
Page 1 of 7

3D spatial error distrubution for multistatic meteor radar.py

-*- coding: utf-8 -*-
"""
Created on Fri May 29 21:33:16 2020

@author: zhongwei
"""
import numpy as np
from pylab import *

################Function##############

caculating δR
def Get_dR(R):
 R_loop = int((R - d)/ndR)
 d_R = dR_time + R_loop*ndR

return d_R

caculationg angele of arrive (AOA) for a piont in 𝑋1Y1Z1
def AOA(Rt):

#𝜃
 cos_theta = Rt.T*n_z/len_Rt
 sin_theta = np.sqrt(1-cos_theta**2)

#𝜙
if sin_theta == 0:

 cos_phi = np.array([[1/len_Rt]])
 sin_phi = np.array([[1/len_Rt]])

else:
exception for 0 zenith

 cos_phi = Rt.T*n_x/len_Rt/sin_theta
 sin_phi = Rt.T*n_y/len_Rt/sin_theta

return [cos_theta[0,0],sin_theta[0,0],cos_phi[0,0],sin_phi[0,0]]

input 3 rotation angle in degree
output rotation matrix
def CTM_Rotate(phi_x,phi_y,phi_z):
 x = phi_x*np.pi/180
 y = phi_y*np.pi/180
 z = phi_z*np.pi/180

 a_11 = np.cos(y)*np.cos(z)
 a_12 = np.sin(x)*np.sin(y)*np.cos(z) - np.cos(x)*np.sin(z)
 a_13 = np.cos(x)*np.sin(y)*np.cos(z) + np.sin(x)*np.sin(z)

 a_21 = np.cos(y)*np.sin(z)
 a_22 = np.sin(x)*np.sin(y)*np.sin(z) + np.cos(x)*np.cos(z)
 a_23 = np.cos(x)*np.sin(y)*np.sin(z) - np.sin(x)*np.cos(z)

Page 2 of 7

3D spatial error distrubution for multistatic meteor radar.py

 a_31 = -np.sin(y)
 a_32 = np.sin(x)*np.cos(y)
 a_33 = np.cos(x)*np.cos(y)

 A = np.mat([[a_11,a_12,a_13]
 ,[a_21,a_22,a_23]
 ,[a_31,a_32,a_33]])

return A

##error propagation function
input sin/cos value of AOAs

output [𝜹𝜽,/,/]
def f_1(cos_theta,sin_theta,cos_phi,sin_phi):

 w1 = cos_phi/cos_theta/(D_1/length)/(2*np.pi)
 w2 = sin_phi/cos_theta/(D_2/length)/(2*np.pi)

 f = np.sqrt(w1**2*d_D_phi_1**2 + w2**2*d_D_phi_2**2)

return [f,w1,w2]

output [𝛿𝜙,/,/]
def f_2(cos_theta,sin_theta,cos_phi,sin_phi):

if sin_theta == 0:
 w1 = -1/(D_1/length)/(2*np.pi)
 w2 = 1/(D_2/length)/(2*np.pi)

else:
 w1 = -sin_phi/sin_theta/(D_1/length)/(2*np.pi)
 w2 = cos_phi/sin_theta/(D_2/length)/(2*np.pi)

 f = np.sqrt((w1*d_D_phi_1)**2 + (w2*d_D_phi_2)**2)

return [f,w1,w2]

output [fR, 𝑓_𝜃,𝑓_𝜙]
def F_Rt(cos_theta,sin_theta,cos_phi,sin_phi):

 P = A_11*sin_theta*cos_phi + A_12*sin_theta*sin_phi + A_13*cos_theta
 dP_theta = A_11*cos_theta*cos_phi + A_12*cos_theta*sin_phi - A_13*sin_theta
 dP_phi = -A_11*sin_theta*sin_phi + A_12*sin_theta*cos_phi

 N = (R - d*P)**2

 M_1 = d**2 + R**2 -2*R*d*P
 f_R = M_1/N/2

 M_2 = d*(R**2-d**2)*dP_theta
 f_theta = M_2/N/2

 M_3 = d*(R**2-d**2)*dP_phi
 f_phi = M_3/N/2

Page 3 of 7

3D spatial error distrubution for multistatic meteor radar.py

return [f_R,f_theta,f_phi]

def mat_W(w_dR):
 f_R = w_dR[0]
 f_theta = w_dR[1]
 f_phi = w_dR[2]
 Rt_sin = len_Rt*sin_theta

 weight_Rt = np.mat([[f_R,f_theta,f_phi],[0,len_Rt,0],[0,0,Rt_sin]])

 Aoa_Rt = np.mat([[sin_theta*cos_phi,-cos_theta*cos_phi,-sin_phi],
 [sin_theta*sin_phi,-cos_theta*sin_phi,cos_phi],
 [cos_theta,sin_theta,0]])

 Ot_matrix = np.mat([[1,0,0],
 [0,w_d_theta[1],w_d_theta[2]],
 [0,w_d_phi[1],w_d_phi[2]]])

 W = A0*Aoa_Rt*weight_Rt* Ot_matrix

return W

########## 3D spatial distribution caculation###############
##################### main ########################

parameters settings

#wave length
length = 1.0

baseline length / wave length
D_1 = 4.5
D_2 = 4.5

#premitted phase measurment errors (in degree)
d_D_phi_1 = 35/180*np.pi
d_D_phi_2 = 35/180*np.pi

space grid length
dx = 5.0
dy = 5.0
dz = 1.0

space range to caculate
x0_length = 1000
y0_length = 1000
z0_low = 60
z0_hig = 120

point in x'0 y'0 z'0

Page 4 of 7

3D spatial error distrubution for multistatic meteor radar.py

x0 = np.arange(-x0_length/2,x0_length/2+dx,dx)
y0 = np.arange(-y0_length/2,y0_length/2+dy,dy)
z0 = np.arange(z0_low,z0_hig+dz,dz)
x0_inverse = x0[::-1]

6 rotation angle
psi_x_1,psi_y_1,psi_z_1 = 0, 0, 0
px_10,py_10,pz_10 = 0, 0, 30

baseline length
d = 150

#pulse lengthc*Delta_Tp
ct = 4
S = ct/2
#PRF
f = 625
ndR = 300000/f

#GPS error(𝛿𝑅)
dR_time = 6.3

#A_total
A_x_x1 = CTM_Rotate(psi_x_1,psi_y_1,psi_z_1)
A_11 = A_x_x1[0,0]
A_12 = A_x_x1[0,1]
A_13 = A_x_x1[0,2]
#point in xyz reprsent in x1y1z1
n_x = np.mat([[A_11],[A_x_x1[1,0]],[A_x_x1[2,0]]])
n_y = np.mat([[A_12],[A_x_x1[1,1]],[A_x_x1[2,1]]])
n_z = np.mat([[A_13],[A_x_x1[1,2]],[A_x_x1[2,2]]])

#A'_total
A_x1_x0 = CTM_Rotate(px_10,py_10,pz_10)
A_x0_x1 = A_x1_x0.I

#A'*A
A0 = A_x1_x0*A_x_x1

save caculation results
d2_e1_x0 = []
d2_e1_y0 = []
d2_e1_z0 = []

d2_e2_x0 = []
d2_e2_y0 = []
d2_e2_z0 = []

#loop to ergodic every point in 3D space
for k in z0:
 tempY_x_1 = []
 tempY_y_1 = []

Page 5 of 7

3D spatial error distrubution for multistatic meteor radar.py

 tempY_z_1 = []

 tempY_x_2 = []
 tempY_y_2 = []
 tempY_z_2 = []

for j in y0:

 tempX_x_1 = []
 tempX_y_1 = []
 tempX_z_1 = []

 tempX_x_2 = []
 tempX_y_2 = []
 tempX_z_2 = []

for i in x0:

############## error 1##############

x0y0z0 - x1y1z1
 R0 = np.mat([[i],[j],[k]])
 Rt = A_x0_x1*R0
 len_Rt = np.sqrt(Rt.T*Rt)[0,0]

#sin/cos(theta) sin/cos(phi)
 aoa = AOA(Rt)
 cos_theta,sin_theta,cos_phi,sin_phi = aoa[0],aoa[1],aoa[2],aoa[3]

 w_d_theta = f_1(cos_theta,sin_theta,cos_phi,sin_phi)
 w_d_phi = f_2(cos_theta,sin_theta,cos_phi,sin_phi)

##F_Rt
#R

 R1 = Rt - np.mat([[d],[0],[0]])
 len_R1 = np.sqrt(R1.T*R1)[0,0]
 R = len_R1 + len_Rt

#d_R
 d_R = Get_dR(R)

#error indepdent
 v_erro = np.mat([[d_R],[d_D_phi_1],[d_D_phi_2]])
 Square_v_erro = np.multiply(v_erro,v_erro)

###error weighting
 w_dR = F_Rt(cos_theta,sin_theta,cos_phi,sin_phi)
 W_erro = mat_W(w_dR)
 Square_W_erro = np.multiply(W_erro,W_erro)

#MSE
 Square_M_erro = Square_W_erro*Square_v_erro

#error 1 evaluation
 tempX_x_1.append(Square_M_erro[0,0])
 tempX_y_1.append(Square_M_erro[1,0])
 tempX_z_1.append(Square_M_erro[2,0])

Page 6 of 7

3D spatial error distrubution for multistatic meteor radar.py

############### error 2 ###################

##X'Y'Z'
#gemetry

 a1 = (len_Rt - S)/len_Rt
 a2 = (len_R1 - S)/len_R1
 W_Rt = (2-a1-a2)/2
 b_Rt = np.mat([[d*(a1-1)/2],[0],[0]])

##error vector
 DA_erro = W_Rt*Rt + b_Rt

#transform to X0Y0Z0 true error
 RealErro_DA = A_x1_x0*DA_erro

#MSE
 SquareErro_DA = np.multiply(RealErro_DA,RealErro_DA)

#error 2 evaluation
 tempX_x_2.append(SquareErro_DA[0,0])
 tempX_y_2.append(SquareErro_DA[1,0])
 tempX_z_2.append(SquareErro_DA[2,0])

#a hight Z evaluation
##error 1

 tempY_x_1.append(tempX_x_1)
 tempY_y_1.append(tempX_y_1)
 tempY_z_1.append(tempX_z_1)

##error 2
 tempY_x_2.append(tempX_x_2)
 tempY_y_2.append(tempX_y_2)
 tempY_z_2.append(tempX_z_2)

evaluation [Z, Y, X]
##error 1

 d2_e1_x0.append(tempY_x_1)
 d2_e1_y0.append(tempY_y_1)
 d2_e1_z0.append(tempY_z_1)

##error 2
 d2_e2_x0.append(tempY_x_2)
 d2_e2_y0.append(tempY_y_2)
 d2_e2_z0.append(tempY_z_2)

#list to array

9 output
error 1
X0_SquareE1 = np.array(d2_e1_x0)
Y0_SquareE1 = np.array(d2_e1_y0)
Z0_SquareE1 = np.array(d2_e1_z0)
error 2
X0_SquareE2 = np.array(d2_e2_x0)
Y0_SquareE2 = np.array(d2_e2_y0)

Page 7 of 7

3D spatial error distrubution for multistatic meteor radar.py

Z0_SquareE2 = np.array(d2_e2_z0)
total error
X0_SquareE_total = X0_SquareE1 + X0_SquareE2
Y0_SquareE_total = Y0_SquareE1 + Y0_SquareE2
Z0_SquareE_total = Z0_SquareE1 + Z0_SquareE2

