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Abstract  13 

Precipitation is a crucial driver of hydrological processes. Ironically, reliable characterization 14 

of its spatiotemporal variability is challenging. Ground-based rainfall measurement using rain 15 

gauges can be more accurate. However, installing a dense gauging network to capture rainfall 16 

variability can be impractical. Satellite-based rainfall estimates (SREs) can be good 17 

alternatives, especially for data-scarce basins like in Ethiopia. However, SREs rainfall is 18 

plagued with uncertainties arising from many sources. The objective of this study was to 19 

evaluate the performance of the latest versions of several SREs products (i.e., CHIRPS2, 20 

IMERG6, TAMSAT3 and 3B42/3) for the Dhidhessa River Basin (DRB). Both statistical and 21 

hydrologic modelling approaches were used for the performance evaluation. The Soil and 22 

Water Analysis Tool (SWAT) was used for hydrological simulations. The results showed that 23 

whereas all four SREs products are promising to estimate and detect rainfall for the DRB, the 24 

CHIRPS2 dataset performed the best at annual, seasonal and monthly timescales. The 25 

hydrologic simulation based evaluation showed that SWAT’s calibration results are sensitive 26 

to the rainfall dataset. The hydrologic response of the basin is found to be dominated by the 27 

subsurface processes, primarily by the groundwater flux. Overall, the study showed that both 28 

CHIRPS2 and IMERG6 products can be reliable rainfall data sources for hydrologic analysis 29 

of the DRB.    30 

Keywords: Satellite-based rainfall estimates; Dhidhessa River Basin; Performance evaluation;31 

      Statistical evaluation; Hydrological modelling performance.  32 

33 
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1. Introduction 34 

 Precipitation is an important hydrological component (Behrangi et al., 2011; Meng et 35 

al., 2014). Accurate representation of its spatiotemporal variability is crucial to improves 36 

hydrological modelling (Grusson et al., 2017). Ironically, precipitation is one of the most 37 

challenging hydrometeorological data to be accurately represented (Yong et al., 2014). 38 

Climatic and topographic conditions are the primary factors that affect the accuracy of rainfall 39 

measurements.  40 

 Rainfall is measured either using ground-based (i.e., rain gauge and radar) or satellite 41 

sensors, where all measurement methods exhibit limitations (Thiemig et al., 2013). In addition, 42 

Communication Microwave Links (CML) is recently introduced as cheap and fast rainfall 43 

estimation method (Smiatek et al., 2017) but not fully tested methodology (Nebuloni et al., 44 

2020). Ground-based rainfall measurements using rain gauge is a direct and generally accurate 45 

near the sensor location. However, they are either of poor density to represent spatial and 46 

temporal variability of precipitation, or may not even exist (e.g., radars), especially in 47 

developing countries (Behrangi et al., 2011). Ground-based rainfall measurement techniques 48 

provide point measurements and subject to missing data due to mainly measurement errors 49 

(Kidd et al., 2012; Maggioni et al., 2016). It may also be infeasible to install and maintain dense 50 

ground-based gauging stations in remote areas like mountains, deserts, forests and large water 51 

bodies (Dinku et al., 2018; Tapiador et al., 2012). However, satellite-based rainfall estimates 52 

(SREs) provide high-resolution precipitation data including in areas where ground-based 53 

rainfall measurements are impractical, sparse, or non-existent (Stisen and Sandholt, 2010).   54 

 Consequently, high-resolution precipitation products have been developed over the last 55 

three decades. These products include Tropical Rainfall Measuring Mission (TRMM) Multi-56 

satellite Precipitation Analysis (TMPA; Huffman et al., 2007), the Precipitation Estimation 57 

from Remote Sensing Information Using Artificial Neuron Networks (PERSIANN; 58 

Sorooshian et al., 2000), Climate Prediction Center (CPC) morphing algorithm (CMORPH) 59 

(Joyce et al., 2004), African Rainfall Climatology (ARC) (Xie and Arkin 1995), Tropical 60 

Applications of Meteorology using SATellite (TAMSAT) (Maidment et al., 2017) and the 61 

Climate Hazards Group InfrareRed Precipitation with Stations (CHIRPS) (Funk et al., 2015). 62 

The consistency, spatial coverage, accuracy and spatiotemporal resolution of SREs have 63 

improved over time (Behrangi et al., 2011).  64 
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 As indirect rainfall estimation techniques, SREs products possess uncertainties 65 

resulting from errors in measurement, sampling, retrieval algorithm, and bias correction 66 

processes (Dinku et al., 2010; Gebremichael et al., 2014; Tong et al., 2014). Local topography 67 

and climatic conditions can also affect the accuracy of SREs estimation (Bitew and 68 

Gebremichael, 2011). Hence, SREs products should be carefully evaluated before using the 69 

products for any application. Statistical and hydrological modelling are two common methods 70 

for evaluating SREs. The statistical evaluation method examines the intrinsic precipitation data 71 

quality including its spatiotemporal characteristics via pairwise comparison of the SREs 72 

products and ground observations. Scale mismatches between SREs products and ground-73 

based measurements is its typical drawback. The hydrological modelling method evaluates the 74 

performance of a SREs product for a specific application such as streamflow predictive ability 75 

at watershed scale (Su et al., 2017). The two methods complement each other where the 76 

statistical method provides information on data quality while the hydrological model technique 77 

assesses the usefulness of the data for hydrological applications (Thiemig et al., 2013). 78 

However, most studies used only statistical evaluation methods (e.g., Dinku et al., 2018; Ayehu 79 

et al., 2018).  80 

 Studies have recommended SREs products for data scare basins (Behrangi et al., 2011; 81 

Bitew and Gebremichael, 2011; Thiemig et al., 2013). However, there is no consensus 82 

regarding “best” SREs product for different climatic regions. Nesbitt et al. (2008) found that 83 

CMORPH and PERSIANN produced higher rainfall rates compared to TRMM for the 84 

mountain ranges of Mexico. Dinku et al. (2008) reported better performance of the TRMM and 85 

CMORPH products in Ethiopia and Zimbabwe whereas PERSSINN outperformed TRMM in 86 

South America according to de Goncalves et al. (2006). Interestingly, the performance of SREs 87 

products seems to differ even within a basin. For the Blue Nile basin in Ethiopia, for example, 88 

CMORPH overestimated precipitation for the lowland areas but underestimated for the 89 

highlands (Bitew and Gebremichael, 2011; Habib et al., 2012; Gebremichael et al., 2014). The 90 

discrepancy in the findings of these studies shows the performance of SREs varies with region, 91 

topography, season, and climatic conditions of the study area (Kidd and Huffman, 2011; 92 

Seyyedi et al., 2015; Nguyen et al., 2018; Dinku et al., 2018). As such, many studies have 93 

recommended SREs evaluation at a local scale to verify its performance for specific 94 

applications (Hu et al., 2014; Toté et al., 2015; Kimani et al., 2017; Ayehu et al., 2018).    95 
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 Studies have examined the performance of SREs in Ethiopia (Haile et al., 2013; 96 

Worqlul et al., 2014; Ayehu et al., 2018; Dinku et al., 2018). However, majority of these studies 97 

used the statistical method to evaluate SREs, and no study has been completed for the 98 

Dhidhessa River Basin (DRB). With only 0.32 rain gauges per 1000 km2, the DRB meets the 99 

World Meteorological Organization (WMO) data-scarce basin classification (WMO, 1994). 100 

Evaluating the performance of various SREs products in terms of characterizing the 101 

spatiotemporal distribution of rainfall in the DRB could assist with the planning and 102 

management of existing and planned water resources projects in the basin.  103 

 SREs are continuously updated to minimize bias and uncertainty. Evaluating and 104 

validating improved products for various climatic regions would be valuable (Kimani et al., 105 

2017). Recently improved SREs products include Tropical Rainfall Measuring Mission 106 

(TRMM) Multi-Satellite Precipitation Analysis version 7 (here after referred to as 3B43 for 107 

monthly and 3B42 for daily products), Climate Hazards Group InfrareRed Precipitation with 108 

Stations version 2 (CHIRPS2), Tropical Applications of Meteorology using SATellite version 109 

3 (TAMSAT3) and Integrated Multi-satellitE Retrievals for GPM version 6B (IMERG6). 110 

Studies have reported improvements of these new versions compared to their predecessors. 111 

However, to the best of our knowledge, the rainfall detection and hydrological simulation 112 

capability of these SREs datasets were not evaluated for the basins in Ethiopian including the 113 

DRB. This study examined the latest SREs products in terms of their rainfall detection and 114 

estimation skills, and improving hydrological prediction for DRB, a medium-sized river basin 115 

with scarce gauging data. As such, the objectives of this study were: 1) to evaluate the intrinsic 116 

rainfall data quality and detection skills of multiple SREs products (i.e., 3B42/3, CHIRPS2, 117 

TAMSAT3, and IMERG6), and 2) to examine hydrologic prediction performances of SREs for 118 

the DRB. The Soil and Water Assessment Tool (SWAT), a physically based semi-distributed 119 

model that has performed well in humid tropical regions like Ethiopia, was used for the 120 

hydrologic simulation.  121 

2. Methods and Materials  122 

2.1. Descriptions of the study area 123 

The Dhidhessa River drains to the Blue Nile River (Figure 1). It is one of the largest 124 

and most important river basins in Ethiopia in terms of its physiography and hydrology 125 

(Yohannes, 2008). Located between 7°42'43''N to 10°2'55''N latitude and 35°31'23''E to 126 
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37°7'60''E longitude, the river basin exhibits highly variable topography that ranges from 619 127 

m to 3213 m above mean sea level (a.m.s.l). The Dhidhessa River starts from the Sigmo 128 

mountain ranges and travels 494 km before it joins the Blue Nile River around the Wanbara 129 

and Yaso districts. The outlet considered for this study is the confluence of the Dhidhessa River 130 

and the Blue Nile River which covers a total drainage area of 28,175 km2. The River basin has 131 

many perennial tributaries (Figure 1).   132 

 Temperature and precipitation in the Dhidhessa River basin exhibit substantial spatial 133 

and seasonal variability. The mean maximum and minimum daily air temperatures in the river 134 

basin range from 20-33°C and 6-19 °C, respectively. The long-term mean annual rainfall ranges 135 

from 1200 mm to 2200 mm in the river basin. Soils in the DRB are generally deep and have 136 

high organic content implying they have high infiltration potential. The dominant soil type is 137 

Acrisols while Cambisols and Nitisols are common (OWWDSE, 2014). Igneous, sedimentary 138 

and metamorphic rocks are common but igneous rock, particularly basalt, is dominant in the 139 

basin (GSE, 2000). Forest, shrubland, grassland, and agriculture are the dominant land cover 140 

types in the basin (Kabite et al., 2020). Major crops include perennial and cash crops like 141 

coffee, Mango, and Avocado (OWWDSE, 2014).  142 

 143 

Figure 1.  Location map of Dhidhessa River basin with ground stations (USGS, 1998). 144 
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2.2. Data sources and descriptions 145 

 For this study, we used different spatial and temporal datasets such as Digital Elevation 146 

Model (DEM), climate, streamflow, soil and land cover from different sources (Table 1). 147 

Table 1. Data description and sources. 148 

Data type Data periods  Resolution  Sources 

SRTM DEM  1998 30 * 30 m USGS 

3B42/3  2001-2014 0.25°(~25 km) NASA & JAXA 

CHIRPS2 2001-2014 0.05° (~5 km) USGS & Climate Hazard Group 

TAMSAT3  2014-2014 0.0375°(~4 km) Reading University 

IMERG6 2001-2014 0.1°(~10 km) NASA & JAXA 

Streamflow data 2001-2014 Daily EMoWI  

Meteorological data  2001-2014 Daily NMA 

Land cover 2001 30*30 m Kabite et al. (2020) 

Soil map 2013/14 variable  EMoWI, FAO & OWWDSE 

 Shuttle Radar Thematic Mapper (SRTM) derived Digital Elevation Model (DEM) of 149 

30*30 m spatial resolution was obtained from the United States Geological Survey (USGS). It 150 

is one of the input data for SWAT model from which topographic and drainage parameters 151 

(e.g., drainage pattern, slope and watershed boundary) were derived. Soil map was obtained 152 

from source described in Table 1. Soil physical properties required for SWAT model were 153 

derived from the soil map. Supervised image classification was used to prepare land cover map 154 

of 2001.Together with land cover and soil maps, DEM was used to create Hydrologic Response 155 

Units (HRUs).       156 

 Rainfall data for nine stations within the river basin and for three nearby stations (Figure 157 

1), from 2001 to 2014 were obtained from the National Meteorological Agency (NMA) of 158 

Ethiopia. The rainfall data was used to evaluate the SREs using the statistical and hydrological 159 

modelling evaluation methods. In addition, Enhanced National Climate Time-series Service 160 

(ENACTS) gridded (4 m *4 m) minimum and maximum air temperature data was obtained 161 

from the National Meteorological Agency (NMA) of Ethiopia. Daily streamflow data from 162 

2001 to 2014 was obtained for a station near the town of Arjo (Figure 1) from Ethiopian 163 

Ministry of Water, Irrigation and Energy (EMoWI).           164 
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 The hydrometeorological stations used for this study were selected due to their long-165 

term records and better data quality. The observed streamflow was used to calibrate and 166 

validate SWAT model. Land use map for 2001 and soil map were obtained from Kabite et al. 167 

(2020) and Ethiopian Ministry of Water, Irrigation and Energy (EMoWI), respectively.     168 

2.2.1. Satellite rainfall products    169 

 The Satellite Rainfall Estimates (SREs) considered in this study include 3B42/3, 170 

TAMSAT3, CHIRPS2 and IMERG6. These datasets were selected because of several reasons 171 

including that they: i) have relatively high spatial resolution, ii) are gauge-adjusted products, 172 

iii) are the latest products and have been found to perform well by recent studies, and iv) were 173 

not compared for the basins in Ethiopia particularly IMERG6.  174 

 The TMPA provides rainfall products for area covering 50°N-50°S for the period of 175 

1998 to present at 0.25°*0.25° and 3h spatial and temporal resolution, respectively. The 3h 176 

rainfall product is aggregated to daily (3B42) and monthly (3B43) gauge-adjusted post real 177 

time precipitation. The performance of the 3B42v7 is superior compared to its predecessor (i.e., 178 

3B42v6) and the real time TMPA product (3B42RT) (Yong et al., 2014). The 3B43 was used 179 

in this study for the statistical evaluation while the 3B42 was used for the hydrological 180 

performance evaluation. The detail description is given by Huffman et al. (2007).       181 

 TAMSAT3 algorithm estimates precipitation in an indirect method using cloud-index 182 

method, which compares the cold cloud duration (CCD) with predetermined temperature 183 

threshold. The CCD is the length of time that a satellite pixel is colder than a given temperature 184 

threshold. The algorithm calibrates the CCD using parameters that vary seasonally and spatially 185 

but constant from year to year. This makes interannual variations in rainfall to depend only on 186 

the satellite observation. The dataset covers the whole Africa at ~4 km and 5-day (pentadal) 187 

resolutions for the period of 1983 to present. The original 5-day temporal resolution is 188 

disaggregated to daily time-step using daily CCD from which monthly data are derived. 189 

TAMSAT3 algorithm are improved compared to its processor (i.e., TAMSAT2). The detail is 190 

described in Maidment et al. (2017).  191 

 The Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) is a quasi-192 

global precipitation product with ~5km (0.05°) spatial resolution and is available at daily, 193 

pentadal (5-day) and monthly timescales. The CHIRPS precipitation data is available from 194 
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1981 to present. It is gauge-adjusted dataset, which is calculated using weighted bias ratios 195 

rather than using absolute station values, which minimizes the heterogeneity of the dataset 196 

(Dinku et al., 2018). The latest version of CHIRPS that uses more station data (i.e., CHIRPS 197 

version 2) was used in this study. Detail description of CHIRIPS2 is given in Funk et al. (2015).  198 

 The Global Precipitation Measurement (GPM) is the successor of TMPA with better 199 

rainfall detection capability. GPM provides precipitation measurements at 0.1° and half-hourly 200 

spatial and temporal resolution. Integrated Multi-satellitE Retrievals for GPM (IMERG) is one 201 

of the GPM estimated from all constellation microwave sensors, IR-based observations from 202 

geosynchronous satellites, and monthly gauge precipitation data. The IMERG products 203 

includes Early Run (near real-time with a latency of 6h), Late Run (reprocessed near real-time 204 

with a latency of 18 h) and Final Run (gauge-adjusted with a latency of four months). The 205 

IMERG Final Run product provides more accurate precipitation information compared to the 206 

near-real time products as it is gauge-adjusted. The latest release of GPM IMERG Final Run 207 

version 6B (IMERG6) was used for this study. The detail is given by Huffman et al. (2014).  208 

 In this study, the performances of 3B42/3, TAMSAT3, CHIRPS2 and IMERG6 rainfall 209 

products were evaluated statistically and hydrologically. All the SREs considered in this study 210 

are gauge-corrected, and thus bias correction may not be required. Thus, rain gauge stations 211 

(e.g., Jimma and Nekemte) that were used for calibrating the SREs datasets were excluded for 212 

fair comparison. The lists of rain gauge stations used for this study are shown in Figure 1 and 213 

Appendix Table 1. The detail summaries of the data types used for this study are shown in 214 

Table 1.  215 

2.3. Methodology  216 

 Satellite rainfall estimates offer several advantages compared to the conventional 217 

methods but can also be prone to multiple errors. Rainfall detection capability of SREs can be 218 

affected by local climate and topography (Xue et al., 2013; Meng et al., 2014). Therefore, 219 

performance of SREs should be examined for a particular area before using the products for 220 

any application (Hu et al., 2014; Toté et al., 2015; Kimani et al., 2017).             221 

 The two common SREs performance evaluation methods are statistical (i.e., ground-222 

truthing) and hydrological modelling performance (Behrangi et al., 2011; Bitew and 223 

Gebremichael, 2011; Thiemig et al., 2013, Abera et al., 2016; Jiang et al., 2017), and were used 224 
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in this study. The methods complement each other and their combined application is 225 

recommended for more reliable SREs evaluation. The statistical evaluation method involves 226 

pairwise comparison of SREs and the rain gauge products. The method provides insight into 227 

the intrinsic data quality whereas the modelling approach assesses the usefulness of the data 228 

for a desired application (Thiemig et al., 2013). Statistical evaluation was performed for all the 229 

SREs products considered in this study (i.e., 3B43, CHIRPS2, TAMSAT3 and IMERG6) to 230 

examine their rainfall detection skills. Numerical and categorical validation indices were used 231 

to evaluate performance of the products. In addition, the SREs product and gauge datasets were 232 

independently used as forcing to calibrate and verify SWAT model. Accordingly, streamflow 233 

prediction performance of the rainfall products was evaluated graphically and using statistical 234 

indices.  235 

2.3.1. Statistical evaluation of satellite rainfall estimates   236 

 Statistical SREs evaluation method was conducted at monthly, seasonal and annual 237 

timescales for the overlapping period of all the rainfall data sources (i.e., 2001-2014). A daily 238 

comparison was excluded from this study due to weak performance reported in previous studies 239 

(Ayehu et al., 2018; Zhao et al., 2017; Li et al., 2018). This is attributed to the measurement 240 

time mismatch between ground and satellite rainfall products.  241 

 Two approaches are commonly used for the statistical evaluation method. The first 242 

approach is pixel-to-pixel pair-wise comparisons of the spatially interpolated gauge-based and 243 

satellite-based data. The second approach is point-to-pixel pair-wise comparison where 244 

satellite rainfall estimates are extracted for each gauge location and the satellite-gauge data 245 

pairs are generated and compared. The second approach was used for this study. This is because 246 

the 12 rainfall stations considered in this study are unevenly distributed through the basin to 247 

accurately represent spatial variability of rainfall in the DRB as required for the first approach. 248 

As a result, we chose to extract gauge-satellite rainfall pair values at each rain gauge location 249 

instead of interpolating the gauge measurements into gridded products.  250 

 Accordingly, 168 and 2016 paired data points were extracted for annual and monthly 251 

analysis, respectively, and were evaluated using numerical validation indices such as Pearson 252 

correlation coefficient (r), bias ratio (BIAS), Nash-Sutcliffe efficiency (E) and Root Mean 253 

Square Error (RMSE). The Pearson correlation coefficient (r) evaluates how well the estimates 254 

correspond to the observed values; BIAS reflects how the satellite rainfall estimate over- or 255 
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under-estimate the rain gauge observations; E shows how well the estimate predicted the 256 

observed time series. On the other hand, RMSE measures the average magnitude of the estimate 257 

errors. The summary of performance indices are presented in Table 2. 258 

Table 2. SREs evaluation indices, mathematical descriptions and perfect score. 259 

Indices  Mathematical expression  Description 
Perfect 
score 

Pearson correlation  

  𝑟 =  
∑(𝑅𝑔 − 𝑅𝑔̅̅ ̅̅ ) (𝑅𝑠−𝑅𝑠̅̅̅̅ )

√∑(𝑅𝑔−𝑅𝑔̅̅ ̅̅ )
2√∑(𝑅𝑠−𝑅𝑠̅̅̅̅ )

 2
 

 𝑅𝑔 is gauge rainfall observation; 𝑅𝑠 satellite 

rainfall estimates; 𝑅𝑔
̅̅ ̅  is average gauge rainfall 

observation; 𝑅𝑠
̅̅ ̅ is average satellite rainfall 

estimates. The value ranges from -1 to 1.  1 

Root mean square error 

(mm)  𝑅𝑀𝑆𝐸 =  √
∑(𝑅𝑔−𝑅𝑠)2

𝑛
     

n is the number of data pairs; the value ranges 

from   0 to ∞  0 

Bias ratio (BIAS) 
  𝐵𝐼𝐴𝑆 =  

∑ 𝑅𝑠

∑ 𝑅𝑔
 

 A value above (below) 1 indicates an 

aggregate satellite overestimation 

(underestimation) of the ground precipitation 

amounts.   1 

Relative bias (RB) 
𝑅𝐵 =  

∑(𝑅𝑠−𝑅𝑔)

∑ 𝑅𝑔
*100 

Describes the systematic bias of the SREs; 

positive values indicate overestimation while 

negative values indicate underestimation of 

precipitation amounts.   0 

Mean Error (ME) 
𝑀𝐸 =

1

𝑛
∑(𝑅𝑠 − 𝑅𝑔)

𝑛

𝑖=1

 
Describes the average errors of the SREs 

relative to the observed rainfall data. 0 

Nash-Sutcliffe of efficiency 

coefficient (E)  
  𝐸 = 1 −

∑(𝑅𝑠−𝑅𝑔)2

∑(𝑅𝑔−�̅�𝑔)2 

The value ranges from -∞ to 1; 0<E≤1 

acceptable while E≤ 0 is unacceptable   1 

Probability of Detection  𝑃𝑂𝐷 = 𝐻 (𝐻 + 𝑀)⁄  

 H is the number of hits; M is the number of 

miss  1 

 False alarm ratio 𝐹𝐴𝑅 = 𝐹 (𝐻 + 𝐹)⁄   F is the number of false alarms  0 

Critical success index 𝐶𝑆𝐼 = 𝐻 (𝐻 + 𝑀 + 𝐹)⁄  

 Describe the overall skill of the satellite 

products relative to gauge observation.   1 

Percent bias (%)  𝑃𝐵𝐼𝐴𝑆 =  
∑(𝑄𝑂−𝑄𝑠)

∑(𝑄𝑂)
∗ 100   

𝑄𝑂 is observed discharge; 𝑄𝑠 is simulated 

discharge for the available pairs of data where 

< ±15% is very good 0 

Coefficient of 

determination (r2) 

r2 = (
∑ (𝑂𝑖−�̅�)(𝑆𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂)̅̅̅̅ 2)√∑ (𝑆𝑖−�̅�)^2𝑛
𝑖

𝑛
𝑖=1

 )^2 

𝑂𝑖 & �̅� is observed & average streamflow, 

respectively; 𝑆𝑖  & �̅� is simulated and average, 

respectively. The value ranges from 0 to 1. 1 

Nash-Sutcliffe coefficient 

of efficiency 𝑁𝑆𝐸 =
∑(𝑄𝑜−𝑄𝑜̅̅ ̅̅ ) 2−∑(𝑄𝑜−𝑄𝑠)2

∑(𝑄𝑜−𝑄𝑜̅̅ ̅̅ ) 2     

 𝑄𝑜
̅̅̅̅  is mean value of the observed discharge 

for the entire time under consideration  1 
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  In addition, categorical validation indices such as probability of detection (POD), false 260 

alarm ratio (FAR) and critical success index (CSI) were also used for this study. The POD score 261 

represents the fraction of gauge observations detected correctly by the satellite while the FAR 262 

shows portion of events identified by the satellite but not confirmed by gauge observations. 263 

The CSI combines different aspects of the POD and FAR, describing the overall skill of the 264 

satellite products in estimating rainfall. 265 

 In general, SREs with r>0.7 and relative bias (RB) within 10% can be considered as 266 

reliable precipitation measurement sources (Brown, 2006; Condom et al., 2011). However, 267 

attention should be given to certain indices depending on the application of the product (Toté 268 

et al., 2015). For flood forecasting purpose, for example, underestimation of rainfall should be 269 

avoided (i.e., mean error (ME)>0 and high POD are desirable). In contrast, for drought 270 

monitoring, overestimation must be avoided (i.e., ME<0 and low FAR is preferred) (Dembélé 271 

and Zwart, 2016). 272 

2.3.2. SWAT model setup  273 

 Soil and Water Assessment Tool (SWAT) is a semi-distributed, deterministic and 274 

continuous simulation watershed model that simulates many water quality and quantity fluxes 275 

(Arnold et al., 2012). It is a physically based and computationally efficient model that has been 276 

widely used for various hydrological and/or environmental application in different regions of 277 

the world (Gassman et al., 2014). Furthermore, the capability of SWAT model to be easily 278 

linked with calibration, sensitivity analysis and uncertainty analysis tools (e.g., SWAT-CUP) 279 

made it more preferable.  280 

 SWAT model follows a two-level discretization scheme: i) sub-basin creation based on 281 

topographic data and ii) Hydrological Response Unit (HRU) creation by further discretizing 282 

the sub-basin based on land use and soil type. HRU is a basic computational unit assumed to 283 

be homogeneous in hydrologic response. Hydrological processes are first simulated at the HRU 284 

level and then routed at the sub-basin level (Neitsch et al., 2009). The SWAT model estimates 285 

surface runoff using the modified United States Department of Agriculture (USDA) Soil 286 

Conservation Service (SCS) curve number method. In this study, a minimum threshold area of 287 

400 km2 were used for determining the number of sub-basins and 5% threshold for the soil, 288 

slope, and land use were used for the HRU definition. Accordingly, 13 sub basins and 350 289 

HRUs are created for the Arjo gauging station as outlet.  290 
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2.3.3. SWAT model calibration and validation  291 

 Hydrologic modelling performance evaluation technique is commonly performed by 292 

either calibrating the hydrologic model with gauge rainfall data and then validating with SREs, 293 

(i.e., static parameters) or calibrating and validating the model independently with each rainfall 294 

products (i.e., dynamic parameters) and then compare accuracies of the streamflow predicted 295 

using the capacity of the rainfall products. The latter is preferred for watersheds such as the 296 

DRB where gauging stations are sparse and unevenly distributed. Moreover, studies have 297 

reported that independently calibrating the hydrologic model with SREs and gauge data 298 

improves performance of the hydrological model (Zeweldi et al., 2011; Vernimmen et al., 299 

2012; Lakew et al., 2017).  300 

 Calibration, validation and sensitivity analysis of SWAT was done using the SWAT-301 

CUP software. The Sequential uncertainty fitting (SUFI-2) implemented in SWAT-CUP was 302 

used in this study (Abbaspour et al., 2007). SUFI-2 provides more reasonable and balanced 303 

predictions than the generalized likelihood uncertainty estimation (GLUE) and the parameter 304 

solution (ParaSol) methods (Zhou et al., 2014; Wu and Chen et al., 2019) offered by the tool. 305 

It also estimates parameter uncertainty attributed to input data, and model parameter and 306 

structure as total uncertainty (Abbaspour, 2015). The total uncertainty in the model prediction 307 

is commonly measured by P-factor and R-factor. P-factor represents the percentage of observed 308 

data enveloped by the 95 percent prediction uncertainty (95PPU) simulated by the model. The 309 

R-factor represents the ratio of the average width of the 95PPU band to the standard deviation 310 

of observed data. For realistic model prediction, P-factor ≥0.7 and R-factor ≤1.5 is desirable 311 

(Abbaspour et al., 2007, Arnold et al., 2012).  312 

 The first steps in SWAT model calibration and validation process is determining the 313 

most sensitive parameters for a given watershed. For this study, 19 parameters were identified 314 

based on the recommendations of previous studies (Roth et al., 2018; Lemann et al., 2019). 315 

Global sensitivity analysis was performed on the 19 parameters from which 11 parameters were 316 

found sensitive for the DRB, and were used for calibration, verification, and uncertainty 317 

analysis. The hydrologic simulations were performed for the 2001 to 2014 period. Two years 318 

of spin-up (warm-up) period (i.e., 2001 and 2002), and 6 years of calibration period (2003 to 319 

2008), and 6 years of verification periods (2009 to 2014) were used. Graphical and statistical 320 

measures were used to evaluate prediction capability of the rainfall datasets. Accordingly, the 321 
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performance of model forced by each rainfall datasets was tested using the most widely used 322 

statistical indices (i.e., R2, NSE and PBIAS), in addition to the P-factor and R-factor.  323 

3. Results  324 

3.1. Statistical evaluation  325 

 Figure 2 compares mean annual spatial rainfall distributions of the DRB. Average 326 

annual rainfall of the study area for the 2001 to 2014 period was 1682.09 mm/year (1150 to 327 

2127 mm/year), 1698.59 mm/year (1432 to 1837 mm/year), 1699.06 mm/year (1092 to 2414 328 

mm/year) and 1680.28 mm/year (1342 to 1721 mm/year) according to the CHIRPS2, IMERG6, 329 

TAMSAT3 and 3B43 products, respectively. For reference, mean annual rainfall for the DRB 330 

is 1650 mm/year based on the rain gauge data, which is within 1.8% to 3% of the estimates 331 

provided by the products. However, total annual rainfall range estimates were substantially 332 

different among the products. The decreasing rainfall trend from the southern (highlands) to 333 

the northern (lowlands) part of the basin were captured by all products. In particular, 334 

TAMSAT3 and CHIRPS2 captured the rainfall variability in better detail, perhaps due to their 335 

high spatial resolution. On the other hand, resolution of the 3B43 rainfall product seems too 336 

course to satisfactorily represent spatial variability of rainfall in the basin.   337 

 338 

Figure 2. Spatial mean annual rainfall distribution of the four SREs for DRB (2001 to 2014) 339 

 Figures 3 to 5 show results of statistical evaluation indices calculated from rainfall from 340 

the rain gauges and from the SREs products. More specifically, Figures 3 and 4 show 341 
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correlation coefficients for the annual and monthly timescales, respectively. The results show 342 

that all four SREs products produced rainfall that correlate better to the ground based rainfall 343 

observations at monthly timescale than at annual time scales. This is because performance of 344 

SREs improved with increased time aggregation and peaks at monthly timescale. This could 345 

be due to the incapability of all the SREs in capturing interannual rainfall variability. The values 346 

of statistical evaluation indices for all products are summarized in Table 3. The results show 347 

that the CHIRPS2 performed better for the DRB with relatively higher r and E, and lower BIAS, 348 

ME and RMSE for annual and monthly timescales, respectively. 349 

Table 3. Statistical evaluation indices of all SREs.  350 

 

SREs 

R BIAS ME RMSE (mm) E 

Annual Monthly Annual Monthly Annual Monthly Annual Monthly Annual Monthly 

CHIRPS2 0.78 0.92 1.01 1.01 25.94 2.70 214.36 50.48 0.51 0.84 

3B43 0.48 0.87 1.02 1.02 30.58 2.55 306.34 62.05 0.76 0.76 

IMERG6 0.52 0.90 1.03 1.03 48.87 4.07 299.55 56.95 0.39 0.80 

TAMSAT3 0.62 0.89 1.03 1.03 51.46 2.67 274.00 61.28 0.77 0.77 

 351 

Figure 3. Correlation coefficient of the four SREs at annual timescale over DRB. 352 
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  Figures 3 to 5 and Table 3 show that generally, CHIRPS2 performed better than the 353 

other three products for the DRB. Correlation coefficients for both monthly and annual 354 

timescales as well as all the indices presented in Figure 5 favor CHIRPS2 indicating its superior 355 

performance. Relative performance of the other three SREs is inconsistent as it varies with the 356 

statistical indices used in this study. The 3B43 product, for example, performed worse based 357 

on Figure 3 and 4 (i.e., correlation coefficients for annual and monthly timescales) and RMSE 358 

and E (Figure 5), but performed better than the other two SREs based on BIAS and ME. 359 

 360 

Figure 4. Monthly correlation coefficient of the four SREs for the DRB. 361 
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 362 

Figure 5. Statistical indices of the four SREs for DRB at annual and monthly time scales    363 

 Categorical analysis result (Figure 6) shows that all the SREs considered in this study 364 

have high rainfall detection capability for the DRB. Rainfall threshold used for this figure is 365 

1mm/day. The POD and CSI values are close to 1 for all products, and FAR values are near 0, 366 

which shows that the SREs products have good rainfall event detection and estimation skills. 367 

However, TAMSAT3 exhibited relatively less rainfall detection skill, which could be attributed 368 

to the relatively more sensitivity of TAMSAT3 to topographic effects.  369 

 370 

Figure 6. Categorical indices of the four SREs for the DRB. 371 



18 
 

 Figure 7 shows seasonal SREs performance evaluation results. The figure generally 372 

shows that performance of the SREs varied from season to season and among the rainfall 373 

products. Main rainy season in the DRB is from June to September while short rainy season 374 

ranges from March to May but the rest is dry season (Figure 9). For example, CHIRPS2 is 375 

superior in detecting and estimating rainfall events for the DRB for all months (seasons). The 376 

rainfall detection and estimating capability of CHIRPS2 is better for rainy season compared to 377 

the dry season. Likewise, the rainfall detection capability of TAMSAT3 is stronger for the 378 

rainy season (May to November) but weaker for the dry season (December to April). Compared 379 

to the other SREs products, TAMSAT3 generally poorly correlated for all months (seasons), 380 

and its BIAS was the highest for rainy season but the lowest for the dry season.  381 

 382 

Figure 7. Seasonal statistical evaluation result comparison of each SREs for the DRB.  383 

 384 
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3.2. Hydrological modelling performance evaluation  385 

 The centroid of each sub basins were used as gauging locations, and used for extracting 386 

rainfall for all the SREs rainfall datasets. Thus, each sub basins are represented by a separate 387 

and dense gauges unlike that of the measured rainfall representation. The performance of the 388 

rainfall products were evaluated using SWAT-CUP at monthly time steps.  389 

 Table 4 shows details of the calibrated parameters including their ranges, best fit values, 390 

sensitivity ranks when different rainfall datasets are used as inputs for the DRB. The best fit 391 

values were multiplied by (1+ given value) and replaced by the given value for the parameters 392 

with r-prefix and v-prefix, respectively. The table shows that ranges and the best fit values vary 393 

from rainfall data source to another. This indicates the sensitivity of hydrological model 394 

performance to rainfall products and thus accurate characterization of rainfall variability is very 395 

critical for reliable hydrological predictions. This finding is consistent with studies that 396 

reported that different precipitation datasets influence model performance, parameter 397 

estimation and uncertainty in streamflow predictions (Sirisena et al., 2018; Goshime et al., 398 

2019). Relative sensitivity of the parameters also varied between the rainfall datasets. In 399 

general, threshold depth of water in the shallow aquifer required for return flow to occur (mm) 400 

(GWQMN.gw), base flow alpha factor (ALPHA_BF.gw), Groundwater delay (day) 401 

(GW_DELAY.gw), deep aquifer percolation fraction (RCHRG_DP.gw), and runoff curve 402 

number for moisture condition II (CN2.mgt) are top five sensitive parameters. This seems 403 

indicate that groundwater processes dominate streamflow in the DRB. This could be attributed 404 

to the dominantly deep and permeable soil, vegetated land surface and dominant tertiary 405 

basaltic rocks in the DRB (Conway, 2000; Kabite and Gessesse, 2018). The groundwater 406 

parameters can have a strong effect on the amount of streamflow that can cause over or 407 

underestimation of streamflow. For this reason, the validation of streamflow was sorely 408 

dependent on the rainfall products.    409 

  410 
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Table 4. Initial parameter ranges, fit values, and sensitivity ranks for rainfall data sources. 411 

 

Parameters 

Initial values Gauge CHIRPS2 IMERG6 3B42 TAMSAT3 

Fit value Rank Fit value Rank Fit value  Rank Fit value Rank Fit value Rank 

v_GWQMN.gw 0 to 5000 4936.02 1 201.64 3 3379.76 3 4784.74 1 -0.15 1 

v_ALPHA_BF.gw 0 to 1 0.00 2 0.45 4 0.04 4 0.00 2 0.00 2 

v_GW_DELAY.gw 0 to 500 339.10 3 29.02 5 34.76 6 391.13 4 318.08 3 

v_RCHRG_DP.gw 0 to 1 0.02 4 0.44 7 0.04 5 0.30 3 0.04 4 

r_CN2.mgt -0.25 to 0 310.12 5 -0.25 11 -0.17 10 -0.13 5 -0.15 5 

r_SOL_K.sol 0 to 2000 260.96 6 1086.63 9 391.90 11 286.12 6 447.41 6 

v_CH_N2.rte -0.01 to 0.3 0.74 7 0.02 1 0.05 1 0.29 8 0.61 7 

v-CH_K2.rte -0.01 to 500 310.12 8 354.51 2 426.08 2 256.15 7 298.36 8 

v_GW_REVAP.gw 0.02 to 0.2 0.40 9 0.15 8 0.20 8 0.26 9 0.33 10 

r_SOL_AWC.sol -0.5 to 0.5 -0.01 10 -0.49 6 -0.19 7 -0.85 10 -0.59 9 

v_REVAPMN.gw 0 to 500 170.26 11 14.52 10 381.84 9 142.11 11 176.48 11 

 Figure 8 compares the observed and the predicted streamflows for the calibration (2003 412 

to 2008) and verification (2009 to 2014) periods for all five rainfall datasets. Goodness of the 413 

streamflow predictions is also summarized in Table 5. The result shows that streamflow is 414 

underestimated peak streamflow for all rainfall products, including the gauge rainfall but 415 

generally overestimated streamflof volume. This could be due to the uncertainity of SREs for 416 

the extreme rainfall events at daily scale (Jiang et al., 2017) and SWAT model error. The 417 

overestimated stremflows could also be attributed to overestimation of rainfalls by the SREs 418 

as described in the previous sections. Generally, the indices provided in Table 4 indicate that 419 

the streamflow predictions are good for CHIRPS2, IMERG6, and satisfactory for the gauged 420 

rainfall but not for TAMSAT3 and 3B42 according to Moriasi et al. (2017) classification 421 

system. The performance of the SREs are consistent with the climatology of the products. Mean 422 

monthly rainfall from 2001 to 2014 showed that TAMSAT3 and 3B42 more devaite from 423 

observed rainfall while CHIRPS2 and IMERG6 are relatively clser (Figure 9).   424 



21 
 

 425 

Figure 8. Graphical calibration and validation of streamflow at monthly scale. 426 

Table 5. Calibration and validation results for the different rainfall products.  427 

     Rainfall  

products 

Calibration Validation 

NSE R2 PBIAS P-factor R-factor NSE R2 PBIAS P-factor R-factor 

Gauge 0.55 0.54 2.8 0.43 0.55 0.54 0.57 -9.3 0.15 0.27 

CHIRPS2 0.69 0.7 -2.5 0.72 0.64 0.65 0.66 5.3 0.46 0.58 

IMERG6 0.65 0.67 2.2 0.70 0.66 0.73 0.78 -14.5 0.64 0.86 

TAMSAT3 0.43 0.46 -16.7 0.31 2.94 0.48 0.48 -4.9 0.46 2.68 

3B42 0.48 0.51 8.6 0.65 3.88 0.45 0.46 1.3 0.82 2.96 

 428 

429 
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 430 

Figure 9. Mean monthly rainfall (2001 to 2014). 431 

4. Discussion  432 

 The statistical SREs evaluation result showed that all the rainfall products captured the 433 

spatiotemporal rainfall variability of the DRB except the 3B43. Poor performance of 3B43 in 434 

capturing basin’s rainfall variability is in agreement with findings of two previous studies done 435 

for other basins in Ethiopia (Dinku et al., 2008; Worqlul et al., 2014). The reason could be 436 

attributed to the fact that gauge adjustment for 3B43 product did not use adequate gauge data 437 

from Ethiopian highlands due to lack of data (Haile et al., 2013). However, Gebremicael et al. 438 

(2019) reported better performance of 3B43 for the Tekeze-Atibara basin, which is located in 439 

the northern mountainous area of Ethiopia. 440 

 Better correlation of SREs with observed rainfall was observed at monthly than at 441 

annual timescales for all products. This is consistent with studies that reported the performance 442 

of SREs improved with increased time aggregation that peaks at monthly timescale (Dembélé 443 

and Zwart, 2016; Katsanos et al., 2016; Zhao et al., 2017; Ayehu et al., 2018; Li et al., 2018; 444 

Guermazi et al., 2019). The weak agreement of SREs with observed data at annual timescale 445 

shows that the SREs considered in this study generally did not capture the interannual rainfall 446 

variability. In this regards, particularly the 3B43 product failed to capture annual rainfall 447 

variability compared to the other three SREs. Overall, all four SREs products overestimated 448 

rainfall for the DRB by 10% for CHIRPS2 to 30% for IMERG6 and TAMSAT3 (Figure 5). 449 
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This finding is consistent with studies that reported overestimation of IMERG6 and 3B43 450 

products for the alpine and gorge regions of China (Chen et al., 2019). However, Gebremicael 451 

et al. (2019) reported underestimation of rainfall by CHIRPS2 for the Tekeze-Atbara basin, 452 

which is a mountainous and arid basin in northern Ethiopia. Ayehu et al. (2018) also reported 453 

slight underestimation of rainfall by CHIRPS2 for the upper Blue Nile Basin. The discrepancy 454 

between our finding and the previous studies done for the basins in Ethiopia may be due to 455 

differences in watershed characteristics.       456 

 Generally, this study showed that the SREs products considered in this study exhibited 457 

satisfactory rainfall detection and estimation capability for the DRB. The products could be 458 

applicable for flood forecasting applications for the DRB (Toté et al., 2015). CHIRPS2 459 

performed better than the other three SREs for annual, seasonal, and monthly timescales in 460 

detecting and estimating rainfall for the basin. The superiority of CHIRPS2 was also reported 461 

by previous studies for different parts of world (Katsanos et al., 2016; Dembélé and Zwart, 462 

2016) including basins in Ethiopia (Bayissa et al., 2017; Ayehu et al., 2018; Dinku et al., 2018; 463 

Gebremicael et al., 2019). For example, Dinku et al. (2018) reported better rainfall estimation 464 

capability of CHIRPS2 for East Africa compared to African Rainfall Climatology version 2 465 

(ARC2) and TAMSAT3 products. Ayehu et al. (2018) reported better performance of 466 

CHIRPS2 for the Blue Nile Basin compared to ARC2 and TAMSAT3. Better performance of 467 

CHIRPS2 has been attributed to the capability of the algorithm to integrate satellite, gauge and 468 

reanalysis products and its high spatial and temporal resolution (Funk et al., 2015). On the 469 

contrary, generally, the 3B43 rainfall product performed poorly for the DRB for all timescales. 470 

This could be due to its course spatial resolution and lack of gauge-adjustment for highlands 471 

of Ethiopia (Haile et al., 2013). The IMERG6 showed better rainfall detection and estimation 472 

capability for the study area than the 3B43 product, which is consistent with findings of 473 

previous studies (Huffman et al., 2015; Zhang et al., 2018; Zhang et al., 2019). Better 474 

performance of IMERG6 is attributed to the inclusion of dual and high-frequency channels, 475 

which improve light and solid precipitation detection capability (Huffman et al., 2015).      476 

 Hydrologic simulation performance evaluation result of SREs showed that accurate 477 

characterization of rainfall variability is very critical for reliable hydrological predictions. This 478 

finding is consistent with studies that reported that different precipitation datasets influence 479 

model performance, parameter estimation and uncertainty in streamflow predictions (Sirisena 480 

et al., 2018; Goshime et al., 2019). Overestimation of streamflow for all SREs products could 481 
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be attributed to uncertainty of SREs for extreme rainfall events at daily scale (Zhao et al., 2017). 482 

The overestimated stremflow could also be attributed to overestimation of rainfalls by the SREs 483 

as described in the previous sections and uncertainity of SWAT model. 484 

 Overall, this study showed that CHIRPS2 and IMERG6 predicted streamflow better 485 

than the guage rainfall and other two SREs products for the DRB. Superior hydrological 486 

performance of SREs products compared to gauge rainfall data were also reported by many 487 

other studies (Grusson et a., 2017; Bitew and Gebremichael, 2011; Goshime et al., 2019; Xian 488 

et al., 2019; Li et al., 2018; Belete et al., 2020). For example, Bitew and Gebremichael (2011) 489 

reported that satellite-based rainfall predicted streamflow better than gauge rainfall for complex 490 

high-elevation basin in Ethiopia. Likewise, a bias-corrected CHIRP rainfall dataset resulted in 491 

better streamflow prediction than a gauge rainfall dataset for Ziway watershed in Ethiopia 492 

(Goshime et al., 2019). 493 

 The relatively poor performance of gauge rainfall compared to the CHIRPS2 and 494 

IMERG6 shows that the existing rainfall gauges do not represent spatiotemporal variability of 495 

rainfall in the DRB. The rain gauges are sparse, spatially uneven, and incomplete records for 496 

the DRB. As previously mentioned, rain gauge density for the DRB is 0.32 per 1000 km2, 497 

which is much lower than the World Meteorological Organization (WMO) recommendation of 498 

one gauge per 100-250 km2 for mountainous areas of tropical regions such as the DRB (WMO, 499 

1994).  500 

 In contrast to several previous studies on SREs evaluation, the present study combined 501 

statistical and hydrological performance evaluation in data scarce river basin of upper Blue 502 

Nile basin, the Dhidhessa River Basin. This method is important to identify SREs that better 503 

detect and estimate rainfall, and select application specific rainfall products such as for 504 

hydrologic and climate change studies. The results of this study also highlights seasonal 505 

dependence of rainfall detection and hydrologic performance capability of SREs for DRB and 506 

similar basins in Ethiopia. In addition, the performance of IMERG6, which is the latest SREs 507 

product, was evaluated for Ethiopian basin for the first time and the results showed that the 508 

product better performed for the DRB in detecting and streamflow simulation performance. 509 

Overall, this study showed that CHIRPS2 and IMERG6 rainfall products performed best in 510 

terms of detecting and estimating rainfall as well as predicting streamflow for the DRB. 511 

  512 
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  5. Conclusions 513 

 Satellite rainfall estimates are alternative rainfall data sources for hydrological and 514 

climate studies for data scarce regions like Ethiopia. However, SREs contain uncertainties 515 

attributed to errors in measurement, sampling, retrieval algorithm and bias correction 516 

processes. Moreover, the accuracy of rainfall estimation algorithm is influenced by topography 517 

and climatic conditions of a given area. Therefore, SREs products should be evaluated locally 518 

before they are used for any application. In this study, we examined the intrinsic data quality 519 

and hydrological simulation performance of CHIRPS2, IMERG6, 3B42/3 and TAMSAT3 520 

rainfall datasets for the DRB. The statistical evaluation results generally revealed that all four 521 

SREs products showed promising rainfall estimation and detection capability for the DRB. 522 

Particularly, all SREs captured the south-north declining rainfall patterns of the study area. 523 

This could be due to the fact that all the SREs products were gauge adjusted and that they are 524 

the latest versions. However, all the SREs datasets overestimated rainfall for DRB. Correlation 525 

coefficients of all SREs were strong for the monthly timescales than for the annual timescales, 526 

which shows that all rainfall products failed to capture interannual rainfall variability.     527 

 The quantitative statistical indices showed that CHIRPS2 performed the best in 528 

estimating and detecting rainfall events for the DRB at monthly as well as annual timescales. 529 

This is likely due to the fact that CHIRPS2 was created by merging satellite, reanalysis and 530 

gauge datasets at high spatial resolution. In the contrary, 3B43 performed poorly for the basin.  531 

 The hydrological modelling based performance evaluation showed that ranges, best fit 532 

values, and relative sensitivities of SWAT’s calibration parameters varied with the rainfall 533 

datasets. Overall, groundwater flow related parameters such as GWQMN.gw, ALPHA_BF.gw, 534 

GW_DELAY.gw and RCHRG_DP.gw were found more sensitive for all rainfall products. This 535 

showed that subsurface processes dominate hydrologic response of the DRB. The hydrological 536 

simulation performance results also showed that all the rainfall products, including the 537 

observed rainfall, overestimated streamflow especially the high flows, which could be 538 

attributed to the uncertainty of SREs rainfall to predict at shorter timescale (e.g., daily) and 539 

event rainfalls. The study showed CHIRPS2 and IMERG6 predicted streamflow for the basin 540 

satisfactorily, and even outperformed performance of the gauge rainfall. The relatively poor 541 

performance of the gauge rainfalls can be attributed to the fact that the gauges are too sparse to 542 

accurately characterize rainfall variability in the basin. Overall, CHIRS2 and IMERG6 543 

products seem to perform better for the DRB to detect rainfall events, to estimate rainfall 544 
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quantity, and to improve streamflow predictions. The new insights of this study include: i) the 545 

SREs evaluation was done by combining statistical and hydrological modelling methods; ii) 546 

the SREs considered in this study are the latest products reported best in different studies, and 547 

IMERG6 is the most recent product evaluated in Ethiopian basin’s for the first time in this 548 

study and iii) the rainfall detection and estimation as well as streamflow prediction capability 549 

of SREs is dependent on seasons. The study results of this study are of interest to both research 550 

communities and decision-makers, and this paper has made a good contribution to improve 551 

understanding of the latest SREs for Ethiopia and the DRB.  552 
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Appendix 801 

Appendix Table 1. List of rain gauge stations used for SREs evaluation.   802 

S. No Stations Latitude Longitude Elevation Remark 

1 Bedele 8.3 36.2 2011 Within the basin 

2 Gatira 8.0 36.2 2358 Within the basin 

3 Gimbi 9.2 35.8 1970 Within the basin 

4 Nedjo 9.5 35.5 1800 Within the basin 

5 Anger 9.3 36.3 1350 Within the basin 

6 Gida Ayana 9.9 36.9 1850 Within the basin 

7 Arjo 8.5 36.3 2565 Within the basin 

8 Jimma* 7.8 36.4 1718 Within the basin 

9 Nekemte* 9.1 36.5 2080 Within the basin 

10 Shambu 9.6 37.1 2460 Near the basin 

11 SibuSire 9.0 35.9 1826 Within the basin 

12 Bure 8.2 35.1 1750 Near the basin 

13 Sokoru  7.9 37.4 1928 Near the basin 

14 Gore 8.1 35.5 2033 Near the basin 

*systematically removed from using for calibration as they are already used for SREs calibration.  803 


