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Abstract: In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar
community, focusing on the mesosphere and lower thermosphere (MLT). Recently, there have been some notable experiments
using multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all parameter inversion
processes rely on the accurate location of the meteor trail specular point. It is timely then for a careful discussion focussed on
the error distribution of multistatic meteor radar systems. In this study, we discuss the measurement errors that affect the spatial
resolution and obtain the spatial resolution distribution in 3-dimensional space for the first time. The spatial resolution
distribution can both help design a multistatic meteor radar system and improve the performance of existing radar systems.
Moreover, the spatial resolution distribution allows the accuracy of retrieved parameters such as the wind fields to be

determined.

1 Introduction

The mesosphere and lower thermosphere (MLT) is a transition region from the neutral to the partially ionized atmosphere. It
is dominated by the effects of atmospheric waves, including planetary waves, tides and gravity waves. It is also a relatively
poorly sampled part of the Earth’s atmosphere by ground-based instruments. One widely used approach to sample this region
is the meteor radar technique. The ablation of incoming meteors in the MLT region, i.e., ~80 — 110 km, creates layers of metal
atoms, which can be observed from the ground by photometry or lidar (Jia et al., 2016; Xue et al., 2013). During meteor
ablation, the trails caused by small meteor particles provide a strong atmospheric tracer within the MLT region that can be
continuously detected by meteor radar regardless of weather conditions. Consequently, the meteor radar technique has been a
powerful tool for studying MLT for decades(Hocking et al., 2001; Holdsworth et al., 2004; Jacobi et al., 2008; Stober et al.,

2013; Yi et al., 2018). Most modern meteor radars are monostatic and this has two main limitations in retrieving the complete
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wind fields. Firstly, limited meteor rates and relatively low measurement accuracies necessitate that all measurements in the
same height range are processed to calculate a “mean” wind. Secondly, classic monostatic radars retrieve wind based on the
assumption of a homogenous wind in horizontal and a zero wind in vertical.

The latter conditions can be partly relaxed if the count rates are high and the detections are distributed through a representative
range of azimuths. If this is the case, a version of a Velocity Azimuth Display (VAD) analysis can be applied by expanding
the zonal and meridional winds using a truncated Taylor expansion (Browning and Wexler, 1968). This is because each valid
meteor detection yields a radial velocity in a particular look direction of the radar. The radar is effectively a multi-beam

Doppler radar where the “beams” are determined by the meteor detections. If there are enough suitably distributed detections

in azimuth in a given observing period, the Taylor expansion approach using cartesian coordinates yields the mean zonal and
L . . . ou 0dv . ou OJv .
meridional wind components (u,, v, ), the horizontal divergence (5 + 5)’ the stretching (5 — 5) and the shearing

(:—; + Z—Z) deformations of the wind fields from an analysis of the radial velocities. However, because the radar can only

v ou

retrieve the wind projection in the radial direction as measured from the radar, the vorticity (& 5) of the wind fields is

not available. This is common to all monostatic radar systems and a discussion of measurable parameters in the context of
multiple fixed beam upper atmosphere Doppler radars is given by (Reid, 1987). Even by relaxing the assumption of a
homogeneous wind fields and using the more advanced Volume Velocity Processing (VVP) (Philippe and Corbin, 1979) to
retrieve the wind fields, the horizontal gradients of the wind fields cannot be recovered due to the lack of vorticity information.
To obtain a better understanding of the spatial variation of the MLT region wind fields, larger area observations (and hence
higher meteor count rates) and measurements of the non-homogenous wind fields are needed. An extension of the classic
monostatic meteor technique is required to satisfy these needs.

To resolve the limitations outlined above, the concept of multistatic meteor radar systems, such as MMARIA (multi-static and
multi-frequency agile radar for investigations of the atmosphere) (Stober and Chau, 2015) and SIMO (single input multiple
output) (Spargo et al., 2019), MIMO (multiple input multiple output radar) (Chau et al., 2019) have been designed and
implemented (Stober et al., 2018). Multistatic systems can utilize the forward scatter of meteor trails, thus providing another
perspective for observing the MLT. Multistatic meteor radar systems have many advantages over classic monostatic meteor
radars, such as obtaining higher-order wind fields information and covering wider observation areas. There have been some
particularly innovative studies using multistatic meteor radar systems in recent years. For example, by combining MMARIA
and the continuous wave multistatic radar technique (Vierinen et al., 2016), Stober and Chau et al. built a 5-station total 7-link
multistatic radar network covering an approximately 600 kmx600 km region in Germany to retrieve an arbitrary non-
homogenous wind fields with a 30 kmx30 km horizontal resolution (Stober et al., 2018). Chau et al. used two adjacent classic
monostatic specular meteor radars in northern Norway to obtain horizontal divergence and vorticity (Chau et al., 2017). Other
approaches, such as coded continuous wave meteor radar (Vierinen et al., 2019) and the compressed sense method in MIMO

sparse signal recovery (Urco et al., 2019), are described in the references in these papers.
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Analysing spatial resolution in interested areas is a fundamental but difficult topic for meteor radar systems. Meteor radar
systems transmit radio waves and then receive radio waves using a cluster of receiver antennas; commonly five antennas as in
the Jones et al. configuration (Jones et al., 1998). By analysing the cross correlation of received signals, one can determine the
angle of arrivals (AoAs) which includes the zenith angle and azimuth angle denoted as 6 and ¢ respectively. By measuring
the wave propagation time, one can obtain the range information. Most meteor radar systems rely on specular reflections from
meteor trails. Thus, by combining the AoAs and the range information and then using geometric analysis, one can determine
the location of meteor trails. Accurately locating the meteor trail specular point (MTSP hereafter) is important since
atmospheric parameter retrieval (such as the wind fields or the temperature) depends on the location information of meteor
trails. The location accuracy, namely the spatial resolution, determines the reliability of the retrieved parameters. For
multistatic meteor radar systems that can relax the assumption of a homogenous horizontal wind fields, the location accuracy
becomes a more important issue because the horizontal spatial resolution affects the accuracy of the retrieved horizontal wind
fields gradient.

There are some discussions about measuring errors of the meteor radar. For example, a number of studies have discussed AcAs
measuring errors (Kang, 2008; Vaudrin et al., 2018; Younger and Reid, 2017). However, those focus on the errors in receiver
antennas and seldom discuss the influence of a multistatic configuration on the spatial resolutions. Hocking developed a
vertical resolution analysis method in a 2-dimensional baseline vertical section (Hocking, 2018), which simplifies the error
propagation process in receiver antennas and put emphasis on how a bistatic meteor radar configuration would affect the
vertical resolution in a vertical section. However, Hocking’s mothed (HM hereafter) can barely show bistatic configurations’
influence on spatial resolution distribution due to ignore the discussion of radial distance measuring error. Moreover, HM is
only a demo about vertical resolution in a specific vertical section, not in real three-dimensional space. Hence, for practical
purposes, the 3-dimensional spatial distribution of both horizontal resolution and vertical resolution should be considered.
Although multistatic meteor radar systems have developed well experimentally in recent years, the reliability of retrieved
atmospheric parameters lacks discussion both for monostatic and multistatic meteor radar. A large part of the reason is that no
other measurement technology can provide contrast data for meteor radars in MLT region. On the one hand it proves that
meteor radars are irreplaceable in MLT region as a measurement technology; on the other hand, to know the reliability of
meteor radars obtained atmospheric parameters and to get better understanding of the dynamic process in MLT region, some
quantitative error analyses are necessary and helpful. In this paper, we analyse the multistatic meteor radar resolution
distribution in a three-dimensional space for both vertical and horizontal resolution for the first time. And spatial resolution is

a prerequisite for evaluating the reliability of retrieved atmospheric parameters, such as wind fields and temperature.
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2 Analytical Method
2.1 brief introduction

The HM will be introduced ahead in short to help understand our method. In the HM, measuring errors that affect vertical
resolution can be classified into two types (Hocking, 2018) : one is those that caused by the zenith angle measuring error 56
and another is those that caused by the pulse-length effect on vertical resolution. The receiver is a simple antenna pair that is
collinear to the baseline (figure 1). HM only calculate vertical resolution in a two-dimensional vertical section which pass
though the baseline. The receiver antenna pair is equivalent to one receiver arm in Jones configuration which is comprised of
three collinear antennas and is usually in a 2A\2.54 configuration. Phase difference of received radio wave between antenna
pairs is denoted as AW. In meteor radar systems, there are is an acceptable phase difference measuring error (PDME hereafter)
§(AW). A higher value of §(A¥) means that more detected signals will be judged as a meteor event meanwhile more
misidentifications and bigger errors as well. §(AW) is set to approximately 30=(Hocking, 2018; Younger and Reid, 2017) in
meteor radar systems. In the HM, the zenith angle measuring error §6 is due to §(A¥) and §(AW) is a constant. Therefore,

the error propagation in the receiver is very simple, and &8 is inversely proportional to the cosine of the zenith angle.

Now introduce our analytical method. Our method considers a multistatic system with multiple transmitters and one receiver
in 3-dimensional space (figure 2). The receiver is in the Jones configuration, which can be “cross-shaped”, “T-shaped” or “L-
shaped” in plan view. The five receiver antennas are in the same horizontal plane and constitute two orthogonal antenna arms.
To avoid a complex error propagation process in receiver and te place emphasis on multistatic configurations, the PDMEs in
the two orthogonal antenna arms (§ (AW;) and &§(AW,)) are constants. Therefore, the AoAs measuring errors (including zenith
and azimuth angle measuring errors 86, 8¢ respectively) can be expressed as a simple function of zenith and azimuth angle.
The radial distance is the distance between the MTSP and the receiver, which denoted as R;. R, can be determined by
combining the AoAs, baseline length d;, and the radio wave propagating path length R (Stober and Chau, 2015). See figure
4(a), if @, d; and R are known, R, will be calculated easily using Cosine Law as:

__wea
- 2(R—djcosa)

€]

N

a isthe angle between the baseline (i.e. axis-X;) and the line from the receiver to the MTSP denoted as point A. The multistatic
configuration will influence the accuracy of R, (denoted as 6R;). This is because that @, d and R are determined by the
multistatic configuration. We consider the error term §R, in our method, which is ignored in the HM. §R; is a function of
the AoAs measuring errors (66 and 6¢) and the radio wave propagation path length measuring error (denoted as 6R). R is
caused by the measuring error of the wave propagation time &t, which is approximately 21us (Kang, 2008). Thus, SR can
be set as a constant and the default value in our program is 6R = ¢ 6t = 6.3km. It is worth noting that the maximum

unambiguous range for pulse meteor radars is determined by the pulse repetition frequency (PRF) (Hocking et al., 2001,
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Holdsworth et al., 2004). For multistatic meteor radars utilizing forward scatter, the maximum unambiguous range is c/PRF

(where c is the speed of light). For the area where R exceed the maximum unambiguous range, SR is set to positive infinity.

2.2 three Kkinds of coordinate systems and their transformations

To better depict the multistatic system configuration, three kinds of right-hand coordinate systems (figure 3) need to be
established, which are X,Y,Z,, X;Y;Z; and XYZ. X,Y,Z, is the ENU (east-north-up) coordinate system and axis-X,, Yy, Z,
represent the east, north, up directions respectively. Another two coordinate systems are established to facilitate different error
propagations. All types of errors need to be transformed to the ENU coordinate system X,Y,Z, in the end. Coordinate system
XYZ is established to depict the spatial configuration of the receiver. XYZ is fixed on the receiver. See figure 3, the coordinate
origin of XYZ is on the receiver. Axis-Z is collinear with the antenna boresight and perpendicular to the receiver horizontal
plane. Axis-X and axis-Y are collinear with the arms of the two orthogonal antenna arrays. AoAs will be represented in XYZ
for convenience. See figure 4, it is convenient to analyse the range information in a plane that goes through the baseline and
MTSP. Thus, a coordinate system X;Y;Z; is established for a transmitter T;. The coordinate origins of X;Y;Z; are all on the
receiver. We stipulate that axis-X; points to transmitter i (T;). Each pair of T; and the receiver Ry constitute a radar link,
which is referred to as L;. The range related information for each L; will be calculated in X;Y;Z;. Different types of errors
need to propagate to and be compared in X,Y,Z, which is convenient for retrieving wind fields.
We stipulate that clockwise rotation satisfies the right-hand corkscrew rule. By rotating clockwise in order of q;;"i, w;'i and
Z1 about axis-X, Y and Z, respectively, one can transform XYZ to X;Y;Z;. It is worth mentioning that X;Y;Z; is non-unique
because any rotation about axis-X; can obtain another satisfactory X;Y;Z;. Hence, wﬁ'i can be set to any values. Similarly, by
rotating clockwise in order of i, y5,° and y;° about axis-X, Y and Z, respectively, one can transform X;Y,Z; to X,YyZ,.
To realize the coordinate transformation between those three coordinate systems, coordinate rotation matrix Ag (Yy, ¥y, ¥,)
is introduced. Using Ag, one can transform the coordinate point or vector presentation from one coordinate system to another.

The details of the coordinate rotation matrix Ag (Yy,,,%,) can be seen in Appendix (A.1).

2.3 two types of measuring errors

The analytical method of the spatial resolution ef-for each radar link is the same. The difference between those radar links are
only the value of the six coordinates rotation angle (Y, 3" and 2% ¢, ¥5° and ¥.°) and baseline distance d;. The
spatial resolution related measurement errors which will cause location errors of MTSP, can be classified into two types: E;
is caused by measurement errors in the receiver, and E, is due to the pulse length. These two errors are mutually independent.

Hence, the total error (E;,:q;) can be expressed as:

Etzotal = E% + E% (2)
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E, isrelated to three indirect measuring errors. They are zenith, azimuth and radial distance measuring errors, denoted as §6,
8¢ and 6R, respectively. In XYZ, E; canbe decomposed into three orthogonal error vectors using 660, 8¢ and 6R, (figure
4(c)). Now we explain it in detail. PDMEs, i.e. §(A%,) and §(AW,), are caused by some practical factors, such as phase
calibration mismatch and the fact that specular point is not actually a point but has a few Fresnel zones length. A meteor radar
system calculates phase difference of different pair of antennas though cross-correlations and then fit them to get the most
likely AoAs. Therefore, the system needs to set a tolerant value of §(A¥;) and &§(AY,). Different meteor radar systems have
different AoAs-fit algorithms and thus different AoAs measuring error distribution. To analyses the spatial resolution for a
SIMO meteor radar system as common as possible and to avoid tedious error propagation in receiver, we start error propagation

from §(AY;) and §(AY,) and set them as constant. A0As measuring errors, i.e. §6 and §¢ can be expressed as:

_ A cosd A sing

86 = 21D, cosB S(ALPI) + 21D, cos6 S(ALPZ) (3)
_ A cosp _ A sing

6(1) - 2mtD, sin® S(AIPZ) 2mtD, sin® S(Alpl) (4)

A is the radio wave length. D; and D, are the length of the two orthogonal antenna arms. 8 and ¢ are the zenith angle and

the azimuth angle, respectively. The details can be seen in Appendix (A.2). It is worth noting that §6 and ¢ are not mutually

. . . . o E(s2(awy) . E(82(awy))
independent. The Expectation value of their product is not identical to zero unless ——z 18 equal to ——0
1 2
OR, can be expressed as a function of 6R, 66 and &¢ as:
6Rs = F(6R,66,6¢) = fr(6,$)6R + f5(6,$)66 + f4(6,$)6¢ ()

fr(0,9), fo(0,¢) and f,(0,p) are the weight functions of §R;. The details about the weight function and deduction can be

found in Appendix (A.3). See figure 4(c), E; can be decomposed into three orthogonal error vectors in coordinate XYZ,

denoted as 5_R;, R,660 and R,sinf6¢. These three vectors can be expressed in XYZ as:

SR, = SR4(sinBcosd, sinBsind, cosd)T (6)
R80 = R 80(cosOcosd, cosBsind, —sinB)T @)
R,s1nB8¢p = R sinB8¢ (—sind, cosd, 0)T (8)

E, isrelated to the radio wave propagating path. A pulse might be reflected anywhere within a pulse length (figure 4(b)). This
causes a location error of MTSP, represented as an error vector DA. D is the median point of isosceles triangle AABC’s side

BC. The representation of the error vector DA can be solved in X;Y,Z; by using geometry relationship as:

D—A’= ((Z—al—az)xi+di(az—1) ) (2—ag—ap)y; ’(Z_al_az)zi)T 9)
2 2 2
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S is half wave pulse lengthand a; = R;_S. a, = %. d; is the baseline length. (x;,v;, z;) is the coordinate value of a MTSP

S

(i.e. point A in figure 4) in X;Y;Z;. Details can be seen in Appendix (A4)

2.4 transform to ENU coordinate

Here, two types of errors in different coordinate systems have been introduced. Now they need to be transformed to ENU

coordinates X,Y,Z,, which is convenient for comparing between different radar link and analysing wind fields. E; related

error vectors, which are three orthogonal vectors ﬁ; R,60 and R sin66¢ and represented in XYZ as eq.(6)-(8), need to

be transformed from XYZ to X,Y,Z,.To project ﬁ; R,60 and R;sin88¢ towards axis- X, Yy, Z, respectively and

reassemble them to form three new error vectors in axis-Xo, Yy, Z,. Using coordinate rotation matrix AG"#*0%0%) —

AR(‘P,‘;'O, W;‘O,‘Pzi'o) 'AR(l]J;('i, lp;'i,lpzz'i) and eq.(6)-(8), the unit vectors of those three vectors can be represented in
XoYoZ,y as:
Xo(8Rs) Xp(80) Xo(84) sinfcos¢p cosBcos¢p —sing
Yo(8Rs) Yo(860) Yy(8d) | = ALY Xo¥oZo). <sinesin¢ cosfsing  cos¢ ) (10)
Zo(8Rg)  Zy(88)  Zy(60) cos6 —siné 0

(X5 (8Ry), Y5 (BRy), Zy(5R)) ", (X5(56), Y3 (86), 25 (86))", (X4(84),Y,(5¢),Z5(84))" are unit vectors of SR,, R,68 and
m in X,YyZ, respectively. The 3 X 3 matrix in left side of the eq.(10) is denoted as P for i,j = 1,2,3.

See eq.(6)-(8) and figure 4(c), the length of those three vectors, or error values in other words, are 6R;, R;68, R sinf6¢ as
the function of &R, 86, 8¢. In order to reassemble them to new error vectors, transforming §6 and §¢ into two independent
errors §(AY;) and §(AY,) are needed because 66 and ¢ are not independent. Using eq. (3) and (4), one can transform
vector (6R , 80 , 5¢)T to three independent measuring errors SR , &(AW;) and &(AW,) . And thus
(6R,, R,80, R,sinB8¢)T can be expressed as:

1 0 0
R, ROD LOD OO \ [ Low L |/ o8
( R66 >= 0 R 0 | 0 cos6 Dy cosf D, -(6([]4’1)) (11)
R¢sinB6¢ 0 0 Rgsinf %sind) %cosd) 6(4%,)
sinfDq sinfD,

The product of the first and the second term in right side of eq.(11) isa 3 x 3 matrix, denoted as Wj; for i,j = 1,2,3. Seen
eq.(11), three error valueséR,, R.60, R sinf8¢ are the linear combinations of three basis 6R, 6(4¥;), 5(4¥,) with their
corresponding linear coefficients W;;,W,;,Ws;. Those three error values can be projected toward new directions (i.e. axis-
X0, Yo, Zy) by using Py. It worth noting that in a new direction, a same basis’s projected linear coefficients from different
error values should be used to calculate their sum of squares (SS). And then the square root of SS will be used as a new linear

coefficient for that basis in the new direction. For example, in X, directions, basis §(4¥;)’s projected linear coefficients are

Xo(OROW;4, Xp(86)W,, X5(8d)W;, from ﬁ;, R.60 and R,sinB8¢ respectively. Therefore, the new linear coefficient

7
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for 6(4%,) in X, direction is wjé“’l’ = + /X, (GR)W1,)? + (X5 (80)W5,)? + (Xo(8b)W;,)2. Similarly, one can get

SR and 6(4¥,)’s new linear coefficients in Xg, denoted as W;;’f and W)‘:,(MZ).Thus true error values in X, direction
0

is W)‘zé‘SR+W§§w1)6(dllf1)+W§§M2)6(Allfz). Because 6R,5(4¥,),6(4%¥,) are mutually independent, E; related

mean square error (MSE) values in X, direction, denoted as &)X, , can be expressed as &)X, =

2 2 2
SR §(4v1) 8(4%,)
i\/( W 5R) + (WX6 1 S(Allfl)) +<WX(; 2 5(41(1@) .

In short, E; related errors in ENU coordinate’s three axis directions (denoted as 8.1yXo, 81)Yy and §;)Z,) can be

expressed in the form of matrix as:

2
5(1yXo 8°R
§tyYo | = P3-W3-| 8%(A¥)) (12)
5(21)20 62(A'1U2)

E, related error vector DA needs transformation from X;Y,Z; to X,Y,Z,. Therefore, E, related errors in ENU coordinate’s

three axis directions (denoted as 82Xy, §2)Yo and §(;)Z,) can be expressed in the form of matrix as:

8(2)Xo -
SpYo | = +AR(W°, W;°, ¥,%) - DA (13)
6(2)20

E; and E, are mutually independent. By using eq.(1), the total MSE values in ENU coordinate’s three axis directions

(denoted as 8iora1X0, StoralYo aNd SioraZo) Can be expressed in the form of matrix as:

2 2
8§0ta1X0 6(1)X0 8(2)X0
8o | = | 8&Yo | + | &Y (14)
5t20talZO 5(21)20 5(22)20

In conclusion, for a radar link L; and a MTSP represented as (Xq,Yo,Zo) in ENU coordinate system X,Y,Z,, as figure 4(a)
sketched, the location errors of this point in east, north and up directions (+68.ta1 X0, *6tota¥o and +8.:a1Zp) Can be
calculated as follows: firstly, for a point (xq,V,Z¢) in XiYsZg, using Ar to transformitto X;Y;Z; and denoted as

(Xi, Vi, Zi)- Thenin X;Y;Z; calculate AoAs (6 and ¢) and range information (Rg and R;). Details of AoAs and range
calculation can be seen in Appendix (A.5). It’s worth noting that AoAs are the angles relative to axis of XYZ. Secondly, in
XYZ using AoAs and eq.(3)-(8) to calculate E,’s three orthogonal error vectors as figure 4(c) sketched; in X;Y;Z; use range
information and eq.(9) to calculate E,’s error vector DA as figure 4(b) sketched. Thirdly, project E,’s three error vectors to

X,YyZ, by using eq.(10) and use eq.(11)-(12) to reassemble them to calculate E; related MSE values in direction of



230

235

240

245

250

255

X, Yo, Zy; use eq.(13) to transform E, error vector from X;Y;Z; to X,Y,Z,. Finally, use eq. (14) to get the total location

errors of a MTSP in (X, Yo, Zo)- Figure 5(a) describes the process above.

3 Results and Discussion

We wrote a program to study the method above. The program is written in python language and is presented in supplement.
To calculate a special configuration of a multistatic radar system, we initially need to set six coordinate transformation angles
WX,y and Y2 wi°, ¢y and ¥2°) and baseline length (i.e. d;) for each radar link L;. For example, y° = y,,° = 0,
Y= 30° and d; = 250km means a transmitter T; is 250km, 30° east by south of the receiver Ry; Further, y*' =
5°, zp}"i = 0,9Z" = 0 means one receiver arm (axis-Y) points to east by north 60° with 5° elevation. The interested
detection area of multistatic meteor radar is usually from 70km to 110km in height and lager than 300kmx300km in horizontal.
In our program, this area needs to be divided into a spatial grid for sampling. The default value of the sampling grid length is
1km in height and 5km in meridian and zonal directions. After the settings mentioned above, the program will traverse those
sampling grid nodes and calculate the location errors of each nodes as described in figure 5(a). Figure 5(b) describe the
parameter settings and traversal calculation process above. For a given setting of radar link L;, the program will output the
squared values of E; related, E, related and total MSE (EZ,q;: 8%taiXo » 8totarYo »StotarZo EZ: 88yXo, 60Yo » 68y Z0;

EZ: 6(22)X0 ,S(ZZ)YO ,S(ZZ)ZO). The location errors can be positive or negative and thus the spatial resolutions are twice the

absolute value of location errors. For example, See figure 5(c), for a detected MTSP represented as (Xq, Vo, Zo) In XoYZ,, if
8% aXo » 0 taYo » 0% Zo €quals 25,16 and 9 km? respectively, it means that the actual position of MTSP could occur in
an area which is +5 km, +4 km, +3 km around (xq,Yo,2,) With equally probability. The zonal, meridian and vertical
resolution are 10 km, 8 km and 6 km respectively.

The HM analyses vertical resolution (corresponding to &6Z, in our paper) only in a 2-dimensional vertical section
(corresponding to the X,Z, plane in our paper). To compare with Hocking’s work, except lpjo set to be 180°, other five
coordinate transformation angles are all set to zero with d is equal to 300 km. The half wave pulse length S is set to 2 km and
6(AW,;) to 35°. Calculating in only the X,Y; plane should have degraded our method into Hocking’s 2-dimensional analysis
method, but the settings above doesn’t work because Hocking’s method ignores §R;. In fact, Hocking’s method considers
only E, and W inthe X,Y, plane. Hence, we need to further set f (8, ¢), fo(6,¢) and f,(6, ) to be zero. Thus, our
method totally degrades into Hocking’s method. Hocking’s results are shown in the absolute value of vertical location error
normalized relative to half wave pulse width, i.e. |§Z,|/S. Hereafter, |E|/S is referred to normalized spatial resolutions such
as 81)Xo and &;oraiYo, Where E represent location errors in a direction. Thus, Spatial resolutions are 25 times normalized
spatial resolutions. The normalized vertical resolution distributions are shown in figure 6(a). Our results are the same as those

in Hocking’s work (Hocking, 2018). The distribution of R 66 related, E, related and total normalized vertical resolution
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distributions are shown in figure 6 from left to right, respectively. In most cases, E, is an order of magnitude smaller than
R,66. Only in the region directly above the receiver does E, have the same magnitude as R;66. In other words, only in the

region directly above the receiver can E, influence the total resolution. E, is related to the bistatic configuration, but R;56

is not. Therefore, in the HM, the distribution of the total vertical resolution is changed slightly varying with d. After adding

the error term TRt which is related to the bistatic configuration, the normalized total vertical spatial resolution distribution
will change visibly varying with d, as figure 7’s first two rows show. The region between two black lines represents a
trustworthy sampling volume for receiver because the elevation angle is beyond 30° with less influence of potential mutual
antenna coupling or other obstacles in the surrounding. However, with the transmitter/receiver distance become longer,
resolutions in this trustworthy sampling volume are not always acceptable. In figure 7’s first row, the transmitter/receiver
distance is 300 km and about half of the region between two black line have normalized vertical resolution values lager than
3 km. Because our analytical method can obtain spatial resolutions in 3-dimensional space, figure 7’s third row show a
perspective to the horizontal section in 90 km altitude for figure 7’s second row.

To get an intuitionistic perspective to spatial resolution distribution in 3-dimensional space, figure 8 shows the normalized
zonal, meridian and vertical spatial resolution distribution of a multistatic radar link whose transmitter/receiver is 180 km away
and the transmitter is south by east 30° of the receiver. Classic monostatic meteor radar is a special case of a multistatic meteor
radar system whose baseline length is zero. By setting the transmitter/receiver distance to be zero in our program, a monostatic
meteor radar’s spatial resolution can also be obtained. The spatial resolution distributions are highly symmetrical and
correspond to the real characteristics of monostatic meteor radar (not shown in the text, can be seen in the supplement SF1).
In the discussion above, the receiver and transmitter antennas are all coplanar. By setting 1|J§'i, wjf’i and Y% in our program,
the non-coplanar receiver/transmitter-antennas situations can also be studied. Slightly tilting of the receiver horizontal plane
(for example, set llJﬁ’iZI,[J;:’i = 5°) will cause horizontal spatial distributions to change (seen SF2 and SF3 in the supplement).
In practical applications, like the Earth’s curvature and local topography will lead the receiver horizontal plane tilting. Thus,
this kind of tilting should also be taken into account for multistatic meteor radar systems. The details of parameter setting can
be seen in the supplement.

The AoAs error propagation process in the receiver has been simplified to eq.(3)-(4) by using the constant PDMEs as the start
of error propagation. This is for the sake of the adaptable of our method. If analysing AoAs errors starts from the original
voltage signals, the error propagation process will change with a specific receiver interferometer configuration and a specific
signal processing method. In practical situations for an unusual receiver antenna configuration or new original signal
processing algorithm, an error propagation process based on the specific circumstances needs to be established. Substitute
6(A¥,) and 6(AY,) into other mutually independent measuring errors in a practical situation, and then establishing a new
A0As error propagation to obtain 66 and §¢. Or in other words, rewrite the second and third term in eq. (11) to the new
established AoAs error propagation matrix and new mutually independent measuring errors respectively. Our analytical

method can still work.

10



290

295

300

305

310

315

320

It worth noting that except the PDMEs as the start of the error propagation, all the analytical processes are built on the
mathematic error propagations. PDMEs include the uncontrolled errors, such as the scattered wave from a few Fresnel zones
along meteor trails, phase calibration inaccuracy and noises. However, there are other error sources in practical situation. For
example, planes or lightning may make troubles for meteor radar’s discrimination system. And interference of obstacles in
surroundings will cause further measurement errors of AoAs. These issues are related to actual situations and beyond the scope
of this text.

The trustworthy sampling volume is vital for a meteor radar system and it determines the detection area and which meteors
could be used in wind retrievals. To avoid the influence of the mutual antenna coupling or the ground clutter, the elevation
angle of detection should beyond a threshold, for example 30° in general. The spatial resolution is another thing that affects
the trustworthy sampling volume. See Figure 7 and SF4 in supplement, only the area of normalized vertical resolution values
below 3 km are shown, which represents an acceptable sampling volume. With transmitter/receiver distance increasing, this
sampling volume becomes smaller along with the vertical resolution in this volume reduced. This fact limits the
transmitter/receiver distance for multistatic meteor radar. Measurement response is important for measuring meteor trails’
Doppler shift caused by the background wind. The measured Doppler shift is caused by the component of the wind fields in
the Bragg Vector. The smaller the angle between Bragg vector and the wind fields is, the lager this Doppler shift is and
meanwhile the higher SNR. The Bragg vector of the multistatic configuration is divergent from the receiver’s line of sight.
Monostatic meteor radars can only detect winds in radial direction, thus only the mean wind can be solved. By synthesizing
monostatic and multistatic the high order component of the wind fields can be solved. The bigger the angle between the Bragg
vector and radial direction is, or more diversified Bragg vectors in other words, the more complete and accurate the wind fields
will be observed. In short, the trustworthy sampling volume, measurement response and the angular diversity of the Bragg
vector should both be taken into account in wind retrievals. The discussion of wind retrievals is beyond the scope of this text

and will be in a future work.

4 Conclusion

In this study, we presented the preliminary results of our error analytic method. Our method can calculate the spatial resolution
in the zonal, meridian and vertical direction for an arbitrary configuration in three-dimensional space. A detected MTSP can
locate within the spatial resolution with equal probability. Higher values of spatial resolution mean that this region needs more
meteor counts or averaging to obtain a reliable accuracy. Our method shows that the spatial configuration of a multistatic
system will greatly influence the spatial resolution distribution in ENU coordinates and thus will in turn influence the retrieval
accuracy of atmospheric parameters such as wind fields. The multistatic meteor radar system’s spatial resolution analysis is a
key point in analysing the accuracy of retrieved wind and other parameters. The influence of spatial resolutions on wind

retrieval will be discussed in the future work. Multistatic radar systems come in many types, and our work in this paper
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considers only single-input (single-antenna transmitter) and multi-output (5-antenna interferometric receiver) pulse radar
systems. Although single-input multi-output (SIMO) pulse meteor radar is a classic meteor radar system, other meteor radar
systems, such as continuous wave radar systems and MISO (multiple-antenna transmitter and single-antenna receiver), show
good experimental results and have some advantages over SIMO systems. Using different types of meteor radar systems to
constitute the meteor radar network is the future trend and we will add the spatial resolution analyses of other system to the
frame of our method in the future. We will validate and apply the error analyses of spatial resolution in horizontal wind

determination in a multistatic meteor radar system, which will be built soon in China.

Code availability. The program to calculate the 3D spatial resolution distributions are available in supplement.
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Appendix
A.1 Coordinates rotation matrix

For a right-handed rectangular coordinate system XYZ, we rotate clockwise W, about axis-x to obtain a new coordinate. We
specify that clockwise rotation satisfies in the right-hand screw rule. A vector in XYZ, denoted as (x,y,z)7, is represented as

(x',y',z")T in the new coordinate. The relationship between (x,y,z)T and (x',y’,z")T is:

x' X 1 0 0 X

(y’) = A,(Y,) (y) = (0 cosy, Sim/)x> (y) (AL.1)
z' z 0 —siny, cosy,/ ‘\z

Similarly, we rotate clockwise ,, is about axis-y to obtain a new coordinate. The presentation for a vector in new coordinates

and original can be linked by a matrix, A, (,):

cosy, 0 —siny,
Ay(Yy) = 0 1 0 (A1.2)
sing,, 0  cosy,

we rotate clockwise W, about axis-z to obtain a new coordinate. The presentation for a vector in new coordinates and original

can be linked by a matrix A,(,):
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cosy, siny, 0
) (A1.3)

Az(lllz)=<—sim,bz cosy, 0
0 0 1

For any two coordinate systems XYZ and X'Y'Z" with co-origin, one can always rotate clockwise ¥,, ¥, and i, in order
of axis-X, Y, Z respectively, transforming XYZ to X'Y'Z’ (figure A.1). The presentation for a vector in X'Y'Z' and XYZ
can be linked by a matrix, Ag (¥, ¥y, P,):

415 Ag (wx' wy' 1,02) = Az(wz)Ay(lpy)Ax(lpx) =

cosy,cosy, siny,sin, cosy, + cosp,sing,  —cosy,siny, cosy, + siny,siny,
—cosy, sin, —sinp,sin,siny, + cosPycosyp,  cosy,siny,sin, + siny,cosy, (Al.4)
siniy,, —siny,cosy, cos Pycosy,,

We call Ag(y, ¥y, ¥,) as the coordinates rotation matrix.

A.2 AoAs measuring errors

In coordinate XYZ, AoAs includes zenith angle 6 and azimuth angle ¢. In the plane wave approximation, the radio wave is
420 at angle y; and y, with an antenna array (figure A.2). There is a phase difference AW; and AW, between two antennas

(figure 1). See figure 1, AW, and AW, can be expressed as:

__ 2mDjcosy;

Ay, = T2 (A2.1)
AY, = Z”DZ% (A2.2)

Using y;, v, the AoAs can be expressed as:

425 cos?y, + cos?y, + cos?0 =1 (A2.3)

cosy;

tang = (A2.4)

cosyy
Or in another expression:

cosy; = sinfcos¢ (A2.5)
cosy, = sinBsin¢ (A2.6)

430 substitute cosy; and cosy, in (A2.3) and (A2.4) by using (A2.1) and (A2.2):

20 _ 4 (A 2 A2y, A2y,
cos? =1-(2) ( 5t o) (A2.7)
In(tan ¢) = In(D,A¥,) — In(D,4%¥;) (A2.8)
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455

(A2.7) and (A2.8) link the phase difference with the AoAs and expanding 6 and ¢, AW; and AW, to first order:

2
2c0s6sinf50 = (=) [““’1;512(“’1’ 2“’2;22(”2)] (A2.9)
5¢ — SinAqb‘;zsqb 5(Alp2) _ SinAqbqijs¢ 5(Aq}1) (AZlO)

For (A2.9) and (A2.10), substitute A¥; and AW, using (A2.1), (A2.2) and (A2.5), (A2.6) to the functions of 8, ¢. Now, eq.

cosdp sind
sin® and sin®

(3) and eq. (4) have been proven. If the zenith angle 6 = 0°, we stipulate that are 1.

A.3 Radial distance measuring error

Expand R, R and cosa ineq.(1) to first order, SRg can be expressed as a function of 8R and &(cosa):

_ R?—-2Rdcosa+d?

2_42
SR, = R+ SE&-)

2(R—dcosa)? 2(R—dcosa)?

5(cosa) (A3.1)
a is the angle between R, and axis-X;. We denote the zenith and azimuth angles in coordinate-X,Y;Z; as 6’ and ¢’,
respectively. And the relationship between a and 8’, ¢’ is

cosa = sinB'cos¢’ (A3.2)
Using coordinates rotation matrix A", )" "), sinf’cose’ can be expressed as the function of AoAs:

sinB’cos¢’ = A;,sinBcosd + A;,sinbsind + A;5cos0
(A3.3)

A;; arerepresent the elements in matrix Ag (lljic(’i,ll);,,'i,ll)zz'i) for i,j =1,2,3.

Using (A3.2) and (A3.3), 8(cosa) can be expressed as a function of 66 and ¢ as:

8(cosa) = (A;;cosBcosd + A;,cosBsind — A;35inB)86 + (—A,;sinbsind + A,,sinBcosd)Sd (A3.4)
Finally, 8Rg can be expressed as the function of 6R,86,5¢ as:

OR; = F(6R,86,8¢) = fr(0,9)SR + f4(0, )50 + f4(6, d)5¢p

(A3.5)
For:

£o(6,) = d?+R? —2Rd (A115infcos¢p+Aq,5inbsing+A,3c0s0)
R\Zy T 2[R—d(A11Sinfcosd+A1,sinbsing+A;3c0s0)]2
(A3.6)
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460

465

470

475

d(R?-d?)(A11c0s0cosp+A12cos0sind—Aq3sind)

fg (6' ¢) = 2[R—d(A11sinfcos¢+A1,sinbsing+A13c0s0)]?
(A3.7)

£,00,¢) = d(R%?-d?)(-Aq1sinfsing+A1zsinfcose)
AN " 2[R—d(A;11Sinfcosd+A;sinbsing+A;3c0s0)]?
(A3.8)

A.4 True error of E,

See figure 4 (b), the total length of side AC and side AB represents the pulse width. Side AC equals side CB and they both
equal to half of the pulse S. In X,;Y,Z,, the presentation of point A is (x;,;,2;), the receiver is (0,0,0) and T; is (d,0,0). The
distance between T; and A'is R; = R — R,;. We denote that the presentation of point B and C in X;Y;Z; is (xg,yg,25) and

(xc, Ve, 2¢), respectively. We use vector collinear to establish equations for B and C. Therefore, one can obtain the coordinates

of point B and C by the following equations:

(x8,¥5,25)" = % (x, y1,2)" (A4.1)

(tc = d,ye,20)" =2 (x5 —d, 3, 2)7 (A4.2)

R
For isosceles triangle ABC, the perpendicular line AD intersects side CB in middle point D. Then, we obtain the coordinate

value of Din X;Y.Z. as:

[ A A )

1 1
(Xp, ¥, 2D) = 5 (Xp + Xe, Y5 + Yoo b +20) = 5 (a1 +a2)x; — apd +d, (a1 + a,)yy, (a1 +2a,)z) (A4.3)
We denote a, = ?, a, = R;_S. Finally, one can obtain the error vector of E, as vector DA in X,Y.Z;:
s i

—_— ((Z—al—az)xi+d(a2—1) 2—-aq1—ay 2-aj—ay Z-)T

DA= . , TRy, A, (A4.4)

A.5 calculate AoAs and range information in X;Y;Z;

For a space point (x;,y;,z;) in X;Y;Z; which representa MTSP, R can be solved easily as:
R_s) = (Xi, Yi, Zi)

Ry = \/x? + y? + 7z} (A6.1)

The distance between transmitter T, and receiver Ry is d; as sketched in figure 4(a). Thus, coordinate value of T; in

X;Y,Z; is (d;,0,0) and R; can be solved as:
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Ri=(x;—d)?>+y? + 27 (A6.2)
Before we calculate AoAs in X;Y,Z;, the representation of unit vectors of axis-X, Y, Z in X,Y;Z; need to know. In XYZ
those unit vectors are easily represented as (1,0,0)T, (0,1,0)T, (0,0,1)T . Though coordinates rotation matrix
Ag (wﬁ'i, zp}”i, ZZ’i) , One can get those unit vector’s representation in X,Y,;Z; as:

N, = (A11:A21'A31)T

ﬁ; = (A12'A22'A32)T

1, = (Ag3, 423, A33)" (AB.3)
For n,, rTyand n, are unit vectors of Axis-X, Y, Z respectively. And A;; are the elements in 3 X 3 matrix

Ag (qjiﬁ'i, 1p;‘i,1pzz'i) for i,j = 1,2,3. Now AoAs can get as:

cosf =277 (A6.4)
Rs
sin® = V1 — cos2 0
(A6.5)
_ Ry iy

COS¢ - Rg sin@
(A6.6)

ind = R.w
sing = Falny: (AB.7)

For 0° < 8 < 180° and 0° < ¢ < 360°. When 6 = 0° , we handle it as same as in Appendix (A.2).
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~70-110km

Figure 1: Schematic diagram of a simplified bistatic configuration used in Hocking’s vertical resolution analysis(Hocking, 2018).
The two receiver antennas and a transmitter antenna are collinear. The analysis is in a 2-dimensional vertical section through the
baseline. The radio wave is scattered by a few Fresnel zones of several kilometres long around specular point in meteor trail and

505 received by receiver antennas. The cross-correlation analysis between receiver antennas can solve the AoAs. The fact that the radio
wave bounced back from a few Fennel zones will cause the measured phase difference between the receiver antenna pair deviating
from the ideal phase difference. The ideal phase difference will solve an AoAs pointing to MTSP. This deviation from the ideal phase
difference is one of the error sources of PDME.

510
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~70-110km

515

Figure 2: Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three

transmitters (T4, T, and T3) and one receiver (Ry) in the picture. The transmitter/receiver distance is usually approximately 100-

200 km. X,, Yo, Z, represents the east, north and up directions of the receiver. Over 90% of the received energy comes from

about one kilometre around specular point of the meteor trail, which is slightly less than the length of the central Fresnel zone
520 (Ceplechaet al., 1998).
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535
Figure 3: (a) Schematic diagram of the three introduced coordinate systems. X;Y;Z; are a class of coordinate systems whose axis-
X; point to transmitter i. And in this picture, i are 1,2,3. XyY¢Z, is the ENU coordinate system and all errors will be compared in
this coordinate. (b) Magnified plot of the receiver. XYZ is fixed on the receiver horizontal plane. Axis-X and Y are collinear to two

antenna arrays.
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Figure 4: (a) Schematic diagram of a forward scatter geometry for the radar link between T; and Ry. Point-A is the MTSP. (b)
Magnified plot of specular point A. The red line represents a radio wave pulse, and S is the half wave pulse length. k_,; is the Bragg
vector which halves forward scatter angle . (c) Schematic diagram of E; in XYZ, which can be decomposed into three orthogonal
vectors.

555

560

22



565

570

575

580

grid nodes
traversal

IC settings:

Step 1.
MC settings:

,0 4,0 i,0
by sy dy

Xi g ¥Yi Zi
Vs Py Yy

In X,YoZo
(3)
b\’%()} @ AR
B (xir i, Zi) A6 4-A6.7 AoAs
R, and R, In X;Y;Z; (6 and ¢)
o ey, o]l
(5)
- SR, 56 and 6¢
In X;Y:Z; 06 L@
AP La3) 8R,, R;60 and Rysinf8¢

In XYZ

’ ! i T
(8X0.6xYs 1 8(2)20)

a2 L avaz

E2 n XOYOZO
E,®F,

! I ! T
(6(21)){0 ) 5(21)Y0 ) 6(21)20)

El n XO YOZO

(14) JE

Etorar In XoYpZy

T
2 / 2 ’ 2 r
(atota[XO ’ 6totalY0 ’ 5totalZO)

i
Step 2.

sampling grid

Lx,» Ly, Lz,

Step length:
AXy, AYy, AZg

AL(QI) _ AR(‘I{&O,"P}i,’o,‘ljzi’o)
2 X, Bt A
AD = Az (WE L i
4D = 431 (w10, wi0, wio)

(4) _ 4(1)  4(2)
AP = 480 - A

(c)

1
I
| (x0,¥0,Z0)
-r---2
LRt I
’
<‘D
N
ZlatotalX()l v

2| 5t0talZ 0 |
L
o"’&
= ZO
Yo

Figure 5: (a) the flow chart of the location error calculation process for a point in XyY¢Z,. The marks beside arrows represent the

corresponding equations (black) or coordinate rotation matrix (blue) in the paper. “®©” is the Hadamard product. Thus E, ®E,

will get (S%Z)XO, sz)Yo, S%Z)ZO)T. (b) the flow chart of the program to calculate the location errors distributions for a radar link L;.

This process includes parameters settings for a radar link, generating sampling grid nodes and traversing all the nodes. For each

node, the program uses the calculation method described in (a). MC: multistatic configuration, IC: interferometer (receiver antennas)

configuration. (c) Schematic diagram of relationship between the spatial resolution and the total location errors of the MTSP. For a

detected point in space, the MSE of MTSP’s location errorsis +|8;0ta1 X0l t|8totatYol, L16t0tarZol inzonal, meridian and vertical

respectively. This means that the actual specular point might occur in a region which forma 2|6 :ptaiXol X 218:0taiY ol X 218t0taiZol

cube and the detected point is on the central of this cube.
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Figure 6: the normalized vertical resolution distribution in a vertical section from 50 km to 60 km height when ignore the error
term “8R,”. (a), (b), (c) are total, R;660 related and E, related normalized resolution distribution respectively. The results is theas
same as Hocking’s work (Hocking, 2018). Two black arrows represent the positions right above transmitter and receiver and
transmitter/receiver are 300 km away. The region between two black oblique lines is a the trustworthy sampling volume for the
receiver because the elevation angle is beyond 30° with little influence ef from potential mutual antenna coupling or other obstacles
in the surrounding. Except the region in large elevation angle (i.e. 90°), E, related resolution values are much lower than R0
related. Rg80 related resolution distribution is only depend on the receiver. Thus, the total vertical resolution distribution is nearly
unchanged with transmitter/receiver distance varying. The normalized resolution values exceed 3 km which correspond 12 km

vertical resolution aren’t shown.
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Figure 7: the normalized vertical resolution distribution using the analytical method in this paper. The first and second row
represent a vertical section from height 50 km to 120 km. The third row represent the horizontal section in 90 km and the receiver
is on the origin with positive coordinate value represent east or north direction. The first row has the same parameters settings as
Figure 6 and is used to compare with Figure 6. E; related resolution will change with transmitter/receiver configuration because it
consider the error term “&8R;”. Thus, the total vertical resolution will change with transmitter/receiver configuration. With
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transmitter/receiver distance varying from 300 km (the first row) to 150 km (the second row), the total vertical resolution distribution
is changed. The third row is the perspective to the horizontal section in 90 km altitude for the second row. The normalized resolution
610 values exceed 3 km aren’t shown.
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Figure 8 the 3D contourf plot of normalized resolution distribution for a multistatic radar link whose baseline length is 180 km and
transmitter is south by east 30° of the receiver. The black dots represent the position right above transmitter and the receiver is

620 on the origin of axes. (a), (b) and (c) are the normalized resolution distribution in zonal, meridian and vertical respectively. The
subplot’s four slice circle from bottom to top are the horizontal section in 50 km, 70 km, 90 km and 110 km height. The region whose
elevation angle of the receiver is less than 30° isn’t shown and therefore the slice circles become larger from the bottom to the top.
The normalized resolution values exceed 4 km which correspond 16 km resolution aren’t shown.

625

26



Figure A.1
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Figure A.2 (two antennas are not shown for concise)
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