
 

 

We appreciate the comments and suggestions of the reviewer and have revised the paper 

accordingly. Below, the reviewer #1 comments are in blue, and our responses are in 

black. 

Interactive comment on “Analysis of 3D Cloud Effects in OCO-2 XCO2 Retrievals” by Steven 

T. Massie et al.  

Anonymous Referee #1 Received and published: 18 October 2020  

The manuscript describes 3D cloud effects in OCO-2 XCO2 retrievals. This is done using both 

measurements (TCCON, OCO-2 and MODIS) and 3D radiative transfer simulations. The 

presence of such effects are clearly demonstrated and their importance discussed. Various 

mitigation methods are presented and discussed. The manuscript is well-organized and include 

detailed description of the results. It is recommended for publication after consideration of the 

minor comments below.  

Comments  

Table of acronyms: The manuscript contains numerous acronyms. Some are self-explanatory, 

some common and some rather unusual in this context (like DWS which made this reviewer 

think about deep water soloing). To help the reader, please include a table of all acronyms and 

their explanations.  

A table of acronyms is included in the revised paper (lines 909-965, revised paper line 

numbers).  

Page 2, line 47: Rayner and O’Brien (2001) is missing in the References.  

 The Rayner and O’Brien reference is now included in the revised paper.  

Page 4, lines 140-183: Please specify the OCO-2 pixels size. And please provide a rough number 

of how many MODIS pixels cover one OCO-2 pixels. 

 On lines 166-172 of the revised paper, these sentences were added: 

For nadir view geometry, the OCO-2 footprint is approximately 1.3 km x 2.3 km at the Earth’s 

surface (OCO-2 L2 ATBD, 2019). Eight adjacent footprints are arranged in a row (see Figure 2.2 

of OCO-2 L2 ATBD, 2019), and these footprints in conjunction with the observation mode (ocean 

glint, land nadir, and target mode) determine the footprint scan patterns.  Since the MODIS CSU 

radiances are archived at 500 m resolution, approximately 10 MODIS 500 m pixels fit within one 

OCO-2 footprint. 

Page 6, lines 249-251: This sentence is hard to read. Please rephrase. 

 On lines 265-268 of the revised paper the revised sentences are: 

Several 3D metrics are calculated from MODIS and OCO-2 data files. Nearest cloud 

distance (abbreviated as Distkm), the sun-cloud-footprint scattering angle, and the H(3D) 

metrics (discussed below) are calculated from MODIS data files. The CSNoiseRatio and 



the H(Continuum) metrics (discussed below) are calculated from stand-alone OCO-2 

data. 

Page 6, line 263: Please explain what is meant by “eight OCO-2 observation footprints”. 

 The line has been revised to (lines 277-281):  

The Distkm metric frequently refers to clouds that are outside of the geospatial scan 

pattern defined by the OCO-2 observation footprints. A representative scan pattern is 

illustrated in Figure 9, for glint (ocean) scene. There are clouds within and outside of the 

geospatial scan pattern marked by the asterisks. 

Page 8, lines 354-368: Please include information about cloud phase (liquid or ice water cloud, I 

presume the former, but it should be written in the manuscript). How was the optical properties 

of the cloud calculated? What is the cloud effective radius and how was it estimated?  

 On lines 394-403 the following paragraph was added to the revised paper: 

     A separate computer program calculates the three dimensional distribution of water 

droplets and aerosol particles in the x-y-z grid, writing to an offline data file. This file 

specifies the liquid water contents and effective radii of the water droplets, and the aerosol 

mass densities and effective radii. We specified water droplets to have an effective radius 

of 10 m, and aerosol particles an effective radius of 0.1 m. SHDOM uses a Mie 

calculation to write to a particle scattering table for a range of water droplet effective radii 

(for a gamma size distribution), and a similar table for the aerosol particles (for a lognormal 

size distribution). These two tables, and the offline input file, are used by SHDOM to 

specify the particle absorption, scattering, and phase function particle characteristics in the x-

y-z grid. 

 

 

************************************************************************ 

We appreciate the careful reading of the paper by the reviewer, and the well thought out 

comments and suggestions of the reviewer, and have revised the paper accordingly. Below, the 

reviewer #2 comments are in blue, and our responses are in black. 

 

Interactive comment on “Analysis of 3D Cloud Effects in OCO-2 XCO2 Retrievals” by Steven 

T. Massie et al.  

 

Anonymous Referee #2 Received and published: 4 November 2020  

 

I believe this manuscript presents work that is worthy of publication. Most importantly, it 

estimates biases related to the presence of nearby clouds in satellite measurements of 

atmospheric carbon dioxide amounts. The methodology is reasonable and the presentation is 

generally good. Even so, I do have some significant concerns about the current version of the 

manuscript, and I recommend some major revisions. Please find my specific comments below.  

 



  

 

Main issues:  

 

1.  

My main comment is about the attribution of retrieval biases to 3D radiative effects. I wonder if, 

in addition to 3D effects, other factors may also play significant roles in the analyzed biases. It is 

clear that the biases are caused by factors and processes related to the presence of nearby clouds, 

but perhaps not exclusively by 3D radiative effects. I wonder mainly about two other cloud-

related factors. First, the surroundings of detected clouds are likely to contain some undetected 

clouds as well (subpixel-size clouds, cloud fragments detrained from larger clouds, remnants of 

mostly dissipated clouds, etc.). Second, aerosol optical depth increases near clouds due to factors 

such as the hygroscopic swelling of aerosols caused by the increased near-cloud humidity. The 

manuscript should discuss at least briefly–or perhaps using some calculations– whether cloud 

contamination or aerosol swelling (or even just the increased near-cloud humidity) could also 

play a role in the analyzed biases. If so, the findings should probably be reframed in the title and 

throughout the manuscript.  

 

Yes, cloud fragments and hygroscopic swelling of aerosols caused by increased near-

cloud humidity are real physical effects. The situations for which OCO-2 is most likely 

susceptible to 3D cloud effects are for low altitude “popcorn cloud” fields. A clear sky 

footprint, accompanied by an isolated cloud several km from the footprint, is a scene that 

passes the OCO-2 pre-screening tests. Scenes in which there are substantial clouds very 

close to the footprint are scenes rejected by the cloud pre-screener. If there were a cloud 

fragment close to a clear sky footprint embedded in a popcorn cloud field, then it would 

introduce optical depth to the scene and influence the 3D radiative transfer.  

 

We used Google Scholar to search for papers on cloud fragments and increased near-

cloud humidity. We found articles on the latter, but not the former topic.  

 

There are observation and modeling papers on increased near-cloud humidity. Twohy et 

al (Twohy, C. H., J. A. Coakley Jr., and W. R. Tahnk (2009), Effect of changes in relative 

humidity on aerosol scattering near clouds, J. Geophys. Res., 114, D05205, 

doi:10.1029/2008JD010991 ) measured relative humidity and aerosol scattering in the 

vicinity of small marine cumulus during the 1999 Indian Ocean Experiment (INDOEX). 

Relative humidity increased as distance to the boundaries of small marine trade cumulus 

decreased. 

 

From their Figure 4, the near-cloud humidity increase occurs within 1 km of the clouds 

they observed. 

 



 
 

The literature also contains papers in which these effects are modeled, with  

 

   Lu, M.-L., R. A. McClatchey, and J. H. Seinfeld (2002), Cloud halos: Numerical    

simulation of dynamical structure and radiative impact, J. Appl. Meteorol., 41, 832 – 848.  

 

and 

 

   Lu, M.-L., J. Wang, A. Freedman, H. H. Jonsson, R. C. Flagan, R. A. McClatchey, and 

J. H. Seinfeld (2003), Analysis of humidity halos around trade wind cumulus clouds, J. 

Atmos. Sci., 60, 1041 – 1059. 

 

representing two examples.  



 

Figure 4 of Lu et al (2002) has the following model field. 

 

 

 
 

The cloud halo is on the order of ½ km from the main cloud features.  

 

From Figure 6 of our paper, the XCO2bc-TCCON effect extends over a spatial scale of 

10 km. This spatial scale is larger than the 1 km cloud halo spatial scale.  

 

Lines 533-546 of the revised paper now discusses the issue of cloud fragments and cloud 

haloes, and the interpretation of the OCO-2 data: 

 

The data presented in Fig. 6 and elsewhere in this paper could also be influenced by the 

presence of undetected cloud fragments, dissipating clouds, and the fact that relative 

humidity is enhanced directly outside a cloud. The increase in relative humidity leads to 

swelling of aerosols, which would enhance near-cloud aerosol scattering. Twohy et al. 

(2009) measured relative humidity and aerosol scattering in the vicinity of small marine 

cumulus during the 1999 Indian Ocean Experiment (INDOEX). Enhancements were 

observed within 1 km of the cloud. Observations and model simulations of “cloud haloes” 

by Lu et al. (2002) and Lu et al. (2003) also indicate that the cloud halo exists ~ ½ km from 

a cloud. From Fig. 6, however, the XCO2bc-TCCON averages asymptote to a constant 

value over a length scale of 10 km, a scale substantially larger than the 1 km scale 

associated with cloud haloes. This disfavors an interpretation that the variation in Fig. 6 is 

primarily due to cloud halo effects. Várnai and Marshak (2009) also concluded that aerosol 



swelling does not account for observed illuminated / shadowy asymmetries in MODIS 

shortwave reflectance versus nearest cloud distance data. 

 

  

2. 

 Section 11 describes various attempts to improve the accuracy of bias-removal methods, but the 

authors conclude that none of the attempts proved successful in the end. Because the manuscript 

is already quite long, I suggest reducing the length of the section and limiting it to only a few 

sentences saying that the authors tried these approaches, but they did not prove helpful. Perhaps 

these sentences could even be merged into some other section. The details of the unsuccessful 

attempts do not seem critical and my sense is that even Table 9 could be deleted. In general, the 

number and size of tables is quite large, and if the authors found ways to delete some other 

tables–or at least to move them into an appendix or supplemental material–this could make the 

paper more inviting to readers.  

 

We have deleted a full paragraph in Section 11, and have also deleted a paragraph in 

Section 12, in the revised text.  

 

We do think discussion of this mitigation technique in Section 11 is warranted since the 

“adding terms to the bias correction equations” is an obvious mitigation technique to try. 

If the paper did not include this technique, most readers would ask “why didn’t you add 

the nearest cloud distance term to the bias correction equation? Not trying this technique 

is perplexing.” 

 

3.  

It seems that the procedure described in Lines 625-627 should be affected by the random 

sampling noise that appears to cause some small-scale variability (local minima or maxima at 

certain Distkm-CSNoiseRatio bins) in Figure 12. If the bias correction were to be applied to a 

different dataset (which has its own different sampling noise), this small-scale noise would 

presumably introduce additional errors into the correction. In addition to various nonlinearities, 

this sampling noise might also be a factor in why (as mentioned in Lines 638-640) linear 

regression is not performing as well as the bin-based process (Lines 625-627) for this dataset. I 

believe the manuscript should discuss the topic of sampling noise/variability somewhere.  

 

We have tried to improve upon the small-scale variability in Figure 12, by several 

refinements, but were unsuccessful in improving upon Figures 13 and 14. We then thought 

it best to present Figure 12, and apply it, without refinements. The main take-home message 

of the paper is a Table Look-up technique, utilizing two 3D metrics, yielded better results 

than other attempted techniques. 

 

The operational retrieval and post-retrieval bias correction processing yields XCO2bc 

PDFs with substantial standard deviations (on the order of 0.8 ppm) even for clear sky 

conditions. The standard deviations increase when 3D cloud radiative effects are added to 

the spectra. The 3D cloud effects are embedded in a sea of complicated “retrieval code 

responses”.  So in addition to measurement noise in the OCO-2 spectra, there is noise 



associated with the retrieval code response to a radiance perturbation that is not physically 

described by the retrieval code physics.  

 

Lines 868-872 were added to the text to discuss the noise/variability issue in general 

terms: 

 

The Table Look-up technique is based upon data (see Figure 12) that has bin to bin 

variations. Some of the data bins in fact have zero input data points. The bin to bin 

variability introduces some noise to the correction process. Some of the bin to bin variation 

is likely due to the fact that the retrieval code response to radiative perturbations, for 

physics not included in the retrieval physics, is complicated and noisy. 

 

 

Other issues: 

 

 Line 56: The word “ratio” should be added after “signal to noise”. 

 

 Line 56 now reads “the signal to noise ratio” 

 

 Line 155: It should be clarified where exactly the information contained in the CSU files comes 

from. Are these files created by combining selected data from operational MODIS products and 

if so, which ones? 

 

 Lines 155-157 now includes the sentence: 

 

Input to these auxiliary files include MODIS 1km MYD03 geolocation, 500 m 

MYD02HKM radiance files, and 1 km MYD06 cloud files, which includes the 1 km 

MODIS cloud mask.   

 

Lines 159-160: Does it ever occur that the MODIS cloud product retrieves a cloud optical depth 

greater than 1.0 and yet the MODIS cloud mask does not say the pixel is cloudy? If yes, it would 

be interesting to discuss when and why this happens. If not, the word “or” may have to be 

replaced by “and”.  

 

As indicated in original paper lines 159-160, we identify a cloud if the MODIS 

cloud mask says a cloud is present or if the MODIS cloud optical depth is greater than 1.0. 

This optical depth detection threshold was determined empirically by co-author Dr. 

Sebastian Schmidt from his previous experience with MODIS data.  

To answer your question, we downloaded MODIS MYD06 cloud and MYD35 

cloud mask files from the NASA GES DISC website for June 12, 2016, since the original 

CSU files, based upon Dr. Cronk’s v9 MODIS files, were completely scrubbed from the 

JPL computers to make room for new v10 MODIS files (which have not been created for 

the various types of MODIS files).  For the June 12, 2016 date, 14% of the data points had 

the cloud optical depth greater than 1.0 while the MODIS cloud mask said that a cloud was 

not present. We don’t know the MODIS team processing details that leads to this 

difference. 



Since our calculations used the “or” case, the paper should say “or” because that is 

what we did.  

 

Line 263: It would help to clarify what happens if clouds occur inside the OCO-2 footprint.  

 

 Line 281-283 was added to the text:  

 

If a cloud is inside a footprint, then the cloud would add photons to the sensed radiance, 

and any cloud shadows would provide lesser sensed radiance 

 

Lines 283-284: For the benefit of readers not familiar with OCO-2, it would help to specify 

somewhere (in addition to the Crisp reference) what the OCO-2 pixel and footprint sizes are, 

what the difference is between the two, why 8 footprints are grouped together and how these 

footprints are arranged. Some of this is mentioned in Lines 298-299, but it would be helpful to 

see this (and the rest of the information) a bit earlier, right when first mentioned.  

 

Lines 166 now has been expanded (as suggested by the first reviewer): 

 

For nadir view geometry, the OCO-2 footprint is approximately 1.3 km x 2.3 km at the 

Earth’s surface (OCO-2 L2 ATBD, 2019). Eight adjacent footprints are arranged in a row 

(see Figure 2.2 of OCO-2 L2 ATBD, 2019), and these footprints in conjunction with the 

observation mode (ocean glint, land nadir, and target mode) determine the footprint scan 

patterns.  Since the MODIS CSU radiances are archived at 500 m resolution, approximately 

10 MODIS 500 m pixels fit within one OCO-2 footprint. 

 

Lines 323-325: The wording should be refined to clarify whether land and ocean are combined 

or QF=0 and QF=1 are combined. In other words, whether the 40% is for QF=0 (land+ocean) 

and 73% is for QF=1 (land+ocean), or 40% is for land (QF=0 + QF=1) and 73% is for ocean 

(QF=0 + QF=1).  

 

 Lines 348-349 now read: 

 

In approximate terms, 40 % (QF=0, glint or nadir) and 73 % (QF=1, glint or nadir) of the 

observations are within 4 km of clouds. 

 

Table 2: It would help to clarify the used definition of seasons. For example, do summer 

statistics combine data from June-July-August over the Northern Hemisphere with data from 

December-January-February over the Southern Hemisphere?  

 

 The seasons are now defined in Table 2. 

 

Line 342: Shouldn’t Figure 9 be moved to become Figure 2, just so readers don’t need to jump 

from Figure 1 to Figure 9?  

 



 Figure 9 could be moved to near line 342, but then the reader would need to junp back 

repeatedly to the Figure in Section 8, which focuses upon Figure 9. We think it will be less jarring 

to the reader to keep Figure 9 in Section 8.  

 

 An early reference to the OCO-2 footprint array is now given on lines 168-169:  

 

Eight adjacent footprints are arranged in a row (see Figure 2.2 of OCO-2 L2 ATBD, 

2019),… 

 

Line 349: It would help to specify what wavelength the monochromatic total optical depth is for.  

 

 Lines 374 now reads: 

 

 with monochromatic total optical depths at representative wavelengths on the x axis and 

radiative perturbations on the y axis. 

 

Section 4: It would help to mention, if this is known, whether the key difference between the 

different 3D measures is that they consider standard deviation values over different spatial scales 

or at different wavelengths–or is it something else?  

  

 On lines 336-341: 

 

    Of the four metrics, the nearest cloud metric is directly tied physically to the cloud field 

of a given scene, and is assessed over a wide spatial scale. The radiance inhomogeneity 

(radiance standard deviation) based metrics are indirectly tied to the cloud field, with the 

CSNoiseRatio and H(Continuum) metrics assessed over a small spatial range. We note, 

however, that a cloud field usually has more than one cloud, so the nearest cloud metric 

incompletely describes the cloud field.  

 

Figure 2 caption: The sentence “The sun is along the negative x axis” does not fit here; the x-axis 

shows optical depth, not any position or angle. The end portion of the caption also seems to refer 

to simulation setup and could be deleted, especially as the text mentions some of this info 

anyway (e.g., Line 382).  

 

 The Figure 2. caption now reads: 

 

Figure 2. SHDOM 1D (IPA) and 3D radiative perturbations for ocean glint and land nadir 

viewing geometry using the same Fig. 9 cloud field. “A” in the y-axis title refers to 3D or 

1D radiative perturbations. The 3D radiance perturbations for glint viewing geometry are 

larger than the nadir viewing geometry perturbations. 

 

Lines 481-482: I recommend explaining why the 0.4 ppm bias at large distances from clouds can 

be attributed to 3D effects. This seems counter-intuitive, as this bias occurs in far-from-cloud 

cases where 3D effects should be weakest. Perhaps 3D effects that occur closer to clouds make 

the bias correction to be incorrect far from clouds? If the bias correction aims to remove overall 



biases (as mentioned in Lines 517-52), an overall correction that reduces biases near clouds 

could perhaps increase biases far from clouds at the same time? Table 5 or other parts of Section 

7: I wonder if the measures with the largest 3D biases are most suitable for capturing the key 

aspects of 3D effects, and measures with smaller biases are less so. In the extreme, an inept 

measure with no useful information about 3D effects would provide an estimate of zero for 3D 

effects. If this seems right, it may be worth mentioning in the paper.  

 

The reviewer is correct to expect that the XCO2bc – TCCON averages should be close to 

zero at the largest cloud distances, since the 3D effect should physically asymptote towards 

zero as cloud distance becomes very large. The calculations in our paper, however, 

examine only XCO2bc – TCCON differences. The operational bias correction process 

looks at XCO2raw – TCCON and XCO2raw – model differences (from an ensemble of six 

models), and XCO2raw – small area analysis XCO2 (see added paragraph below). The 

final operational XCO2bc values are derived from a combination of the three comparisons. 

For this reason, our XCO2bc – TCCON averages are not equal to zero at large cloud 

distances. We choose to focus on XCO2bc – TCCON in our calculations, since TCCON 

XCO2 provides the most direct “truth proxy”.  

 

 A paragraph has been rewritten in Section 7 (new lines 505-521): 

 

     Further insight into the Fig. 4 and 5 distributions is presented in Fig. 6 and 7, in which 

averages and 95 % (2) confidence limits of the averages are displayed. The XCO2raw-

TCCON and XCO2bc-TCCON averages become more negative for both QF=0 and QF=1 

cases as cloud distance approaches zero in Fig. 6. The averages become closer to each other 

as nearest cloud distance increases to large values. Ideally, the XCO2bc-TCCON 

differences should approach zero as the nearest cloud distance becomes very large, since 

the 3D effect should physically decrease towards zero as cloud distance becomes very 

large. The differences are close to 0.4 ppm in Fig. 6 instead of zero since the operational 

bias correction processing also considers comparisons to modeled XCO2 and small-area 

analysis in the determination of XCO2bc (O’Dell et al. 2018). Since the 95 % confidence 

limits in Fig. 6 do not overlap for small cloud distances, the differences in the averages, 

and the increasingly negative trend in the averages as cloud distance approaches zero, are 

statistically significant. This indicates that the operational bias correction does not 

completely remove 3D cloud effects from the XCO2raw retrievals for the full range of 

cloud distance. Fig. 6 indicates that there is a difference in the XCO2bc – TCCON averages 

near -0.4 ppm (the difference of 0 ppm at cloud distances near 0 km and 0.4 ppm at cloud 

distances greater than 10 km). This difference is referred to as the ocean 3D cloud bias. 

 

To expand upon the discussion of the use of model XCO2 data, we revised the first sentence 

of section 3 ( lines 195-199): 

As discussed by O’Dell et al. (2018) and in the Version 9 OCO-2 Data Product User’s 

Guide (2018, see Table 3.4), the bias correction procedure compares Level 2 retrieved 

XCO2raw to TCCON XCO2, model mean XCO2, and small area analysis XCO2 and 



produces bias corrected XCO2bc values, based upon the following equations for ocean 

glint and land nadir Version 9 observations. 

and added this paragraph (lines 224-231): 

   As discussed by O’Dell et al. (2018), the small area analysis XCO2 is based upon the 

assumption that XCO2 should be uniform in a 100 km by 100 km region, since the XCO2 

decorrelation length is between 500 and 1000 km. The model median data is taken from an 

ensemble of six models. The Feats coefficients are determined from a comparison of Feats 

coefficients derived separately from comparisons of XCO2raw with TCCON, model mean 

XCO2, and small area analysis XCO2. The TCCONadj divisor is based solely on TCCON 

data. In this paper we focus upon analysis of XCO2 –TCCON data since the TCCON data 

is the most direct truth proxy of the three proxies. 

 

Line 656: I guess it should be “5 and 10 km”, not “5 and 50 km”.  

 

Though Figure 1 has an x scale between 0 and 30 km, the processing of the MODIS CSU 

files yields Distkm values in the 0 to 50 km range. 

 

Line 765: The word “ocean” should be deleted.  

  

 “ocean” has been deleted 

 

Lines 777-778: It also seems potentially important and worth mentioning in the paper that clouds 

can move closer or farther as they drift with the wind during the 6 minutes between the OCO-2 

and Aqua overpasses.  

 

 On line 817, the revised text now includes the sentence: 

 

For a representative wind speed of 5 m/s, a cloud moves 1.8 km in six minutes, which is 

similar to the size of an OCO-2 footprint. 
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Abstract. The presence of 3D cloud radiative effects in OCO-2 retrievals is demonstrated 

from an analysis of 2014-2019 OCO-2 XCO2raw retrievals, bias corrected XCO2bc data, 

ground based Total Carbon Column Observation Network (TCCON) XCO2, and Moderate 

Resolution Imaging Spectroradiometer (MODIS) cloud and radiance fields. Averaged over 

the yearIn approximate terms, 40 % and 75 % of OCO-2 Quality Flag QF=0 (best (quality 20 
flag (QF)=0, land or ocean) and 73 % (QF=1 (lesser quality) retrievals, land or ocean) of 

the observations are within 4 km of clouds. 3D radiative transfer calculations indicate that 

3D cloud radiative perturbations at this cloud distance, for an isolated low altitude cloud, 

are larger in absolute value than those due to a 1 ppm increase in CO2. OCO-2 

measurements are therefore susceptible to 3D cloud effects. Four 3D cloud metrics, based 25 
upon MODIS radiance and cloud fields and stand-alone OCO-2 measurements, relate 

XCO2bc-TCCON averages to 3D cloud effects. This analysis indicates that the operational 

bias correction has a non-zero residual 3D cloud bias for both QF=0 and QF=1 data. 

XCO2bc –TCCON averages at small cloud distances differ from those at large cloud 

distances by -0.4 and -2.2 ppm for the QF=0 and QF=1 data over the ocean. Mitigation of 30 
3D cloud biases by a Table look-up technique, that utilizes nearest cloud distance (Distkm) 

and spatial radiance heterogeneity (CSNoiseRatio) 3D metrics, reduces QF=1 ocean and 

land XCO2bc –TCCON averages from -1 ppm to near ± 0.2 ppm. The ocean QF=1 

XCO2bc-TCCON averages can be reduced to the 0.5 ppm level if 60 % (70 %) of the QF=1 

data points are utilized, by applying Distkm (CSNoiseRatio) metrics in a data screening 35 
process. Over land the QF=1 XCO2bc–TCCON averages are reduced to the 0.5 (0.8) ppm 

level if 65 (63) % of the data points are utilized by applying Diastkm (CSNoiseRatio) data 

screening. The addition of more terms to the linear regression equations used in the current 

bias correction processing, without data screening, however, did not introduce an 

appreciable improvement in the standard deviations of the XCO2bc-TCCON statistics. 40 
 

1 Introduction 

 

The Orbiting Carbon Observatory (OCO-2) measures the column-averaged atmospheric 

CO2 dry air mole fraction, referred to as XCO2, on a global basis (Eldering et al., 2017).  45 
Space based measurements of XCO2 can improve our understanding of surface CO2 fluxes 
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if XCO2 variations are accurately measured to the 0.3 % level (~1 ppm) on spatial scales 

from less than 100 km over land and ~1000 km over the ocean (Rayner and O’Brien, 2001; 

OCO-2 L2 ATBD, 2019).   

OCO-2 derives XCO2 from an optimal estimation methodology (Rodgers, 2000) that 50 
is applied (O’Dell et al., 2018) to spectra in three spectral bands: the 0.76 µm O2 A-band, 

the 1.61 µm weak CO2 band, and the 2.06 µm strong CO2 band. The spectral resolutions 

of the three spectrometers are greater than 19,000 and are sufficient to resolve molecular 

pressure-broadened lines. Each spectral band is comprised of 1016 wavelength samples. 

The retrieval includes a state (solution) that includes CO2 at 20 levels, surface pressure, 55 
H2O and temperature profile scale factors, aerosol and cloud opacity, land or ocean surface 

albedo, and spectral dispersion shifts. To boost the signal to noise ratio over the dark ocean 

surface, XCO2 measurements over the ocean rely on sun-ocean-sensor glint viewing 

geometry. Measurements over land are collected in nadir or glint view geometry.  A third 

mode, target mode, commands OCO-2 to observe many points around a specific targeted 60 
area. In this mode the sensor azimuth and zenith angles vary appreciably for a given surface 

location, which is not the case for the glint and nadir modes. 

Clouds and aerosols definitely complicate the radiative transfer associated with the 

OCO-2 measurements. Connor et al. (2016) identify aerosols (solid and liquid particles) as 

the most important error source, followed by spectroscopic and instrument calibration 65 
uncertainties. To minimize the influence of clouds, the cloud pre-processor (Taylor et al., 

2016) applies two fast algorithms to screen for clouds. The “A-band Preprocessor” solves 

for the surface pressure assuming that no clouds or aerosols are present. Differences greater 

than 25 hPa between retrieved and a priori surface pressure lead to the exclusion of a profile 

from the Level-2 “Full Physics” operational retrieval (OCO-2 L2 ATBD, 2019). The 70 
second algorithm compares column-integrated CO2 from the weak and strong CO2 bands. 

If the ratio of the CO2 columns deviates significantly from unity, then the profile is 

excluded from the Full Physics retrieval. The preprocessors are very efficient, but they do 

not catch all cloudy scenes, especially if there are low altitude clouds present. Of the 1 

million measurements made each day, ~25 % pass the preprocessor filters and enter the 75 
operational retrieval (O’Dell et al., 2018). 

Primary validation of OCO-2 XCO2 relies upon comparison to the Total Carbon 

Column Network (TCCON) ground based measurements of XCO2 (Wunch et al., 2017). 

Twenty-seven TCCON stations (see http://tccon.caltech.edu) utilize Fourier Transform 

Spectrometer instrumentation. TCCON observation geometry is direct solar viewing, and 80 
the XCO2 measurements are accurate to 0.5 ppm (Wunch et al, 2010). Comparisons of 

XCO2raw (the XCO2 that is produced by the operational retrieval) to TCCON 

measurements reveal that TCCON measurements are approximately 1 ppm larger than 

XCO2raw values, as discussed in the Version 9 Data Product User’s Guide (2018). Based 

upon these and other comparisons, the OCO-2 algorithm team applies multi-variable linear 85 
regressions separately over land and ocean to bias correct the XCO2raw retrievals to 

XCO2bc values. The variables in the bias correction equations include differences in the 

retrieved and a priori surface pressures, the sum of aerosol optical depths for large aerosol 

particles (for land data), and a “CO2graddel” term. CO2graddel is a measure of the 

difference in the vertical gradients of the a priori CO2 and retrieved vertical profiles (see 90 
Eq. (5) of O’Dell et al., 2018). 

http://tccon.caltech.edu/
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Not all physics, however, is included in the Full Physics retrieval. The subject of this 

paper is 3D cloud effects. The operational retrieval is a 1D-column retrieval, by necessity. 

The computer processing of a single profile takes several minutes. More than 100,000 

profiles are retrieved per day, requiring an appreciable amount of computer processing.  95 
With regard to 3D cloud effects, radiances from a clear sky footprint may be perturbed by 

a cloud several kilometers from the clear sky footprint. The 1D retrieval, however, uses the 

independent pixel approximation, by which radiative transfer optical properties are those 

within a single 1D column. The 1D retrieval does not consider the radiative effects of 

clouds outside of the 1D column. The operational retrieval iterates for the state vector 100 
elements of the surface pressure, aerosol, surface reflectance, and the CO2 vertical profile 

that minimizes the differences in the observed and forward model spectra. The state vector 

elements frequently take on unrealistic values in the converged solution. 

Previous papers have demonstrated the presence and effects of 3D cloud effects in other 

experiments and the OCO-2 experiment. Várnai and Marshak (2009) demonstrated that 105 
MODIS reflectance at various wavelengths between 0.47 and 2.12 µm increases as cloud 

distances decrease at cloud distances less than 10 km, and that the effect is strongest at 

shorter wavelengths. Okata et al. (2017) modeled 3D cloud effects, finding positive 3D–

1D radiance differences, for solar zenith angles greater than 5°, for periodic cuboid clouds 

of 2.5 km height. Merrelli et al. (2015) applied the SHDOM 3D radiative transfer code, 110 
and the OCO-2 retrieval code, and concluded that the OCO-2 cloud-screening algorithm 

had difficulty in rejecting clouds that filled less than half of the field of view. Retrieved 

XCO2 were offset low from clear sky retrievals by 0.3, 3, and 5-6 ppm for soil, vegetation, 

and snow surfaces. Massie et al. (2017) analyzed version 7 OCO-2 XCO2 in conjunction 

with MODIS radiance fields, demonstrating that XCO2 decreased as a cloud-radiance field 115 
inhomogeneity metric increased in target mode observations. Here we extend Massie et al. 

(2017) by analyzing additional 3D cloud metrics, and relate each of the metrics to the global 

set of TCCON XCO2 measurements obtained from 2014 through 2019. 

Our study is organized in the following manner. In Section 2 we discuss the OCO-2, 

Moderate Imaging Spectroradiometer (MODIS), and TCCON data that is analyzed. Details 120 
of the bias correction procedure are presented in Section 3. We define four 3D metrics that 

are derived from MODIS-based files (such as nearest cloud distance) and stand-alone 

OCO-2 metrics in Section 4. We compare the utility and effectiveness of the MODIS and 

stand-alone metrics, since the stand-alone metrics are readily calculable from the OCO-2 

data files, while the MODIS-based files impose an additional level of processing 125 
complexity. In Section 5 we demonstrate that over half of the OCO-2 measurements are 

within 4 km of clouds, and demonstrate in Section 6 that the 3D cloud effect over ocean 

and land has a larger radiative perturbation (in absolute terms) at this cloud distance than 

perturbations for a 1 ppm increase in XCO2. Distributions of XCO2raw –TCCON and 

XCO2bc – TCCON are related to the four 3D cloud metrics in Section 7. We demonstrate 130 
that 3D cloud biases in XCO2bc – TCCON remain after the current bias correction 

processing for both Quality Flag QF=0 (best quality) and QF=1 (lesser quality) data. While 

Section 7 focuses on global analyses, we demonstrate in Section 8 that the 3D effects 

appear readily in local scenes. Mitigation of the 3D cloud biases by application of a Table 

look-up correction is discussed in Section 9. Mitigation of the 3D cloud biases by data 135 
screening by the four 3D metrics is investigated in Section 10. Mitigation by adding terms 
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to the current bias correction equations, without data screening being applied, is discussed 

in Section 11. Finally, Section 12 summarizes the findings of the previous sections.  

 

2 Data 140 
 

OCO-2 product files are available from the NASA Earthdata website 

(https://earthdata.nasa.gov/). Level 2 L2Std (standard) and L2Dia (diagnostic) files contain 

retrieved XCO2 (referred to as XCO2raw data). “Lite” files contain the XCO2raw and 

biased corrected XCO2bc data, with one file containing all converged retrievals for one 145 
day. The Quality Flag (QF) is set to 0 for the best quality data, and to 1 for lesser quality 

data. Each OCO-2 measurement has an associated 16 digit Sounding ID that uniquely 

identifies each XCO2 profile. Over 100,000 successful retrievals are contained in a single 

daily Lite file. We focus upon Version 9 and 10 OCO-2 data files in our study, with the 

majority of presented figures and tables based upon the Version 10 data. The Version 10 150 
data we analyze is derived from “beta” release files, housed at JPL, prior to the formal 

release to the Earthdata GES DISC archive.  

Auxiliary files (Cronk et al., 2018), not archived by the NASA Earthdata file system, 

contain MODIS radiances at 500m spatial resolution, cloud mask, cloud fraction, cloud 

optical depth, and geolocation (based upon OCO-2 Version 9 data), matched to the OCO-155 
2 Sounding ID. We refer to these files as Colorado State University “CSU files”. Input to 

these auxiliary files include MODIS 1km MYD03 geolocation, 500 m MYD02HKM 

radiance files, and MYD06 cloud files, which includes the 1 km MODIS cloud mask.  
MODIS and OCO-2 fly in formation in the NASA “A-train”, with OCO-2 flying six 

minutes in front of MODIS Aqua.  For each Sounding ID there are MODIS data points 160 
within 50 km east and west of the OCO-2 observation point. In relation to each OCO-2 

observation footprint, we determine the closest MODIS field point for which the MODIS 

cloud mask indicates a cloud, or for which the MODIS cloud optical depth is greater than 

unity. Knowing the geolocation positions of these two points, the distance in km between 

the footprint and cloud, and the angle between the observation footprint and cloud, are 165 
calculated. 3D cloud effects likely are dependent upon the distance of a cloud to the 

observation footprint and sun-cloud-footprint viewing geometry considerations. For nadir 

view geometry, the OCO-2 footprint is approximately 1.3 km x 2.3 km at the Earth’s 

surface (OCO-2 L2 ATBD, 2019). Eight adjacent footprints are arranged in a row (see Fig. 

2.2 of OCO-2 L2 ATBD, 2019), and these footprints in conjunction with the observation 170 
mode (ocean glint, land nadir, and target mode) determine the footprint scan patterns.  

Since the MODIS CSU radiances are archived at 500 m resolution, approximately 10 

MODIS 500 m pixels fit within one OCO-2 footprint. 

In addition to the OCO-2 and MODIS-based data, our analyses includes data files that 

combines this data with adjacent TCCON measurements. We refer to these files as 175 
“Validation” files. A TCCON measurement is associated with an OCO-2 measurement, on 

the same day, if the difference in geolocation is less than 2.5° in latitude and 5° in longitude. 

These files allow us to calculate the statistics associated with XCO2bc-TCCON and 

XCO2raw-TCCON comparisons over ocean and land. Table 1 lists the TCCON sites and 

data used in our analyses. Wunch et al. (2015) discusses the TCOON data version we 180 
analyze. 

https://earthdata.nasa.gov/
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We also examine differences in averaged OCO-2 spectra, as a function of distance from 

nearest clouds and as a function of XCO2bc to illustrate the perturbations in radiance that 

are due to 3D cloud effects. OCO-2 spectra are contained in the level 2 diagnostic (glint 

oco2_L2DiaGL.. and nadir oco2_L2DiaND..) files. For the spectral analysis we co-process 185 
the diagnostic, Lite, and CSU MODIS files. 

 For the determination of the standard deviation of the radiances for adjacent 

observation footprints, which is used to determine the H(Continuum) 3D metric discussed 

in Section 4, we analyze the O2 A-band continuum radiances that are archived in the OCO-

2 Version 10 Lev1b files (glint oco2_L1bScGL.. and nadir oco2_L1bScND..) files. The 190 
Lev1b Version 9 files also contain “colorslice” data which is used to define the 

CSNoiseRatio discussed in Section 4. 

 

 

3 Bias correction procedure 195 
 

As discussed by O’Dell et al. (2018) and in the Version 9 OCO-2 Data Product User’s 

Guide (2018, see Table 3.4), the bias correction procedure compares Level 1 retrieved 

XCO2raw andto TCCON XCO2, model mean XCO2, and small area analysis XCO2 and 

produces bias corrected XCO2bc values, based upon the following equations for ocean 200 
glint and land nadir Version 9 observations. 

 

XCO2bc = (XCO2raw – Foot(fp) – Feats) / TCCONadj.           (1) 

 

For ocean glint observations,   205 
 

Feats = - (0.245 * dPsco2) + (0.09* (CO2graddel + 6.0)).                              (2) 

 

For land nadir observations,  

 210 
Feats = - (0.90 * dPfrac) – (9.0*DWS) – (0.029 * (CO2graddel -15.0)).          (3) 

 

The footprint bias Foot(fp) for footprints (fp) 1 through 8 varies monotonically from -0.36 

to 0.34. The Version 9 TCCONadj values are 0.9954 and 0.9953 for land and ocean 

observations. dPsco2 is the difference (in hPa) between the retrieved and a priori surface 215 
pressure evaluated at the strong CO2 band geographic location, while dPfrac (in ppm units) 

is 

  

dPfrac = XCO2raw * (1.00 – Papriori/ Pretrieved).                                         (4) 

 220 
For Version 9 and 10 data the Papriori is taken from the GEOS-5 Forward Processing for 

Instrument Teams (GEOS-FP-IT) analysis.  CO2graddel is a measure of the difference in 

the retrieved and prior CO2 vertical gradient, and is applied in Eq. (2) if CO2graddel is less 

than -6.0. DWS is the sum of the vertical optical depths of the dust, water, and seasalt 

aerosol components.  225 
As discussed by O’Dell et al. (2018), the small area analysis XCO2 is based upon the 

assumption that XCO2 should be uniform in a 100 km by 100 km region, since the XCO2 
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decorrelation length is between 500 and 1000 km. The model median data is taken from an 

ensemble of six models. The Feats coefficients are determined from a comparison of Feats 

coefficients derived separately from comparisons of XCO2raw with TCCON XCO2, 230 
model mean XCO2, and small area analysis XCO2. The TCCONadj divisor is based solely 

on TCCON data. In this paper we focus solely upon analysis of XCO2 –TCCON data since 

the TCCON data is the most direct truth proxy of the three proxies. 

For Version 10 data Eq. (2) still applies, but with dPsco2 and CO2graddel coefficients 

of 0.213 and 0.0870, and TCCONadj equal to 0.995 (Version 10 OCO-2 Data Product 235 
User’s Guide (2020), see Table 3.3). For land observations,  

 

Feats =   – (0.855 * dPfrac)  –  0.335 * (max(logDWS,-5) + 5.0)  

    – (0.0335 * (CO2graddel -5.0))  +  5.20 (AODfine -0.03),                        (5)  

 240 
where AODfine is the fine aerosol optical depth (sulfate plus organic carbon aerosol), and 

TCCONadj is equal to 0.9959. The Version 10 and 9 Foot(fp) values differ slightly. 

In the application of Eqns. (1) – (3), the retrieval provides dPsco2, dPfrac, DWS, and 

CO2graddel bias correction values that are used in the bias correction calculations. The 

XCO2raw values are designated as QF=0 or QF=1 data points from a series of exceedance 245 
checks on many variables, including the bias correction variables. The operational bias 

correction only uses the QF=0 data points to determine the linear coefficients in Eqns. (2) 

and (3). 

The differences in XCO2raw and XCO2bc are due to several factors. First of all, there 

are uncertainties in the spectroscopic parameters (line strengths, pressure broadening 250 
coefficients, energy levels, and specifications of the molecular line shape, including line-

mixing complications). Calibration errors, especially in regard to the instrument line shape, 

are also important. Incorrectly modeled physical scene characteristics, such as errors in the 

aerosol single scattering property or surface bidirectional diffuse reflectance (BRDF) 

specification, and/or 3D cloud scattering considerations, also have influence upon the 255 
XCO2raw and XCO2bc differences. 

The operational retrieval, however, does not include 3D cloud effects. We will calculate 

3D cloud metrics based upon the MODIS files and “stand alone” OCO-2 data, and 

investigate if application of the 3D metrics in a Table look-up correction, or by data 

screening by the 3D metrics, leads to a reduction in the standard deviations and averages 260 
of TCCON-XCO2bc probability distribution functions (PDFs). We also add 3D cloud 

metric terms to the bias correction Eqns. (1)-(3) to determine if they reduce TCCON-

XCO2bc standard deviations and averages. 

 

4 Metrics 265 
 

Several 3D metrics are analyzed in this paper: a) nearestcalculated from MODIS and OCO-

2 data files. Nearest cloud distance (abbreviated as Distkm), and the sun-cloud-footprint 

scattering angle, b) MODIS radiance field and the H(3D), c)) metrics (discussed below) 

are calculated from MODIS data files. The CSNoiseRatio, and d) OCO-2 footprint radiance 270 
standard deviations, and the H(Continuum). Metrics a) and b) are calculated from analyses 

of the CSU files, while metrics c) and d) metrics (discussed below) are based 

uponcalculated from stand-alone OCO-2 data. We will apply all of the metrics in 
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subsequent sections of this paper, and compare how well each metric performs in reducing 

the scatter in the TCCON-XCO2bc standard deviations and averages over ocean and land. 275 
The CSU files are processed to determine the distance in km of the OCO-2 Lite file 

observation data points to the nearest MODIS cloud. The distance is simply the hypotenuse 

of the triangle formed by the difference in latitude and longitude of the center of the OCO-

2 footprint and the nearest MODIS cloud, with the longitude difference multiplied by the 

cosine of the latitude. The sun-cloud-footprint scattering angle is the angle between the sun 280 
to nearest cloud vector and the nearest cloud to observation footprint vector.  The Distkm 

metric frequently refers to clouds that are outside of the geospatial scan pattern defined by 

the eight OCO-2 observation footprints.OCO-2 observation footprints. A representative 

scan pattern is illustrated in Fig. 9, for glint (ocean) scene. There are clouds within and 

outside of the geospatial scan pattern of the footprints marked by the asterisks. If a cloud 285 
is inside a footprint, then the cloud would add photons to the sensed radiance, and any 

cloud shadows would provide lesser sensed radiance. The Distkm metric cannot be 

specified from OCO-2 observations. 

The H(3D) metric (Liang, Di Girolamo, and Platnick, 2009; Massie et al., 2017), as 

applied to the radiance field, 290 
 

H(3D, kcir) = standard deviation of  the Radiance field / average of Radiance field,    (6) 

 

is a measure of the inhomogeneity of the radiance field, and is calculated from the CSU file 

radiance fields. For a cloudless scene with no surface reflectance variations, the H(3D) 295 
parameter approaches zero, while for scenes with broken cloud fields or surface reflectance 

heterogeneity, the H(3D) metric is larger. The H(3D, kcir) values are calculated for four 

averaging circle radii (kcir) of 5, 10, 15 and 20 km, that surround each OCO-2 footprint. 

95 % of the H(3D) values vary between 0.0 and 0.80 over the ocean and between 0.0 and 

0.66 over land. The 10 km circle H(3D) data is used in our study. FigureFig. 1 of Várnai 300 
and Marshak (2009) indicates that MODIS reflectance at wavelengths between 0.47 and 

2.12 µm increased (i.e. that 3D cloud effects are present) for cloud distances less than 10 

km, with nearly zero increase in reflectance at larger distances. We find that there is a larger 

inhomogeneity in the radiance field over the ocean than over the land. The H(3D) metric 

increases as cloud inhomogeneity increases. 305 
The OCO-2 CSNoiseRatio uses the sub-footprint spatial information contained within 

the “colorslice” data. As discussed by Crisp et al. (2017, see their Fig. 2), each of the 8 

footprint samples are an average of 20 pixels. For a subset of 20 columns (the spectral 

dimension), the individual pixel level data is returned from the instrument and stored as 

“colorslices” in the level 1 L1b data files. The specific 20 columns are chosen at specific 310 
spectral locations in each of the OCO-2 bands, primarily to support the de-clocking 

algorithm. Each band contains 5 or 6 colorslices at continuum wavelengths. The spatial 

mean and standard deviation are computed for each of these continuum colorslices, and 

then the final mean and standard deviation for that individual sounding is computed across 

those 5 to 6 values. Computing a median over the available continuum slices makes the 315 
calculation robust to isolated bad pixel values, which can be caused by cosmic ray hits on 

the detectors. The “CSNoiseRatio” used in this paper is the ratio of the continuum radiance 

spatial standard deviation and the noise level at the continuum radiance level as predicted 

from the radiometric noise model. The CSNoiseRatio has an expected value of unity if the 
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continuum radiance in the footprint is spatially constant, as the standard deviation across 320 
the pixels should be due to the detector noise. The CSNoiseRatio values increase as the 

within-footprint radiance inhomogeneity increases. Note that each observation footprint 

has an extent of approximately 1.3 km (cross-track) by 2.3 km (along-track) at the Earth’s 

surface. The CSNoiseRatio values increase as cloud inhomogeneity, within and/or outside 

of each observation footprint, increases. 325 
Finally, the H(Continuum) metric is calculated from Eq. (7), based upon the observed 

radiance Radobs at a specific footprint, and the standard deviation of the radiance field, 

with radiances given by the OCO-2 O2 A-band level1b continuum radiances. 

  

H(Continuum) = 100 (standard deviation of  the Radiance field / Radobs ),                 (7) 330 
 

For a specific observation footprint, we focus upon the primary west to east row of eight 

adjacent footprints that contains the specific footprint, and two adjacent rows, one north 

and one south of the primary row (see Fig. 9, discussed below). There are therefore 23 

adjacent footprints that we associate with a specific footprint. For each specific footprint, 335 
the 23 adjacent footprint continuum radiances are included in each H(Continuum) 

calculation. All footprints are given equal weight in applying Eq. (7), including footprints 

1 and 8 (the edge footprints). 95 % of the O2 A-band H(Continuum) values vary between 

0 and 24 over the ocean, and between 0 and 27 over land. H(Continuum) increases as cloud 

inhomogeneity increases. 340 
Of the four metrics, the nearest cloud metric is directly tied physically to the cloud field 

of a given scene, and is assessed over a wide spatial scale. The radiance inhomogeneity 

(radiance standard deviation) based metrics are indirectly tied to the cloud field, with the 

CSNoiseRatio and H(Continuum) metrics assessed over a lesser spatial range. We note, 

however, that a cloud field usually has more than one cloud, so the nearest cloud metric 345 
incompletely describes the cloud field. 

 

5 The proximity of OCO-2 observations to clouds 

 

Figure 1 presents the fraction of Lite file glint and nadir observations that have a cloud 350 
within a circle of a specified radius in km, in summer for five 20º latitude bands, for 2014 

- 2019. The calculations utilize distance bins from 0 to 35 km, with fractions normalized 

to 100 % for the 35 km circle radius. In averageapproximate terms, 40 % (QF=0, glint or 

nadir) and 73 % (QF=1, glint or nadir) of the observations over the ocean and land are 

within 4 km of clouds for the QF=0 and QF=1 cases, respectively. The tropical 0º-20º and 355 
-20º-0º latitude bands have observations that are closest to clouds. This is of importance 

since the tropics have relatively few OCO-2 observations, compared to other latitudinal 

bands. Carbon cycle fluxes in the tropics are large and are very important in regards to 

understanding the global carbon cycle. 

Table 2 presents the fraction of observations that have a cloud within 4 km of an 360 
observation for each season. The minimum and maximum values for the four seasons are 

in the 21-58 % and 55-96 % ranges for the QF=0 and QF=1 cases. Averaged over the year, 

40 % and 75 % of the QF=0 and QF=1 observations are within 4 km of a cloud. Fig. 1 and 

Table 2 indicate that OCO-2 QF=1 data is appreciably closer to clouds than the QF=0 data. 

The QF=1 data is therefore more susceptible to 3D cloud effects than the QF=0 data. 365 
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6 Radiative Transfer Sensitivity Calculations 

 

To illustrate the relative sensitivity of glint and nadir observations to 3D cloud effects, we 

applied the Spherical Harmonic Discrete Ordinate radiative transfer Method (SHDOM) 3D 370 
radiative transfer code to the same sparse cloud scene, varying glint and nadir viewing 

geometry and other parameters (surface reflectance). This cloud scene is illustrated below 

in Fig. 9. SHDOM (Evans, 1998; Pincus and Evans, 2009) is applied by specifying a 3D 

model atmosphere with a specified 3D field of cloud optical properties. Radiation fields at 

satellite altitude for 1D column (independent pixel approximation, IPA) and 3D mode are 375 
calculated separately. Comparison of the IPA and 3D calculations then indicates the size 

of the 3D cloud effect radiative perturbations. 

Figure 2 presents SHDOM radiative perturbations for all three OCO-2 bands, based 

upon the atmospheric base-state and perturbed parameters given in Table 3, with 

monochromatic total optical depth at representative wavelengths on the x axis and radiative 380 
perturbations on the y axis. Perturbations are applied individually one at a time, e.g. for the 

calculation of the partial derivative of radiance with respect to a change in surface pressure, 

all other variables are kept at their base state values. The base state CO2 is 400 ppm at a 

surface pressure of 1016 hPa.  

The cloud field is derived from the MODIS 250 m radiance field on June 12, 2016 over 385 
the ocean (and graphed in Fig. 9). As discussed by Massie et al. (2017), the MODIS cloud 

mask does not identify all clouds that are visible in MODIS imagery (available from the 

NASA Worldview website https://worldview.earthdata.nasa.gov/). MODIS 250 m field 

radiance and MODIS cloud mask data can be used together to generate a cloud field that 

includes cloud elements not identified by the MODIS cloud mask. The SHDOM cloud field 390 
assigns a cloud to a location if the MODIS radiance at that location is greater than or equal 

to scene-specific MODIS radiance thresholds. The scene-specific radiance thresholds are 

calculated from the radiances at scene locations in which the cloud mask indicates a cloud, 

and/or when the MODIS cloud optical depth is greater than unity. The cloud height is set 

at 1.8 km. This is the median height of the PDF of trade wind cumuli heights determined 395 
from an analyses of 30m Advanced Spaceborne Thermal Emission and Reflection 

(ASTER) stereo data (Genkova et al. 2017). This is also the cloud height used by Massie 

et al. (2017) in their 3D calculations for an OCO-2 target mode observation centered over 

the Lamont, Kansas TCCON site. 

A separate computer program calculates the three dimensional distribution of water 400 
droplets and aerosol particles in the x-y-z grid, writing to an offline data file. This file 

specifies the liquid water contents and effective radii of the water droplets, and the aerosol 

mass densities and effective radii. We specified water droplets to have an effective radius 

of 10 m, and aerosol particles an effective radius of 0.1 m. SHDOM uses a Mie 

calculation to write to a particle scattering table for a range of water droplet effective radii 405 
(for a gamma size distribution), and a similar table for the aerosol particles (for a lognormal 

size distribution). These two tables, and the offline input file, are used by SHDOM to 

specify the particle absorption, scattering, and phase function particle characteristics in the 

x-y-z grid. 

The 1D calculations are perturbed (see Table 3) individually by 10 hPa and 10 ppm for 410 
surface pressure and CO2 perturbations, and by surface reflectance (for nadir) or surface 

https://worldview.earthdata.nasa.gov/
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wind (for glint), and aerosol optical depth perturbations. Aerosol optical depth vertical 

structure is the same for all x-y grid points, but the total aerosol optical depths are equal to 

e.g. 0.11 and 0.165 for the base and perturbed state O2 A-band calculations The OCO-2 

ABSCO database of molecular line cross sections (Payne, 2016) is used to specify the gas 415 
optical depth structure in the x, y, z 3D grid (of size 32 km x 32 km x 30 km, with a 

horizontal grid cell size of 0.5 km x 0.5 km).  SHDOM was applied in monochromatic 

calculations at 17 wavelengths, in which the total gas plus aerosol optical depth ranges 

from small to large values, for Lambertian surface scattering over land and Cox-Munk 

surface wind dependent bidirectional diffuse reflectance (BRDF) over the ocean. 420 
The curves labeled as “3D” in Fig. 2 are percent differences between the 3D and 1D 

calculations, for base state conditions, at an observation footprint 4 km west of a typical 

cloud in the MODIS cloud field (with the sun along the negative x axis at a solar zenith 

angle of 20°). Shadows are not located at this observation footprint since the sun and 

footprint are to the west of the cloud. The other curves are 1D perturbations, normalized to 425 
the stated perturbation amount. For example, the “1 ppm CO2” curve is derived by dividing 

the SHDOM radiance field differences for the 400 and 410 ppm conditions by 10. The 1D 

curves are radiance perturbations also at 4 km from the cloud, and since the 1D column 

calculation does not have any knowledge of nearby clouds, the 1D curves are not 

influenced by nearby clouds. All of the panels in Fig. 2 have x-axes expressed in terms of 430 
the gas plus aerosol vertical optical depths of the base state atmosphere. 3D radiative 

perturbations are largest at small optical depths, while 1 ppm CO2 perturbations are largest 

at large optical depths. This indicates that 3D cloud effects impose spectral perturbations 

with an optical depth structure that differs from CO2 mixing ratio perturbations.  

Figure 2 indicates that a cloud 4 km away from a clear sky footprint has 3D cloud effect 435 
radiative perturbations in the WCO2 and SCO2 bands that are larger at small optical depths 

than a 1 ppm CO2 perturbation. The WCO2 (SCO2) perturbations are near 2.1 % (1.5 %) 

and 1.4 % (1.0 %) for the glint and nadir cases, while the “1 ppm CO2” curves have values 

less than 1 % in absolute value. This comparison is relevant since the observational goal 

of OCO-2 is to measure XCO2 to 1 ppm accuracy on regional scales. OCO-2 observations 440 
therefore are susceptible to 3D cloud effects. 

From a radiative transfer perspective, Fig. 2 indicates that ocean glint observations are 

more susceptible to 3D cloud effects than land nadir observations. Since Fig. 1 and Table 

2 indicates that clouds are closer to observations over the ocean than over land, the Fig. 1 

and 2 calculations, in combination, indicate that 3D cloud effects are likely more prevalent 445 
for the ocean glint measurements. 

The Fig. 2 calculations are not influenced by cloud shadows, since the observation point 

is west of the cloud position. While Fig. 2 focuses upon radiative perturbations away from 

a cloud, 3D cloud effects also include cloud shadows, which decrease the sensed radiances. 

It is expected that radiance enhancements and radiance dimming both occur in OCO-2 450 
observations, which can yield both negative and positive XCO2 variations to the local 

scene. 

It is expected that viewing and scattering geometry play an important role in 3D cloud 

effects. Liquid and ice particles have phase functions which have dominant forward 

scattering peaks, and the scattering of solar photons off of the side of a cloud is an important 455 
component of the 3D cloud effect. FigureFig. 3 illustrates the angular dependence of 3D 

cloud effects along a circle of 4 km radius that surrounds an isolated cloud. The calculations 
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refer to a continuum wavelength with the smallest possible gas optical depth. Observation 

footprints are to the west, north, east, and south of the cloud at angles of 0º, 90º, 180º, and 

270º, with the sun at the 0° angle along the negative x-axis and the sensor along the positive 460 
x-axis. There is a factor of two variation, as a function of the location of the observation 

footprint, in the 100 (3D-IPA) / IPA values. The largest values occur when the observation 

footprint is west of the cloud (angle=0°). The solar beam scatters off of the west side of the 

cloud back to the observation footprint, which is followed by additional scattering off of 

the surface towards the sensor along the positive x axis. This solar beam side-of-cloud 465 
scattering contribution does not take place when the observation footprint is east of the 

cloud (angle=180°), so the 3D effect is then smaller. 

Since the OCO-2 cloud screening preprocessor frequently does not reject scenes with 

a few low altitude “popcorn” clouds, the metrics of nearest cloud distance and the sun-

cloud-observation footprint scattering angle are useful rudimentary metrics to characterize 470 
a cloud scene. But they do not characterize completely a cloudy scene with numerous 

clouds. As more and more clouds are added to a scene that surrounds an observation point, 

there is a complicated interaction of perturbative effects from the individual clouds 

 

7 Global statistics 475 
 

The Validation files reveal the dependencies of XCO2bc-TCCON and XCO2raw-TCCON 

upon the various 3D metrics. Fig. 4 presents contour maps of the number of XCO2raw-

TCCON and XCO2bc-TCCON observations over the ocean versus nearest cloud distance. 

There are more data points at smaller than at larger cloud distances, especially for the QF=1 480 
data. The bias correction moves the center of the XCO2raw-TCCON distributions upwards 

towards the XCO2bc-TCCON = 0 line, especially for the QF=0 data. This is not as apparent 

for the QF=1 distributions, keeping in mind that QF=1 data is not used in the operational 

bias correction calculations.  For the 0 to 2 km cloud range there is a noticeable asymmetry 

in the QF=1 distributions, with a “tail” of negative XCO2bc-TCCON data points. This is 485 
visually apparent by following the aqua-marine-blue contour line from larger to smaller 

cloud distance. 

 Figure 5 presents contour maps of counts of XCO2raw-TCCON and XCO2bc-

TCCON over the ocean versus the CSNoiseRatio metric. As mentioned above, the 

CSNoiseRatio values increase as the radiance field inhomogeneity (and cloudiness) 490 
increases. The QF=0 data has most of the CSNoiseRatio values near unity, consistent with 

spatially uniform radiance conditions. A wider range of CSNoiseRatio values is seen in the 

QF=1 data, indicating relatively more observations impacted by spatially variable radiance. 

The H(3D) and H(Continuum) variables have contour maps similar in visual appearance 

to the Fig. 5 CSNoiseRatio contour map.  495 
Table 4 presents the minimum standard deviations in the data displayed in Fig. 4 and 

5, and the range in the ratios of the standard deviations. Standard deviations in XCO2-

TCCON are calculated as a function of Distkm in bins of 2 km cloud distance for both 

XCO2raw and XCO2bc. The minimum standard deviation is the smallest of the set of 

standard deviations. The range of the standard deviations is the ratio of the largest to 500 
smallest standard deviation in the set of standard deviations.  As an example, the ocean 

QF=0 minimum standard deviations are 1.04 and 0.76 ppm for XCO2raw and XCO2bc in 

Fig. 4 for the Distkm metric, while the ratios of maximum to minimum standard deviations  
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are 1.16 and 1.26 for the XCO2raw and XCO2bc data. Table 4 also presents the minimum 

and standard deviation ratios for the H(3D), CSNoiseRatio, and H(Continuum) metrics. 505 
Generally, the minimum standard deviations are larger for the QF=1 case, the biased 

corrected standard deviations are less than the raw retrieval standard deviations, the ratios 

deviate from unity, and all metrics display these characteristics.  If the OCO-2 retrievals 

were not susceptible to 3D cloud effects, then the ratios in the lower half of Table 4 would 

be close to unity, but this is not the case.  510 
Further insight into the Fig. 4 and 5 distributions is presented in Fig. 6 and 7, in which 

averages and 95 % (2) confidence limits of the averages are displayed. The XCO2raw-

TCCON and XCO2bc-TCCON averages become more negative for both QF=0 and QF=1 

cases as cloud distance approaches zero in Fig. 6. The averages become closer to each other 

as nearest cloud distance increases to large values. Ideally, the XCO2bc-TCCON 515 
differences should approach zero as the nearest cloud distance becomes very large. Since 

the 95 % confidence limits, since the 3D effect should physically decrease towards zero as 

cloud distance becomes very large. The differences are close to 0.4 ppm in Fig. 6 instead 

of zero since the operational bias correction processing also considers comparisons of 

XCO2raw and model XCO2 in the determination of XCO2bc (O’Dell et al. 2018). Since 520 
the 95 % confidence limits in Fig. 6 do not overlap for small cloud distances, the differences 

in the averages, and the increasingly negative trend in the averages as cloud distance 

approaches zero, are statistically significant. This indicates that the operational bias 

correction does not completely remove 3D cloud effects from the XCO2raw retrievals for 

the full range of cloud distance. The operational bias correction makes the bias close to 525 
zero for the most frequent scenes, those that are close to clouds.  The less-frequent far-

from-clouds scenes end up with a +0.4 ppm bias because the bias correction scheme cannot 

get rid of the 3D cloud dependence. 

The ocean 3D cloud bias in Fig. 6 for QF=0 XCO2bc isFig. 6 indicates that there is a 

difference in the XCO2bc – TCCON averages near -0.4 ppm (the difference of 0 ppm at 530 
cloud distances near 0 km and 0.4 ppm at cloud distances greater than 10 km). This 

difference is referred to as the ocean 3D cloud bias. 

For ocean QF=1 XCO2bc the 3D cloud bias is -2.2 ppm. Since 40 % (75 %) of the 

QF=0 (QF=1) data points observations over the ocean are within 4 km of clouds, it is 

apparent that many OCO-2 data points are subject to a negative 3D cloud bias that is not 535 
completely removed by the operational bias correction. The corresponding 3D cloud biases 

for XCO2bc-TCCON over the ocean for QF=0 and QF=1 data (for the CSNoiseRatio 

metric) are -1.3 and -1.4 ppm (see Fig. 7). The -1.4 ppm values is equal to the difference 

of -1.8 ppm (at the CSNoiseRatio of 7) minus -0.4 (at the CSNoiseRatio of 1).  As 

mentioned above, radiance field inhomogeneity increases as the CSNoiseRatio increases. 540 
The XCO2bc-TCCON cloud biases for the QF=1 data for the Distkm and CSNoiseRatio 

variables, -2.2 and -1.4 ppm, differ somewhat in absolute size, but are consistent in sign 

(both are substantially negative).  

The data presented in Fig. 6 and elsewhere in this paper could also be influenced by 

the presence of undetected cloud fragments, dissipating clouds, and the fact that relative 545 
humidity is enhanced directly outside a cloud. The increase in relative humidity leads to 

swelling of aerosols, which would enhance near-cloud aerosol scattering. Twohy et al. 

(2009) measured relative humidity and aerosol scattering in the vicinity of small marine 

cumulus during the 1999 Indian Ocean Experiment (INDOEX). Enhancements were 
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observed within 1 km of the cloud. Observations and model simulations of “cloud haloes” 550 
by Lu et al. (2002) and Lu et al. (2003) also indicate that the cloud haloe exists ~ ½ km 

from a cloud. From Fig. 6, however, the XCO2bc-TCCON averages asymptote to a 

constant value over a length scale of 10 km, a scale substantially larger than the 1 km scale 

associated with cloud haloes. This disfavors an interpretation that the variation in Fig. 6 is 

primarily due to cloud haloe effects. Várnai and Marshak (2009) also concluded that 555 
aerosol swelling does not account for observed illuminated / shadowy asymmetries in 

MODIS shortwave reflectance versus nearest cloud distance data. 

Table 5 summarizes the 3D cloud biases derived from the four 3D metrics. In general, 

the cloud biases are all negative for the Distkm, CSNoiseRatio, and H(Continuum) 3D 

metrics over the ocean for the QF=0 data. The graph of the QF=1 XCO2bc-TCCON 560 
averages as a function of the H(3D) metric has a minimum at H(3D) near 0.9, maxima at 

H(3D) near 0.1 and 1.3, and a range of  XCO2bc-TCCON averages that span 1.6 ppm. 

Table 5 indicates this non-linear (quadratic) curve characteristic with the ± symbol. Since 

the bias correction equations in Section 3 are based upon linear equations, the extension of 

these equations with linear H(3D) metric terms (see Section 11) is expected to be of limited 565 
utility. 

The Table 5 cloud biases for V9 and V10 data are fairly close to each other. As an 

example, the V9 and V10 cloud biases for the cloud distance variable are -2.5 and -2.2 ppm 

for QF=1 ocean data. These similarities indicate that 3D cloud effects persist irrespective 

of data version. 570 
It is instructive to examine graphs of x=cloud distance versus y=dPsco2 (over the 

ocean) and x=cloud distance versus y=dPfrac (over land). Fig. 8 presents the averages and 

the 95 % confidence limits of the averages.  dPsco2 is fairly constant for large cloud 

distances for QF=0 data, then becomes increasingly negative as cloud distance approaches 

zero. The range of dPsco2 is -0.6 and -3.6 hPa for the QF=0 and QF=1 ocean data, and the 575 
range of dPfrac is -0.3 and -2.2 ppm for the QF=0 and QF=1 land data. With 40 % and     

75 % of the observations at distances less than 4 km for QF=0 and QF=1 data, the 

dependence of x=cloud distance and y= dPsco2 in Fig. 8 can be described by a linear line 

with positive slope (and less so for the y=dPfrac land data). Since dPsco2 and dPfrac are 

included in the operational bias correction (Eqns. (1) through (5) of Section 3), and these 580 
metrics are correlated to the cloud distance metric, the operational bias correction indirectly 

“takes into account” 3D cloud effects. 

 

8 Illustrative ocean scenes 

 585 
While the previous section discussed global analyses, it is important to point out that 3D 

cloud biases are readily apparent at local scales.  FigureFig. 9 displays glint data over the 

Pacific on June 12, 2016. MODIS clouds are indicated by irregular red shapes, while OCO-

2 observations are indicated by color coded asterisks. For each horizontal row of asterisks 

there are eight adjacent OCO-2 footprints. Nearest cloud distance is indicated in the top 590 
panel, and H(Continuum) values are indicated in the middle panel. The H(Continuum) 

values increase in size for the region surrounding the cloud at 15.6° N, with blue asterisks 

(low H(Continuum)) morphing into red and green asterisks (high H(Continuum)) as cloud 

distance decreases. In the bottom panel the Quality Flag becomes QF=1 for data points 

adjacent to this cloud feature.  595 



 

14 
 

The upper panel of Fig. 10 presents XCO2bc versus nearest cloud distance from data 

on June 12, 2016 for the 11° N – 17 °N, 158 ° E – 177° E range of latitude and longitude, 

which is larger than the Fig. 9 geospatial range. Only XCO2bc is graphed in Fig. 10 since 

TCCON data is not available for this ocean scene. At largest cloud distances the QF=1 

XCO2bc data points span a limited range of XCO2bc, from 403 to 406 ppm. For the 0 to 600 
2 km cloud distance range, the XCO2bc data points vary from 398 to 410 ppm, with a 

noticeable “negative tail” of XCO2bc less than 403 ppm. Ranges of XCO2bc are binned 

into High, Mid, and Low bins of XCO2bc.  

The bottom panel of Fig. 10 presents average O2 A-band spectra for the spectra 

associated with the three XCO2bc bins. The bottom panel indicates that 3D cloud effects 605 
perturb the “Mid” radiances in the O2 A-band by ± 15 % in this glint scene. In a comparative 

manner, the radiance perturbations for the O2 A-band, WCO2, and SCO2 bands are ± (6, 

7, 7) % and ± (15, 15, 18) % for the QF=0 and QF=1 cases.  3D cloud effect radiance 

perturbations are therefore large for all three bands.  

The operational retrieval iteratively solves for a state vector (which includes surface 610 
pressure, aerosol, surface reflectance, the CO2 vertical profile, and other variables) that 

matches observed and forward model radiances. Since 3D cloud radiative perturbations are 

not incorporated into the operational retrieval, the retrieved surface pressure, aerosol, 

surface reflectance, and CO2 vertical profile, will differ from the actual atmospheric values. 

These differences will increase as the severity of the 3D cloud effect increases at small 615 
cloud distances. Since 3D cloud effects perturb all bands, the retrieved surface pressure 

differs from the actual surface pressure, and this difference propagates into the XCO2raw 

retrieval. 

For a range of latitude (52° S - 41°S) and longitude (164° E - 180° E), with Lauder, 

New Zealand being the closest TCCON site, Fig. 11 displays scatter diagrams of TCCON 620 
– XCO2bc, CSNoiseRatio, dPsco2, CO2graddel, DWS, and O2 A-band surface reflectance, 

as a function of cloud distance. All observations during 2017, for which TCCON data is 

matched to the OCO-2 observations, are considered, with most of the data points observed 

during November and February.  The QF=0 and QF=1 data points in Fig. 11 are color 

coded by green and red symbols, respectively. The various panels consistently indicate that 625 
dPsco2 and CO2graddel values are near zero for QF=0 data points, and are accompanied 

by low DWS, surface reflectance, and CSNoiseRatio values, for both small and large cloud 

distances. The measured QF=1 CSNoiseRatio becomes progressively larger as cloud 

distance decreases. For QF=1 data the dPsco2, CO2graddel, DWS, and surface reflectance 

variables take on unrealistic values as cloud distance decreases from large to small values.. 630 
These unrealistic values are necessary in order for the retrieval to match observed and 

forward model radiances. When the 3D cloud effect adds radiance to the observations, a 

large DWS or reflectance value is able to increase the forward model radiance to the 

measured radiance. 

 635 
9 XCO2 Cloud Bias Mitigation by Table look-up correction factors 

 

Figures 6 and 7 suggest mitigation of 3D cloud biases by application of a Table look-up 

correction. Using the CSNoiseRatio QF=1 data as an example, and the XCO2raw data 

points, for a given XCO2raw data point there is a corresponding CSNoiseRatio value and 640 
XCO2raw-TCCON average (see the upper right panel in Fig. 7). The corrected XCO2raw 
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value (XCO2raw,corr) is then simply the XCO2raw value minus the XCO2raw-TCCON 

average. The lower right panel of Fig. 7 can be used in a similar calculation to specify 

QF=1 XCO2bc,corr values. Note that these Table look-up table mitigation calculations can 

be applied after the operational bias-correction processing, with XCO2raw,corr and 645 
XCO2bc,corr data added to the data included in Lite files, provided that the CSNoiseRatio 

and/or Distkm values that correspond to the OCO-2 observations are known. 

Table 6 presents statistics of Table look-up cloud bias mitigation calculations, 

corresponding to calculations in which the four 3D metrics are applied separately to the 

raw and bc data.  The two “Standard” rows in Table 6 refer to standard deviations and PDF 650 
averages of XCO2bc-TCCON, based upon Lite file XCO2bc. The rest of Table 6 then 

presents the statistics (PDF averages and standard deviations of XCO2raw,corr-TCCON 

and XCO2bc,corr - TCCON) of the ocean and land QF=0 and QF=1 corrected data, for the 

four 3D metrics. 

Table 6 indicates that the Table look-up technique changes XCO2-TCCON averages, 655 
but not their standard deviations. The XCO2bc,corr-TCCON standard deviations for QF=0 

and QF=1 data over land and ocean are close to the standard deviations of the “Standard” 

values. The “Standard” XCO2bc-TCCON averages for QF=1 ocean and land data are near 

-1 ppm, while the corrected XCO2bc,corr data has PDF averages near or less than 0.2 ppm, 

depending upon which 3D metric (and its associated set of XCO2bc-TCCON averages) is 660 
applied. Since the XCO2bc-TCCON “Standard” averages are already small (0.3 ppm and 

0.11 for QF=0 data over ocean and land), the Table look-up mitigation technique is 

therefore more beneficial for the QF=1 XCO2bc data than for the QF=0 XCO2bc data.  

The data in Table 6, however, does not reveal a shortcoming of the Table look-up 

mitigation technique, when only a single 3D metric is applied. Using the CSNoiseRatio 3D 665 
metric as an example, the use of the Fig. 7 CSNoiseRatio averages yields a corrected set 

of XCO2bc,corr values and new XCO2bc,corr – TCCON averages (in a revised Fig. 7 

graph, not shown) in which the new averages are very close to zero, binned as a function 

of CSNoiseRatio. The corresponding revised Fig. 6, based upon the CSNoiseRatio 

correction, however, displays a large range of XCO2bc,corr – TCCON averages when the 670 
averages are binned as a function of Distkm.  

The general situation is indicated in Fig. 12. The x and y axes are bins of Distkm and 

CSNoiseRatio, with contouring of XCO2raw – TCCON and XCO2bc – TCCON from -5 

to 1 ppm. In the construction of Fig. 12, the adopted Distkm and CSNoiseRatio set of bins 

had a finer (coarser) bin increment for small (large) values of Distkm and CSNoiseRatio, 675 
in order to include a similar number of data points for each x-y grid cell. In Fig. 12 the 

largest variation in XCO2raw – TCCON and XCO2bc – TCCON is present along the 

Distkm axis, especially for the QF=1 data, while the variation is smaller along the 

CSNoiseRatio axis (e.g. for small Distkm values). Though the Table 6 CSNoiseRatio “bc 

ave” value of XCO2bc,corr – TCCON for QF=0 (QF=1) ocean data is near 0.06  (0.09) 680 
ppm, the revised Fig. 6 graph indicates that the XCO2bc,corr – TCCON averages vary by 

0.3 (-1.9) ppm as a function of the Distkm metric. The mitigation of the cloud bias by the 

CSNoiseRatio 3D metric therefore does not remove the 3D cloud bias when one examines 

the 3D cloud bias in a XCO2bc,corr – TCCON versus Distkm graph. 

Using the Fig. 12 data as the basis for a Table look-up correction, new Fig. 6 and 7 685 
averages are displayed in Fig. 13 and 14, and were calculated as follows. For a given pair 

of Distkm and CSNoiseRatio values that are associated with a single XCO2 measurement, 
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the Fig. 12 XCO2raw – TCCON or XCO2bc – TCCON values for the specific Distkm, 

CSNoiseRatio pair is subtracted from the XCO2raw and XCO2bc values. Applying the 

Fig. 12 corrections to all of the XCO2 measurements,  Fig. 13 and 14 indicate that the 690 
revised XCO2raw,corr – TCCON and XCO2bc,corr – TCCON averages are then within   

± 0.2 ppm of zero for both 3D metrics. Figures (not shown) for the corresponding corrected 

averages over land are also within ± 0.2 ppm of zero, with the exception of one data point. 

The utilization of the Fig. 12 data, in which both Distkm and CloudratioCSNoiseRatio 3D 

metrics are used in a Table look-up application, appears to be a better way to mitigate for 695 
3D cloud biases compared to single-variable Table look-up calculations. 

An additional calculation was carried out in which the Fig. 12 data was fit by linear 

regression, represented by a constant term plus Distkm and CSNoiseRatio terms. Four x-y 

fits were calculated, one for each of the four panels in Fig. 12. This representation was then 

applied as the basis for correction of the XCO2 data. This calculation yielded Fig. 13 and 700 
14 style graphs which had larger ranges in the XCO2raw,corr – TCCON and XCO2bc,corr 

– TCCON averages than those based upon the Fig 12. Table look-up technique. 

Figure 12 therefore has variations which are not easy to represent by a linear regression. 

This has bearing upon the calculations discussed below in Section 11 in which 3D metrics 

are added to the operational bias correction equations. The comparison here of the two 705 
calculations, based upon the Table look-up and x-y linear regression representations of the 

Fig. 12 data, suggests that the Table look-up technique is a better 3D cloud bias mitigation 

technique. 

 

10 Mitigation by data screening 710 
 

Another way to mitigate for 3D cloud biases is to apply 3D metric data screening.  Table 

7 presents standard deviations and PDF averages of XCO2bc-TCCON over the ocean for 

various data screening thresholds, and is read in the following manner. Referring to Distkm 

as the nearest cloud distance, ocean QF=0 XCO2bc-TCCON data for Distkm between 2 715 
and 50 km has a standard deviation of 0.80 ppm, with a sample size fraction of 0.83 of the 

total possible number of QF=0 data points, and the average of the XCO2bc-TCCON PDF 

is 0.36 ppm. For Distkm between 5 and 50 km, the standard deviation is 0.78, with a sample 

fraction of 0.62 of the QF=0 data points, and the PDF average is 0.40 ppm. For QF=1 data 

the standard deviations for these two Distkm screening thresholds are 2.03 and 1.89 ppm, 720 
with sample fractions of 0.41 and 0.19, with PDF averages of -0.16 to  0.36 ppm.  

Table 7 indicates that the PDF averages are already acceptable for QF=0 ocean data, 

since PDF averages (in absolute value) are less than 0.5 ppm (a reasonable mitigation goal) 

when no screening is done. For QF=1 ocean data, however, the standard deviations and 

PDF averages change substantially as the cloud distance threshold screening is applied. If 725 
all data points are accepted, then the standard deviation is near 2.3 ppm, and the XCO2bc-

TCCON PDF average is near -0.99 ppm. For a cloud distance threshold near 1 km  the data 

screening reduces the average of the XCO2bc – TCCON PDF to near 0.5 ppm (in absolute 

value), with a sample fraction near 0.60. 

H(3D), CSNoiseRatio, and H(Continuum) screening thresholds, and their associated 730 
standard deviations and XCO2bc-TCCON PDF averages over the ocean are also 

summarized in Table 7. For the QF=0 data the data screening changes the deviations and 

averages by very small amounts. For the QF=1 data the data screening yields substantial 
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changes in the deviations and PDF averages. The H(3D), H(Continuum), and 

CSNoiseRatio, screening thresholds of 0.57, 14, and 4.2 yield XCO2bc-TCCON PDF 735 
averages (in absolute value) near 0.5 ppm, with sample fractions of 0.72, 0.73, and 0.70. 

We note that the H(Continuum) and CSNoiseRatio metrics, however, are from stand-alone 

OCO-2 measurements, while the nearest cloud distance and H(3D) metrics rely upon 

MODIS measurements.  

Table 8 indicates that the PDF averages are already acceptable for QF=0 land data, 740 
since PDF averages (in absolute value) are less than 0.5 ppm when no screening is done 

For QF=0 data, with no data screening, the standard deviations over land (near 1.2) are 

larger than those over the ocean (near 0.8, see Table 7). For QF=1 data, the changes are 

substantial, with deviations changing from 4 to 2 ppm for the Distkm screening, and from 

3.6 to 2.8 ppm for the other metrics. The PDF averages decrease to the 0.5 ppm level (in 745 
absolute value) when approximately 0.65 of the Distkm data points are utilized, by only 

using data with nearest cloud distances greater than 2.2 km. While the CSNoiseRatio 

metrics do not decrease the XCO2bc-TCCON deviations and PDF averages to the 0.50 

ppm level (see column 12 of Table 8), the PDF averages decrease to the 0.8 ppm level (in 

absolute value) when approximately 0.63 of the CSNoiseRatio data points are utilized, by 750 
only using data with CSNoiseRatio values less than 3.4.  

Figure 15 displays the changes in the PDFs over the ocean and land as a function of 

nearest cloud distance screening thresholds. The PDFs correspond to the data summarized 

in Tables 6 and 7. Generally, the PDFs change very little for the QF=0 data over ocean and 

land. The PDFs essentially lie atop each other. The largest changes are apparent over ocean 755 
and land for the QF=1 data. The data screening reduces the negative XCO2bc-TCCON 

“tail” data points. These “tail” data points are apparent in Fig. 4, 5, 10, and 11. 

Graphs (not shown) of the PDFs for CSNoiseRatio screening thresholds, and thresholds 

for the H(3D) and H(Continuum) metrics, have a visual appearance similar to the Fig. 15 

graphs. The QF-=0 PDFs lie atop each other, while the QF=1 data screening reduces the 760 
negative XCO2bc-TCCON “tail” data points. 

One concludes from Tables 7 and 8 and Fig. 15 that it is possible to screen the QF=1 

XCO2bc data using the Distkm or CSNoiseRatio 3D metrics to improve the standard 

deviations of XCO2bc-TCCON, and to reduce the XCO2bc-TCCON PDF averages to the 

0.5 ppm level for the ocean data, yet this is done by a screening process which tosses out 765 
approximately 30 to 40 % of the converged retrieval QF=1 data points. For the land data 

the 0.5 (0.8) PDF average absolute value occurs in Distkm (CSNoiseRatio) data screening 

when 35 % of the data points are excluded. None of the screenings change the QF=1 

standard deviations to those approaching the 0.8 ppm and 1.2 ppm standard deviations of 

the ocean and land QF=0 data. 770 
 

11 Mitigation by additional linear-regression terms 

 

The possibility of mitigating 3D cloud biases by adding terms to the bias correction 

process, was investigated by adding one or more 3D metrics to Eqns. (1)-(3).  Each 775 
application of the Interactive Data Language (IDL) Regress linear regression routine solved 

for new Eqns. (2) and (3) linear coefficients, and new XCO2bc-TCCON standard 

deviations and PDF averages. 
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Table 9 presents representative comparisons of the two sets of calculations. Available 

data points, for which Distkm values were well determined for 60° S to 60° N, were used 780 
in the generation of Table 9. Two vertically adjacent numbers are tabulated for the QF=1 

data. The top number is the value calculated when all possible data points are included in 

the regressions, while for the bottom entry the ranges of dPsco2 and CO2graddel (for 

oecan) and dPfrac, CO2graddel, and logDWS (for land) are equal to those ranges for the 

QF=0 data. The QF=0 (best quality) data points follow from the operational methodology 785 
of limiting dPsco2, DPfrac, CO2graddel (and other variables) to narrow limited ranges (see 

Version 9 OCO-2 Data Product User’s Guide (2018) for a discussion of these ranges), The 

two vertically adjacent entries therefore indicate the sensitivity of the XCO2bc-TCCON 

XCO2 PDF standard deviations to the dPsco2, DPfrac, CO2graddel range limits. 

The number of data points for the regression, the standard deviation of the XCO2bc-790 
TCCON differences (based upon the new set of regression coefficients), and also an 

additional “maxlatDiff” metric are tabulated. PDF XCO2bc-TCCON averages are not 

presented in Table 9 since they are close to zero for all regression calculations. The 

“latmaxDiff” metric is calculated by first calculating XCO2bc-TCCON averages for 20º 

latitude bands from 60º S to 60º N, and then calculating maxlatDiff as the difference in the 795 
maximum and minimum of the five averages. If the bias correction is accurate globally, 

then the XCO2bc-TCCON averages should have little latitudinal variation. If this is not the 

case, then the latitudinal gradients associated with bias correction introduce XCO2bc 

latitudinal gradients (large maxldatDiff values) that will be problematic for those using 

OCO-2 XCO2bc to infer regional CO2 vertical fluxes in “flux inversion” modeling studies.  800 
Adding Distkm, H(3D), CSNoiseRatio, and H(Continuum) variables individually to 

the linear regressions does not significantly produce smaller XCO2bc-TCCON standard 

deviations or smaller maxlatDiff values, compared to the regressions that do not include 

these additional terms. The largest differences in Table 9 are due to imposing narrow ranges 

of dPsco2, DPfracdPfrac, and CO2graddel for the QF=1 data. 805 
Graphs of alog (Cloud Distance) versus XCO2bc-TCCON averages  (not shown) are 

linear, while the Fig. 6 graphs of  Cloud Distance versus XCO2bc-TCCON averages are 

not, suggesting that it is useful to add alog (Distkm), instead of Distkm to the linear 

regression. The application of alog (Distkm) in the linear regression equations changed the 

standard deviations slightly for the QF=0 ocean data. Repeating the linear regressions for 810 
various terms, e.g. exp(-Distkm/5.0), alog(CSNoiseRatio), in separate calculations, or the 

addition of two terms (alog(Distkm) and sun-cloud-observation footprint scattering angle) 

or three terms (alog(Distkm), alog(CSNoiseRatio), alog(H(3D)), only yielded marginal 

decreases in the  XCO2bc-TCCON standard deviations. Extending Eqns. (2) and (3) to 

include quadratic terms, e.g. Eqn. (2) with dPsco2, dpSCO22, CO2graddel, CO2graddel2, 815 
Distkm, and Distkm2 terms, only improved marginally the XCO2bc-TCCON standard 

deviations.  

 

12 Discussion 

 820 
Overall, the OCO-2 cloud pre-processor is effective in identifying clouds, but observations 

impacted by low altitude clouds and 3D scattering effects are sometimes not identified. 

The Lite files contain many observations that are close to clouds, with 40 % and 75 % of 

OCO-2 Lite file retrievals (see Table 2) within 4 km of clouds over the ocean and land for 
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the QF=0 and QF=1 cases (Fig. 1).  3D radiative transfer calculations for the same cloud 825 
field (with representative surface reflectance over the ocean and land, for ocean glint and 

land nadir viewing geometry) indicate that ocean 3D cloud radiance perturbations are 

larger over the ocean than over land (Fig. 2) at this cloud distance.  

There is a marked contrast in the Lite file QF=0 and QF=1 OCO-2 data. FiguresFig. 1 

and 4 indicate that QF=1 data points are closer to clouds on average than the QF=0 data 830 
points. FigureFig. 4 visually indicates that there is a strong asymmetry in XCO2bc-

TCCON, with more negative values than positive values for a small nearest cloud 

distances. Though both sets of measurements reached convergence in the operational 

retrieval, only the QF=0 data points are used in operational post-retrieval bias correction 

calculations. 835 
From a pragmatic perspective, it is important to consider a variety of 3D cloud metrics, 

since the Distkm and H(3D) metrics require the processing of auxiliary MODIS cloud and 

radiance fields. The CSNoiseRatio and H(Continuum) metrics are calculated from stand-

alone OCO-2 measurements. Furthermore, OCO-2 views the Earth’s surface six minutes 

before MODIS Aqua, so some clouds observed by MODIS may not be present when OCO-840 
2 makes observations. For a representative wind speed of 5 m/s, a cloud moves 1.8 km in 

six minutes, which is similar to the size of an OCO-2 footprint. The Distkm metric is a 

cloud field metric, while the H(3D), CSNoiseRatio, and H(Continuum) metrics are 

measures of radiance field inhomogeneity. Surface reflectivity variations, variations not 

related to 3D cloud radiative effects, contribute to all three of these radiance field metrics.  845 
Figures 6 and 7 indicate that the Version 10 bias-corrected retrievals have a non-zero 

residual 3D cloud bias. The XCO2bc-TCCON averages become more negative as the 

nearest cloud distance decreases, and as the CSNoiseRatio increases. From Table 5, 

XCO2bc –TCCON values at small cloud distances differ from those at large cloud 

distances by -0.4 and -2.2 ppm for the QF=0 and QF=1 data over the ocean. The difference 850 
in the averages at small and large cloud distances is referred to as the cloud bias. 

While the previous discussion pertains to global statistics, 3D cloud effects are readily 

apparent at local scales of several degrees of longitude and latitude. This is illustrated by 

Fig. 9, in which nearest cloud distance, H(Continuum), and Quality Flag data is presented 

on a footprint by footprint basis. QF=1 and larger H(Continuum) values are located right 855 
next to clouds. FigureFig. 10 presents XCO2bc as a function of nearest cloud distance for 

a larger region containing the local region presented in Fig. 9. The asymmetry in XCO2bc 

is readily apparent in Fig. 10, consistent with the asymmetry present in Fig. 4. The bottom 

panel of Fig. 10 illustrates for QF=1 spectra that there is a ± 15 % variation in radiance, 

compared to the “Mid” radiance values, in the O2 A-band for this scene. 3D cloud radiative 860 
perturbations are large for all three OCO-2 spectral bands. 

The operational retrieval iteratively solves for a state vector (which includes surface 

pressure, aerosol, surface reflectance, the CO2 vertical profile, and other variables) that 

matches observed and forward model radiances. Since 3D cloud effect perturbations, 

illustrated in Fig. 10, are not incorporated into the operational retrieval, the surface 865 
pressure, aerosol, surface reflectance, and CO2 vertical profile, will differ from the actual 

atmospheric values. These differences increase as the severity of the 3D cloud effect 

increases at small cloud distances. This is apparent in Fig. 11 in which ocean bias correction 

(dPsco2, CO2graddel), land bias correction (DWS, and CO2graddel), and other variables 

(surface reflectance, and CSNoiseRatio) increase as the nearest cloud distance decreases 870 
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for the QF=1 data. These variables have a much larger range in value than for the QF=0 

data. 

Figure 15 displays XCO2bc-TCCON PDFs calculated for a set of nearest cloud 

thresholds from 0 to 15 km. A 5 km threshold means that only XCO2bc data with nearest 

cloud distances greater than 5km are utilized. For the QF=0 data the PDFs essentially lie 875 
atop each other. Data screening (see Tables 6 and 7) does not reduce the XCO2bc-TCCON 

averages for QF=0 data, since they are low (less than 0.5 ppm in absolute value, for ocean 

and land data) for data populations which include all observations. For the QF=1 data, the 

PDFs have negative XCO2bc-TCCON tails. Tables 7 and 8 indicate that the QF=1 3D 

cloud biases can be reduced to the 0.5 ppm level over the ocean if approximately 60 %    880 
(70 %) of the QF=1 data points are utilized, by applying Distkm (CSNoiseRatio) metrics 

in a data screening process. Over land the QF=1 3D cloud biases can be reduced to the 0.5 

ppm level if approximately 65 % of the QF=1 data points are utilized, by data screening 

based upon the Distkm metric, and to the 0.8 ppm level if 63 % of the QF=1 data points 

are utilized based upon CSNoiseRatio data screening. 885 
Table 9 indicates that adding additional variables to the current multi-variable linear 

regression bias correction, without data screening, will only improve XCO2bc-TCCON 

standard deviations by a slight amount. The four 3D cloud metrics (Distkm, H(3D), 

CSNoiseRatio, and H(Continuum)) were added to the present bias equations individually 

in separate linear regression calculations. XCO2bc-TCCON standard deviations only 890 
improved in the second decimal place. Other terms, such as alog(Distkm), or combination 

of terms (alog(Distkm), alog(CSNoiseRatio), alog(H3D)) also did not yield a dramatic 

improvement in the statistics. 

Comparing the three mitigation techniques: a) Table look-up (Section 9), b) data 

screening (Section 10), and c) linear-regression (Section 11), adding terms to the linear-895 
regression equations had the least beneficial improvement in XCO2bc-TCCON statistics. 

The Table look-up and data screening techniques both are able to reduce XCO2bc-TCCON 

QF=1 averages to the 0.5 ppm level. The Table look-up technique that uses two 3D metrics 

(Distkm and CSNoiseRatio, see Fig. 12) provides the best reduction in 3D cloud bias.  

The Table Look-up technique is based upon data (see Fig. 12) that has bin to bin 900 
variations. Some of the data bins in fact have zero input data points. The bin to bin 

variability introduces some noise to the correction process. Some of the bin to bin variation 

is likely due to the fact that the retrieval code response to radiative perturbations, for 

physics not included in the retrieval physics, is complicated and noisy.  

One advantage of the Table look-up technique, compared to the data screening 905 
technique, is that data points are not thrown out from localized scenes. This is especially 

useful for regions in the tropics that have relatively few OCO-2 retrievals. Table look-up 

(FiguresFig. 6, 7 and 12) and 3D metrics (Distkm, H(3D), H(Contimuum), CSNoiseRatio 

for Lite file observations) will be placed in publically available data files. These data files 

can be used in application of the techniques discussed in this paper (or by other user-910 
developed techniques) to mitigate the 3D cloud effects that are present in OCO-2 XCO2 

data.  

 

Data availability. The TCCON data can be obtained from the TCCON Data Archive 

hosted by CaltechDATA at https://tccondata.org. The 3D metrics (based upon Version 9 915 
and 10 data), corresponding to Lite file observations, and associated data (such as 

https://tccondata.org/
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FiguresFig. 6, 7 and 12, which apply to version 10 OCO-2 data), can be downloaded from 

the CERN based Zenodo archive (https://doi.org/10.5281/zenodo.4008765). 
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Acronyms 

 945 
ABSCO OCO-2 and OCO-3 absorption coefficient spectroscopic database 

ASTER Advanced Spaceborne Thermal Emission and Reflection 

experiment 

ATBD   Algorithm Theoretical Basis Document 

A-train   NASA constellation of polar inclination satellites 950 
BRDF   bidirectional diffuse reflectance 

CO2graddel  CO2 vertical profile gradient delta 

CSNoiseRatio  Colorslice Noise Ratio 

CSU   Colorado State University 

Distkm   nearest cloud distance (km) 955 
DWS   sum of Dust, Water, and Seasalt aerosol optical depths 

dPfrac bias equation term, see equation (4), based upon the ratio of the 

apriori and retrieved surface pressure, and the retrieved (raw) 

XCO2 

dPsco2 difference between retrieved and apriori suface pressure evaluated 960 
at the sco2 band longitude and latitude observation point 

Feats   feature bias term in the bias equation (1) 
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Foot(fp)  footprint bias term in the bias equation (1)) for detector fp 

GEOS   NASA Goddard Earth Observing System model 

GES DISC NASA Goddard Earth Sciences Data and Information Services 965 
Center 

H(Continuum) measured radiance field inhomogeneity metric based on the O2 A-

band continuum radiances of three rows of detectors 

H(3D) measured radiance field inhomogeneity metric based on the 

MODIS 250m radiance field 970 
IDL Interactive Data Language computer programming language 

IPA Independent Pixel Approximation 

Kcir averaging circle radii index for radii of 5, 10, 15, and 20 km  

Lev1b level 1b data file 

Lite OCO-2 level 2 data file that just contains successful retrievals 975 
logDWS natural logarithm of DWS 

L2DiaGL glint view level 2 diagnostic data file 

L2DiaND nadir view level 2 disgnostic data file  

maxlatDiff difference in the maximum and minimum of XCO2bc-TCCON 

averages for 20° latitude bins 980 
MODIS  Moderate Resolution Imaging Sspectroradiometer 

OCO-2   the second Orbiting Carbon Observatory 

Papriori  apriori surface pressure 

PDF   probability distribution function 

Pretrieved  retrieved (raw) surface pressure 985 
Radobs  observed O2 A-band continuum radiance 

QF   XCO2 quality flag (0=best data, 1=lesser quality data) 

SCO2   OCO-2 strong CO2 band 

SHDOM  Spherical Harmonic Discrete Ordinate radiative transfer Method 

TCCON  Total Carbon Column Observation Network 990 
TCCONadj  equation (1) bias correction adjustment divisor 

WCO2   OCO-2 weak CO2 band 

XCO2   column averaged atmospheric CO2 dry air mole fraction 

XCO2bc  biased corrected XCO2 

XCO2raw  retrieved (raw) XCO2 995 
XCO2bc,corr  3D cloud effect corrected XCO2bc 

XCO2raw,corr  3D cloud effect corrected XCO2raw 

1D   One dimensional 

3D   Three dimensional 
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Table 1. List of TCCON sites and their locations. 

 

Site    Latitude Longitude Reference 1225 
----------------------------------------------------------------------------------------------------- 

Anmyeondo, Korea  36.53  126.33  Goo et al. (2014) 

Armstrong, USA  34.59            -117.88  Iraci et al. (2016) 

Bialystok, Poland  53.23    23.02  Deutscher et al. (2015) 

Bremen, Germany  53.10      8.85  Notholt et al. (2014) 1230 
Borgos, Philippines  18.53  120.65  Velazco et al. (2017) 

Caltech, USA   34.13            -118.12  Wennberg et al. (2015) 

East Trout Lake, Canada 54.35            -104.98  Wunch et al. (2016) 

Garmisch, Germany  47.47    11.06  Sussmann, Rettinger (2014) 

Izana, Tenerife  28.3     -16.5  Blumenstock et al. (2014) 1235 
Karlsruhe, Germany  49.10      8.43  Hase et al. (2015) 

Lamont, OK, USA  36.60   -97.48  Wennberg et al. (2016) 

Lauder, New Zealand            -45.03  169.68  Sherlock et al. (2014) 

Orleans, France  47.97      2.11  Warneke et al. (2014) 

Paris, France   48.84                 2.35  Te et al. (2014) 1240 
Park Falls, WI, USA  45.94   -90.27  Wennberg et al. (2014) 

Réunion Island            -20.90               55.48  De Mazière et al. (2014) 

Rikubetsu, Japan  43.45  143.76  Morino et al. (2016b) 

Saga, Japan   33.24  130.28  Kawakami et al. (2014) 

Sodankyla, Finland  67.36      26.63  Kivi and Heikkinen (2016) 1245 
Tsukuba, Japan  36.05  140.12  Morino et al. (2016a) 

Wollongong, Australia          -34.40  150.87  Griffith et al. (2014)   

-----------------------------------------------------------------------------------------------------  
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Table 2. The fractions of OCO-2 Lite file observations (in percent) that have a cloud 

within 4 km of an observation footprint for each season.a 1250 
 

Season  Ocean, QF=0 Land, QF=0 Ocean, QF=1 Land, QF=1  

---------------------------------------------------------------------------------------------- 

 

  Winter Winterb       30-54     30-53       61-90    61-96 1255 
    Average         37         42          79      77 

 

  Spring     32-55      31-53      73-88      60-83 

    Average          42       42          80      73 

  1260 
  Summer       30-57    29-56      59-89    58-82 

    Average         41       39          79      70 

 

  Fall       21-58    24-55    55-88   59-83 

    Average          41        38        78       70 1265 
 

------------------------------------------------------------------------------------------------- 
  aThe two tabulated numbers are the minimum and maximum values of the fractions (in 

%)  for five 20º latitudinal bins (see Fig. 1). The Average value is the average of the 

fractions of the latitudinal bins. 1270 
bWinter corresponds to December – February, Spring to March – May, Summer to June – 

August, and Fall to September – November.   
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 1275 
Table 3. Input to SHDOM calculations.a 

  

Variable    Base State  Perturbation  

-------------------------------------------------------------------------------------------- 

 1280 
Surface Pressure (hPa) 1016   1026 

 

Surface Reflectance (nadir) 0.32, 0.21, 0.11  0.35, 0.23, 0.12 

 

Wind velocity (glint)  10, 10, 10 m sec-1  15, 15, 15 m sec-1 1285 
 

Aerosol Optical Depth 0,11, 0.06, 0.048 0.165, 0.09, 0.072 

 

CO2 (ppm)   400   410 

 1290 
---------------------------------------------------------------------------------------------- 
  aThe triplet of numbers refer to the O2, WCO2, and SCO2 bands, respectively. 

 Perturbations are applied individually one at a time, keeping all other variables to their 

base state values. 

  1295 
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Table 4. Minimum standard deviations (ppm) and ranges of the ratios of the Version 10 

XCO2-TCCON standard deviations.a 

 

------------------------------------------------------------------------------------------------- 

    Minimum standard deviations 1300 
------------------------------------------------------------------------------------------------- 

Metric            Ocean, QF=0 Land, QF=0 Ocean, QF=1 Land, QF=1  

------------------------------------------------------------------------------------------------- 

 

Cloud Distance 1.04 (raw) 1.75  1.64  2.79 1305 
   0.76 (bc) 1.20  1.45  2.18    

 

H(3D)   0.98  1.62  1.95  2.57 

   0.69  1.03  1.91  1.73 

  1310 
CSNoiseRatio  1.04  1.68  2.02  2.69 

   0.79  1.11  1.78  2.28 

 

H(Continuum)  0.98  1.45  1.74  1.91 

   0.72  0.96  1.18  1.97 1315 
 

------------------------------------------------------------------------------------------------- 

    Ranges of the standard deviation ratiosb 

------------------------------------------------------------------------------------------------- 

Metric            Ocean, QF=0 Land, QF=0 Ocean, QF=1 Land, QF=1  1320 
------------------------------------------------------------------------------------------------- 

 

Cloud Distance 1.16 (raw) 1.14  1.41  1.26 

   1.26 (bc) 1.19  1.62  1.70   

 1325 
H(3D)   1.20  1.79  1.20  1.45 

   1.43  1.70  1.23  2.08 

  

CSNoiseRatio  1.22  1.14  1.25  1.37 

   1.74  1.11  1.52  1.51 1330 
 

H(Continuum)  1.36  1.52  1.55  2.00 

   1.43  1.53  2.36  1.70 

-------------------------------------------------------------------------------------------------- 

 1335 
aThe pairs of numbers refer to raw and bias corrected (bc) XCO2. 
bThe range of the standard deviation ratios is the maximum standard deviation divided by 

the minimum standard deviation of the set of standard deviations for a given metric, surface 

type, and QF flag. 

1340 
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Table 5. 3D cloud biases for bias corrected V9 and V10 XCO2.a 

 

------------------------------------------------------------------------------------------------- 

Metric   Ocean, QF=0 Ocean, QF=1 Land, QF=0 Land, QF=1  

------------------------------------------------------------------------------------------------- 1345 
 

Cloud Distance -0.5 (V9) -2.5  0.05  -3.3 

   -0.4 (V10) -2.2  ±0.1  -2.5 

       

 1350 
H(3D)   ±0.5  ±1.6  ±1  ±2 

   ±0.3  ±2.0   0.4  ±2.2 

  

CSNoiseRatio  -1.5  -1.9  0.3  -1 

   -1.3  -1.4  0.15  -0.9 1355 
 

H(Continuum)  -0.8  -2.0  0.5  ±5 

   -0.4  -1.5  0.5  ±3.7 

 

------------------------------------------------------------------------------------------------- 1360 
 
  a There are two paired numbers. The top number is for Version 9 data, while the bottom 

number is for Version 10 data. A negative 3D cloud bias indicates that XCO2bc is less than 

TCCON XCO2. A ± value indicates that the graph of e.g. H(3D) versus XCO2bc – TCCON 

is not monotonic (i.e. there is a  maximum or minimum of the graph in the middle of the 1365 
graph). The cloud biases are read off from inspection of Fig. 6 and 7 (i.e. the range in y 

axis values) and corresponding graphs of x=H(3D), CSNoiseRatio or H(Continuum) versus 

y= XCO2bc – TCCON in other graphs (not shown). 
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Table 6. Statistics of the single variable Table look-up cloud bias mitigation calculations.a 1370 
 

--------------------------------------------------------------------------------------------------- 

Metric   Ocean, QF=0     Ocean, QF=1    Land, QF=0    Land, QF=1  

--------------------------------------------------------------------------------------------------- 

Standard          bc stnd  0.83   2.33  1.21  3.88 1375 
    bc ave  0.30  -0.98  0.11  -1.06 

 

Distkm    raw stnd 1.09  2.32  1.80  3.64 

     bc stnd 0.82  2.19  1.21  3.78 

      raw ave 0.02  0.00  0.00  0.07 1380 
    bc ave  0.00  0.01            -0.02  0.08 

     

 

H(3D)  raw stnd 1.06  2.36  1.74  3.48 

  bc stnd  0.80  2.21  1.15  3.56 1385 
  raw ave       0.09  0.12            -0.21            -0.18 

  bc ave  0.02  -0.04            -0.11            -0.06 

 

  

CSNoiseRatio raw stnd 1.06  2.39  1.74  3.54 1390 
  bc stnd  0.80  2.23  1.15  3.62 

  raw ave 0.11  0.17            -0.13  0.10 

  bc ave  0.06  0.08            -0.11  0.20 

 

 1395 
H(Continuum)   raw stnd 1.07  2.39  1.74  3.53 

    bc stnd 0.81  2.26  1.15  3.62 

       raw ave 0.03  0.13            -0.11  0.00 

    bc ave 0.00  0.03            -0.09  0.22 

 1400 
--------------------------------------------------------------------------------------------------- 
aThe first two “Standard” rows of the Table refer to the standard deviations (stnd, in ppm) 

and averages of XCO2bc –TCCON, with XCO2bc from the Lite files. The four rows for 

each metric report the standard deviations and averages of XCO2raw,corr – TCCON and 

XCO2bc,corr – TCCON. 1405 
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Table 7. Standard Deviations (in ppm) of Version 10 XCO2bc-TCCON XCO2 over the 

ocean for various Distkm, H(3D), H(Continuum), and CSNoiseRatio thresholds a 

---------------------------------------------------------------------------------------------------------- 

            Quality flag=0 1410 
            ------------------ 

        Range         Standard Deviations           PDF Average           Fraction of Data Points 

-----------------------------------------------------------------------------------------------------------  

  0   1.0  40 20     0.84  0.81  0.81  0.81     0.31  0.32  0.32  0.32     1.00  1.00  1.00  1.00 

  1   0.8  30 10     0.82  0.81  0.81  0.81     0.34  0.32  0.32  0.32     0.91  0.98  0.99  1.00 1415 
  2   0.6  20   8     0.80  0.80  0.81  0.81     0.36  0.33  0.33  0.32     0.83  0.95  0.98  1.00 

  3   0.4  15   5     0.79  0.79  0.80  0.81     0.38  0.34  0.33  0.32     0.75  0.90  0.96  1.00 

  5   0.3  10   3     0.78  0.78  0.80  0.81     0.40  0.36  0.33  0.33     0.62  0.85  0.93  0.99 

 10   0.2   5   2     0.77  0.77  0.77  0.79     0.41  0.37  0.35  0.35     0.39  0.78  0.78  0.94 

 15   0.1   2   1     0.77  0.77  0.72  0.77     0.41  0.40  0.40  0.41     0.24  0.66  0.31  0.51 1420 
---------------------------------------------------------------------------------------------------------- 

 

          Quality Flag =1 

                     -------------------- 

         Range         Standard Deviations           PDF Average           Fraction of Data Points 1425 
------------------------------------------------------------------------------------------------------------ 

  0   1.0  40 20     2.34  2.33  2.22  2.33    -0.99 -0.84 -0.72 -0.86     1.00  1.00  1.00  1.00 

  1   0.8  30 10     2.12  2.31  2.17  2.24    -0.51 -0.75 -0.67 -0.79     0.60  0.91  0.95  0.96 

  2   0.6  20   8     2.03  2.25  2.05  2.19    -0.16 -0.54 -0.58 -0.74     0.41  0.75  0.85  0.92 

  3   0.4  15   5     1.96  2.09  1.96  2.07     0.09 -0.21 -0.52 -0.58     0.30  0.53  0.76  0.79 1430 
  5   0.3  10   3     1.89  1.95  1.81  1.94     0.36 -0.01 -0.43 -0.38     0.19  0.41  0.60  0.58 

 10   0.2   5   2     1.86  1.82  1.56  1.83     0.54  0.22 -0.22 -0.21     0.11  0.31  0.30  0.40 

 15   0.1   2   1     1.80  1.61  1.33  1.51     0.53  0.42  0.22   0.18     0.06  0.21  0.05  0.12 

------------------------------------------------------------------------------------------------------------ 

 1435 
a Columns 1-4 refer to Distkm, H(3D), H(Continuum), and CSNoiseRatio data screening 

thresholds. In the first column, “2” indicates that Distkm data from 2 to 50 km are 

utilized, yielding a standard deviation for QF=0 data of 0.80 (column 5), with an average 

PDF XCO2(bc) – T CCON XCO2 of 0.36 ppm (column 9), with a fraction of 0.83 of the 

total number of data points being utilized (column 13). 1440 
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Table 8. Standard Deviations (in ppm) of Version 10 XCO2bc-TCCON XCO2 over land 

for various Distkm, H(3D), H(Continuum), and CSNoiseRatio thresholds. a 

---------------------------------------------------------------------------------------------------------- 

            Quality flag=0 1445 
            ------------------ 

        Range         Standard Deviations           PDF Average           Fraction of Data Points 

-----------------------------------------------------------------------------------------------------------  

  0   1.0  40 20     1.22  1.14  1.14  1.15     0.12  0.01  0.00  0.00     1.00  1.00  1.00  1.00 

  1   0.8  30 10     1.22  1.14  1.14  1.15     0.12  0.01  0.00  0.00     0.95  1.00  0.99  0.99 1450 
  2   0.6  20   8     1.21  1.13  1.12  1.14     0.12  0.00 -0.00  0.00     0.91  0.99  0.94  0.97 

  3   0.4  15   5     1.19  1.12  1.11  1.14     0.11 -0.00 -0.01 -0.01     0.87  0.96  0.87  0.90 

  5   0.3  10   3     1.17  1.10  1.09  1.13     0.11 -0.01 -0.03 -0.02     0.78  0.90  0.67  0.72 

 10   0.2   5   2     1.14  1.05  1.05  1.12     0.09 -0.04 -0.12 -0.04     0.57  0.68  0.20  0.50 

 15   0.1   2   1     1.11  0.97  1.00  1.12     0.08 -0.16 -0.52 -0.12     0.39  0.16  0.01  0.08 1455 
---------------------------------------------------------------------------------------------------------- 

 

          Quality Flag =1 

                     -------------------- 

         Range         Standard Deviations           PDF Average           Fraction of Data Points 1460 
------------------------------------------------------------------------------------------------------------ 

  0   1.0  40 20     3.91  3.64  3.53  3.60    -1.07 -0.95 -0.94 -0.96     1.00  1.00  1.00  1.00 

  1   0.8  30 10     3.20  3.54  3.45  3.47    -0.69 -0.93 -0.94 -0.95     0.80  0.95  0.94  0.94 

  2   0.6  20   8     2.88  3.31  3.26  3.40    -0.53 -0.80 -0.89 -0.93     0.68  0.86  0.80  0.90 

  3   0.4  15   5     2.68  2.94  3.12  3.22    -0.42 -0.56 -0.85 -0.87     0.58  0.72  0.66  0.76 1465 
  5   0.3  10   3     2.49  2.77  2.96  3.04    -0.32 -0.49 -0.84 -0.79     0.45  0.59  0.43  0.54 

 10   0.2   5   2     2.27  2.75  3.27  2.92    -0.28 -0.55 -1.32 -0.75     0.27  0.35  0.11  0.35 

 15   0.1   2   1     2.13  3.47  4.88  2.93    -0.26 -1.25 -2.74 -0.86     0.16  0.07  0.00  0.06 

------------------------------------------------------------------------------------------------------------ 

 1470 
a  Columns 1-4 refer to Distkm, H(3D), H(Continuum), and CSNoiseRatio data screening 

thresholds. 
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Table 9. Multi-variable linear regression standard deviations and maxlatDiff values.a 

------------------------------------ ------------------------------------------------------------------- 1475 
     Ocean, QF=0      Ocean, QF=1 

 

Variable Number Stnd maxlatDiff Number Stnd maxlatDiff 

-------------------------------------------------------------------------------------------------------- 

Standard 119144 0.86 0.46  53247  2.16 0.43 1480 
       29434  1.41 0.55 

 

Distkm  119144 0.85 0.41  53247  2.09 0.32 

       29434  1.39 0.51 

 1485 
H(3D)  119144 0.85 0.45  53247  2.13 0.41 

       29434  1.41 0.50 

 

CSNoiseRatio 119144 0.84 0.39  53247  2.13 0.40 

        29434  1.39 0.47 1490 
 

H(C)  114137 0.85 0.46  53247  2.11 0.44  

       29434  1.40 0.53 

--------------------------------------------------------------------------------------------------------- 

    1495 
Land, QF=0    Land, QF=1 

 

Variable Number Stnd maxlatDiff Number Stnd maxlatDiff 

---------------------------------------------------------------------------------------------------------- 

Standard 155602 1.24 0.09  113147 3.27 0.42 1500 
          91620 2.75 0.34 

 

Distkm  155602 1.24 0.08  113147 3.24 0.55 

         91620 2.73 0.43  

     1505 
H(3D)  154599 1.24 0.28  113044 3.23 0.39 

         91518 2.75 0.42 

        

CSNoiseRatio 155602 1.24 0.09  113147 3.25 0.54 

         91620 2.74 0.49 1510 
       

H(C)  154582 1.23 0.10  112449 3.26 0.45 

         91064 2.74 0.30 

------------------------------------------------------------------------------------------------------------ 
a”Standard” refers to multiple linear regressions in which only the Version 10 standard 1515 
variables (dPsco2, co2graddel for ocean; and dPfrac, CO2graddel, aodfine and log(DWS) 

for land) are utilized. The lower number in the QF=1 pairs refers to calculations with a 

restricted range of data (similar to that for the QF=0 data) for the standard variables. 

Variable “Distkm” indicates taht the standard variables, plus the Distkm variable, are used 
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in the multiple-regression calculations. “Number” refers to the number of observations 1520 
used in the calculations. H(C) refers to the H(Continuum) metric.  
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Figure 1. Fraction of observations that have a cloud within a circle of a specified radius 

(given by the x axis values) in summer for Ocean Glint and Land Nadir Lite file data points 

for QF=0 (best quality) and QF=1 (lesser quality) data. Each curve is for a labeled 20º 1525 
latitudinal band. QF=1 fractions are generally larger than the QF=0 fractions.  
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Figure 2. SHDOM 1D (IPA) and 3D radiative perturbations for ocean glint and land nadir 

viewing geometry using the same Fig. 9 cloud field. “A” in the y-axis title refers to 3D or 1530 
1D radiative perturbations. The sun is along the negative x-axis. The observation footprint 

is 4 km west from a cloud that is located at the x-y-z plane origin, corresponding to the 

June 12, 2016 cloud field observed by MODIS (see Fig. 9) over the ocean. Shadows are 

not located at this observation footprint since the sun and footprint are to the west of the 

cloud. The 3D radiance perturbations for glint viewing geometry are larger than  the nadir 1535 
viewing geometry perturbations.  
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Figure 3. The angular dependence of the SHDOM 100 (3D-IPA)/IPA radiative 

perturbations for glint view geometry for observation footprints along a circle 4 km 

surrounding an isolated cloud. The observation footprints are to the west, north, east, and 1540 
south of the cloud at angles of 0º, 90º, 180º and 270º. The sun is along the –x axis and the 

sensor is along the +x axis.  
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Figure 4. Contour maps of XCO2 – TCCON over the ocean as a function of the nearest 

cloud distance for QF=0 and QF=1 XCO2raw and XCO2bc Version 10 data. There is a 1545 
very noticeable asymmetry (a tail of negative XCO2bc-TCCON) along vertical lines of 

nearest cloud distance in the QF=1 data, especially for small nearest cloud distance.  
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Figure 5. Contour maps of XCO2 – TCCON over the ocean as a function of the 

CSNoiseRatio metric for QF=0 and QF=1 XCO2raw and XCO2bc Version 10 data. The 1550 
QF=1 XCO2bc data over the ocean has a noticeable asymmetry along CSNoiseRatio 

vertical lines.   
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Figure 6. Averages of XCO2 – TCCON over the ocean as a function of the nearest cloud 

distance for QF=0 and QF=1 XCO2raw and XCO2bc Version 10 data. 95 % (2) 1555 
confidence limits of the averages are represented by the vertical line associated with each 

average. The averages become more negative as the nearest cloud distance decreases. This 

indicates that the operational bias correction has a non-zero residual 3D cloud bias.  
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Figure 7. Averages of XCO2 – TCCON over the ocean as a function of the CSNoiseRatio 1560 
metric for QF=0 and QF=1 XCO2raw and XCO2bc Version 10 data.  95 % (2) confidence 

limits of the averages are represented by the vertical line associated with each average. The 

averages become more negative for the QF=0 and QF=1 quality flags as the CSNoiseRatio 

metric increases.   

Formatted: Justified



 

45 
 

 1565 
Figure 8.  Averages of dPsco2 over the ocean and dPfrac over land as a function of the 

nearest cloud distance metric for QF=0 and QF=1 Version 10 data.  95 % (2) confidence 

limits of the averages are represented by the vertical line associated with each average.  
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 1570 
Figure 9. Geospatial variations in nearest cloud distance, O2-Aband continuum 

H(Continuum), and Quality Flag values for an ocean glint scene on June 12, 2016. 

Footprint observations are indicated by * symbols, and the MODIS cloud field is given by 

the irregular red shapes. Longitude and Latitude are given by the x and y axes. 
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 1575 
 

Figure 10. Bias corrected Version 10 XCO2bc versus nearest cloud distance for QF=1 data 

for a region that extends north and south of the June 12, 2016 scene illustrated in Fig. 9. 

The bottom panel presents O2 A-band average spectra for the three boxes in the upper 

panel.  1580 
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Figure 11. Dependence of Version 10 ocean bias correction variables (dPsco2, 

CO2graddel) and other variables (DWS, surface reflectance, and CSNoiseRatio) as a 

function of nearest cloud distance and Quality Flag data. The data points are for a limited 1585 
range of latitude (52S º - 41Sº) and longitude (164º - 180º) in 2017.  
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Figure 12. Contour graphs of XCO2raw-TCCON and XCO2bc-TCCON for ocean glint 

measurements. Largest differences are present at smallest nearest cloud distances and 

largest CSNoiseRatio values especially for the QF=1 data.  1590 
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Figure 13. Application of Fig. 12, used as a Table look-up correction for 3D cloud biases, 

leads to revised XCO2raw,corr-TCCON and XCO2bc,corr-TCCON averages for ocean 

data, binned as a function of nearest cloud distance. 

  1595 
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Figure 14. Application of Fig. 12, used as a Table look-up correction for 3D cloud biases, 

leads to revised XCO2raw,corr-TCCON and XCO2bc,corr-TCCON averages for ocean 

data, binned as a function of the CSNoiseRatio 3D metric.  
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Figure 15. Changes in the PDFs of Version 10 XCO2bc-TCCON as a function of the 

nearest cloud distance screening process (see Tables 7 and 8). The numbers in the panels 

are the number weighted XCO2bc-TCCON averages (in ppm) of the PDFs, for nearest 

cloud screening threshold distances of 0, 1, 2, 3, 5, 10, and 15 km. 


