
Referee #1

This is an interesting paper on cloud elimination or cloud flagging (CF) techniques used for sun-
photometric measurements. The paper contributes towards improving such measurements. It fits the
scope of the journal.

Introduction
Before starting describing the CF methods I would start the paper with some sentences like the 
paragraph below to show the importance of this study in combination with AOD related research 
and use: 
AOD is the most comprehensive aerosol parameter for radiative forcing studies. Surface based 
AOD measurements are conducted from various surface base networks (e.g. aeronet, gaw-pfr, 
skynet) (e.g. Holbern et al., Nakajima et al., 2020 AMT). The series are used for local, short term or
long term aerosol studies and for satellite validation. One of the main problems of such 
measurements is the fact that they can not be conducted under cloudy conditions at least when 
present in the detector-sun path of photons. For that case there are algorithms that are used in order 
to eliminate the possibility of cloud-present measurements to be included in the AOD data series. 
Such algorithms contribute substantially to the quality of AOD data worldwide.

Agreed, thank you for the suggestion. 
The first paragraph (lines 9-16) now reads
Sun photometry is one of the longest employed and robust measurement techniques for total column
aerosol optical depth (AOD) retrieval (Holben et al., 1998, 2001). AOD is the most comprehensive 
aerosol parameter for radiative forcing studies and serves as the ground-truth for validation of 
satellite data. Various surface based networks such as AERONET (Holben et al., 2001), SKYNET 
(Takamura and Nakajima, 2004), and the WMO global atmosphere watch programme GAW-PFR 
(Kazadzis et al., 2018) conduct measurements of AOD at a high time resolution, providing data for 
local short and long term aerosol studies. As the calculation of AOD from photometer 
measurements is based on the assumption of a cloud-free path between instrument and sun, the 
identification and removal of cloud contaminated data is one of the most important prerequisites for
high qualitiy AOD data. 

Authors use the PFR instrument in their analysis but the introduction is mainly for aeronet/cimel. 
The latest publication describing the PFR CF algorithm can be found here: https://gi.copernicus.org/
articles/7/39/2018/
Also it is essential to mention the PFR algorithm more explicitly as it differs in some aspects from 
the aeronet. In general different networks are using slightly or more different algorithms for CF. For
example in https://acp.copernicus.org/articles/18/3185/2018/
there is a comparison of different CF algorithms at synchronous AOD measurements from different 
instruments/networks. 

Added Kazadzis et al., 2018 (line 19). 
Added For our site, we use a limit of 0.02 if AOD is lower than 0.2, otherwise 0.03 (line 70)

In general the methodology is based on one minute data as derived from PFR. If the authors want to
generalize the method being important for other AOD measuring networks some discussion on the 
measurement frequency vs method quality has to be presented. This is because for most other than 
PFR instruments, measurements are more than 1 minute apart increasing the possibility of cloud 
contamination in N consecutive measurements.

This is a good point.
We’ve added an analysis of subsampled data (lines 163-172) as well as two figures (7 and A2) for 

https://gi.copernicus.org/articles/7/39/2018/
https://gi.copernicus.org/articles/7/39/2018/
https://acp.copernicus.org/articles/18/3185/2018/


illustration.
Finally, we investigate the performance of the proposed method at lower time resolution. We 
subsampled the timeseries to 5, 10, and 15 minutes and analyzed the resulting data with the same 
settings for the algorithm. Key parameters of the resulting d20 distribution from the whole 10-year 
data record are shown in Figure 7. The coarser the time resolution, the higher minimum and 
median d20 values and interquartile range. This is mainly due to the overall density of points 
decreasing, thus increasing the mean distance to the nearest neighbours. Furthermore, the values of
the first time derivative will be lower, so the relative weight of this dimension decreases. 
To account for the changes in density, there are two possible adjustments: lower the number of 
nearest neighbours, or set a higher cloud flagging threshold. As an example of the latter, we show 
the timeseries on 12th of March 2020 (same as in Figure 3) at four different time resolutions in 
Figure A2. With increasing the d20 threshold to 0.019, 0.027, and 0.042 respectively for 5, 10, and 
15 minute resolution, a very similar flagging behaviour can be achieved at all time resolutions. 

The Angstrom parameter a: It is a very good proxy for cloud flagging. However its variability 
depends also in AOD. Low AOD measurement days lead to much more "sensitive" and variable 
angstrom a than the ones with higher AOD. In low AOD days small but real AOD variability in 
combination with AOD measurement uncertainties can lead to high angstrom fluctuations. 
Dust AOD variability could be an issue. Cuevas et al., discuss the 1 minute variability 
https://amt.copernicus.org/articles/12/4309/2019/amt-12-4309-2019.pdf in this paper and the 
supplement. The example presented here is a good example but probably some discussion should be
included based on the above mentioned 10 year time series of AOD cases.

Indeed, the variability in the Angstrom parameters increases with decreasing AOD. But since the 
Angstrom parameters are only 2 out of 4 dimensions and the variation of AOD in these cases is also
lower, so the algorithm is relatively robust for these low AOD scenarios. We have included 
examples in the appendix of low and high AOD days, as well as a day with Saharan dust and hence 
high AOD in Figure 3. 

Main effect of the non correct CF in an AOD series is the data cloud "contamination"that leads to a 
systematic higher instant AOD values but also affects daily, monthly AOD averages. Such 
systematic effects could have an impact on long term series statistics and much more to trend 
analysis of AOD related changes. I think this could be mentioned in the conclusions. It is an aspect 
that methodologies such as the paper presents, contribute towards better quality results. 

Yes, thank you for the suggestion. However, it should be noted that there is a (maybe 
counterintuitive) possibility that the daily mean AOD can also increase when more thin clouds are 
flagged (if there is a real change in AOD over the day, but thin clouds only occur during the period 
of lower AOD).
Added (lines 181-184)
[…] optically thin clouds, such as cirrus and contrails, which lead to systematic bias of higher 
instant AOD values. Reducing this bias contributes to an improvement of long term statistics and 
trend analysis of aerosol conditions. 

Referee #2

The manuscript describes a cloud flagging algorithm for a PFR radiometer deployed in Innsbruck. It
compares a traditional filtering based on temporal AOD variations with the proposed method based 
on clustering. The approach is interesting and fits the scope of the journal. However the methods are
insufficiently described, and the applicability is questionable or at least not supported by the 
information provided in the paper. I recommend a major revision is made before it can be published.



General comments
1. The introduction needs to be improved, with more detailed description of the GAW-PFR network 
and related references. Other cloud flagging algorithms could be mentioned, as well as the main 
principles of them (temporal AOD variations, spectral changes/Angstrom exponent, etc.). The AOD 
spectral derivatives and curvature used later, suggest including reference to O’Neill papers on this 
matter. Overall, references are missing to support certain statements throughout the text (see 
specific comments).

Added Takamura and Nakajima, 2004, Kazadzis et al.,2018 (line 13), and O’Neill et al., 2001, 2003
(line 57)

2. The “multiplet” method is not at all described (lines 60-65). First, the authors should provide how
many measurements in what time interval are analyzed. And they should also provide the threshold 
value for cloud flagging. Second, the Smirnov (2000) algorithm is much more complex than the 
“triplet” criterion. Several other steps are given(on the second temporal AOD derivative, on the 
AOD standard deviation for the entire day, etc.). The description provided by the authors is too 
simplified. You need to be much more specific and detailed.

Added (lines 71-73)
Further limits are set on the standard deviation of AOD within a day and the second time derivative
of the timeseries. Out of these parameters, the multiplet criterion is the most relevant (more than 
99% of the flagged points) [...]

3. The applicability of the method is highly questionable, for two reasons. First, the threshold value 
used to flag the data (0.012 for d20) seems to be based on the analysis of few days only. This is not 
acceptable in my view. Many circumstances, simply other AOD level or other aerosol type, can 
change the variability of the AOD or the Angstrom exponent. This is not considered at all in the 
discussion. I would recommend analyzing the four variables and the d20 distance in different 
situations (high and low AOD, different aerosol types, season, etc.) to derive a more robust 
criterion.

This is a justified concern which we share, but which is at the very root of the problem: to find the 
best threshold in a continuous distribution of d20 values (not a binary one clearly distinguishing 
between cloudy and clear) such that as many cloudy and as little cloud free values as possible are 
flagged. We used a number of clear sky days (about 150) as a starting point for a reference value 
and indeed fine tuned / checked according to benchmark days for different situations (high and low 
AOD, different aerosol types, season, etc.), see figures 3 and A1. 
Even a human observer will have to decide at which point in the transition he deems the sun 
obstructed when a cloud is moving. Furthermore, the real positives/negatives, especially in this grey
zone, are unknown – this is the reason this kind of algorithm is needed in the first place.
While we would also prefer a more objective and deterministic way of choosing the threshold, we 
believe that in principle there is no real alternative here to improve the threshold determination. 

Second, this method is restricted to one site. It performs apparently well in Innsbruck, but the 
authors should not pretend that it can be expanded as is to other sites (or instruments). We have no 
idea how it would perform in an Amazonian site with highly variable biomass burning aerosol, for 
instance. Claiming that the method can improve the Smirnov (2000) algorithm (line 145) in cloud 
flagging is too much to say. Suggesting that it can work as good as Giles (2018) with less input 
information (line 146), is also too much to say. Those algorithms have been tested over a huge 
database and thoroughly describe the difficulties and the compromise that needs to be taken in an 
operational algorithm.



There is no reason why the algorithm should not perform at sites with similar aerosol conditions 
(Europe/North America). For more dissimilar sites it depends whether the density of points in clear 
conditions is dissimilar enough from cloudy conditions. The volcano example is the closest we’d 
have to such conditions and does not suggest that the algorithm cannot be applied here.
We do not claim to improve Smirnov, but employ a completely different algorithm to solve an open 
issue in the time-series analysis, which is detection of thin clouds. 
Aureole scan provides admittedly more information, but is not available everywhere, and takes a lot
of time. No comparison with the performance of Giles (2018) can be done, and we did not intend to 
suggest a better performance.

First paragraph in the conclusions now reads (lines 174-179)
We presented a new approach for flagging cloud contaminated data points from sun photometer 
measurements by treating them as outliers/region of low density in a four-dimensional space. Our 
routine only needs one semi-empirically derived threshold and direct sun measurements for 
assigning a cloud flag. The method tackles shortcomings of the currently employed routine based 
on Smirnov et al. (2000) in the presence of optically thin clouds, such as cirrus and contrails, which
lead to systematic bias of higher instant AOD values. Reducing this bias contributes to an 
improvement of long term statistics and trend analysis of aerosol conditions. 
Last paragraph now reads (lines 203-209):
So far we have tested the algorithm only for our instrument in Innsbruck. It performs well in 
different cloud and aerosol conditions, as shown in figure 4, and is able to alleviate AOD bias in 
the presence of thin clouds. For the application at other 205 measurement sites, the time resolution 
of the data needs to be considered, as lower measurement frequency leads to lower data density, 
and therefore higher mean distances between points (figures A2 and 7). Nonetheless, adaptations 
regarding the number of nearest neighbours, the relative weight of the different dimensions, or the 
d20 threshold can be easily done to optimize cloud detection with other instruments as well. 

4. The validation of the method needs independent data, such as all-sky camera, lidar, ceilometer, 
solar radiation or even a human observer. The all-sky camera is mentioned in the paper but nothing 
is shown and no systematic analysis seems to be used for analyzing the performance of the 
clustering routine. The fact that more data points are removed is not sufficient. This can be easily 
achieved by any algorithm by using stricter thresholds.
The problem with all the suggested independent data is that the frequency of measurements is much
lower, and they do not necessarily measure in the same path as the sun photometer. Furthermore, 
there are uncertainties in distinguishing cloud-contaminated from cloud-free datapoints as well, so it
cannot serve as reference in a systematic analysis. However, clouds have clear spectral signature (as
seen in the Angstrom parameter plots) which can be determined with sun photometer data.
We have added Figure 2.

Yes, stricter thresholds will lead to removal of more points, shifting the mistakes from false 
negatives to false positives, but our algorithm does not merely remove more, but also different 
datapoints, as seen in Figure 4. Again, while some datapoints can be identified as clear/cloudy 
without a doubt, there are many in the grey transition zone of a cloud forming or passing in the 
path. Where the cut is set exactly in the continuous transition depends on the kind of error one 
prefers to avoid.
Added (lines 99-104)
As can be seen from the d20 timeseries in figure 3, there is no clear distinction of two states 
(cloudy/clear), but rather a continuous spectrum of values that has to be divided to best fit the two 
categories. A lower threshold value will classify the ambiguous points as cloudy, but also risks a 
higher number of false positives and therefore lower overall data retention, which matters for error 
of mean values calculated from the data. Similarly, a higher threshold will cause more false 



negatives, i.e. cloud contaminated points to be identified as clear. We set the d20 threshold to 0.012 
considering these aspects on our clear reference and benchmark days. 

Specific comments
Line 22: good place to add more information and references about GAW network (Wehrli, 
Kazadzis), and maybe Skynet cloud-screening (Takamura).
Done (line 12)
Line 23: do you think your algorithm could be used for lunar measurements too? This is emerging 
technique and worth mentioning, since your algorithm does not require any additional 
measurement, only AOD.
That is an interesting point. There is no obvious reason it should not work. However, it sounds like 
even more of a stretch than just applying it to different measurement sites.
Line 25: what happens if there are cirrus or contrails during most of the day? What happens if there 
is a change of aerosol type during the day?
Changed to The main idea is that aerosol optical depth and microphysical properties [...] show 
little and slow variation within a day, while clouds introduce outliers and stronger fluctuations in 
these parameters. 
Line 51: I guess you use all 4 wavelengths, but please specify.
Done (line 56)
Line 52: this a good place to cite O’Neill papers on AOD spectral derivatives.
Done (line 57)
Line 61: as mentioned in the general comments, Smirnov’s paper includes a long list of criteria. 
Please be more specific.
Added (line 72)
Further limits are set on the standard deviation of AOD within a day and the second time derivative
of the timeseries.
Line 63: please provide the time interval for the multiplet and total number of measurements. The 
PFR raw acquisition time is 2 seconds if I remember correctly. Do you use 1 minute averages, 
standard deviations, how do you look at fluctuations over de 5 minutes period? Please provide 
details, including the threshold used for cloud flagging.
Added (line 41)
with an acquisition time of about 2 seconds 
Line 74: the division by 10 to make the parameters comparable in magnitude is somewhat arbitrary. 
This is fine if it works, but couldn’t you try some kind of mathematical normalization?
There are two common normalization strategies:
1) By mean and standard deviation
Given that AOD (nor the other parameters) is not by any means normally distributed, this is hardly 
applicable. There is not even consensus whether to use arithmetic or geometric means when it 
comes to averaging AOD over 1 day/month…
2) Mapping onto a [0,1] interval
This would kind of defeat the purpose of finding outliers with our method as it changes the density 
of the data. Of course it can be done, when using it on the whole timeseries – ultimately this means 
multiplying by a fixed factor (to have intervals of the same length, it is not necessary to shift the 
lowest value to 0 as only distances are analyzed), which is what we already are doing. This can be 
done, but should not significantly alter the outcome.
The division by 10 can be seen as a weighting function rather than a normalization of the different 
dimensions.
Added (line 82)
and therefore of equal weight in calculating the distance,
Line 74-75: the sentence about the finite difference units is hard to understand. Please rewrite. 
Added (line 84)
(i.e. the value is divided by 12 when t is in hours)



Line 80: do you mean high AOD ó high number of data?
Changed (line 90)
retention of a high number of data points
Lines 81-84: the procedure to derive the d20 threshold seems arbitrary (“...is further fine tuned 
using days on which the Multiplet routine fails...”) and is not explained at all. The paper must 
describe this method in detail so that others can reproduce it. Moreover, as explained in the general 
comment 3, few clear days are in my view not sufficient to derive the threshold. A robust statistics 
over a large sample of data would be desirable. The description should also reveal the difficulties 
(too strict threshold removes too many good data, too loose threshold allows too many cloud-
contaminated data...and so on). And such analysis requires ancillary information to assess what data
points are clear and which are cloud contaminated.
See general comment #2 and #4. 
Added (lines 99-104)
As can be seen from the d20 timeseries in figure 3, there is no clear distinction of two states 
(cloudy/clear), but rather a continuous spectrum of values that has to be divided to best fit the two 
categories. A lower threshold value will classify the ambiguous points as cloudy, but also risks a 
higher number of false positives and therefore lower overall data retention, which matters for error 
of mean values calculated from the data. Similarly, a higher threshold will cause more false 
negatives, i.e. cloud contaminated points to be identified as clear. We set the d20 threshold to 0.012 
considering these aspects on our clear reference and benchmark days. 
Line 94: the airmass limitation was not mentioned until this point. It is one of the criteria used in 
Smirnov’s algorithm. As explained above, you need to be more specific and detailed in describing 
the algorithms.
Added (line 67-68)
Datapoints for which the airmass exceeds a value of 6 are considered as cloudy.
Figures 2 and 3: please enlarge fonts in the axe’s labels.
Done
Figure 3 caption: better say “solid line” than “black line” (the lines are actually in whitecolor)
Done
Line 110: maybe add reference about Saharan dust over Austria
Done (line 130)
Line 114: add reference about Eija volcanic eruption over Austria.
Done (line 134)
Line 118: what criteria or ancillary data are used for a manual screening? Note that readers need to 
know how to reproduce your results.
As it is inspected by a human, the criteria cannot be put down as specific numbers. Furthermore, 
there was no manual screening done, it was just mentioned that it would be possible.
Line 121: maybe add reference about sunshine hours
Done (line 142)
Line 127: wrong subscript, the longest wavelength is 870nm, I guess.
Done (line 149)
Line 137: 0.001 is the uncertainty is for the reference instruments if Langleys are made at Mauna 
Loa (Toledano 2018; Kazadzis 2018). For a field instrument (side-to-sidecalibration), the 
uncertainty is rather 0.5-1% in calibration constant or 0.005-0.01 in AOD.
Done (line 158)
Line 145: the data shown in the paper do not support this strong assessment in the conclusions.
See general comment #3
Line 162: the sentence about the results in high latitude sites is speculative and not supported by 
any data in the manuscript.
See general comment #3
We removed the mentioned high latitutes.
Line 165: please rewrite the sentence, it’s hard to understand.



Now reads (lines 196-198)
Nonetheless, it can be used for real-time analysis as well, given that erroneously cloudy points can 
be corrected to clear when more data becomes available, but not the other way round (i.e. points 
identified as clear once will be labelled as clear regardless of additional measurements).
Line 170: “association”: do you mean correlation, covariance, ..? 
Mutual conditional information (details in reference) as mentioned in the sentence (line 200)
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Abstract. We propose a new cloud screening method for sun photometry that is designed to effectively filter thin clouds. Our

method is based on a k-nearest neighbour algorithm instead of scanning timeseries of aerosol optical depth. Using ten years

of data from a precision filter radiometer in Innsbruck, we compare our new method and the currently employed screening

technique. We exemplify the performance of the two routines in different cloud conditions. While both algorithms agree on

the classification of a datapoint as clear or cloudy in a majority of the cases, the new routine is found to be more effective in5

flagging thin clouds. We conclude that this simple method can serve as a valid alternative for cloud detection, and discuss the

generalizability to other observation sites.

1 Introduction

Sun photometry is one of the longest employed and robust measurement techniques for total column aerosol optical depth

(AOD) retrieval (Holben et al., 1998, 2001)
:
.
:::::
AOD

::
is

:::
the

::::
most

:::::::::::::
comprehensive

::::::
aerosol

:::::::::
parameter

:::
for

:::::::
radiative

:::::::
forcing

::::::
studies10

and serves as the ground-truth for validation of satellite data. As it
:::::::
Various

::::::
surface

:::::
based

:::::::::
networks

::::
such

:::
as

::::::::::
AERONET

:::::::::::::::::
(Holben et al., 2001),

::::::::
SKYNET

:::::::::::::::::::::::::::
(Takamura and Nakajima, 2004),

:::
and

:::
the

::::::
WMO

:::::
global

::::::::::
atmosphere

:::::
watch

:::::::::
programme

::::::::::
GAW-PFR

:::::::::::::::::::
(Kazadzis et al., 2018)

::::::
conduct

::::::::::::
measurements

::
of

:::::
AOD

::
at

:
a
:::::
high

::::
time

:::::::::
resolution,

::::::::
providing

::::
data

:::
for

::::
local

:::::
short

:::
and

::::
long

:::::
term

::::::
aerosol

::::::
studies.

:::
As

:::
the

:::::::::
calculation

::
of

:::::
AOD

::::
from

::::::::::
photometer

::::::::::::
measurements is based on the assumption of a cloud-free path be-

tween instrument and sun, the identification and removal of cloud contaminated data is one of the most important prerequisites15

for high qualitiy AOD data.

The most widely used algorithm by Smirnov et al. (2000) sets a threshold on the temporal variation of AOD, assuming a higher

variation in the presence of clouds.
:
,
::
as

:::
one

:::
of

::
its

:::::::
flagging

:::::::
criteria.

:
It
::::
was

:::::::::
developed

:::
and

::::::::
employed

::
in
:::
the

::::::::::
AERONET

::::::::
network,

::
as

::::
well

::
as

::::::
adapted

:::
for

:::::::::
GAW-PFR

:::::::::::::::::::
(Kazadzis et al., 2018).

:
While this method reliably flags thick clouds, there is a limit to detect

:::::::
detection

::
of

:
optically thin clouds exhibiting small AOD changes, i.e. below the threshold,

::
is

:::
not

:::::::
possible. This limitation intro-20

duces a bias towards higher AOD (Chew et al., 2011; Huang et al., 2011), as well as a bias in the Angstrom parameters,
:
which

indicate particle size.

To remedy this problem without additional manual quality control, Giles et al. (2018) revised the Smirnov et al. (2000) al-

gorithm (see table 2 of Giles et al. (2018) for specifics). They include aureole scans in their cloud screening routine which

utilize the increased forward scattering behaviour of thin clouds for their identification. This is suitable for instruments that25

measure sky radiance in addition to direct sun. However, the procedure takes time and is only viable within AERONET who

1



employ these instruments, whereas it is not applicable for precision filter radiometers operated within other networks, such as

the WMO global atmosphere watch programme (GAW)
::::::::
GAW-PFR.

Therefore, we developed a new algorithm that can identify thin clouds, and works with direct sun measurements only. The main

idea is that aerosol optical depth and microphysical properties (represented by the Angstrom parameters, Gobbi et al. (2007))30

stay roughly constant
::::
show

::::
little

::::
and

::::
slow

::::::::
variation within a day, while clouds introduce outliers

:::
and

:::::::
stronger

::::::::::
fluctuations in

these parameters.

Instead of scanning the timeseries of these variables, we examine their density in a four-dimensional space with a k-nearest-

neighbours algorithm. This principle is well established in the fields of machine learning and data mining as an efficient way

to identify outliers in data (Ramaswamy et al., 2000). In the context of AOD measurements, clear sky will lead to regions of35

high density/little distance between points, whereas clouds will result in less dense regions/outliers.

2 Data and Methods

2.1 Instrument and Raw Data

We use a precision filter radiometer (PFR) developed by the PMOD WRC Davos for the GAW network (Wehrli, 2005) with

four channels (368nm, 412nm, 501nm, 864nm) and a field of view of 1.2◦. The instrument is set up on top of a ten-storey40

university building in Innsbruck, Austria (47◦ 15’ N, 11◦ 24’ E). Our operational guidelines are based on the ones of GAW and

the instrument is calibrated by PMOD, but our site runs independently of the network. Additional to the minutely PFR reading

::::
with

::
an

:::::::::
acquisition

:::::
time

::
of

:::::
about

:
2
:::::::

seconds, we measure the air temperature and pressure at the site and monitor the overall

cloud conditions with an all-sky camera taking pictures every 10 minutes.

2.2 Processing and filtering45

First steps in quality control include the removal of data points where any of the four voltages is negative. Furthermore, flags

are introduced if the sun tracker records a value higher than 15”, and an ambient temperature above 310 K.

After the initial filtering, aerosol optical depth (AOD) is calculated from the voltage measurements. Starting from the Lambert-

Beer law, the aerosol optical depth is derived as:

τa(λ) =m−1
a

[
ln
( V0(λ)

V (λ)R2

)
−
∑
o

moτo(λ)
]

(1)50

where V (λ) are the measurements, V0(λ) the calibration factors, R the Sun-Earth distance, and m the airmass in the path

between instrument and sun.

Several atmospheric constituents contribute to the optical depth, one of which are aerosols (indicated by subscript a). Other

factors (subscript o) which are taken into account in our calculation are Rayleigh scattering (Kasten and Young, 1989; Bod-

haine et al., 1999), Ozone (Komhyr et al., 1989), and NO2 (Valks et al., 2011). We use climatological values for O3 and NO2,55

and temperature and pressure measured on site. Resulting unphysical values (negative or infinite) of the aerosol optical depth
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:
at
::::
any

:::::::::
wavelength

:
are discarded.

At each timestep, we perform a linear and a quadratic fit (indicated with subscripts l and q respectively) to τa(λ)
:
at
:::

all
::
4

::::::::::
wavelengths to derive the Angstrom parameters (Ångström, 1929, 1964; King and Byrne, 1976)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ångström, 1929, 1964; King and Byrne, 1976; O’Neill et al., 2001, 2003)

.60

ln
(
τa(λ)

)
= ln(βl)−αl ln(λ) (2)

ln
(
τa(λ)

)
= ln(βq)−αq ln(λ) + γq ln(λ)2 (3)

The spectral slope αl of the linear fit and the spectral curvature γq of the quadratic fit are used in further analysis and referred

to without the subscript hereafter.65

2.3 Cloud flagging

The next step in quality control of the data is the flagging of potentially cloud-contaminated datapoints. Figure 1 shows the

basic principle of the presently employed scheme and the proposed new method.

Currently, our operational routine is based on the criteria laid out in Smirnov et al. (2000), with some minor adaptions
:::
due

::
to

::
the

::::::
higher

:::::::::::
measurement

:::::::::
frequency according to Wuttke et al. (2012). The

:::::::::
Datapoints

:::
for

:::::
which

:::
the

:::::::
airmass

::::::
exceeds

::
a
:::::
value

::
of70

:
6
:::
are

:::::::::
considered

::
as

::::::
cloudy.

:::
For

:::::
lower

:::::::
airmass,

:::
the

:
main criterion for filtering datapoints is the difference between the maximum

and minimum AOD value within a multiplet of consecutive datapoints (Smirnov et al. (2000) uses a triplet, whereas we look

at a quintuplet) which cannot exceed a set value.
:::
For

:::
our

::::
site,

:::
we

:::
use

::
a

::::
limit

::
of

::::
0.02

::
if

:::::
AOD

:
is
:::::
lower

::::
than

::::
0.2,

::::::::
otherwise

:::::
0.03.

This threshold is balanced to filter clouds while retaining real AOD variations. As this
::::::
Further

:::::
limits

:::
are

:::
set

::
on

:::
the

::::::::
standard

:::::::
deviation

:::
of

::::
AOD

::::::
within

:
a
:::
day

::::
and

:::
the

::::::
second

::::
time

::::::::
derivative

::
of

:::
the

:::::::::
timeseries.

::::
Out

::
of

::::
these

::::::::::
parameters,

:::
the

:::::::
multiplet

:
criterion75

is the most relevant for flagging,
::::
(more

::::
than

:::::
99%

::
of

:::
the

::::::
flagged

:::::::
points),

::
so

:
we will refer to it

::
the

::::::::
currently

::::::::
employed

:::::::
method

as "Multiplet routine" hereafter.

Instead of step-wise scanning timeseries, our new routine performs one calculation for all currently available datapoints. We

use a k-nearest neighbours algorithm to establish the 20 closest points {P1,P2, ...,P20} for each of our measurements P0 in a

four dimensional space. Then the mean euclidian distance between P0 and its neighbours is calculated (referred to as d20) and80

P0 is identified as cloudy if this distance exceeds a threshold. This method is usually used to identify clusters of data points,

hence we will call it "Clustering routine".

The dimensions used are the aerosol optical depth at 501nm, its first derivative with respect to time, and the two Angstrom

parameters α and γ. The first two cover temporal variations of one wavelength, the second two changes in the spectrum. To

ensure that these parameters are comparable in order of magnitude, the
:::
and

::::::::
therefore

::
of

::::
equal

::::::
weight

::
in

:::::::::
calculating

:::
the

::::::::
distance,85

::
the

:
Angstrom parameters derived from equations 2 and 3 are divided by a factor of 10. Furthermore, the finite-difference time

derivative of the AOD
:::

∆τ
∆t is used in units of 1 per 5 minutes

:::
(i.e.

:::
the

:::::
value

::
is

::::::
divided

::
by

:::
12

:::::
when

:
t
::
is

::
in

::::::
hours), analoguous to

checking the AOD variation within a quintuplet of
:::::::
minutely measurements.
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Points affected by a track error will not be considered in the set of possible nearest neighbours. If
:::
this

::::
leads

:::
to

:
less than

20 measurements are valid
::::
valid

::::::::::::
measurements, the number of nearest neighbours k will be reduced accordingly down to a90

minimum value of 5 points in real-time analysis. To account for the lower number of nearest neighbours, the calculated distance

is then multiplied by 20
k to make it comparable to the

::::::
original

:
d20 measure. Similarly, if the number of datapoints identified as

clear on one particular day is lower than 30, the Clustering routine is re-run with 10 nearest neighbours during post-processing

to ensure high data retention
:::::::
retention

::
of

:
a
::::
high

:::::::
number

::
of

::::
data

:::::
points.

To establish the threshold for possible cloud contamination, we calculate the distribution of d20 on
:::::
about

:::
150

:
clear days. We95

estimate a limit
::::
from

:::
this

::::::::::
continuous

::::::::::
distribution, which is further fine tuned using days on which the Multiplet routine fails

to identify thin clouds
::
on

::::::::::
benchmark

::::
days.

::::::
These

::::
were

:::::::
selected

::
as

::::::::::::
representatives

:::
of

:::::::
different

:::
sky

:::::::::
conditions

::::
and

::::::::
examples

::
of

::::::::::
unidentified

:::
thin

::::::
clouds

:::
by

:
a
::::::
human

::::::::
observer

::
of

:::
the

:::::
AOD

:::::::::
timeseries,

::::
α-γ

::::::::
diagrams,

::::
and

:::
sky

:::::::
camera

::::::::
reference. An example

(12th March 2020) is given in figure 3
::::::
figures

:
2
::::
and

::
3,

::::
with

::::::::
additional

::::::::
examples

:::
in

:::::
figure

:::
A1. We show the four dimensions of

our space, as well as the resulting d20 of our datapoints . From these days, we
:::
and

:::
the

:::
sky

::::::
camera

:::::::
pictures

:::
for

:::::
better

:::::::::
illustration100

::
of

:::
the

:::::::::
timeseries.

::::
Both

:::::::::
algorithms

::::
pick

::
up

:::
the

:::
thin

::::::
clouds

::::::
around

:::::::
9:15am,

:::
but

::::
only

::::::::
Clustering

::::::::::
determines

::::
some

::::::
smaller

::::::::
contrails

:::::::
between

::::
9:30

:::
and

:::::
10:00

::
as

:::::::
cloudy.

::
As

::::
can

::
be

:::::
seen

::::
from

::::
the

:::
d20:::::::::

timeseries
::
in

::::::
figure

::
3,

:::::
there

::
is

:::
no

::::
clear

:::::::::
distinction

:::
of

::::
two

:::::
states

::::::::::::
(cloudy/clear),

::::
but

:::::
rather

::
a

:::::::::
continuous

::::::::
spectrum

::
of

::::::
values

:::
that

::::
has

::
to

::
be

:::::::
divided

::
to

::::
best

::
fit

:::
the

::::
two

:::::::::
categories.

::
A

:::::
lower

::::::::
threshold

:::::
value

::::
will

:::::::
classify

:::
the

:::::::::
ambiguous

:::::
points

::
as

:::::::
cloudy,

:::
but

:::
also

:::::
risks

:
a
::::::
higher

::::::
number

::
of
:::::
false

:::::::
positives

::::
and

:::::::
therefore

:::::
lower

::::::
overall

::::
data

::::::::
retention,

::::::
which105

::::::
matters

:::
for

::::
error

:::
of

:::::
mean

:::::
values

:::::::::
calculated

:::::
from

:::
the

::::
data.

:::::::::
Similarly,

:
a
::::::
higher

::::::::
threshold

::::
will

:::::
cause

:::::
more

::::
false

:::::::::
negatives,

:::
i.e.

::::
cloud

::::::::::::
contaminated

:::::
points

:::
to

::
be

::::::::
identified

::
as
:::::

clear.
::::

We set the d20 threshold to 0.012
:::::::::
considering

:::::
these

::::::
aspects

:::
on

:::
our

:::::
clear

:::::::
reference

::::
and

:::::::::
benchmark

::::
days.

3 Results and Discussion

To assess the performance of the Clustering routine, we will compare it to the Multiplet routine, using the last 10 years of110

measurements (2010-2019), with 3330 days of measurements in total. Of these days, 1906 are found to have clear datapoints

by at least one routine.

To exemplify the similarities and differences of the two routines, figure 4 shows days with different cloud and aerosol condi-

tions: clear, intermittent thick clouds, intermittent thin clouds, a combination of passing thick and thin clouds, Saharan dust,

and volcanic ash. Depicted are the timeseries of AOD at 501nm as well as a scatterplot of the Angstrom parameters α and γ115

for five days. Additional examples are shown in figure A1.

On a clear day, the routines agree unsurprisingly very well
::::
very

::::
well,

::
as

::::::::
expected. Clustering retains more points at the begin-

ning and end of the day, which get picked up by limiting the airmass in the Multiplet routine. On the other hand, some slight

outliers in α and γ get flagged by Clustering. The difference in daily mean is smaller than the measurement error.

When thick clouds are passing, with just short intervals of clear sky in between, Multiplet hardly identifies these as such. As120

Clustering takes all available data into account, it can assign points as clear even if the immediately preceeding and consecutive
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Figure 1. Schematics of the cloud screening methods. Left: The Multiplet method evaluates the difference between maximum and minimum

AOD value of a set number of consecutive datapoints. Right: The Clustering method calculates the mean distance to k nearest neighbours in

an n-dimensional space. Points for which a certain threshold of the respective measure d (indicated with the solid black lines) is passed will

be identified as cloudy. These points are coloured in grey, wheras the clear points are coloured red/blue for Multiplet/Clustering.

Figure 2.
:::
Sky

::::::
camera

::::::
pictures

::
at

:::::
15min

:::
time

::::::::
resolution

::::
(time

::
in

:::::
UTC)

::
for

:::
the

::::::::
timeseries

:::::
shown

::
in

:::::
Figure

::
3.

point are deemed cloudy. Despite flagging less points, Clustering lowers the daily mean τ501 by 0.008 in this case, which is of

similar magnitude as our measurement error.

On a day with lots of thin clouds (mainly contrails), the differences between the two routines are pronounced: a few relatively

high AOD points in the morning (around 8am) pass Clustering, as do points during midday (between 10am and 12am). These125

points, which are spectrally very similar, are indeed cloud free, as confirmed by pictures of the sky camera. Multiplet however,

filters less points as cloudy, which show cloud contamination as a decrease in fine mode fraction in the α-γ plane. For this day,

the Clustering-Multiplet difference of daily mean τ501 is -0.027, which is the order of possible bias of Multiplet reported by

Chew et al. (2011).

Another example of Clustering being more rigorous in cloud flagging can be seen on the day labelled with "Various Clouds".130

There were several optically thick clouds passing, which get identified correctly, but neither their thin edges nor the optically

5



Figure 3. Three hours of an example day (12th March 2020) to illustrate the Clustering method: Timeseries of the four dimensions used,

as well as the timeseries of the distance measure d20. Colour of the rectangles codes for the flagging of the datapoint (see legend). For the

distance measure d20, points below the threshold, i.e. categorized as clear by Clustering, are coloured dark grey, cloudy points in light grey.
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thin clouds on that day get picked up by the Multiplet routine. This day gets correctly eliminated by Clustering despite Multi-

plet marking 89 datapoints as clear.

Occasionally, Saharan Dust can get transported to Austria .
:::
(e.g.

:::::::::::::::::::
Ansmann et al. (2003)

:
).

:
Despite unusually high AOD, both

routines correctly identify most of the data as cloud free. Daily mean τ501 is slightly lower (-0.005) when using Clustering, but135

this is still of the order of the calibration error.

One very unusual event is depicted last: after the eruption of Eyjafjallajökull in Iceland in April 2010, its ash plume was dis-

persed over Europe
:::::::::::::::::
(Schäfer et al., 2011). It exhibits high AOD, and similar particle radii and fine mode fraction as Sahara

dust. Clustering flags more data due to the high variation in AOD with time, but still retains data in the afternoon after about

1pm. Unfortunately, we do not have pictures available to estimate whether the data in the morning was cloud free, and should140

therefore be retained. Clustering lowers daily mean τ501 significantly, leading to -0.057 absolute and -12% relative difference.

However, such an event is rare enough to be manually cloud screened, if necessary.

Overall, the Clustering routine flags more data than the Multiplet routine, albeit not necessarily the same data points. A

more detailed comparison can be seen in figure 5. The Multiplet routine identifies about 47.6% of datapoints as cloudy,

Clustering about 50.5%, which is a realistic value considering the amount of sunshine hours Innsbruck receives on aver-145

age
:::::::::::::::::::
(Stadt Innsbruck, 2019).

As the main objective of the new algorithm was to filter thin clouds which previously passed the quality criteria, a higher

number of flagged datapoints overall is expected. On the other hand, Clustering can flag isolated outliers without flagging the

preceding and succeeding points of the multiplet, which lowers the number of flagged points. In 88% of all cases, the two

methods agree in the (non-)assignment of a cloudflag. Nonetheless, about 10% of the data deemed cloudy by Multiplet is not150

flagged by Clustering, whereas 15% of the data passing the Multiplet criteria is identified as cloudy by Clustering.

The mean AOD values of all clear points based on Multiplet flagging are τ̄368 = 0.19, τ̄412 = 0.16, τ̄501 = 0.13, and τ̄368 = 0.05
::::::::::
τ̄862 = 0.05.

The respective values based on Clustering do not differ significantly, which is partly due to the low number of datapoints on

which the routines disagree.

On daily timescales, Clustering eliminates 169 days for which Multiplet would still find valid datapoints. On the other hand,155

there are only 10 days where the opposite is the case. Nonetheless, there are more than 1000 days without clear data in the

10-year record. The number of datapoints on the days which are disregarded by Clustering ranges between 1 and 89. Most

of these days would therefore not be considered in further analysis in other measurement networks (Kazadzis et al., 2018;

Giles et al., 2018) either. Furthermore, as shown in Figure 4, some of these days should be eliminated as they are indeed cloud

contaminated.160

Clustering leads to lower daily mean AOD on about 63% of the days (Figure 6). The mean difference is -0.0029 for τ̄501, which

is of the order of the calibration error (0.001
:::::
0.005 to 0.01, depending on wavelength and airmass). However, on particular days

this difference can range from -0.08 to 0.04 in absolute numbers, or -62% to +27% relative to the values based on Multiplet

screening. Similarly, Clustering leads to higher mean α on 67% of the days. Averaged over ten years of data this leads to an

increment of ᾱ by 0.02. In extreme cases, the difference can be as high as +0.54. Both distributions are indicative of Clustering165

flagging thin clouds which Multiplet cannot properly detect.
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::::::
Finally,

:::
we

:::::::::
investigate

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
proposed

::::::
method

::
at
:::::
lower

:::::
time

:::::::::
resolution.

:::
We

::::::::::
subsampled

:::
the

:::::::::
timeseries

::
to

::
5,

:::
10,

:::
and

::
15

:::::::
minutes

:::
and

::::::::
analyzed

:::
the

:::::::
resulting

::::
data

::::
with

:::
the

::::
same

:::::::
settings

:::
for

:::
the

::::::::
algorithm.

::::
Key

:::::::::
parameters

::
of

:::
the

::::::::
resulting

:::
d20

:::::::::
distribution

:::::
from

:::
the

:::::
whole

:::::::
10-year

::::
data

:::::
record

::::
are

:::::
shown

::
in
::::::
Figure

::
7.
::::
The

::::::
coarser

:::
the

:::::
time

:::::::::
resolution,

:::
the

:::::
higher

:::::::::
minimum

:::
and

::::::
median

::::
d20 :::::

values
::::
and

::::::::::
interquartile

::::::
range.

::::
This

::
is

::::::
mainly

:::
due

::
to

:::
the

::::::
overall

:::::::
density

::
of

:::::
points

::::::::::
decreasing,

::::
thus

:::::::::
increasing170

::
the

:::::
mean

:::::::
distance

:::
to

:::
the

::::::
nearest

::::::::::
neighbours.

:::::::::::
Furthermore,

:::
the

::::::
values

::
of

:::
the

::::
first

::::
time

::::::::
derivative

::::
will

::
be

::::::
lower,

::
so

:::
the

:::::::
relative

:::::
weight

:::
of

:::
this

:::::::::
dimension

::::::::
decreases.

:

::
To

:::::::
account

:::
for

:::
the

:::::::
changes

::
in

:::::::
density,

:::::
there

:::
are

:::
two

::::::::
possible

::::::::::
adjustments:

::::::
lower

:::
the

::::::
number

:::
of

::::::
nearest

::::::::::
neighbours,

::
or

:::
set

::
a

:::::
higher

:::::
cloud

:::::::
flagging

:::::::::
threshold.

::
As

:::
an

:::::::
example

::
of

:::
the

:::::
latter,

:::
we

::::
show

:::
the

:::::::::
timeseries

::
on

::::
12th

::
of

::::::
March

:::::
2020

:::::
(same

::
as

::
in

::::::
Figure

::
3)

::
at

:::
four

::::::::
different

::::
time

:::::::::
resolutions

::
in

::::::
Figure

:::
A2.

:::::
With

::::::::
increasing

:::
the

::::
d20 :::::::

threshold
::
to
::::::
0.019,

:::::
0.027,

::::
and

:::::
0.042

::::::::::
respectively

:::
for175

::
5,

:::
10,

:::
and

::
15

::::::
minute

:::::::::
resolution,

::
a
::::
very

::::::
similar

:::::::
flagging

::::::::
behaviour

::::
can

::
be

::::::::
achieved

::
at

::
all

::::
time

::::::::::
resolutions.

4 Conclusions

We presented a new approach for flagging cloud contaminated data points from sun photometer measurements by treating

them as outliers/region of low density in a four-dimensional space. Our method successfully tackles the problem of the

Multiplet routine by Smirnov et al. (2000) of not detecting
::::::
routine

::::
only

:::::
needs

::::
one

::::::::::::::
semi-empirically

:::::::
derived

::::::::
threshold

::::
and180

:::::
direct

:::
sun

::::::::::::
measurements

:::
for

::::::::
assigning

:
a
:::::
cloud

::::
flag.

::::
The

::::::
method

::::::
tackles

:::::::::::
shortcomings

:::
of

::
the

::::::::
currently

:::::::::
employed

::::::
routine

:::::
based

::
on

::::::::::::::::::
Smirnov et al. (2000)

::
in

:::
the

::::::::
presence

::
of optically thin clouds, such as cirrus and contrails,

::::::
which

::::
lead

::
to

:::::::::
systematic

::::
bias

::
of

:::::
higher

::::::
instant

:::::
AOD

::::::
values.

:::::::::
Reducing

:::
this

::::
bias

:::::::::
contributes

::
to
:::

an
:::::::::::
improvement

::
of

:::::
long

::::
term

:::::::
statistics

::::
and

::::
trend

:::::::
analysis

:::
of

::::::
aerosol

:::::::::
conditions.

In contrast to the new routine employed by AERONET (Giles et al., 2018), which introduces more quality parameters (ten in185

total) and requires an aureole scan, our routine only needs one semi-empirically derived threshold and direct sun measurements

for assigning a cloud flag. While fewer datapoints are retained overall, which is expected from being able to filter thin clouds,

the Clustering routine does not just flag more, but different datapoints (figure 5). As there is an ambiguity in the transition

between humidified aerosols and clouds (Koren et al., 2007), an exact discrimination between false positives and negatives for

either routine is not possible. Nonetheless, the new routine leads to lower AOD and higher α in the long term mean, which190

indicates a reduction of cloud contamination bias.

Detailed comparison with the previously employed cloud screening routine showed that both methods agree in their classifi-

cation for the vast majority of cases (figure 5). Still, Clustering reduces mean AOD for most of the days in our testing period

(figure 6). The daily mean AOD at 501nm averaged over the last 10 years is lowered by 0.0029, which is comparable to instru-

ment precision (Wuttke et al., 2012). However, on single days Clustering reduces daily mean by more than 0.02 (up to 0.08),195

which is the same magnitude as reported as bias of the Multiplet routine by Chew et al. (2011), and exceeds the error of the

instrument and trace gas optical depth. Together with specific example days (figure 4
:::::
figures

:
4
::::
and

:::
A1), this supports the notion

that clustering corrects some cloudy points of the Multiplet routine to clear, while flagging some of its erroneously clear points

as cloudy. The small difference in the long term mean is partly due to the specific cloud conditions in Innsbruck, and could

8



Figure 4. Comparison of cloud flagging routines on selected days with different cloud conditions as signified in the respective title. Colours

as in Figure 3. Left: Timeseries of AOD at 501nm, Right: α-γ-plots. The black
::::
white

::::
solid

:
lines show different particle radii, the white dotted

lines different fine mode fractions, grid adapted from Gobbi et al. (2007). Note the different x-axis scales for the timeseries.
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Figure 5. Comparison of flagging by the two routines. The height of each area is proportional to the total number of datapoints in each

category. Grey: Both routines classify as cloudy, Red/Blue/Purple: Multiplet/Clustering/Both classify as clear.

Figure 6. Histogram of the Clustering-Multiplet difference in daily mean of AOD at 501nm (left) and of α (right). Negative/positive values

mean that the daily mean is lower/higher when screened by Clustering.
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Figure 7.
:::::::::
Comparison

::
of

:::
the

:::::::::
distribution

::
of

:::
d20:::

for
::::::
different

::::
time

:::::::::
resolutions

::::
over

::
10

:::::
years.

::::
The

:::
bars

::::::
extend

::::
from

:::
the

:::
25th

::
to
:::

the
::::
75th

::::::::
percentile,

::
the

::::::::
minimum

:::
and

::::::
median

::
of

:::
the

:::::::::
distributions

:::
are

:::::::
indicated

::
in

:::::
black.

::::
Note

:::
that

:::
the

::::::
maxima

:::
are

:::::
higher

::::
than

::
the

:::::
graph

:::::
range

:::
and

::::::
therefore

:::
not

::::::
shown.

therefore be much larger in high latitude regions with low mean AOD and
:::::
regions

:::::
with higher prevalence of thin clouds.200

Due to the nature of the Clustering routine, it needs a minimum number of measurements
::
at

::::
least

::
k

::::::::::::
measurements

::
to

:::::
serve

::
as

:::::::
possible

::::::
nearest

::::::::::
neighbours.

::
In

:::
our

:::::
case,

:::
we

:::::
chose

::::::
k = 20, though dynamic adaptions can be made if these are not

::::
there

:::
are

:::
less

:::::
points

:
available. As its accuracy

::
the

::::::::
accuracy

::
of

:::
the

::::::::
algorithm

:
increases with a higher number of datapoints, it is ideal for

post-processing. This does not diminish its usefulness
:::::::::::
Nonetheless,

:
it
::::
can

::
be

::::
used

:
for real-time analysis , as

::
as

::::
well,

:::::
given

::::
that

erroneously cloudy points can be cleared later
:::::::
corrected

::
to

:::::
clear when more data is

:::::::
becomes available, but not the other way205

round .
:::
(i.e.

::::::
points

::::::::
identified

::
as

::::
clear

:::::
once

:::
will

:::
be

::::::
labelled

:::
as

::::
clear

:::::::::
regardless

::
of

::::::::
additional

:::::::::::::
measurements).

:

While the four dimensions considered in the Clustering routine account for variations of one specific wavelength and in the

spectrum, the question arises whether these can be reduced even further. Especially γ, which has the highest error of the vari-

ables (Gobbi et al., 2007), might be a candidate. Initial independence tests using mutual conditional information as measure

(Runge et al., 2019) show a strong association of α and γ. However, outliers in γ can appear independently of α, which is why210

we kept γ as a dimension and therefore data constraint.

So far we have tested the routine
:::::::
algorithm

:
only for our specific measurement site

::::::::
instrument

::
in

:::::::::
Innsbruck. It performs well in

different cloud
:::
and

:::::::
aerosol conditions, as shown in figure 4, and was shown

::
is

::::
able to alleviate AOD bias in the presence of

thin clouds. Adaptations
:::
For

:::
the

:::::::::
application

::
at

:::::
other

:::::::::::
measurement

::::
sites,

:::
the

::::
time

:::::::::
resolution

::
of

:::
the

::::
data

:::::
needs

::
to

::
be

::::::::::
considered,

::
as

:::::
lower

:::::::::::
measurement

::::::::
frequency

:::::
leads

::
to

:::::
lower

::::
data

:::::::
density,

:::
and

::::::::
therefore

::::::
higher

:::::
mean

:::::::
distances

::::::::
between

:::::
points

:::::::
(figures

:::
A2215

:::
and

:::
7).

::::::::::
Nonetheless,

::::::::::
adaptations

:
regarding the number of nearest neighbours, the relative weight of the different dimensions,

or the d20 threshold can be easily done to optimize cloud detection with other instruments as well.
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Figure A1. 2 hour exerpts from selected days, additionally to figure 4. The first five examples highlight cases where Clustering flags much

less than Multiplet, the others show the performance in the presence of thin clouds. Both categories are ordered by date.
12



Figure A2.
::::
Time

::::
series

::
of

::::
AOD

::
at
::::::
501nm

:::
and

:::
α-γ

::::
plots

::
at
:::
the

::::::
original

::::
1min

::::::::
resolution,

::
as
::::

well
::
as

:::::
5min,

:::::
10min,

::::
and

:::::
15min

::::::::::
subsampling.

:::
Note

::::
that

::
the

:::::
initial

:::::::
datapoint

:::
was

::::::
chosen

::::::::
randomly,

::
so

::
the

:::
10

:::
and

::
15

::::::
minute

::::::::
resolutions

:::
are

::
not

::
a
:::::
further

:::::
subset

::
of

:::
the

:
5
::::::
minute

::::::::
resolution.

::::
Grey

:::::
squares

:::::::
indicate

:::::
cloudy

::::::
points,

:::
blue

::::
clear

::::
ones.

::::
The

::::
cloud

:::::::
detection

::::::::
threshold

:::
was

:::
set

:
to
:::::

0.019,
::::::

0.027,
:::
and

::::
0.042

:::::::::
respectively

:::
for

:::
the

::::
lower

::::
time

:::::::::
resolutions.
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