3D spatial error distrubution for multistatic meteor radar.py

# -*- coding: utf-8 -*-

Created on Fri May 29 21:33:16 2020

@author: zhongwei

import numpy as np
from pylab import *

HHHEHEEEEEEH F un ot Lond i HER I HEE
# caculating 6R
def Get_dR(R):

R_loop = int((R - d)/ndR)

d R = dR_time + R_loop*ndR

return d_R

# caculationg angele of arrive (AOA) for a piont in X1Y1Z1
def AOA(Rt):

#0

cos_theta = Rt.T*n_z/len_Rt
sin_theta = np.sqrt(1-cos_theta**2)
#p

if sin_theta ==
cos_phi = np.array([[1/1len_Rt]])
sin_phi = np.array([[1/1len_Rt]])
else:
# exception for @ zenith
cos_phi = Rt.T*n_x/len Rt/sin_theta
sin _phi = Rt.T*n_y/len Rt/sin_theta

return [cos_theta[0,0],sin_theta[©,0],cos_phi[©,0],sin_phi[0,0]]

# input 3 rotation angle in degree
# output rotation matrix
def CTM_Rotate(phi_x,phi_y,phi z):
X = phi_x*np.pi/180
y = phi_y*np.pi/180
z = phi_z*np.pi/180

a_11 = np.cos(y)*np.cos(z)
a_12 = np.sin(x)*np.sin(y)*np.cos(z)

np.cos(x)*np.sin(z)

a_13 = np.cos(x)*np.sin(y)*np.cos(z) + np.sin(x)*np.sin(z)
a_21 = np.cos(y)*np.sin(z)
a_22 = np.sin(x)*np.sin(y)*np.sin(z) + np.cos(x)*np.cos(z)

a_23 = np.cos(x)*np.sin(y)*np.sin(z) np.sin(x)*np.cos(z)

Page 1 of 7



3D spatial error distrubution for multistatic meteor radar.py

a_ 31 = -np.sin(y)
a_32 = np.sin(x)*np.cos(y)
a_33 = np.cos(x)*np.cos(y)

A =np.mat( [[a_11,a 12,a 13]
s[a_21,a_22,a_23]
s[a_31,a_32,a_33]])

return A

##terror propagation function
# input sin/cos value of AOAs

# output [66,/,/]
def f 1(cos_theta,sin_theta,cos phi,sin _phi):

wl
w2

cos_phi/cos_theta/(D_1/length)/(2*np.pi)
sin_phi/cos_theta/(D_2/length)/(2*np.pi)

f = np.sqrt(wl**2*d D phi 1**2 + w2**2*d D phi 2**2)
return [f,wl,w2]

# output [d¢,/,/]
def f_2(cos_theta,sin_theta,cos_phi,sin_phi):

if sin_theta ==
wl = -1/(D_1/length)/(2*np.pi)
w2 = 1/(D_2/1length)/(2*np.pi)
else:
wl
w2

-sin_phi/sin_theta/(D_1/length)/(2*np.pi)
cos_phi/sin_theta/(D_2/length)/(2*np.pi)

f = np.sqrt((wl*d D phi 1)**2 + (w2*d D _phi 2)**2)

return [f,wl,w2]

# output [fR, f_6,f_¢]
def F_Rt(cos_theta,sin_theta,cos_phi,sin_phi):

P = A 11*sin_theta*cos phi + A 12*sin theta*sin_phi + A 13*cos_theta
dP_theta = A 11*cos_theta*cos phi + A 12*cos_theta*sin phi - A 13*sin_theta
dP_phi = -A_11*sin_theta*sin_phi + A_12*sin_theta*cos_phi

N = (R - d¥P)**2

M 1 = d*¥*2 + R*¥*2 -2*R*d*Pp
fR =M1/N/2

M 2 = d*(R**2-d**2)*dP_theta
f_theta = M_2/N/2

M_3 = d*(R¥*2-d**2)*dP_phi
f phi = M_3/N/2

Page 2 of 7



3D spatial error distrubution for multistatic meteor radar.py

return [f_R,f_theta,f phi]

def mat_W(w_dR):
f R = w_dR[0O]
f theta = w_dR[1]
f _phi = w_dR[2]
Rt _sin = len_ Rt*sin_theta

weight Rt = np.mat([[f_R,f_theta,f_phi],[0,len_Rt,0],[0,0,Rt_sin]])
Aoa_Rt = np.mat([[sin_theta*cos_phi,-cos_theta*cos_phi,-sin_phi],
[sin_theta*sin_phi,-cos_theta*sin_phi,cos_phi],
[cos_theta,sin_theta,0]])
Ot_matrix = np.mat([[1,0,0],
[0,w_d_theta[1l],w_d_theta[2]],
[0,w_d_phi[1],w_d_phi[2]]])
W = A@*Aoa_Rt*weight Rt* Ot_matrix
return W
#Ht#aHAS 3D spatial distribution caculation##t##ttitf#####
HHHE A main $HEEEHEEEEEEEEE

#i###E parameters settings #####

#wave length
length = 1.0

aseline length / wave length
= 4.5
= 4.5

N R O

#
D_
D_
#premitted phase measurment errors (in degree)
d D phi 1 = 35/180*np.pi

d D phi 2 = 35/180*np.pi

# space grid length

dx = 5.0
dy = 5.0
dz = 1.0

# space range to caculate
x0_length = 1000
y0_length = 1000

z0_low = 60

z@_hig = 120

# point in x'@0 y'e z'0

Page 3 of 7



3D spatial error distrubution for multistatic meteor radar.py

X0 = np.arange(-x0_length/2,x0_length/2+dx,dx)
y@ = np.arange(-y@_length/2,y0 length/2+dy,dy)
z0 = np.arange(z0_low,z0_hig+dz,dz)

X0 _inverse = x0[::-1]

# 6 rotation angle
psi x 1,psi y 1,psi z 1 =10, 0, ©
px_10,py 10,pz 10 = 0, 0, 30

# baseline length
d = 150

#pulse lengthc*Delta Tp
ct = 4

S = ct/2

#PRF

f = 625

ndR = 300000/f

#GPS error(dR)
dR_time = 6.3

#A total

A x x1 = CTM Rotate(psi x 1,psi y 1,psi z 1)
A 11 = A_x_x1[0,0]

A 12 = A x_x1[0,1]

A 13 = A x x1[0,2]

#point in xyz reprsent in x1lylzil

n_x = np.mat([[A_11],[A_x_x1[1,0]],[A_x _x1[2,0]]11)
ny = np.mat([[A_12],[A x x1[1,1]],[A_x x1[2,1]1])
n z =np.mat([[A_13],[A x x1[1,2]],[A x x1[2,2]]])
#A' total

A x1 x0 = CTM_Rotate(px_10,py_10,pz_10)

A x0 x1 = A x1 x0.1I

#A'*A

AD = A_x1_x0*A x_x1

##### save caculation results
d2_el x0 = []
d2 el yo []
d2 el zo []

[]
[]
[]

d2_e2_x0
d2 e2 yo
d2 e2 zo

#loop to ergodic every point in 3D space

for k in zO:
tempY_x_1
tempY_y_ 1

[]
[]

Page 4 of 7



3D spatial error distrubution for multistatic meteor radar.py

tempY z 1 []
[]

[]

tempY_x_2
tempY_ y 2
tempY_z 2

I}
—
—_

for j in y@:

tempX_x_1
tempX_y_1
tempX_z_1

n mn n
—m e
—_

tempX x 2
tempX_y_2
tempX_z_2

n mn n
—m e
—_

for i in x0:
HHHH TS error 1H#H#H#HHHHHHHHHY

# x0y0z0 - xlylzil

RO = np.mat([[1],[]J],[k]])

Rt = A_x@_x1*R@

len Rt = np.sqrt(Rt.T*Rt)[0,0]

#tsin/cos(theta) sin/cos(phi)
aoa = AOA(Rt)
cos_theta,sin theta,cos phi,sin_phi = aoa[@],aoca[l],aoca[2],a0a[3]

w_d_theta = f_1(cos_theta,sin_theta,cos_phi,sin_phi)
w_d_phi = f_2(cos_theta,sin_theta,cos_phi,sin_phi)

##F_Rt
#R

R1 = Rt - np.mat([[d],[e],[@]])

len R1 = np.sqrt(R1.T*R1)[0,0]

R = len R1 + len Rt

#d_R

d_R = Get_dR(R)

#error indepdent

v_erro = np.mat([[d _R],[d D phi 1],[d D _phi 2]])
Square_v_erro = np.multiply(v_erro,v_erro)
#ittterror weighting

w_dR = F_Rt(cos_theta,sin_theta,cos_phi,sin phi)
W_erro = mat_W(w_dR)

Square_W_erro = np.multiply(W_erro,W_erro)

#MSE
Square_M erro = Square W _erro*Square_v_erro

#error 1 evaluation

tempX_x_1.append(Square_M erro[0,0])
tempX_y 1.append(Square_M erro[1,0])
tempX_z_1.append(Square_M erro[2,0])

Page 5 of 7



3D spatial error distrubution for multistatic meteor radar.py

HHHHFHAHAHAHHAHE error 2 HEHHHHFHFHEHHHHFHAH

#HX'Y'Z'

#gemetry

al = (len_Rt - S)/len_Rt

a2 = (len_R1 - S)/len R1

W Rt = (2-al1-a2)/2

b_Rt = np.mat([[d*(al-1)/2],[0],[0]])
##error vector

DA erro = W _Rt*Rt + b_Rt

#transform to X0YOZO true error

RealErro_DA = A_x1_x0*DA_erro

#MSE

SquareErro DA = np.multiply(RealErro DA,RealErro_DA)

#error 2 evaluation

tempX_x_2.append(SquareErro DA[0,0])
tempX_y 2.append(SquareErro DA[1,0])
tempX_z_2.append(SquareErro_DA[2,0])

#a hight Z evaluation
#t#terror 1
tempY_x_1.append(tempX_x_1)
tempY_y 1.append(tempX_ y 1)
tempY_z_1.append(tempX_ z 1)
##terror 2
tempY_x_2.append(tempX_x_2)
tempY_y 2.append(tempX_ y 2)
tempY_z_2.append(tempX_z 2)

# evaluation [Z, VY, X]
##error 1

d2 el x@.append(tempY_x_ 1)
d2_el_y@.append(tempY_y 1)
d2_el_z@.append(tempY_z_1)
##error 2

d2 _e2 x@.append(tempY_x_2)
d2_e2_y@.append(tempY_y 2)
d2_e2_z@.append(tempY_z_2)

#list to array

## 9 output
## error 1

X0 _SquareEl
YO_SquareEl
Z0_SquareEl
## error 2

X0 _SquareE2
YO_SquareE2

np.array(d2_el x0)
np.array(d2_el yo)
np.array(d2_el z0)

np.array(d2_e2 x0)
np.array(d2_e2 yo0)

Page 6 of 7



3D spatial error distrubution for multistatic meteor radar.py

Z0_SquareE2 = np.array(d2_e2 z0)
## total error

X0_SquareE_total
YO SquareE_total
Z0 SquareE_total

X0_SquareEl + X@_SquareE2
YO _SquareEl + YO SquareE2
Z0 SquareEl + ZO SquareE2

Page 7 of 7



