (A4.2)                                                         

(𝑥i − 𝑑, 𝑦i, 𝑧i)
𝑇                                                  (A4.2)   

For isosceles triangle ABC, the perpendicular line AD intersects side CB in middle pointat the midpoint D. Then, we obtain 

the coordinate value of D in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 530 

 (xD, yD, zD) =
1

2
(xB + xc, yB + yc, zb + zc) =

1

2
((a1 + a2)xi − a2d + d, (a1 + a2)yi, (a1 + a2)zi)  (A4.3) 

We denote 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
, 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. Finally, one can obtain the error vector of E2 as vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ in 𝑋𝑖𝑌𝑖𝑍𝑖: 

𝑫𝑨⃗⃗⃗⃗⃗⃗ = (
(𝟐−𝒂𝟏−𝒂𝟐)𝒙𝐢+𝒅(𝒂𝟐−𝟏)

𝟐
 ,  
𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒚𝐢 ,

𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒛𝐢)

𝑻

     (A4.4) 
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A.5 calculate AoAsCalculate AoA and range information in 𝑿𝒊𝒀𝒊𝒁𝒊 535 

For a space point (xi, yi, zi) in 𝑋𝑖𝑌𝑖𝑍𝑖 which representrepresents a MTSP, Rs can be solved easily as: 

Rs⃗⃗⃗⃗ = (xi, yi, zi)   

Rs = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                             (A6.1) 

The distance between transmitter Ti and receiver RX is di as sketchedshown in figure 4(a). Thus, the coordinate value of 

Ti in 𝑋𝑖𝑌𝑖𝑍𝑖 is (di, 0,0) and Ri can be solved as: 540 

Ri = √(𝑥𝑖 − 𝑑𝑖)
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                       (A6.2) 

Before we calculate the AoAs in 𝑋𝑖𝑌𝑖𝑍𝑖, the representation of unit vectors of axis-X, Y, Z in 𝑋𝑖𝑌𝑖𝑍𝑖 needneeds to knowbe 

known. In XYZ those unit vectors are easily represented as (1,0,0)T, (0,1,0)T, (0,0,1)T. Though coordinatesthe coordinate 

rotation matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) ,), one can get those unit vector’s representation in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 

𝑛𝑥⃗⃗⃗⃗ = (𝐴11, 𝐴21, 𝐴31)
𝑇    545 

𝑛𝑦⃗⃗ ⃗⃗  = (𝐴12, 𝐴22, 𝐴32)
𝑇  

𝑛𝑧⃗⃗⃗⃗ = (𝐴13, 𝐴23, 𝐴33)
𝑇                                                                              (A6.3) 

For 𝑛𝑥⃗⃗⃗⃗ , 𝑛𝑦⃗⃗ ⃗⃗  and 𝑛𝑧⃗⃗⃗⃗  are unit vectors of Axis-X, Y, Z respectively. And, and Aij  are the elements ina 3 × 3  matrix 

𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) for 𝑖, 𝑗 = 1,2,3. Now AoAsthe AoA can getbe obtained as: 

cos 𝜃 =
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙ 𝑛𝑧⃗⃗⃗⃗                                                                                    (A6.4) 550 

sinθ = √1 − cos2 𝜃                                                                               

(A6.5) 

cos 𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑥⃗⃗ ⃗⃗  ⃗

sin𝜃
                                                                                 

(A6.6) 

sin𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑦⃗⃗ ⃗⃗  ⃗

sin 𝜃
                                                                                 (A6.7) 555 

For 0° < θ < 180° and 0° ≤ ϕ < 360°. When θ = 0° , we handle it as same as in Appendix (A.2). 
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Figure 1：Schematic diagram of athe simplified bistatic configuration used in Hocking’s vertical resolution analysis (Hocking, 2018). 

The two receiverreceiving antennas and a transmitterthe transmitting antenna are collinear. The analysis is in a 2-dimensional 

vertical section through the baseline.  joining the antennas. The radio wave is scattered byfrom a few Fresnel zones of several 565 
kilometres long’ length around the specular point inon the meteor trail and received by receiverthe receiving antennas. The cross-

correlation analysis between receiverthe receiving antennas can be used to solve for the AoAs. The fact thatBecause the radio wave 

bounced backis reflected from a region a few Fennel zones will causein length the measured phase difference between the receiver 

antenna pair deviatingpairs to deviates from the ideal phase difference. The ideal phase difference will solve an AoAs pointing to 

MTSP. This deviation from the ideal phase difference is one of the error sources ofin the PDME. In this work, we solve for the ideal 570 
phase difference associated with the AoA directed to the MTSP.  
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Figure 2: Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three 

transmitters ( 𝑻𝟏, 𝑻𝟐 𝒂𝒏𝒅 𝑻𝟑)  and one receiver ( 𝑹𝑿 ) in the picture. The transmitter/receiver distance is usually 580 
approximatelytypically 100-200 km. 𝑿𝟎, 𝒀𝟎, 𝒁𝟎 represents the east, north and up directions of the receiver.receiving antenna. Over 

𝟗𝟎% of the received energy comes from about one kilometre around the specular point of the meteor trail, which is slightly less than 

the length of the central Fresnel zone (Ceplecha et al., 1998).   
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Figure 3: (a) Schematic diagram of the three introduced coordinate systems used in this work. 𝑿𝒊𝒀𝒊𝒁𝒊 are a class of coordinate 

systems whose axis-𝑿𝒊 pointpoints to transmitter I, with, i. And in this picture, i are = 1,2,3. 𝑿𝟎𝒀𝟎𝒁𝟎 is the ENU coordinate system 600 
andto which all errors will beare compared in this coordinate.. (b) Magnified plot of the receiver.receiving array. 𝑿𝒀𝒁 is fixed on 

the receiver horizontal plane. Axis-X and Y are collinear towith the two arms of the antenna arraysarray. 
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Figure 4: (a) Schematic diagram of athe forward scatter geometry for the radar link between 𝑻𝒊 and 𝑹𝑿. Point-A is the MTSP. (b) 

Magnified plot of specular point A. The red line represents a radio wave pulse, and S is the half wave pulse length. 𝒌𝒃⃗⃗ ⃗⃗   is the Bragg 615 
vector which halves the forward scatter angle 𝜷. (c) Schematic diagram of 𝑬𝟏  in 𝑿𝒀𝒁, which can be decomposed into three 

orthogonal vectors. 
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Figure 5: (a) the flow chart of the location error calculation process for a point in 𝐗𝟎𝒀𝟎𝒁𝟎 . The marksnotation beside arrows 

represent the corresponding equations (black) or coordinate rotation matrix (blue) in the paper. “” is the Hadamard product. 630 

Thus 𝐄𝟐𝑬𝟐 will getyield (𝛅(𝟐)
𝟐 𝑿𝟎, 𝜹(𝟐)

𝟐 𝐘𝟎, 𝜹(𝟐)
𝟐 𝐙𝟎)

𝐓
. (b) the flow chart of the program to calculate the location errors distributions 

for a radar link 𝑳𝒊. This process includes parameters settings for a radar link, generating ; the generation of the sampling grid nodes 

and the traversing of all the nodes. For each node, the program uses the calculation method described in (a). MC: is the multistatic 

configuration, IC: is the interferometer (receiver antennasreceiving antenna) configuration. (c) Schematic diagram of the 

relationship between the spatial resolution and the total location errors of the MTSP. For a detected point in space, the MSE of 635 

MTSP’s location errors is ±|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎| , ±|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎| , ±|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎|  in the zonal, meridianmeridional and vertical directions, 

respectively. This means that the actual specular point might occur in a region which formforms a 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎| × 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎| ×

𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎| cube and the detected point is on the centralcentroid of this cube.     
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 645 

Figure 6：the normalized vertical resolution distribution in a vertical section from 50 km to 60120 km height when ignore the error 

term “ 𝜹𝑹𝒔 ”. is ignored. Panels (a), (b), and (c) are the total, 𝐑𝐬𝜹𝜽  related, and 𝐄𝟐  related normalized resolution 

distributiondistributions, respectively. TheThese results is theasare the same as those produced in Hocking’s work (Hocking, 2018). 

TwoThe two black arrows represent the positions right above the transmitter (Tx) and the receiver (Rx) and the transmitter/receiver 

are separation is 300 km away. The region between the two black oblique lines is a the trustworthy sampling volume for the 650 
receiverreceiving array because the elevation angle is beyond 𝟑𝟎° with littleto reduce influence of from potential mutual antenna 

coupling or from other obstacles in the surrounding area. Except the region inat large elevation angleangles (i.e.., 𝟗𝟎°), the 𝐄𝟐 

related resolution values are much lower than the 𝐑𝐬𝜹𝜽 related. errors. The 𝐑𝐬𝜹𝜽 related resolution distribution isdepends only 

depend on the receiver.receiving antennas. Thus, the total vertical resolution distribution is nearly unchanged with the variation of 

the transmitter/receiver distance varying. The normalized. Normalized resolution values that exceed 3 km (which correspond 12 km 655 
vertical resolution aren’t) are not shown.       
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Figure 7：the normalized vertical resolution distribution using the analytical method described in this paper. The first and second 

rowrows represent a vertical section fromof height from 50 km to 120 km. The third row representrepresents the horizontal section 670 
inat 90 km and the receiverreceiving array is onat the origin with positive coordinate value represent eastvalues representing the 

eastward or north direction.northward directions, respectively. The first row has the same parameters settings as Figure 6 and is 

used to compare with Figure 6. The 𝐄𝟏  related resolution will change with the transmitter/receiver configuration because it 
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considerconsiders the error term “𝜹𝑹𝒔”. Thus, the total vertical resolution will change with the transmitter/receiver configuration. 

With the transmitter/receiver distance varying from 300 km (the first row) to 150 km (the second row), the total vertical resolution 675 
distribution is clearly changed. The third row is the perspective to the horizontal section inat 90 km altitude for the second row. The 

normalizedNormalized resolution values that exceed 3 km aren’tare not shown.  
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Figure 8： the 3D contourfcontour plot of the normalized resolution distribution for a multistatic radar link whose baseline length 685 

is 180 km and whose transmitter is south by east 𝟑𝟎° of the receiver. The black dots represent the position right above the 

transmitter and the receiverreceiving array is onat the origin of the axes. (a), (b) and (c) are the normalized resolution 

distributiondistributions in the zonal, meridianmeridional and vertical directions, respectively. The subplot’s four slice circlecircles 

from bottom to top are the horizontal section in 50 km, 70 km, 90 km and 110 km height., respectively. The region whose elevation 

angle of the receiver is less than 𝟑𝟎° isn’tis not shown and therefore the slice circles become larger from the bottom to the top. The 690 
normalizedNormalized resolution values that exceed 4 km (which correspondcorresponds to 16 km resolution aren’t) are not shown.  
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Figure A.1 695 
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Figure A.2 (twoThe receiving array geometry (only three antennas are not shown for conciseclarity) 700 

 


