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Abstract：In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar 

community, focusing on the mesosphere and lower thermosphere (MLT) region. Recently, there have been some notable 

experiments using such multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all 15 

parameter inversion processes rely on the accurate location of the meteor trail specular point. It is timely then for a careful 

discussion focussed on the error distribution of multistatic meteor radar systems. In this study, we discuss the measurement 

errors that affect the spatial resolution and obtain the spatial resolution distribution in 3-dimensional space for the first time. 

The spatial resolution distribution can both help design a multistatic meteor radar system and improve the performance of 

existing radar systems. Moreover, the spatial resolution distribution allows the accuracy of retrieved parameters such as the 20 

wind field to be determined. 

1 Introduction 

The mesosphere and lower thermosphere (MLT) is a transition region from the neutral to the partially ionized atmosphere. It 

is dominated by the effects of atmospheric waves, including planetary waves, tides and gravity waves. It is also a relatively 

poorly sampled part of the Earth’s atmosphere by ground-based instruments. One widely used approach to sample this region 25 

is the meteor radar technique. The ablation of incoming meteors in the MLT region, i.e., ~80 – 110 km, creates layers of metal 

atoms, which can be observed from the ground by photometry or lidar (Jia et al., 2016; Xue et al., 2013). During meteor 

ablation, the trails caused by small meteor particles provide a strong atmospheric tracer within the MLT region that can be 

continuously detected by meteor radars, regardless of weather conditions. Consequently, the meteor radar technique has been 

a powerful tool for studying the MLT region for decades (Hocking et al., 2001; Holdsworth et al., 2004; Jacobi et al., 2008; 30 

Stober et al., 2013; Yi et al., 2018). Most modern meteor radars are monostatic, and this has two main limitations in retrieving 
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the complete wind fields. Firstly, limited meteor rates and relatively low measurement accuracies necessitate that all 

measurements in the same height range are processed to calculate a “mean” wind. Secondly, classic monostatic radars retrieve 

winds based on the assumption of a homogenous wind in the horizontal and usually a zero wind in the vertical direction.  

The latter conditions can be partly relaxed if the count rates are high and the detections are distributed through a representative 35 

range of azimuths. If this is the case, a version of a Velocity Azimuth Display (VAD) analysis can be applied by expanding 

the zonal and meridional winds using a truncated Taylor expansion (Browning and Wexler, 1968). This is because each valid 

meteor detection yields a radial velocity in a particular viewing direction of the radar. The radar is effectively a multi-beam 

Doppler radar where the “beams” are determined by the meteor detections. If there are enough suitably distributed detections 

in azimuth in a given observing period, the Taylor expansion approach using cartesian coordinates yields the mean zonal and 40 

meridional wind components (𝑢0, 𝑣0 ), the horizontal divergence (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) , the stretching (

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
)  and the shearing 

(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) deformations of the wind fields from an analysis of the radial velocities. However, because the radar can only 

retrieve the wind projection in the radial direction as measured from the radar, the vorticity (
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) of the wind fields is 

not available. This is common to all monostatic radar systems and a discussion of measurable parameters in the context of 

multiple fixed beam upper atmosphere Doppler radars is given by (Reid, 1987). Even by relaxing the assumption of a 45 

homogeneous wind fields and using the more advanced Volume Velocity Processing (VVP) (Philippe and Corbin, 1979) to 

retrieve the wind fields, the horizontal gradients of the wind fields cannot be recovered due to the lack of vorticity information. 

To obtain a better understanding of the spatial variation of the MLT region wind fields, larger area observations (and hence 

higher meteor count rates) and sampling the observed area from different viewing angles are needed. An extension of the 

classic monostatic meteor technique is required to satisfy these needs. 50 

To resolve the limitations outlined above, the concept of multistatic meteor radar systems, such as MMARIA (multi-static and 

multi-frequency agile radar for investigations of the atmosphere) (Stober and Chau, 2015) and SIMO (single input multiple 

output) (Spargo et al., 2019), MIMO (multiple input multiple output radar) (Chau et al., 2019; DOREY et al., 1984) have been 

designed and implemented (Stober et al., 2018). Multistatic systems can utilize the forward scatter of meteor trails, thus 

providing another perspective for observing the MLT. Multistatic meteor radar systems have several advantages over classic 55 

monostatic meteor radars, such as obtaining higher-order wind field information and covering wider observation areas. There 

have been some particularly innovative studies using multistatic meteor radar systems in recent years. For example, by 

combining MMARIA and the continuous wave multistatic radar technique (Vierinen et al., 2016), Stober et al. (2018) built a 

5-station 7-link multistatic radar network covering an approximately 600 km×600 km observing region over Germany to 

retrieve an arbitrary non-homogenous wind field with a 30 km×30 km horizontal resolution. Chau et al. (2017) used two 60 

adjacent classic monostatic specular meteor radars in northern Norway to obtain horizontal divergence and vorticity. Other 

approaches, such as coded continuous wave meteor radar (Vierinen et al., 2019) and the compressed sense method in MIMO 

sparse signal recovery (Urco et al., 2019) are described in the corresponding references. 
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Analysing spatial resolution limits is a fundamental but difficult topic for meteor radar systems. Meteor radar systems transmit 

and then receive radio waves reflected from meteor trails using a cluster of receiving antennas; commonly five antennas as in 65 

the Jones et al. (1998) configuration. By analysing the cross correlations of the signals received on several pairs of antennas, 

the angle of arrival (AoA) of each return can be determined. The AoA is described by the zenith angle θ and azimuth angle 

ϕ. By measuring the wave propagation time from the meteor trail, range information can be determined. Most meteor radar 

systems rely on specular reflections from meteor trails. Thus, by combining the AoA and the range information and then using 

geometric analysis the location of a meteor trail can be determined. Accurately locating the meteor trail specular point (MTSP 70 

hereinafter) is important since atmospheric parameter retrieval (such as the wind field or the temperature) depends on the 

location information of meteor trails. The location accuracy, namely the spatial resolution, determines the reliability of the 

retrieved parameters. For multistatic meteor radar systems which can relax the assumption of a homogenous horizontal wind 

field, the location accuracy becomes a more important issue because the horizontal spatial resolution affects the accuracy of 

the retrieved horizontal wind field. 75 

Although meteor radar systems have developed well experimentally in recent years, the reliability of the retrieved atmospheric 

parameters still requires further investigation for both the monostatic and multistatic meteor radar cases. In an attempt to 

investigate errors in two radar techniques, Wilhelm et al. (2017) compared 11 years of MLT region wind data from a partial 

reflection (PR) radar with collocated monostatic meteor radar winds and determined the ‘correction factors’ to bring the winds 

into agreement. Reid et al. (2018) reported a similar study for two locations for data obtained over several years. While the 80 

comparisons are interesting, partial reflection radars operating in the medium frequency (MF) and lower high frequency (HF) 

bands produce a height dependent bias in the measured winds (see e.g., Reid, 2015) which limits the ability to estimate errors 

in the meteor winds by comparing with them. However, the PR radar technique is one of very few that provides day and night 

coverage and data rates in the MLT comparable to that of meteor radars. 

Meteor radars have largely replaced PR radars for MLT studies and are generally regarded as providing reference quality 85 

winds. It is essential then to know the reliability of atmospheric parameters determined by meteor radars and to do this, some 

quantitative error analyses are necessary.  

A number of recent studies have discussed AoA measurement errors for meteor radars (Kang, 2008; Vaudrin et al., 2018; 

Younger and Reid, 2017). These studies focus on the phase errors in receiver antenna pairs; Younger and Reid for the 

monostatic case, and Vaudrin et al. for a more general case which included multistatic meteor radars. Hocking (2018) used 90 

another approach and developed a vertical resolution analysis method for the 2-dimensional bistatic case. Hocking’s method 

(HM hereinafter) simplifies the error propagation process in the receiving antennas and puts emphasis on how a bistatic meteor 

radar configuration affects the vertical resolution in a vertical section. It does not consider the radial distance measuring error. 

In this paper, we consider the more general 3-dimensional case and determine the spatial distribution of both the horizontal 

and vertical resolution uncertainties. 95 
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We analyse the multistatic meteor radar resolution distribution in a three-dimensional space for both vertical and horizontal 

resolution for the first time. This spatial resolution is a prerequisite for evaluating the reliability of retrieved atmospheric 

parameters, such as the wind field and the temperature.  

2 Analytical Method 

2.1 Brief introduction 100 

The HM will be introduced briefly here to help understand our generalization. In the HM, measurement errors that affect the 

vertical resolution can be classified into two types: one caused by the zenith angle measuring error 𝛿𝜃 and one caused by the 

pulse-length effect on the vertical resolution. The receiving array is a simple antenna pair that is collinear with the baseline 

(figure 1). The HM calculates the vertical resolution in a two-dimensional vertical section which passes through the baseline. 

The receiver antenna pair is equivalent to one receiver arm in a Jones configuration which is comprised of three collinear 105 

antennas usually in a 2𝜆\2.5𝜆 spacing. The phase difference of the received radio wave between the receiving antenna pair is 

denoted as ΔΨ . In meteor radar systems, there is generally an ‘acceptable’ phase difference measuring error (PDME 

hereinafter) 𝛿(ΔΨ). A higher value of 𝛿(ΔΨ) means that more detected signals will be judged as meteor events, but with 

more misidentifications and bigger errors as well. 𝛿(ΔΨ) is set to approximately 30° (Hocking, 2018; Younger and Reid, 

2017) in most meteor radar systems. In the HM, the zenith angle measuring error 𝛿𝜃 is due to 𝛿(ΔΨ) and 𝛿(ΔΨ) is a 110 

constant. Therefore, the error propagation in the receiver is very simple, and 𝛿𝜃 is inversely proportional to the cosine of the 

zenith angle. 

We now introduce our analytical method. Our method considers a multistatic system with multiple transmitters and one 

receiving array in 3-dimensional space as shown in figure 2. The receiving array is in the Jones configuration, that is, “cross-

shaped”, but it may also be “T-shaped” or “L-shaped”. The five receiver antennas are in the same horizontal plane and 115 

constitute two orthogonal antenna arms. To avoid a complex error propagation process in the receiving array and to place 

emphasis on multistatic configurations, the PDMEs in the two orthogonal antenna arms (𝛿(ΔΨ1) and 𝛿(ΔΨ2)) are constants. 

Therefore, the AoA measuring errors (including the zenith and azimuth angle measuring errors 𝛿𝜃, 𝛿𝜙 respectively) can be 

expressed as simple functions of zenith and azimuth angle. The radial distance is the distance between the MTSP and the 

receiver, which is denoted as 𝑅𝑠 . 𝑅𝑠  can be determined by combining the AoA, baseline length di , and the radio wave 120 

propagation path length R (Stober and Chau, 2015). The geometry is shown in figure 4(a). 𝛼 is the angle between the baseline 

(i.e., axis-𝑋𝑖) and the line from the receiver to the MTSP (denoted as point A). If 𝛼，di and R are known, 𝑅𝑠 can be calculated 

easily using the Cosine Law as: 

𝑅𝑠 =
𝑅2−𝑑𝑖

2

2(𝑅−𝑑𝑖𝑐𝑜𝑠𝛼)
 (1) 
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A multistatic configuration will influence the accuracy of 𝑅𝑠 (denoted as 𝛿𝑅𝑠). This is because 𝛼，d and R are determined 125 

by the multistatic configuration. We consider the error term 𝛿𝑅𝑠 in our method, which is ignored in the HM. 𝛿𝑅𝑠 is a function 

of the AoA measuring errors (𝛿𝜃 and 𝛿𝜙) and the radio wave propagation path length measuring error (denoted as 𝛿𝑅). 𝛿𝑅 

is caused by the measuring error of the wave propagation time 𝛿𝑡, which is approximately 21𝜇𝑠 (Kang, 2008). Thus, 𝛿𝑅 can 

be set as a constant and the default value in our program is 𝛿𝑅 = 𝑐𝛿𝑡 = 6.3𝑘𝑚 . It is worth noting that the maximum 

unambiguous range for pulse meteor radars is determined by the pulse repetition frequency (PRF) (Hocking et al., 2001; 130 

Holdsworth et al., 2004). For multistatic meteor radars utilizing forward scatter, the maximum unambiguous range is c/PRF 

(where c is the speed of light). For the area where R exceeds the maximum unambiguous range, 𝛿𝑅 is set to positive infinity.  

2.2 Three kinds of coordinate systems and their transformations  

To better depict the multistatic system configuration, three kinds of right-hand coordinate systems need to be established as 

shown in figure 3. These are 𝑋0𝑌0𝑍0, 𝑋𝑖𝑌𝑖𝑍𝑖 and XYZ. 𝑋0𝑌0𝑍0 is the ENU (east-north-up) coordinate system where axis-135 

𝑋0, 𝑌0, 𝑍0 represent the east, north, up directions respectively. Another two coordinate systems are established to facilitate 

different error propagations. All types of errors need to be transformed to the ENU coordinate system 𝑋0𝑌0𝑍0 in the end. 

Coordinate system XYZ is established to depict the spatial configuration of the receiving array and has its the origin of XYZ 

there as shown in figure 3. Axis-Z is collinear with the antenna boresight and perpendicular to the horizontal plane on which 

the receiving array lies. Axis-X and axis-Y are collinear with the arms of the two orthogonal antenna arrays. AoAs will be 140 

represented in XYZ for convenience. Inspection of figure 4 indicates that it is convenient to analyse the range information in 

a plane that goes through the baseline and the MTSP. Thus, a coordinate system 𝑋𝑖𝑌𝑖𝑍𝑖 is established for a transmitter 𝑇𝑖 . The 

coordinate origins of 𝑋𝑖𝑌𝑖𝑍𝑖 are all on the receiving array. We stipulate that axis-𝑋𝑖 points to transmitter 𝒊 (Ti). Each pair 𝑇𝑖  

and receiver RX  constitutes a radar link, which is referred to as 𝐿𝑖 . The range related information for each 𝐿𝑖  will be 

calculated in 𝑋𝑖𝑌𝑖𝑍𝑖 . Different types of errors need to propagate to and be compared in 𝑋0𝑌0𝑍0 which is convenient for 145 

retrieving wind fields.  

We stipulate that clockwise rotation satisfies the right-hand corkscrew rule. By rotating ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i

 about axis-𝑋, 𝑌 

and 𝑍, respectively, one can transform XYZ to 𝑋𝑖𝑌𝑖𝑍𝑖. It is worth mentioning that 𝑋𝑖𝑌𝑖𝑍𝑖 is non-unique because any rotation 

about axis-𝑋𝑖 can obtain another satisfactory 𝑋𝑖𝑌𝑖𝑍𝑖. Hence, ψ𝑥
X,i

 can be set to any value. Similarly, by rotating ψ𝑥
i,0

, 𝜓𝑦
𝑖,0

 

and 𝜓𝑧
𝑖,0

 about axis-𝑋, 𝑌 and 𝑍, respectively, one can transform 𝑋𝑖𝑌𝑖𝑍𝑖  to X0𝑌0𝑍0. To realize the coordinate transformation 150 

between these three coordinate systems, a coordinate rotation matrix 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧)  is introduced. Using 𝐴𝑅 , one can 

transform the coordinate point or vector presentation from one coordinate system to another. The details of the coordinate 

rotation matrix 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) can be found in Appendix (A.1). 
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2.3 Two types of measuring errors  

The analytical method of the spatial resolution for each radar link is the same. The difference between these radar links is only 155 

the value of the six coordinate rotation angles (ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and the baseline distance di. The 

spatial resolution related measurement errors which will cause location errors of the MTSP can be classified into two types: 

𝐸1  is caused by measurement errors at the receiver, and 𝐸2  is due to the pulse length. These two errors are mutually 

independent. Hence, the total error (𝐸𝑡𝑜𝑡𝑎𝑙) can be expressed as: 

Etotal
2 = E1

2 + E2
2 (2) 160 

𝐸1 is related to three indirect measuring errors. They are zenith, azimuth and radial distance measuring errors, denoted as 𝛿𝜃, 

𝛿𝜙 and 𝛿𝑅𝑠 respectively. In XYZ, 𝐸1 can be decomposed into three orthogonal error vectors using 𝛿𝜃, 𝛿𝜙 and 𝛿𝑅𝑠 (see 

figure 4(c)) which we now explain in more detail. PDMEs, i.e., 𝛿(ΔΨ1) and 𝛿(ΔΨ2),are caused by some practical factors, 

such as phase calibration mismatch and the fact that the specular point is not actually a point but is a few Fresnel zones in 

length. A meteor radar system calculates phase differences between different pairs of antennas though cross-correlations and 165 

then fits them to get the most likely AoAs. Therefore, the system needs to be assigned a tolerance value of 𝛿(ΔΨ1) and 

𝛿(ΔΨ2) . Different meteor radar systems have different AoA-fit algorithms and thus different AoA measuring error 

distributions. To analyse the spatial resolution for a SIMO meteor radar system as generally as possible and to avoid tedious 

error propagation at the receiving array, we start the error propagation from 𝛿(ΔΨ1) and 𝛿(ΔΨ2) and set them as constants. 

AoA measuring errors 𝛿𝜃 and 𝛿𝜙 can then be expressed as: 170 

δθ =
λ

2πD1

cosϕ

cosθ
δ(ΔΨ1) +

λ

2πD2

sinϕ

cosθ
 δ(ΔΨ2) (3) 

δϕ =
λ

2πD2

cosϕ

sinθ
δ(ΔΨ2) −

λ

2πD1

sinϕ

sinθ
δ(ΔΨ1)  (4) 

where 𝜆 is the radio wavelength, D1 and D2 are the length of the two orthogonal antenna arms, and 𝜃 and 𝜙 are the 

zenith angle and the azimuth angle, respectively. The details can be found in Appendix (A.2). It is worth noting that 𝛿𝜃 and 

𝛿𝜙 are not mutually independent. The expectation value of their product is not identical to zero unless 
𝐸(𝛿2(ΔΨ1))

𝐷1
2  is equal to 175 

𝐸(𝛿2(ΔΨ2))

𝐷2
2 .   

𝛿𝑅𝑠 can be expressed as a function of 𝛿𝑅, 𝛿𝜃 and 𝛿𝜙 as: 

𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙   (5)  
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𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) and 𝑓𝜙(𝜃, 𝜙) are the weighting functions of 𝛿𝑅𝑠. The details about the weighting function and deduction 

can be found in Appendix (A.3). Inspection of figure 4(c) indicates that 𝐸1 can be decomposed into three orthogonal error 180 

vectors in coordinate XYZ, denoted as  𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . These three vectors can be expressed in XYZ as: 

δRs ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = δRs(sinθcosϕ, sinθsinϕ, cosθ)
T  (6) 

Rsδθ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rsδθ(cosθcosϕ, cosθsinϕ,−sinθ)
T  (7) 

Rssinθδϕ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Rssinθδϕ(−sinϕ, cosϕ, 0)
T    (8) 

𝐸2 is related to the radio wave propagation path. A pulse might be reflected anywhere within a pulse length (see figure 4(b)). 185 

This causes a location error in the MTSP, represented as an error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗. D is the median point of the isosceles triangle 

ΔABC’s side BC. The representation of the error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ can be solved in 𝑋𝑖𝑌𝑖𝑍𝑖 by using geometrical relationships as:   

DA⃗⃗⃗⃗  ⃗= (
(𝟐−𝐚𝟏−𝐚𝟐)𝐱𝐢+𝐝𝐢(𝐚𝟐−𝟏)

𝟐
 ,  
(𝟐−𝐚𝟏−𝐚𝟐)𝐲𝐢

𝟐
 ,
(𝟐−𝐚𝟏−𝐚𝟐)𝐳𝐢

𝟐
)
𝐓

  (9) 

where S is the half pulse length and 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
. 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. di is the baseline length. (xi, 𝑦𝑖 , 𝑧𝑖) is the coordinate value of a 

MTSP (point A in figure 4) in 𝑋𝑖𝑌𝑖𝑍𝑖. More details can be found in Appendix (A4) 190 

2.4 Transformation to ENU coordinates  

Thus far, two types of errors in different coordinate systems have been introduced. Now they need to be transformed to ENU 

coordinates 𝑋0𝑌0𝑍0, in order to compare different radar links and to analyse the wind fields. E1 related error vectors, which 

are three orthogonal vectors 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and represented in XYZ as eq.(6)-(8), and need to be transformed 

from 𝑋𝑌𝑍 to 𝑋0𝑌0𝑍0.To project 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   towards axis-𝑋0, 𝑌0, 𝑍0 respectively, and reassemble them to 195 

form three new error vectors in axis-𝑋0, 𝑌0, 𝑍0 . Using the coordinate rotation matrix AR
(𝑋𝑌𝑍,𝑋0𝑌0𝑍0) = AR(Ψ𝑥

𝑖,0, Ψ𝑦
𝑖,0, Ψ𝑧

𝑖,0) ∙

𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) and eq.(6)-(8), the unit vectors of those three vectors can be represented in 𝑋0𝑌0𝑍0 as:  

(

X0
′ (δRs) X0

′ (δθ) X0
′ (δϕ)

Y0
′(δRs)

Z0
′ (δRs)

Y0
′(δθ)

Z0
′ (δθ)

Y0
′(δϕ)

Z0
′ (δϕ)

    ) = 𝐴𝑅
(𝑋𝑌𝑍, 𝑋0𝑌0𝑍0) ∙ (

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜙
0

    )                       (10) 

(X0
′ (δRs), Y0

′(𝛿𝑅𝑠), 𝑍0
′ (𝛿𝑅𝑠))

𝑇
, (𝑋0

′(𝛿𝜃), 𝑌0
′(𝛿𝜃), 𝑍0

′ (𝛿𝜃))
𝑇
, (𝑋0

′(𝛿𝜙), 𝑌0
′(𝛿𝜙), 𝑍0

′ (𝛿𝜙))
𝑇
 are unit vectors of 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in 𝑋0𝑌0𝑍0 respectively. The 3 × 3 matrix on the left hand side of the eq.(10) is denoted as Pij for i, j =200 

1,2,3. 

From eq.(6)-(8) and figure 4(c), we see that the length of those three vectors (the error values) are 𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙 as 

a function of δR, δθ, δϕ. In order to reassemble them to form new error vectors, transformation of 𝛿𝜃 and 𝛿𝜙 into two 

independent errors 𝛿(ΔΨ1) and 𝛿(ΔΨ2) is needed because 𝛿𝜃 and 𝛿𝜙 are not independent. Using eq. (3) and (4), one can 
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transform vector (𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙)𝑇  to three independent measuring errors 𝛿𝑅 , 𝛿(ΔΨ1)  and 𝛿(ΔΨ2) . And thus 205 

(𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙)
T can be expressed as: 

(

δRs
Rs𝛿𝜃

Rs𝑠𝑖𝑛𝜃𝛿𝜙
) = (

𝑓𝑅(𝜃, 𝜙) 𝑓𝜃(𝜃, 𝜙) 𝑓𝜙(𝜃, 𝜙)

0
0

𝑅𝑠
0

0
𝑅𝑠𝑠𝑖𝑛𝜃

    ) ∙

(

 
 

1 0 0

0

0

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙

𝐷1

−
𝜆

2𝜋
𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃𝐷1

𝜆

2𝜋

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜙

𝐷2
𝜆

2𝜋
𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜃𝐷2

    

)

 
 
∙ (

𝛿𝑅 

𝛿(𝛥𝛹1)

𝛿(𝛥𝛹2)
)                 (11) 

The product of the first and the second term on the right hand side of eq.(11) is a 3 × 3 matrix, denoted as Wij for i, j =

1,2,3 . From eq.(11), we see that the three error values 𝛿𝑅𝑠,  𝑅𝑠𝛿𝜃,  𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙  are the linear combinations of δR,

𝛿(𝛥𝛹1), and 𝛿(𝛥𝛹2)  with their corresponding linear coefficients W1j ,W2j ,  and W3j . Those three error values can be 210 

projected toward new directions (e.g., axis-𝑋0, 𝑌0, 𝑍0) by using Pij. It worth noting that in a new direction, a same basis’s 

projected linear coefficients from different error values should be used to calculate their sum of squares (SS). And then the 

square root of SS will be used as a new linear coefficient for that basis in the new direction. For example, in 𝑋0 directions, 

basis 𝛿(𝛥𝛹1)’s projected linear coefficients are X0
′ (𝛿𝑅𝑠)𝑊12, X0

′ (𝛿𝜃)W22 ,X0
′ (δϕ)W32 from 𝛿𝑅𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑅𝑠𝑠𝑖𝑛𝜃𝛿𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

respectively. Therefore, the new linear coefficient for 𝛿(𝛥𝛹1)  in the 𝑋0  direction is W
X0
′
δ(ΔΨ1) =215 

±√(X0
′ (𝛿𝑅𝑠)𝑊12)

2 + (X0
′ (𝛿𝜃)W22)

2 + (X0
′ (δϕ)W32)

2. Similarly, one can get δR and 𝛿(𝛥𝛹2)’s new linear coefficients in 

X0
′ , denoted as W

X0
′
δR  and W

X0
′
δ(ΔΨ2) . Thus, the true error value in the 𝑋0  direction is  W

X0
′
δR𝛿𝑅 +W

X0
′
δ(ΔΨ1)𝛿(𝛥𝛹1) +

W
X0
′
δ(ΔΨ2)𝛿(𝛥𝛹2). Because δR, 𝛿(𝛥𝛹1), and 𝛿(𝛥𝛹2) are mutually independent, E1 is related to the mean square error (MSE) 

values in the 𝑋0  direction, denoted as δ(1)𝑋0  and can be expressed as δ(1)𝑋0 =

 ±√( 𝑊
𝑋0
′
𝛿𝑅𝛿𝑅)

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹1)𝛿(𝛥𝛹1))

2

+ (𝑊
𝑋0
′
𝛿(𝛥𝛹2)𝛿(𝛥𝛹2))

2

.  220 

In short, E1  related errors in ENU coordinate’s three axis directions (denoted as δ(1)𝑋0,  𝛿(1)𝑌0 𝑎𝑛𝑑 𝛿(1)𝑍0 ) can be 

expressed in the form of a matrix as: 

(

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) =  𝑃𝑖𝑗
2 ∙ 𝑊𝑖𝑗

2 ∙ (
𝛿2𝑅 

𝛿2(𝛥𝛹1)

𝛿2(𝛥𝛹2)
)   (12) 

𝑇ℎ𝑒 𝐸2  related error vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ needs transformation from 𝑋𝑖𝑌𝑖𝑍𝑖  to 𝑋0𝑌0𝑍0 . Therefore, 𝐸2  related errors in the ENU 

coordinate’s three axis directions (denoted as δ(2)𝑋0,  𝛿(2)𝑌0 𝑎𝑛𝑑 𝛿(2)𝑍0) can be expressed in the form of a matrix as: 225 

(

δ(2)𝑋0
𝛿(2)𝑌0
𝛿(2)𝑍0

) = ±𝐴𝑅(Ψ𝑥
𝑖,0, Ψ𝑦

𝑖,0, Ψ𝑧
𝑖,0) ∙ DA⃗⃗⃗⃗  ⃗   (13) 
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E1  and E2  are mutually independent. By using eq.(1), the total MSE values in ENU coordinate’s three axis directions 

(denoted as δtotal𝑋0, δtotal𝑌0 and δtotal𝑍0) can be expressed in the form of matrix as: 

(

δtotal
2 𝑋0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑌0
𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0

)  =  (

𝛿(1)
2 𝑋0

𝛿(1)
2 𝑌0

𝛿(1)
2 𝑍0

) + (

δ(2)
2 𝑋0

𝛿(2)
2 𝑌0

𝛿(2)
2 𝑍0

)   (14) 

In conclusion, for a radar link 𝐿𝑖 and a MTSP represented as (x0, y0, z0) in the ENU coordinate system 𝑋0𝑌0𝑍0, as 230 

sketched in figure 4(a), the location errors of this point in east, north and up directions (±δtotal𝑋0, ±δtotal𝑌0 and 

±δtotal𝑍0) can be calculated as follows: firstly, for a point (x0, y0, z0) in X0
′ Y0

′Z0
′ , use AR to transform it to 𝑋𝑖𝑌𝑖𝑍𝑖 and 

denote it as (xi, yi, zi). Then in 𝑋𝑖𝑌𝑖𝑍𝑖 calculate the AoA (θ and ϕ) and the range information (Rs and Ri). Details of 

AoA and range calculation can be found in Appendix (A.5). It’s worth noting that the AoA is given by the angles relative to 

the axes of XYZ. Secondly, in XYZ using the AoA and eq.(3)-(8) to calculate E1’s three orthogonal error vectors shown in 235 

figure 4(c); in 𝑋𝑖𝑌𝑖𝑍𝑖 use the range information and eq.(9) to calculate E2’s error vector DA⃗⃗⃗⃗  ⃗ as shown in figure 4(b). 

Thirdly, project E1’s three error vectors to 𝑋0𝑌0𝑍0 by using eq.(10) and use eq.(11)-(12) to reassemble them to calculate 

E1 related MSE values in the direction of 𝑋0, 𝑌0, 𝑍0; use eq.(13) to transform the E2 error vector from 𝑋𝑖𝑌𝑖𝑍𝑖 to 𝑋0𝑌0𝑍0. 

Finally, use eq. (14) to get the total location errors of a MTSP in (x0, y0, z0). Figure 5(a) shows the flow chart for the 

process we have just described. 240 

3 Results and Discussion 

The program to study the method we have described above is written in the python language and is presented in the supplement. 

To calculate a special configuration of a multistatic radar system, we initially need to set six coordinate transformation angles 

(ψ𝑥
X,i

, 𝜓𝑦
𝑌,i

 and 𝜓𝑧
𝑍,i; ψ𝑥

i,0
, 𝜓𝑦

𝑖,0
 and 𝜓𝑧

𝑖,0
) and the baseline length 𝐝𝐢 for each radar link 𝐿𝑖 . For example; ψ𝑥

i,0 = 𝜓𝑦
𝑖,0 = 0, 

𝜓𝑧
𝑖,0

= 30° and di = 250𝑘𝑚 means that transmitter Ti is 250 km, 30° east by south of the receiver RX; Further, ψx
X,i =245 

5°, 𝜓𝑦
𝑌,i = 0,𝜓𝑧

𝑍,i = 0 means one receiver arm (axis-Y) points to east by north 60° with 5° elevation. The detection area of 

interest for a multistatic meteor radar is usually from 70 km to 110 km in height and around 300km×300km in the horizontal. 

In our program, this area needs to be divided into a spatial grid for sampling. The default value of the sampling grid length is 

1 km in height and 5 km in the meridional and zonal directions, respectively. After selecting the desired settings, the program 

steps though the sampling grid nodes and calculates the location errors at each node as described in figure 5(a). Figure 5(b) 250 

describes the parameter settings and the transversal calculation process. For a given setting of radar link Li, the program will 

output the squared values of E1  related, E2  related and total MSE (𝐸𝑡𝑜𝑡𝑎𝑙
2 : δtotal

2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑍0 ; 𝐸1
2 :  𝛿(1)

2 𝑋0 , 

𝛿(1)
2 𝑌0 , 𝛿(1)

2 𝑍0; 𝐸2
2: 𝛿(2)

2 𝑋0 , 𝛿(2)
2 𝑌0 , 𝛿(2)

2 𝑍0). The location errors can be positive or negative and thus the spatial resolutions 

are twice the absolute value of the location errors. For an example, see figure 5(c). For a detected MTSP represented as 
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(x0, 𝑦0, 𝑧0) in 𝑋0𝑌0𝑍0, with δtotal
2 𝑋0 , 𝛿𝑡𝑜𝑡𝑎𝑙

2 𝑌0 , 𝛿𝑡𝑜𝑡𝑎𝑙
2 𝑍0 equal to 25, 16 and 9 km2, respectively, the actual position of the 255 

MTSP could occur in an area which is ±5 km,±4 km,±3 km around (x0, 𝑦0 , 𝑧0) with equal probability. Consequently, 

the zonal, meridional and vertical resolutions are 10 km, 8 km and 6 km respectively.           

The HM analyses the vertical resolution (corresponding to 𝛿𝑍0  in our paper) in a 2-dimensional vertical section 

(corresponding to the 𝑋0𝑍0 plane in our paper). To compare with Hocking’s work, 𝜓𝑧
𝑖,0

 is set to 180°, and the other five 

coordinate transformation angles are all set to zero with d equal to 300 km. The half pulse length S is set to 2 km and 260 

𝛿(ΔΨ1) to 35°. Calculating in the 𝑋0𝑌0 plane only should have degraded our method into Hocking’s 2-dimensional analysis 

method, but doesn’t because the HM method ignores 𝛿𝑅𝑠. In fact, the HM considers only 𝐸2 and 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the 𝑋0𝑌0 plane. 

Consequently, we need to further set 𝑓𝑅(𝜃, 𝜙), 𝑓𝜃(𝜃, 𝜙) and 𝑓𝜙(𝜃, 𝜙) to be zero. When this is done, our method degrades 

into the HM. Hocking’s results are shown as the absolute value of vertical location error normalized relative to the half pulse 

width |𝛿𝑍0|/𝑆. Hereinafter, |𝐸|/𝑆 is referred to as the normalized spatial resolution such as 𝛿(1)𝑋0 and 𝛿𝑡𝑜𝑡𝑎𝑙𝑌0, where E 265 

represents the location errors in a direction. Thus, the spatial resolutions are 2𝑆 times the normalized spatial resolutions.  

Our normalized vertical resolution distributions are shown in figure 6(a) and are the same as those presented in Hocking’s 

work (Hocking, 2018). The distribution of  𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ related, 𝐸2 related, and total normalized vertical resolution distributions 

are shown in figure 6 from left to right, respectively. In most cases, 𝐸2 is an order of magnitude smaller than 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Only in 

the region directly above the receiver does 𝐸2 have the same magnitude as 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. In other words, only in the region directly 270 

above the receiver can 𝐸2 influence the total resolution. E2 is related to the bistatic configuration, but 𝑅𝑠𝛿𝜃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is not. Therefore, 

in the HM, the distribution of the total vertical resolution varies slightly with d. After adding the error term 𝛿𝑅𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗, which is 

related to the bistatic configuration, the normalized total vertical spatial resolution distribution changes more obviously with 

d, as figure 7’s first two rows show. The region between the two black lines represents the sampling volume for the receiver 

where the elevation angle is beyond 𝟑𝟎°. As the transmitter/receiver distance become longer, resolutions in this sampling 275 

volume are not always acceptable. In figure 7’s first row, the transmitter/receiver distance is 300 km and about half of the 

region between two black line have normalized vertical resolution values larger than 3 km. Because our analytical method can 

obtain spatial resolutions in 3-dimensional space, figure 7’s third row shows a perspective to the horizontal section at 90 km 

altitude for figure 7’s second row.  

To get a perspective on the spatial resolution distribution in 3-dimensional space, figure 8 shows the normalized zonal, 280 

meridional and vertical spatial resolution distributions for a multistatic radar link whose transmitter/receiver separation is 180 

km and the transmitter is south by east 30° of the receiver. The classic monostatic meteor radar is a special case of a multistatic 

meteor radar system whose baseline length is zero. By setting the transmitter/receiver distance to be zero in our program, a 

monostatic meteor radar’s spatial resolution can also be obtained. In this case, the spatial resolution distributions are highly 

symmetrical and correspond to the real characteristics of monostatic meteor radar (this is not shown here, but can be found in 285 

supplement SF1). In the discussion above, the receiver and transmitter antennas are all coplanar. By varying ψ𝑥
X,i

, 
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𝜓𝑦
𝑌,i and ψ𝑧

Z,i
 in our program, non-coplanar receiver/transmitter-antennas situations can also be studied. Slightly tilting the 

receiver horizontal plane (for example, set ψ𝑥
X,i

=𝜓𝑦
𝑌,i = 5°) causes the horizontal spatial distributions to change (see SF2 and 

SF3 in the supplement). In practice, the Earth’s curvature and local topography will lead to tilts in the receiver horizontal plane. 

This kind of tilt should be taken into account for multistatic meteor radar systems and details relating to the parameter selections 290 

for this can be found in the supplement. 

The AoA error propagation process has been simplified to yield eq.(3)-(4) by using constant PDMEs. This is for the sake of 

providing the most general example of our method. If the analysis of AoA errors were to start from the original received 

voltage signals (e.g., Vaudrin et al., 2018), the error propagation process would depend on the specific receiver interferometer 

configuration and the specific signal processing method. The approach used here can be applied to different receiver antenna 295 

configurations or new signal processing algorithms. This would involve substitution of 𝛿(ΔΨ1) and 𝛿(ΔΨ2) into other 

mutually independent measuring errors to suit the experimental arrangement and then establishing a new AoA error 

propagation to obtain 𝛿𝜃 and 𝛿𝜙. This means rewriting the second and third term in eq. (11) to the determine a new AoA 

error propagation matrix and new mutually independent measuring errors, respectively.  

It worth noting that except for using the PDMEs as the start of the error propagation, all the analytical processes are built on 300 

mathematical error propagations. PDMEs include uncontrolled errors, such as those resulting from the returned wave being 

scattered from a few Fresnel zones along the meteor trail, phase calibration inaccuracy, and noise. However, there are other 

error sources in practice. For example, aircraft or lightning interference and fading clutter from obstacles can cause further 

measurement errors in the AoA. These issues are related to actual physical situations and beyond the scope of this text.  

Knowing the valid observational volume for meteor detections and the errors associated with each detection is vital for a 305 

meteor radar system as it determines which meteors can be used to calculate wind velocities and also the uncertainties 

associated with the winds themselves. To reduce the influence of mutual antenna coupling or ground clutter, the elevation 

angle of a detection should be above a threshold, and 30° is typically used, and this sets the basic valid observational volume. 

Within this, the normalised vertical resolution varies, and in Figure 7 and SF4 in the supplement, only the areas of normalized 

vertical resolution with values below 3 km are shown, which we argue represents an acceptable sampling volume. In addition, 310 

as the transmitter/receiver distance increases, the sampling volume becomes smaller and the vertical resolution in this volume 

is reduced. This effect limits the practically usable transmitter/receiver distances for multistatic meteor radars.  

The geometry of the multistatic meteor radar case also impacts on the ability of the radar to measure the Doppler shifts 

associated with drifting meteor trails within the observational volume. This is because the measured Doppler shift is produced 

by the component of the wind field in the direction of the Bragg Vector, which in the multistatic configuration is divergent 315 

from the receiver’s line of sight (see e.g., Spargo et al., 2019). The smaller the angle between the Bragg vector and the wind 

fields, the larger is the Doppler shift (and the higher the SNR). This means that within the observational volume, the angular 

diversity of the Bragg vector should both be taken into account in the wind retrieval process. A discussion of wind retrievals 

is beyond the scope of this text and will be considered in future work. 
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4 Conclusion 320 

In this study, we have presented preliminary results from an analytical error method analysis of multistatic meteor radar system 

measurements of angles of arrival. The method can calculate the spatial resolution (the spatial uncertainty) in the zonal, 

meridional and vertical directions for an arbitrary receiving antenna array configuration in three-dimensional space. A given 

detected MTSP is located within the spatial resolution volume with an equal probability. Higher values of spatial resolution 

mean that this region needs more meteor counts or longer averaging to obtain a reliable accuracy. Our method shows that the 325 

spatial configuration of a multistatic system will greatly influence the spatial resolution distribution in ENU coordinates and 

thus will in turn influence the retrieval accuracy of atmospheric parameters such as the wind field. The multistatic meteor radar 

system’s spatial resolution analysis is a key point in analysing the accuracy of retrieved wind and other parameters. The 

influence of the spatial resolution on wind retrieval will be discussed in future work.  

Multistatic radar systems come in many types, and the work in this paper considers only single-input (single-antenna 330 

transmitter) and multi-output (5-antenna interferometric receiver) pulse radar systems. Although the single-input multi-output 

(SIMO) pulse meteor radar is a classic meteor radar system, other meteor radar systems, such as continuous wave radar systems 

and MISO (multiple-antenna transmitter and single-antenna receiver) also show good experimental results. Using different 

types of meteor radar systems to constitute a meteor radar network is the future trend and so we will add the spatial resolution 

analysis of other system types using our method in the future. We will also validate and apply the spatial resolution analysis 335 

in the horizontal wind determination to a multistatic meteor radar system that will be soon be installed in China. 

 

Code availability. The program to calculate the 3D spatial resolution distributions is available in the supplement.  
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Appendix 

A.1 Coordinates rotation matrix 

For a right-handed rectangular coordinate system 𝑋𝑌𝑍, we rotate clockwise Ψ𝑥 about the axis-x to obtain a new coordinate. 

We specify that clockwise rotation satisfies in the right-hand screw rule. A vector in 𝑋𝑌𝑍, denoted as (𝑥, 𝑦, 𝑧)𝑇 , is represented 410 

as (𝑥′, 𝑦′, 𝑧′)𝑇 in the new coordinate. The relationship between (𝑥, 𝑦, 𝑧)𝑇 and (𝑥′, 𝑦′, 𝑧′)𝑇 is: 

(
𝑥′

𝑦′

𝑧′
) = 𝐴𝑥(𝜓𝑥) (

𝑥
𝑦
𝑧
) = (

1 0 0
0 𝑐𝑜𝑠𝜓𝑥 𝑠𝑖𝑛𝜓𝑥
0 −𝑠𝑖𝑛𝜓𝑥 𝑐𝑜𝑠𝜓𝑥

)(
𝑥
𝑦
𝑧
)   (A1.1)   

Similarly, we rotate clockwise Ψ𝑦 about the axis-y to obtain a new coordinate. The presentation for a vector in new coordinates 

and the original can be linked by a matrix, 𝐴𝑦(𝜓𝑦): 

𝐴𝑦(𝜓𝑦) = (

𝑐𝑜𝑠𝜓𝑦 0 −𝑠𝑖𝑛𝜓𝑦
0 1 0

𝑠𝑖𝑛𝜓𝑦 0 𝑐𝑜𝑠𝜓𝑦

)                                                                 (A1.2) 415 

we rotate clockwise Ψ𝑧 about axis-z to obtain a new coordinate. The presentation for a vector in new coordinates and original 

can be linked by a matrix 𝐴𝑧(𝜓𝑧): 

 𝐴𝑧(𝜓𝑧) = (−
𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑧 0
𝑠𝑖𝑛𝜓𝑧 𝑐𝑜𝑠𝜓𝑧 0
0 0 1

)       (A1.3) 
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For any two coordinate systems 𝑋𝑌𝑍 and 𝑋′𝑌′𝑍′ with co-origin, one can always rotate clockwise Ψ𝑥, Ψ𝑦  and 𝜓𝑧 in order 

of axis-X, Y, Z respectively, transforming 𝑋𝑌𝑍 to 𝑋′𝑌′𝑍′ (figure A.1). The presentation for a vector in 𝑋′𝑌′𝑍′ and 𝑋𝑌𝑍 420 

can be linked by a matrix, 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧): 

𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) = 𝐴𝑧(𝜓𝑧)𝐴𝑦(𝜓𝑦)𝐴𝑥(𝜓𝑥) =

  (

𝑐𝑜𝑠𝜓𝑦𝑐𝑜𝑠𝜓𝑧 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑧 −𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑐𝑜𝑠𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑧
−𝑐𝑜𝑠𝜓𝑦𝑠𝑖𝑛𝜓𝑧 −𝑠𝑖𝑛𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑐𝑜𝑠𝜓𝑥𝑐𝑜𝑠𝜓𝑧 𝑐𝑜𝑠𝜓𝑥𝑠𝑖𝑛𝜓𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑧

𝑠𝑖𝑛𝜓𝑦 −𝑠𝑖𝑛𝜓𝑥𝑐𝑜𝑠𝜓𝑦 𝑐𝑜𝑠 𝜓𝑥𝑐𝑜𝑠𝜓𝑦

)  (A1.4) 

We call 𝐴𝑅(𝜓𝑥 , 𝜓𝑦 , 𝜓𝑧) the coordinates rotation matrix.      

A.2 AoA measuring errors 425 

In coordinate 𝑋𝑌𝑍, AoAs includes zenith angle 𝜃 and azimuth angle 𝜙. In the plane wave approximation, the radio wave is 

at angle 𝛾1 and 𝛾2 with an antenna array (figure A.2). There is a phase difference ΔΨ1 and ΔΨ2 between two antennas 

(figure 1). See figure 1, ΔΨ1 and ΔΨ2 can be expressed as: 

ΔΨ1 =
2𝜋𝐷1𝑐𝑜𝑠𝛾1

𝜆
     (A2.1) 

ΔΨ2 =
2𝜋𝐷2𝑐𝑜𝑠𝛾2

𝜆
  (A2.2) 430 

Using 𝛾1, 𝛾2 the AoA can be expressed as: 

cos2 𝛾1 + cos
2 𝛾2 + cos

2 𝜃 = 1   (A2.3) 

𝑡𝑎𝑛𝜙 =
𝑐𝑜𝑠𝛾2

𝑐𝑜𝑠𝛾1 
   (A2.4) 

Or in another expression: 

cosγ1 = sinθcosϕ   (A2.5) 435 

cosγ2 = sinθsinϕ     (A2.6) 

substitute 𝑐𝑜𝑠𝛾1 and 𝑐𝑜𝑠𝛾2 in (A2.3) and (A2.4) by using (A2.1) and (A2.2): 

cos2𝜃 = 1 − (
λ

2π
)
2

(
Δ2Ψ1

𝐷1
2 +

Δ2Ψ2

𝐷2
2 )   (A2.7) 

ln(tan𝜙) = ln(𝐷1ΔΨ2) − ln(𝐷2𝛥𝛹1)    (A2.8) 

(A2.7) and (A2.8) link the phase difference with the AoA and expanding 𝜃 and 𝜙, ΔΨ1 and ΔΨ2 to first order: 440 

2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝛿𝜃 = (
𝜆

2𝜋
)
2

[
2ΔΨ1𝛿(ΔΨ1)

𝐷1
2 +

2ΔΨ2𝛿(ΔΨ2)

𝐷2
2 ]  (A2.9) 
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𝛿𝜙 =
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ2
𝛿(ΔΨ2) −

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

ΔΨ1
𝛿(ΔΨ1)  (A2.10)  

For (A2.9) and (A2.10), substitute ΔΨ1 and ΔΨ2 using (A2.1), (A2.2) and (A2.5), (A2.6) to the functions of 𝜃, 𝜙. Now, eq. 

(3) and eq. (4) have been proven. If the zenith angle θ = 0°, we stipulate that 
cosϕ

sinθ
 and 

sinϕ

sinθ
 are 1.                                              

A.3 Radial distance measuring error 445 

Expand 𝑅𝑠, 𝑅 and 𝑐𝑜𝑠𝛼 in eq.(1) to first order, δRs can be expressed as a function of δR and δ(cosα): 

δRs =
R2−2Rdcosα+d2

2(R−dcosα)2
 δR +

d(R2−d2)

2(R−dcosα)2
δ(cosα)    (A3.1) 

𝛼  is the angle between 𝑅𝑠  and axis-𝑋𝑖 . We denote the zenith and azimuth angles in coordinate-𝑋𝑖𝑌𝑖𝑍𝑖  as 𝜃′ and 𝜙′, 

respectively. And the relationship between 𝛼 and 𝜃′, 𝜙′ is 

𝑐𝑜𝑠𝛼 =  𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′    (A3.2) 450 

Using coordinates rotation matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

), 𝑠𝑖𝑛𝜃′𝑐𝑜𝑠𝜙′ can be expressed as the function of AoA: 

sinθ′cosϕ′ = A11sinθcosϕ + A12sinθsinϕ + A13cosθ                                                   

(A3.3) 

𝐴𝑖𝑗  are represent the elements in matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i
,𝜓𝑧
𝑍,i

) for 𝑖, 𝑗 = 1,2,3.  

Using (A3.2) and (A3.3), δ(cosα) can be expressed as a function of 𝛿𝜃 and 𝛿𝜙 as: 455 

δ(cosα) = (A11cosθcosϕ + A12cosθsinϕ − A13sinθ)δθ + (−A11sinθsinϕ + A12sinθcosϕ)δϕ                (A3.4) 

Finally, δRs can be expressed as the function of 𝛿𝑅, 𝛿𝜃, 𝛿𝜙 as: 

𝛿𝑅𝑠 = 𝐹(𝛿𝑅 , 𝛿𝜃 , 𝛿𝜙) = 𝑓𝑅(𝜃, 𝜙)𝛿𝑅 + 𝑓𝜃(𝜃, 𝜙)𝛿𝜃 + 𝑓𝜙(𝜃, 𝜙)𝛿𝜙                                 (A3.5) 

For: 

𝑓𝑅(𝜃, 𝜙) =
𝑑2+𝑅2 −2𝑅𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                             (A3.6) 460 

𝑓𝜃(𝜃, 𝜙) =
𝑑(𝑅2−𝑑2)(𝑨𝟏𝟏𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝝓+𝑨𝟏𝟐𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝝓−𝑨𝟏𝟑𝒔𝒊𝒏𝜽)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                            (A3.7) 

𝑓𝜙(𝜃, 𝜙) =  
𝑑(𝑅2−𝑑2)(−𝑨𝟏𝟏𝒔𝒊𝒏𝜽𝒔𝒊𝒏𝝓+𝑨𝟏𝟐𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝓)

2[𝑅−𝑑(A11sin𝜃𝑐𝑜𝑠𝜙+𝐴12𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝐴13𝑐𝑜𝑠𝜃)]
2                                           (A3.8) 



17 

 

A.4 True error of 𝑬𝟐 

See figure 4 (b); the total length of side AC and side AB represents the pulse width. Side AC equals side CB and they are both 

equal to half of the pulse width S. In 𝑋𝑖𝑌𝑖𝑍𝑖, the presentation of point A is (xi, yi, zi), the receiver is (0,0,0) and 𝑇𝑖  is (d,0,0). 465 

The distance between 𝑇𝑖  and A is 𝑅𝑖 = 𝑅 − 𝑅𝑠. We denote that the presentation of point B and C in 𝑋𝑖𝑌𝑖𝑍𝑖 as (𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵) 

and (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶), respectively. We use vector collinear to establish equations for B and C. Therefore, one can obtain the 

coordinates of point B and C by the following equations: 

(𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵)
𝑇 =

𝑅𝑠−𝑆

𝑅𝑠
 (𝑥i, 𝑦i, 𝑧i)

𝑇     (A4.1) 

(𝑥𝐶 − 𝑑, 𝑦𝐶 , 𝑧𝐶)
𝑇 =

𝑅i−𝑆

𝑅i
 (𝑥i − 𝑑, 𝑦i, 𝑧i)

𝑇                                                  (A4.2)   470 

For isosceles triangle ABC, the perpendicular line AD intersects side CB at the midpoint D. Then, we obtain the coordinate 

value of D in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 

 (xD, yD, zD) =
1

2
(xB + xc, yB + yc, zb + zc) =

1

2
((a1 + a2)xi − a2d + d, (a1 + a2)yi, (a1 + a2)zi)  (A4.3) 

We denote 𝑎1 =
𝑅𝑠−𝑆

𝑅𝑠
, 𝑎2 =

𝑅𝑖−𝑆

𝑅𝑖
. Finally, one can obtain the error vector of E2 as vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗ in 𝑋𝑖𝑌𝑖𝑍𝑖: 

𝑫𝑨⃗⃗⃗⃗⃗⃗ = (
(𝟐−𝒂𝟏−𝒂𝟐)𝒙𝐢+𝒅(𝒂𝟐−𝟏)

𝟐
 ,  
𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒚𝐢 ,

𝟐−𝒂𝟏−𝒂𝟐

𝟐
𝒛𝐢)

𝑻

     (A4.4) 475 

 

A.5 Calculate AoA and range information in 𝑿𝒊𝒀𝒊𝒁𝒊 

For a space point (xi, yi, zi) in 𝑋𝑖𝑌𝑖𝑍𝑖 which represents a MTSP, Rs can be solved easily as: 

Rs⃗⃗⃗⃗ = (xi, yi, zi)   

Rs = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                             (A6.1) 480 

The distance between transmitter Ti and receiver RX is di as shown in figure 4(a). Thus, the coordinate value of Ti in 

𝑋𝑖𝑌𝑖𝑍𝑖 is (di, 0,0) and Ri can be solved as: 

Ri = √(𝑥𝑖 − 𝑑𝑖)
2 + 𝑦𝑖

2 + 𝑧𝑖
2                                                                       (A6.2) 

Before we calculate the AoAs in 𝑋𝑖𝑌𝑖𝑍𝑖, the representation of unit vectors of axis-X, Y, Z in 𝑋𝑖𝑌𝑖𝑍𝑖 needs to be known. In 

XYZ  those unit vectors are easily represented as (1,0,0)T , (0,1,0)T , (0,0,1)T . Though the coordinate rotation matrix 485 

𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i), one can get those unit vector’s representation in 𝑋𝑖𝑌𝑖𝑍𝑖 as: 

𝑛𝑥⃗⃗⃗⃗ = (𝐴11, 𝐴21, 𝐴31)
𝑇    
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𝑛𝑦⃗⃗ ⃗⃗  = (𝐴12, 𝐴22, 𝐴32)
𝑇  

𝑛𝑧⃗⃗⃗⃗ = (𝐴13, 𝐴23, 𝐴33)
𝑇                                                                              (A6.3) 

𝑛𝑥⃗⃗⃗⃗ , 𝑛𝑦⃗⃗ ⃗⃗  and 𝑛𝑧⃗⃗⃗⃗  are unit vectors of Axis-X, Y, Z respectively, and Aij are the elements a 3 × 3 matrix 𝐴𝑅(ψ𝑥
X,i, 𝜓𝑦

𝑌,i,𝜓𝑧
𝑍,i) 490 

for 𝑖, 𝑗 = 1,2,3. Now the AoA can be obtained as: 

cos 𝜃 =
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙ 𝑛𝑧⃗⃗⃗⃗                                                                                    (A6.4) 

sinθ = √1 − cos2 𝜃                                                                               

(A6.5) 

cos 𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑥⃗⃗ ⃗⃗  ⃗

sin𝜃
                                                                                 495 

(A6.6) 

sin𝜙 =  
𝑅𝑠⃗⃗ ⃗⃗  

𝑅𝑠
∙
𝑛𝑦⃗⃗ ⃗⃗  ⃗

sin 𝜃
                                                                                 (A6.7) 

For 0° < θ < 180° and 0° ≤ ϕ < 360°. When θ = 0° , we handle it as same as in Appendix (A.2). 
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Figure 1：Schematic diagram of the simplified bistatic configuration used in Hocking’s vertical resolution analysis (Hocking, 2018). 505 
The two receiving antennas and the transmitting antenna are collinear. The analysis is in a 2-dimensional vertical section through 

the baseline joining the antennas. The radio wave is scattered from a few Fresnel zones of several kilometres’ length around the 

specular point on the meteor trail and received by the receiving antennas. The cross-correlation analysis between the receiving 

antennas can be used to solve for the AoAs. Because the radio wave is reflected from a region a few Fennel zones in length the 

measured phase difference between the receiver antenna pairs to deviates from the ideal phase difference. This deviation from the 510 
ideal phase difference is one of the error sources in the PDME. In this work, we solve for the ideal phase difference associated with 

the AoA directed to the MTSP.  
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Figure 2: Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three 520 
transmitters (𝑻𝟏, 𝑻𝟐 𝒂𝒏𝒅 𝑻𝟑) and one receiver (𝑹𝑿) in the picture. The transmitter/receiver distance is typically 100-200 km. 𝑿𝟎,
𝒀𝟎, 𝒁𝟎 represents the east, north and up directions of the receiving antenna. Over 𝟗𝟎% of the received energy comes from about 

one kilometre around the specular point of the meteor trail, which is slightly less than the length of the central Fresnel zone (Ceplecha 

et al., 1998).   
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Figure 3: (a) Schematic diagram of the three coordinate systems used in this work. 𝑿𝒊𝒀𝒊𝒁𝒊 are a class of coordinate systems whose 540 
axis-𝑿𝒊  points to transmitter I, with, i = 1,2,3. 𝑿𝟎𝒀𝟎𝒁𝟎  is the ENU coordinate system to which all errors are compared. (b) 

Magnified plot of the receiving array. 𝑿𝒀𝒁 is fixed on the receiver horizontal plane. Axis-X and Y are collinear with the two arms 

of the antenna array. 
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Figure 4: (a) Schematic diagram of the forward scatter geometry for the radar link between 𝑻𝒊 and 𝑹𝑿. Point-A is the MTSP. (b) 555 

Magnified plot of specular point A. The red line represents a radio wave pulse, and S is the half pulse length. 𝒌𝒃⃗⃗ ⃗⃗   is the Bragg vector 

which halves the forward scatter angle 𝜷. (c) Schematic diagram of 𝑬𝟏 in 𝑿𝒀𝒁, which can be decomposed into three orthogonal 

vectors. 
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Figure 5: (a) the flow chart of the location error calculation process for a point in 𝐗𝟎𝒀𝟎𝒁𝟎. The notation beside arrows represent 570 

the corresponding equations (black) or coordinate rotation matrix (blue) in the paper. “” is the Hadamard product. Thus 𝐄𝟐𝑬𝟐 

will yield (𝛅(𝟐)
𝟐 𝑿𝟎, 𝜹(𝟐)

𝟐 𝐘𝟎, 𝜹(𝟐)
𝟐 𝐙𝟎)

𝐓
. (b) the flow chart of the program to calculate the location errors distributions for a radar link 

𝑳𝒊. This process includes parameters settings for a radar link; the generation of the sampling grid nodes and the traversing of all the 

nodes. For each node, the program uses the calculation method described in (a). MC is the multistatic configuration, IC is the 

interferometer (receiving antenna) configuration. (c) Schematic diagram of the relationship between the spatial resolution and the 575 

total location errors of the MTSP. For a detected point in space, the MSE of MTSP’s location errors is ±|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎|, ±|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎|, 

±|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎| in the zonal, meridional and vertical directions, respectively. This means that the actual specular point might occur in 

a region which forms a 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝑿𝟎| × 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒀𝟎| × 𝟐|𝜹𝒕𝒐𝒕𝒂𝒍𝒁𝟎| cube and the detected point is on the centroid of this cube.     
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 585 

Figure 6：the normalized vertical resolution distribution in a vertical section from 50 km to 120 km height when the error term 

“𝜹𝑹𝒔 ” is ignored. Panels (a), (b), and (c) are the total, 𝐑𝐬𝜹𝜽  related, and 𝐄𝟐  related normalized resolution distributions, 

respectively. These results are the same as those produced in Hocking’s work (Hocking, 2018). The two black arrows represent the 

positions right above the transmitter (Tx) and the receiver (Rx) and the transmitter/receiver separation is 300 km. The region 

between the two black oblique lines is the sampling volume for the receiving array because the elevation angle is beyond 𝟑𝟎° to 590 
reduce influence from potential mutual antenna coupling or from other obstacles in the surrounding area. Except the region at large 

elevation angles (i.e., 𝟗𝟎°), the 𝐄𝟐  related resolution values are much lower than the 𝐑𝐬𝜹𝜽 related errors. The 𝐑𝐬𝜹𝜽 related 

resolution distribution depends only on the receiving antennas. Thus, the total vertical resolution distribution is nearly unchanged 

with the variation of the transmitter/receiver distance. Normalized resolution values that exceed 3 km (which correspond 12 km 

vertical resolution) are not shown.       595 
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Figure 7：the normalized vertical resolution distribution using the analytical method described in this paper. The first and second 

rows represent a vertical section of height from 50 km to 120 km. The third row represents the horizontal section at 90 km and the 

receiving array is at the origin with positive coordinate values representing the eastward or northward directions, respectively. The 610 
first row has the same parameters settings as Figure 6 and is used to compare with Figure 6. The 𝐄𝟏 related resolution will change 

with the transmitter/receiver configuration because it considers the error term “𝜹𝑹𝒔”. Thus, the total vertical resolution will change 
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with the transmitter/receiver configuration. With the transmitter/receiver distance varying from 300 km (the first row) to 150 km 

(the second row), the total vertical resolution distribution is clearly changed. The third row is the perspective to the horizontal section 

at 90 km altitude for the second row. Normalized resolution values that exceed 3 km are not shown.  615 

 

 

 

 

 620 

 

 

Figure 8： the 3D contour plot of the normalized resolution distribution for a multistatic radar link whose baseline length is 180 km 

and whose transmitter is south by east 𝟑𝟎° of the receiver. The black dots represent the position right above the transmitter and 

the receiving array is at the origin of the axes. (a), (b) and (c) are the normalized resolution distributions in the zonal, meridional 625 
and vertical directions, respectively. The subplot’s four slice circles from bottom to top are the horizontal section in 50 km, 70 km, 

90 km and 110 km height, respectively. The region whose elevation angle of the receiver is less than 𝟑𝟎° is not shown and therefore 

the slice circles become larger from the bottom to the top. Normalized resolution values that exceed 4 km (which corresponds to 16 

km resolution) are not shown.  
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Figure A.1 
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Figure A.2 The receiving array geometry (only three antennas are shown for clarity) 

 


