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Abstract. In this paper we describe a new two-dimensional and multi-channel feature detection algorithm (2D-McDA) and

demonstrate its application to lidar backscatter measurements from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) mission. Unlike previous layer detection schemes, this context sensitive feature finder algorithm is

applied to a 2D lidar "scene"; i.e., to the image formed by many successive lidar profiles. Features are identified when an

extended and contiguous 2D region of enhanced backscatter signal rises significantly above the expected "clear air" value.5

Using an iterated 2D feature detection algorithm dramatically improves the fine details of feature shapes and can accurately

identify previously undetected layers (e.g., subvisible cirrus) that are very thin vertically but horizontally persistent. Because the

algorithm looks for contiguous 2D patterns using successively lower detection thresholds, it reports strongly scattering features

separately from weakly scattering features thus potentially offering improved discrimination of juxtaposed cloud and aerosol

layers. Moreover, the 2D detection algorithm uses the backscatter signals from all available channels: 532 nm parallel, 532 nm10

perpendicular, and 1064 nm total. Since the backscatter from some aerosol or cloud particle types can be more pronounced

in one channel than another, simultaneously assessing the signals from all channels greatly improves the layer detection. For

example, ice particles in subvisible cirrus strongly depolarize the lidar signal and, consequently, are easier to detect in the

532 nm perpendicular channel. Use of the 1064 nm channel greatly improves the detection of dense smoke layers, because

smoke extinction at 532 nm is much larger than at 1064 nm, and hence the range-dependent reduction in lidar signals due to15

attenuation occurs much faster at 532 nm than at 1064 nm. Moreover, the photomultiplier tubes used at 532 nm are known to

generate artifacts in an extended area below highly reflective liquid clouds, introducing false detections that artificially lower

the apparent cloud base altitude, i.e. the cloud base when the cloud is transparent or the level of complete attenuation of the

lidar signal when it is opaque. By adding the information available in the 1064 nm channel, this new algorithm can better

identify the true apparent cloud base altitudes of such clouds.20
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Figure 1. Curtain of lidar attenuated backscatter signal measured by CALIOP in the 532 nm parallel channel during nighttime observations

on August 31, 2018, 21:46:37 UTC (start point), over Arabian Sea.

1 Introduction

The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission (Winker et al., 2010) has provided

direct measurements of cloud and aerosol vertical distributions with a very high vertical resolution since 2006. A key com-

ponent of these measurements is made by the active remote sensing instrument CALIOP (i.e., the Cloud-Aerosol Lidar with25

Orthogonal Polarization), a two-wavelength (532 nm and 1064 nm), polarization sensitive elastic backscatter lidar.

The knowledge of the cloud and aerosol vertical distributions and their properties is critical in assessing the planet’s radiation

budget (e.g., Shonk and Hogan, 2010), in evaluating the atmospheric radiative heating rate (e.g., Huang et al., 2009), and for

advancing our understanding of cloud-climate feedback cycles that occur as the climate warms (e.g., Tsushima et al., 2006).

The critically important first step in retrieving the spatial and optical properties of clouds and aerosols is to determine where30

these "features" are located in the vertical, curtain-like images (altitude vs. satellite track) of the backscattered lidar signals

(Fig. 1). The CALIPSO feature detection algorithms were first developed for ground-based observations, and then adapted for

space-based analyses using LITE measurements and CALIPSO simulations. These algorithms, which were conceived more

than 25 years ago (e.g., Winker and Vaughan, 1994), at a time when computational power was considerably less than is now

available, are invoked sequentially on single, one-dimensional (1D) lidar signal profiles (possibly generated from averaging35

data from several consecutive laser pulses). Moreover, in order to minimize the computational load, the current CALIPSO

algorithm is only applied to the 532 nm total signal (Vaughan et al., 2009).

To locate cloud and aerosol layers within lidar backscatter profiles, two main approaches are generally employed: the slope-

based method, which looks for zero crossings in the first derivative of the raw signal (e.g., Pal et al., 1992) and threshold-based

methods, which search for regions exceeding some expectation of the maximum signal value that could be measured in "clear40

air" (e.g., Winker and Vaughan, 1994; Clothiaux et al., 1998; Campbell et al., 2008). Some studies use a combination of

both methods (e.g., Wang and Sassen, 2001; Lewis et al., 2016). A few others adopt a third method: the wavelet analysis

(e.g., Davis et al., 2000; Brooks, 2003). Because these layer detection algorithms are applied successively to individual 1D

profiles (either single shot or averaged), we define them collectively as profile-based processes. We also define a second, more
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comprehensive class of methods as scene processes. Scene processes can take advantage of the contextual information provided45

by a continuous series of profile measurements by searching for cloud and aerosol patterns in the two-dimensional (2D) image

formed by successive lidar profiles. While edge detection techniques based on 2D gradient search routines are not well suited

for spatial analysis of lidar data (Vaughan et al., 2005), methods based on sliding window operations have been shown to

greatly improve the feature shape detection (e.g., Hagihara et al., 2010; van Zadelhoff et al., 2011; Herzfeld et al., 2014).

Here we propose a new 2D and multi-channel feature detection algorithm (2D-McDA). This "context sensitive" feature finder50

algorithm is then applied to a 2D lidar signal scene; i.e., to the image formed by many successive lidar profiles. Moreover, the

2D detection algorithm uses the backscatter signals from all available channels: the 532 nm co-polarized (or parallel) signal,

the 532 nm cross-polarized (or perpendicular) signal, and the 1064 nm signal. Since the backscatter from some aerosol or cloud

particle types can be more pronounced in one channel than another, simultaneously assessing the signals from all channels is

expected to greatly improve the layer detection.55

Section 2 presents a refined method for determining feature detection thresholds, which are a critically important component

of the detection algorithm. Section 3 presents the detection algorithm. The detection of the Earth’s surface is described first as it

is performed first and separately from the cloud and aerosol detection. This has been shown to have many practical advantages.

Then, the cloud and aerosol detection algorithm is described. Finally, the detections from each channel are merged into a

composite feature detection mask. Section 4 shows how this new algorithm improves the feature detection compared to the60

CALIPSO version 4 vertical feature mask (VFM).

2 Threshold based feature detection

Atmospheric lidars measure attenuated signal backscattered by molecules (m) and particles (p)

β′(r) = (βm(r) +βp(r))Tm(r)2TO3(r)2Tp(r)
2, (1)

where βm(r) and βp(r) are the volume backscatter coefficients for molecules and particulates, and Tm(r)2, TO3(r)2 and65

Tp(r)
2 are, respectively, the two-way transmittances for molecules, ozone, and particles, and r is the range from the satellite

altitude. If there are no particles in the atmosphere, Eq. (1) reduces to the molecular attenuated backscatter coefficient

β′m(r) = βm(r)Tm(r)2TO3(r)2. (2)

A feature, i.e., a cloud or an aerosol layer, appears as an extended and contiguous region of enhanced attenuated backscatter

signal that rises significantly above the expected clear sky (molecules only) value. However, not all signals that exceed the70

expected values of β̂′m(r) necessarily indicate the presence of features; instead, such excursions are often caused by noise.

To distinguish features from the ambient (but noisy) clear sky signals, a first step is to determine a threshold above which

signals can be confidently attributed to enhanced scattering arising from clouds or aerosols. We construct this threshold by

first calculating the expected molecular attenuated backscatter, β̂′m(r), to which we add k times the expected noise-induced

standard deviation of the molecular signal. The resulting range-dependent threshold is the sum of β̂′m(r) and, based on error75
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propagation theory (e.g., Bevington and Robinson, 2003), k times the root mean square (RMS) of the standard deviations due

to both range-independent and range-dependent noise sources.

In constructing thresholds to be applied to CALIOP data, one must take into account the onboard signal averaging that is

applied to the backscatter measurements. Because the CALIPSO satellite has limited telemetry bandwidth, the backscatter

data is averaged both vertically and horizontally before the data is downlinked from the satellite, with increasing amounts of80

averaging applied to data acquired at higher altitudes (Hunt et al., 2009). As an example, signals acquired between 8.2 km and

20.2 km are averaged horizontally over three consecutive lidar pulses and vertically for four full resolution (15 m) range bins.

Consequently, the downlinked profile data from within this region have been averaged over 12 full resolution onboard range

bins. We compute a range-dependent threshold specifically tailored for the CALIOP profiles using

β′T (r) = β̂′m(r) + k
fcorr(r)√
N(r)

√
∆β′b(r)

2 + ∆̂β′m(r)
2
, (3)85

where ∆β′b(r) is the standard deviation due to background noise (range-independent1), ∆̂β′m(r) is the expected standard

deviation due to the shot noise (range-dependent) in the expected clear sky, and N(r) is the number of bins averaged onboard.

The fcorr(r) term is a correction function which takes into account the partial vertical correlation in samples due to the

limited electronic bandwidth and the shifting and rebinning that can occur in the altitude registration phase of the level 1A

processing (details in Appendix A). The number of shot noise standard deviations considered in the threshold is quantified by90

the factor k, which can be tuned according to the degree of sensitivity needed to avoid false detections. β̂′m(r) is derived from

modeled profiles of molecular and ozone number densities. ∆β′b(r) is derived from the on-board computation of the RMS of

the background signal in the high altitude background region (HABR) between 65 and 80 km for each shot (Hostetler et al.,

2006). ∆̂β′m(r) is estimated using its proportional relation with the square root of β̂′m(r) (e.g., Liu and Sugimoto, 2002), called

noise scale factor (NSF)95

∆̂β′m(r) =NSFβ′

√
β̂′m(r). (4)

The NSF is evaluated from the solar background signal during daytime for the 532 nm parallel and perpendicular channels

(Hostetler et al., 2006; Liu et al., 2006). At 1064 nm, CALIOP uses an avalanche photodiode (APD) detector, rather than the

photomultiplier tubes (PMTs) that are used for the 532 nm channels. Because the APD dark noise overwhelms the 1064 nm

shot noise, only the background noise is considered at 1064 nm.100

Figure 2 shows the range-dependent threshold (red) computed from Eq. (3) with k = 2 applied to the 532 nm parallel lidar

signal (blue) for a clear-sky case study during nighttime. Note the noise due to the quantum nature of photons (shot-noise) in

this figure. Indeed, although background noise, mainly due to solar radiation, is quite low during nighttime, the lidar signal

shows large variations around the expected clear-sky return (black). The range-dependent threshold correctly keeps most the

signal below the detection level. Jumps at -0.5 km, 8.2 km, and 20.2 km reveal the change of onboard averaging resolution.105

However, a few points of the lidar signal still exceed the threshold. Some continuity tests are then needed to determine whether

1The background noise is range-independent in the digitizer-reading domain P . However, it then depends on r when transformed to the β′ domain.
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Figure 2. Range-dependent threshold (red) applied to a single shot lidar signal profile (blue) in clear-sky during nighttime. The estimated

molecular signal is shown in black. Jumps in the lidar signal and threshold at -0.5 km, 8.2 km, and 20.2 km reveal the change of onboard

averaging resolution.

Figure 3. Pixels of Fig. 1 where the lidar signal is above the range-dependent threshold computed from Eq. (3) with k = 2 are shown in

orange. Brown pixels show surface detection.

these high signals are due to noise or instead part of an extended feature. Unlike the current CALIPSO detection algorithm,

this continuity test will be applied in two dimensions. Figure 3 shows all pixels of Fig. 1 where the lidar signal is above the

range-dependent threshold computed from Eq. (3) with k = 2.

Like the current CALIOP layer detection algorithm, the 2D-McDA is applied to profiles of attenuated scattering ratios,110

defined as

R′(r) =
β′(r)

β′m(r)
. (5)
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The attenuated scattering ratio threshold is then obtained from

R′T (r) =
β′T (r)

β̂′m(r)

= 1 + k
fcorr(r)√
N(r)

√
1

β̂′m(r)
2 ∆β′b(r)

2 +NSF 2
β′

1

β̂′m(r)
.

(6)

Equation (6) is applied to the three lidar channels (532 nm parallel, 532 nm perpendicular, and 1064 nm) during the 2D-115

McDA process.

3 2D and multi-channel feature detection algorithm

2D-McDA is applied to the scattering ratio signals at 532 nm parallel, 532 nm perpendicular, and 1064 nm. First, the detection

of the surface altitude is performed and the signal from this altitude and below is removed from the data. Second, the detection

of cloud and aerosol layers is done in each channel based on iterated detection thresholds and 2D spatial continuity tests.120

Finally, the masks from the three channels are merged in a composite feature mask.

3.1 Surface detection

Before detecting cloud and aerosol layers using the detection threshold as described in the previous section, we perform

first an independent detection of the Earth’s surface. Doing the surface detection in a first and separate step allows a better

retrieval of the surface echo and prevents complications in the cloud and aerosol layer detection process. Also, knowing where125

the surface is detected allows subsequent separation of semi-transparent features from opaque features, which is essential

for accurately estimating range-resolved profiles of extinction coefficients (Young et al., 2018). Operationally, atmospheric

features are defined as being opaque when no surface return or other atmospheric feature can be detected below them. From

this definition it follows that the signals received from beneath opaque features have been fully attenuated within these features.

The Earth surface detection algorithm used here is closely akin to the one described in Vaughan et al. (in progress) and is130

applied to the 532 nm parallel and 1064 nm channels (details in Appendix B). The signals from the top of the detected surface

echo and below this point are removed from the data. To minimize computation times, the surface detection algorithm is not

applied to the 532 nm perpendicular channel signal. The backscatter from ocean surfaces (covering ~70% of the planet) does

not depolarize and, excluding snow and ice, the depolarization of most land surfaces is relatively low (Lu et al., 2017), hence

the preponderance of the surface backscatter is in the parallel channel. The altitude retrieved in the parallel channel is used to135

remove signal at and below the estimated surface altitude in the perpendicular channel. Note that there is some small chance

that a surface echo can appear in the perpendicular channel but not be visible/detected in the parallel channel. The detection of

the surface corresponding to Fig. 1 is shown in brown on Fig. 3.

3.2 Cloud and aerosol detection

The detection of cloud and aerosol layers in a single channel curtain of lidar measurements takes place in four main steps:140
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Figure 4. Flowchart of the two-dimensional and multi-channel feature detection algorithm (2D-McDA). d is the detection step, k is the

number of total noise standard deviations used in the detection threshold Eq. (3), s is the size of the window used for the spatial coherence

test, n is the minimum number of pixels in each pattern, and a is the size of the averaging window. See the algorithm description in Sect. 3

and the coefficient values in Table 1.

1. Detecting strong features; i.e., identifying contiguous regions of enhanced attenuated scattering ratios that rise above the

feature detection threshold (which is repeatedly decreased from very large value of k down to k = 1) without applying

any signal averaging (i.e., d= 1− 4 in Table 1, Sect. 3.2.1);

2. Flagging regions below opaque features as “fully attenuated” (FA) and regions below transparent features where the

signal is strongly attenuated with the low confidence flag “almost fully attenuated” (AFA) (Sect. 3.2.2);145

3. Averaging of those signals not already flagged using a horizontal sliding window (Sect. 3.2.3);

4. Detecting faint features; features are once again identified as contiguous regions of enhanced signal (i.e., averaged

attenuated scattering ratios) that rise above the recomputed feature detection threshold (Sect. 3.2.1).

Figure 4 shows the flowchart of the whole detection algorithm. The parameter values used at the different detection levels

are given in Table 1.150

The following subsections give the details of the main steps presented above.

3.2.1 Detection

The detection phase is performed following three substeps:

1. All pixels of within image that exceed the threshold are first flagged as detected (Fig. 3);

2. A spatial coherence test window is applied to the image of detected/undetected pixels. It smooths the shape of detected155

pattern and remove isolated noisy detected pixels by turning some of detected pixels to undetected or undetected to

detected;

3. Smoothed patterns are required to meet a minimum numeric threshold of contiguous pixels. Patterns that fail to meet this

threshold are removed from consideration for this level of detection.
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Table 1. Coefficient k in threshold detection, spatial coherence test window size s, minimum number of pixels in pattern n, and averaging

window size a used at each detection level d. Window sizes are given in vertical × horizontal in pixel number with pixel resolution of 30 m

× 0.33 km.

d 1 2 3 4 5

532 nm

parallel

k 100 20 2 1 1

s – –
11×11

(330 m× 3.67 km)

3×21

(90 m× 7 km)

9×51

(270 m× 17 km)

n 1 1 60 200 10000

a – – – –
1×15

(30 m× 5 km)

532 nm

perpendicular

k 500 100 2 1 1

s – –
11×11

(330 m× 3.67 km)

3×21

(90 m× 7 km)

9×51

(270 m× 17 km)

n 1 1 60 200 1000

a – – – –
1×15

(30 m× 5 km)

1064 nm

k – 20 2 1 1

s – –
11×11

(330 m× 3.67 km)

3×21

(90 m× 7 km)

9×51

(270 m× 17 km)

n – 1 60 200 10000

a – – – –
1×15

(30 m× 5 km)

The scattering ratio image used in the layer detection scheme has a spatial resolution of one laser pulse horizontally and160

30 m vertically, equivalent to the finest spatial resolution of the CALIOP data. As described in Hunt et al. (2009), CALIOP

data is averaged onboard the satellite with spatial resolutions that vary according to altitude. Scattering ratios in regions where

the data resolution is coarser than the image resolution (30 m × 1/3 km horizontally) are duplicated as necessary to match

the image resolution. For example, between 8.2 and 20.2 km, the spatial resolution of the signal is 1 km horizontally × 60 m

vertically. These values are replicated 12 times to populate the corresponding area in the 30 m× 1/3 km scattering ratio image.165

The first substep is then to flag all pixels of this image which exceed the detection threshold given by Eq. (6) with the value of
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Figure 5. Illustration of the spatial coherence test window substep of 2D-McDA on the 532 nm parallel channel for the case study shown in

Fig. 1. (a) Pixels which are over the detection threshold given by Eq. (6) with the value of k = 2 (orange). (b) Result after applying a 11×11

spatial coherence test window on the detected pixels. Note that the insert on the top is just an illustration and does not show the real content

of the image portion.

k defined in Table 1. For example, for the 532 nm parallel channel, at the detection level d= 3, the detected pixels are those

where signal is greater than 1 + k times the expected noise standard deviation with k = 2 (Fig. 5a; orange pixels). Then, the

second substep is to apply a spatial coherence test window (rows a in Table 1) on these detected pixels (Fig. 5a,b). Here, an

11×11 pixels window is applied to each pixel of the image, with the window being centered successively on all pixels. If the170

number of originally detected pixels in the window is greater than half of the total number of pixel in the window (≥ 61 for

a 11×11 pixels window), then the center pixel is considered as detected. If not, the center pixel is considered as not detected.

In this smoothing step, the determination of detection status does not rely on a single pixel exceeding its threshold, but instead

on the fraction of neighboring pixels that exceed their thresholds. Consequently, a pixel classified as detected may not itself

exceed the detection threshold. Similarly, a pixel that exceeds the threshold may not ultimately be classified as detected. The175
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pixel count within the window is limited to those detected at the current detection level d and at the previous detection level

d−1. This allows detection continuity of similar backscatter intensities and avoids connecting noise encountered during fainter

detections to a strong feature detected earlier. Other flagged pixels (i.e., "Surface", detection ≤ d− 2, "Likely artifact", "Fully

attenuated", "Almost fully attenuated", and "Low confidence small strips" (to be described in detail later in this subsection and

subsection 3.2.2) and pixels outside the window when at the top or bottom edges of the image are not considered in the window180

and the total number of candidate pixels in the window is decreased accordingly. The shapes of detected features are smoothed

by the spatial coherence test window, while the noise (isolated orange pixel) is removed. However, some small clusters of pixels

sometimes persist. Those small clusters cannot be confidently declared as feature at this stage. They can be due to noise or they

can be part of a larger, fainter feature. Then, we decide not to consider these small patterns as detected feature and retain these

regions for inclusion in the signal averaging used in successive iterations of the algorithm. To be declared as detected feature,185

smoothed detected patterns need to consist of more than n connected pixels (see Table 1), otherwise they are removed from

this detection level.

This detection procedure is applied several times (the successive detection level d of Table 1) with different thresholds,

different spatial coherence test window s, and different limits on the number of connected pixels required n (Table 1) in

order to detect all layers from the most evident, very strong patterns to the very faint ones, and from geometrically small190

patterns to very extended ones. Note that the horizontal spatial coherence test window (3×21) enables the detection of faint

but horizontally extended cirrus such as the layer shown between 50 km and 100 km in Fig. 1. The detection of this subvisible

cirrus is presented in Fig. 6. Figure 6a to Fig. 6b shows the implementation of the 3×21 spatial coherence test window. We

see that the cirrus pattern is smoothed and now clearly appears on Fig. 6b due to the fact that most of the noise around has

been removed. However, many small clusters of noise pixels persist. By applying the minimum numeric threshold of connected195

pixel n on the detected pattern, we are able to remove small cluster due to noise while keeping the real cirrus (Fig. 6c).

3.2.2 Special flags

For the 532 nm channels, a first detection of very strong signal is performed (see d= 1 in Table 1). The aim of this initial scan

is to identify the tops of very strongly scattering liquid clouds and ice clouds containing high fractions of horizontally oriented

ice (HOI) crystals. The non-ideal transient response by PMTs following these very strong signals often generates a spurious,200

exponentially decaying signal enhancement in the underlying range bins (McGill et al., 2007; Hunt et al., 2009; Lu et al., 2020).

The presence of these "noise tails" in the 532 nm signals can introduce large biases into the determination of the apparent bases

of opaque water clouds. To exclude this artifact in the detection process, the 600 m below the base of the detected very strong

signal are flagged as "Likely artifact" and removed from the signal. Since the APD used in 1064 nm channel does not produce

these noise tails, we rely on the 1064 nm channel for the detection of the apparent base of these strongly scattering layers.205

After detection of the strongest features, i.e without signal averaging (d= 1− 4 in Table 1), we flag as "Fully attenuated"

(FA) all pixels below a detected strong feature where the surface has not been detected. In this portion of the profile, the signal is

too weak to be further exploited. Second, the contiguous pixels located in the vertical extent between two detected features are

flagged as "Almost fully attenuated" (AFA) whenever the backscatter intensity falls below an empirically determined threshold.
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For the 532 nm parallel channel, these pixels are flagged as AFA when more than 30 % of the population has backscatter210

intensities that are less than 10 % of the corresponding detection thresholds. These pixels are flagged AFA in the 532 nm

perpendicular channel whenever the signals in more than 90 % of the population fall below (100 % of) the corresponding

threshold values. To be flagged as AFA in the 1064 nm channel, more than 85 % of the population must have signal less

than (100 %) of the corresponding threshold. In all cases, the AFA thresholds were determined experimentally and are tunable.

Finally, the horizontal distance between successive (A)FA columns can be very small and the likelihood of confidently detecting215

features in these narrow gaps is very low. For this reason, the data in all horizontal extents smaller than 5 km (15 profiles) that

lie between (A)FA columns are flagged as "Low confidence small strips".

After removing all data identified with these low confidence flags from the attenuated scattering ratios, the signal is averaged

in order to try to detect fainter features.

3.2.3 Signal averaging220

We then average the remaining signal (here the attenuated scattering ratios) using a Gaussian sliding window that extends over

5 km (15 profiles) horizontally and a single range bin vertically (a in Table 1). Using a sliding window, instead of the fixed

window used in the CALIOP feature detection algorithm, provides much improved resolution of the horizontal edges position

of faint features (1/3 km instead of 5, 20, or 80 km) and makes it possible to detect non-uniform horizontal edges. A Gaussian

weight with a standard deviation of 1.67 km is applied, thus giving a stronger weight to pixels closer to center of the window225

than at the edges. We chose a horizontal window here because the spatial extent of very faint layers is mainly in the horizontal

direction. Typically, thin cirrus have geometrical thicknesses of a few hundreds of meters but spread horizontally over several

hundreds of kilometers. The use of a horizontal averaging window thus allows the detection of thin layers close to each other

vertically. Pixels flagged as surfaces or features are not considered in the averaging window. However, if the center pixel of

the averaging window (i.e. the pixel to which the averaging is applied) is a low confidence pixel (i.e. “Likely artifact”, (A)FA,230

or “Low confidence small strips”), then the averaging window is applied and, if the average signal value exceeds the detection

threshold, this center pixel in the feature detection mask is “unflagged” until the end of the detection level processing, after

which its low confidence flag is restored. This allows us to maintain connections between features separated by a few low

confidence pixels. Once the averaging is performed, the detection substeps (Sect. 3.2.1) are then applied to the averaged signal.

Note too that horizontally adjacent features separated only by a low confidence vertical band (i.e., pixels classified as FA, AFA,235

and/or small strips) are considered as a single, merged feature when counting the number of connected pixels. Some examples

of this horizontal merging are seen in the smaller fragments of the aerosol layer found at about 4 km and an along track distance

of 500 km to 750 km in Fig. 7.

Figure 7 shows the final mask for the 532 nm parallel channel after the detection of the faint features.

3.3 Three channels composite detection240

The detection algorithm is applied individually to the lidar signal from each of the three channels (Fig. 8) and all pixels

identified as features in any of the three channels are retained in the composite mask (Fig. 9a). Comparing this new feature
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mask (Fig. 9a,b) to the current version of the Vertical Feature Mask (VFM) (Fig. 9c), we first note the improvement in the

detected contour of the large cirrus. We also note that the 2D-McDA readily detects faint cirrus (e.g., as seen between 0 km and

75 km) that is missed by the current VFM. The vertical spreading of the clouds seen in the VFM at around 7.5 km in altitude245

and between 500 km and 900 km horizontally is due to the aforementioned PMT artifact afflicting the 532 nm signals beneath

strongly scattering layers. This is not seen in the 2D-McDA feature mask because pixels below the cloud top are flagged as

"Likely artifact" in the 532 nm channels and so we make no attempt to retrieve the cloud apparent base of such opaque clouds

at this wavelength. Instead, in these cases we retrieve the true penetration depth estimates using the 1064 nm signals (Fig. 8c),

which are not affected by detector transient response artifacts (see light blue = "1064 only").250

4 Performance assessments and comparisons to version 4

In this section, we present two case studies to show the improvements bring by this new feature detection approach.

4.1 Variety of cloud type and shape

Figure 10 presents the attenuated backscattered lidar signal in the three channels for another case study showing a variety of

cloud types and shapes which occurred above Ethiopia on August 31, 2018 during nighttime. We can see that the artifacts below255

liquid water clouds (close to the surface and up to 8 km) appear in the 532 nm parallel (Fig. 10a) and the 532 nm perpendicular

(Fig. 10b) channels but not at 1064 nm (Fig. 10c). We note that thin cirrus clouds, like the one at 17 km in altitude between

1550 km and 1850 km, are clearly brought out in the 532 nm perpendicular channel (Fig. 10b). If we look now at the composite

feature detections derived from these three signals (Fig. 11a), we note again how well the apparent bases of liquid clouds are

retrieved by using the 1064 nm channel. We note also that the successful identification of thin cirrus can largely be attributed260

to our use of the 532 nm perpendicular channel. Figure 11b shows the same mask as Fig. 11a but with the same colors that are

used for the VFM images (Fig. 11c). This change of colors is intended to facilitate one-to-one comparisons between the two

detection schemes. However, note that the yellow and white colors do not discriminate aerosol from cloud, as in the VFM, but

instead simply differentiate weak from strong features based on whether the feature detection required data averaging (yellow)

or not (white). Finally, Figure 11d shows the difference between the new composite feature detection mask and the VFM.265

We see that the contour of features retrieved by the 2D-McDA represents a distinct improvement over the squared boundaries

reported by the VFM. We note too that the new algorithm detects thin clouds that are obviously missed by the VFM and that it

eliminates significant detection artifacts reported by the VFM between 700 km and 900 km.

4.2 Dense smoke

Figure 12 presents a dense smoke event in Siberia on July 26, 2006 during daytime. The smoke layer is opaque at 532 nm270

and thus we do not see any surface echo for this channel (Fig. 12a). Note that the smoke is non-depolarizing so there is no

perpendicular signal (Fig. 12b). Because the standard CALIOP layer detection only examines the 532 nm channel, the VFM

(Fig. 13c) indicates that the signals are fully attenuated after detecting (at 532 nm) the apparent base of the smoke layer.
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However, at 1064 nm the dense smoke layer is semi-transparent because the 1064 nm signals are attenuated significantly less

than at 532 nm. Then, the surface is readily detected at 1064 nm (Fig. 12c). This scene clearly illustrates the advantage gained275

by using a multi-channel feature detection algorithm, since the full vertical extent of the smoke plume can only be retrieved by

inspecting the 1064 nm measurements (light blue in Fig. 13a).

5 Conclusions

This paper describes the architecture and theoretical underpinnings of a new two-dimensional, multi-channel feature detection

algorithm (2D-McDA) used to identify layer boundaries in the backscatter signals acquired by the elastic backscatter lidar280

aboard the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) platform. The cloud and aerosol

layer detection boundaries reported in the standard CALIPSO data products are detected by scanning sequences of 532 nm

attenuated scattering ratio profiles constructed at increasingly coarser horizontal averaging resolutions. In contrast, the 2D-

McDA is more akin to an image processing algorithm that examines full resolution lidar scenes and hence can identify many of

the fine details that are often obscured by CALIPSO’s standard multi-resolution averaging scheme. Relative to the CALIPSO285

version 4.2 vertical feature mask (VFM) data product, the 2D-McDA shows the following improvements.

– Because it is applied to single profiles averaged over several different horizontal resolutions, the standard CALIOP fea-

ture detection produces blocky, rectangular layers. The complex shapes of aerosol and cloud features are better preserved

by the 2D-McDA windowing and data aggregation operations, which provide the flexibility required to distinguish fine

spatial details. It is hoped that this improved feature detection will lead to improvements in classifying features accord-290

ing to type (e.g., clouds vs. aerosols) and in their optical property retrievals. Ideally, separate identification of strongly

scattering and weakly scattering features by the 2D-McDA will also offer improved discrimination between juxtaposed

cloud and aerosol layers or identifiable regions of ice and liquid water within a cloud. The improvement of the cloud

shape detection is by itself important for example for studies interested in anvil clouds (e.g., Bony et al., 2016; Hartmann,

2016);295

– The detection of subvisible cirrus is significantly enhanced by both the 2D detection scheme and the use of the 532 nm

perpendicular channel, which is especially sensitive to the presence of depolarizing ice crystals. Those clouds play an im-

portant role in the climate system as they regulate the vertical transport of water vapor near the upper troposphere–lower

stratosphere (e.g., Jensen et al., 1996; Luo et al., 2003), influence the local thermal budget, and drive dynamics of the

tropopause region (e.g., Hartmann et al., 2001; McFarquhar et al., 2000);300

– The apparent base altitudes of highly reflective clouds, i.e. the levels of complete attenuation of the lidar signal, which

are routinely biased low (by several hundred meters) due to the non-ideal transient response of 532 nm photomultiplier

tubes, are now more correctly retrieved by incorporating measurements made by the 1064 nm channel. The apparent

cloud base altitude, which results from both attenuation of the direct beam and multiple scattering effects, has been

directly linked with the amount of longwave radiation escaping the Earth at the top of the atmosphere (Vaillant de Guélis305
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et al., 2017a, b), making its accurate estimation very important for cloud feedback studies (Vaillant de Guélis et al.,

2018);

– The 2D-McDA can retrieve the full vertical extent of dense smoke layers by examining the 1064 nm channel. Within

smokes, the 1064 nm signals are attenuated significantly less than at 532 nm and hence can more often penetrate the full

vertical extent of these layers. Those biomass burning aerosols play a significant role in the Earth’s radiative balance by310

their scattering and absorption of incoming solar radiation (e.g., Penner et al., 1992; Christopher et al., 1996) and the

interaction they have with clouds (e.g., Kaufman and Fraser, 1997). The full detection of those layers will lead to more

accurate aerosol optical depth retrievals which will improve estimates of the radiation budget. Profiling the full depth of

the smoke layer will also help to understand whether the layer is in contact with underlying clouds and able to affect

cloud microphysics.315

While the current implementation of the algorithm is computationally intensive, numerous optimizations are underway, and it

is now feasible to apply the 2D-McDA operationally using CALIPSO’s available computer resources. However, while funda-

mentally important, feature detection is only the first step in extracting a comprehensive suite of geophysical parameters from

raw lidar measurements. Taking full advantage of the improved spatial analyses delivered by the 2D-McDA thus requires the

development of a companion set of 2D scene processes to replace the 1D profile-based processes that are currently used in the320

CALIPSO retrieval architecture to perform the essential tasks of discriminating between clouds and aerosols, identifying cloud

thermodynamic phase, and classifying aerosols by type.

Data availability. The CALIPSO level 1 lidar profile product used throughout this study is publicly distributed by the NASA Langley

Research Center Atmospheric Science Data Center (Vaughan et al., 2018, NASA Langley Research Center Atmospheric Science Data

Center; https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-Standard-V4-10; last access: 18 December 2020).325

Appendix A: Correction functions

A1 Correction due to electronic bandwidth

A correction should be applied to Eq. (3) due to the fact that the nominal sample range interval (15 m) of the lidar is smaller

than its range resolution (≈ 40 m) determined by the electronic bandwidth (2 MHz; Hunt et al., 2009). Consequently, a 15-m

sample bin is partially correlated with the two bins above and the two bins below. As a result, vertical averaging of several330

15-m bins Nbin does not reduce the noise standard deviation as much as it would if the samples were independent. A function

fa(Nbin)> 1 is then applied to correct from this partial correlation. This function is evaluated as follows.
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A 15-m bin bi has a variance Var(bi). If Nbin 15-m bins are vertically averaged together to form a larger bin B, then the

variance of the mean is given by

Var(B) = Var(
1

Nbin

Nbin∑
i=1

bi) =
1

N2
bin

Var(
Nbin∑
i=1

bi)

=
1

N2
bin

Nbin∑
i,j=1

Cov(bi, bj)

=
1

N2
bin

Nbin∑
i=1

Var(bi) + 2
∑

1≤i<j≤Nbin

Cov(bi, bj)

 ,
(A1)335

where Cov(·, ·) is the covariance. When averaging Nbin consecutive 15-m bins, we can consider they have approximately the

same range and then that their variance is constant: Var(bi) = Var(b). If the bi bins were uncorrelated, then we would have

Cov(bi, bj) = 0, ∀(i 6= j), and then Var(B) = Var(b)
Nbin

. However, since each bin is partially correlated with its vertical neighbors,

we have Cov(bi, bi+m) = constant ∀i for each lag of m range bins. Then, Eq. (A1) can be rewritten following

Var(B) =
Var(b)
Nbin

1 +
2

Nbin

∑
1≤i<j≤Nbin

Cov(bi, bj)

Var(b)


=

Var(b)
Nbin

(
1 + 2

Nbin−1∑
m=1

Nbin−m
Nbin

R(m)

)
,

(A2)340

where R(m) = Cov(bi,bi+m)
Var(b) is the autocorrelation coefficient for a lag of m range bins. It follows that the correction function

to apply on the total noise standard deviation in Eq. (3) to take into account the vertical partial correlation due to the electronic

bandwidth is

fa(Nbin) =

(
1 + 2

Nbin−1∑
m=1

Nbin−m
Nbin

R(m)

)1/2

. (A3)

A2 Correction due to redistribution in altitude registration345

An additional correlation arises from the data redistribution in the altitude registration of level 0 data during the level 1A

processing. Indeed, the altitude of the sample bins of a raw data profile are recalculated with more accurate information about

the satellite altitude and laser viewing angle in the data processing on ground. A shift for a few range bins (no more than three

in most of the cases) can be needed for the full resolution (30 m) samples. The number of 30-m bins shifted Nshift30 (which

we express below in terms of an equivalent number of 15-m bins shifted Nshift15) only add correlation to regions in the profile350

data where the vertical range resolution is coarser than 30 m, i.e. where the vertical range resolution is 60 m, 180 m, and 300 m

(Winker et al., 2006). Indeed, in those regions, a vertical shift by Nshift30 30-m bins lead to the necessity of rebinning two

neighboring bins larger than 30 m which introduce additional correlation to those bins. When there is a shift of Nshift15 15-m

bins (an even number since shifts are performed at 30 m resolution), each new shifted bin B′k, with vertical resolution coarser
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than 30 m, is computed from the weighted average of the two original bins (with Nbin size resolution) it steps across Bk and355

Bk+1 (Fig. A1) following

B′k =
Nbin−Nshift15

Nbin
Bk +

Nshift15

Nbin
Bk+1, (A4)

where

Bk =
b1 + b2 + · · ·+ bNbin

Nbin
=

1

Nbin

Nbin∑
i=1

bi, (A5)

and360

Bk+1 =
bNbin+1 + bNbin+2 + · · ·+ bNbin+Nbin

Nbin
=

1

Nbin

Nbin∑
j=1

bNbin+j . (A6)

The variance of a B′k can be written

Var(B′k) = Var
(
Nbin −Nshift15

Nbin
Bk +

Nshift15

Nbin
Bk+1

)
=

(
Nbin −Nshift15

Nbin

)2

Var(Bk)+

(
Nshift15

Nbin

)2

Var(Bk+1)+ 2
Nbin −Nshift15

Nbin

Nshift15

Nbin
Cov(Bk,Bk+1)

=

[(
Nbin −Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]

Var(b)
Nbin

fa(Nbin)
2 +2

Nbin −Nshift15

Nbin

Nshift15

Nbin

Var(b)
N2

bin

Nbin∑
i,j=1

Cov(bi, bNbin+j)

Var(b)

=
Var(b)
Nbin

{[(
Nbin −Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]
fa(Nbin)

2 +2
Nbin −Nshift15

Nbin

Nshift15

Nbin

1

Nbin

Nbin∑
i,j=1

R(Nbin + j− i)

}

=
Var(b)
Nbin

{[(
Nbin −Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]
fa(Nbin)

2

+2
Nbin −Nshift15

Nbin

Nshift15

Nbin

Nbin∑
m=1

m

Nbin
R(m)+

Nbin−1∑
m=1

Nbin −m

Nbin
R(Nbin +m)

}.

(A7)

It follows that the correction function to apply on the standard deviation to take into account both the vertical partial corre-

lation due to the electronic bandwidth and the redistribution in altitude registration is365

fcorr(Nbin,Nshift15) =

{[(
Nbin−Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]
fa(Nbin)2

+ 2
Nbin−Nshift15

Nbin

Nshift15

Nbin

(
Nbin∑
m=1

m

Nbin
R(m) +

Nbin−1∑
m=1

Nbin−m
Nbin

R(Nbin +m)

)}1/2

.

(A8)

Appendix B: Surface detection

The aim of this procedure is to detect a surface echo in the near neighborhood region of the estimated surface altitude ẑsurf

given by a digital elevation model (DEM). The width of this region will vary according to surface type. Since we are highly

confident of the surface altitude over the ocean (where ẑsurf = 0), we will only search in a very narrow range of altitudes for370
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profiles measured over the ocean. On the other hand, we are somewhat less confident of the DEM surface altitudes reported

over land and even much less confident over Greenland and Antarctica, so our search regions over land will be larger. The

surface echo can be very weak due to attenuation by aerosol and cloud layers above. Then, we try to detect even the weakest

surface echo as long as it is substantially above background noise. This procedure is applied at single-shot resolution only. For

each shot, the method is made up of the following steps:375

1. Compute r̂surf , the estimated range of the surface, from ẑsurf and the satellite altitude zsat;

2. Compute ∆β′b(r̂surf), the standard deviation due to background noise in the β′ domain at the range r̂surf ;

3. Compute î
surf

, the bin index of the estimated surface altitude, i.e., when z(î
surf

) is closest to ẑsurf ;

4. Define î
surf
±∆i, the range of the surface search region according to the International Geosphere/Biosphere Programme

(IGBP) classification of the surface type at the lidar footprint:380

(a) If surface type is Water and ẑsurf = 0, then ∆i = 2 (≡ 60 m),

(b) Else if surface type is Permanent-Snow, then ∆i = 17 (≡ 510 m),

(c) Else, ∆i = 5 (≡ 150 m);

5. Compute the derivatives of the lidar signal for bin index range 289–578 (8.2 to -0.5 km)(
dβ′

dz

)
i

=
β′i−β′i−1
zi− zi−1

; (B1)385

6. Determine zmin and zmax, the altitudes of the minimum and maximum values of the derivatives in the surface search

region, and imin and imax, their respective bin index;

7. Determine β′max, the maximum signal magnitude lying between zmin and zmax;

8. Sequentially test the three following rules to determine if we have identified a legitimate surface return:

(a) zmin > zmax,390

(b) imin− imax ≤N with N = 2 for the 532 nm channels and N = 4 for the 1064 nm channel,

(c) β′max > 3∆β′b(r̂surf);

9. If all rules passed, set surface bin index isurf following these conditions:

(a) if
(

dβ′

dz

)
imin−1

> 0 or β′imin−1 ≤ 0, then isurf = imin,

(b) else (i.e.,
(

dβ′

dz

)
imin−1

≤ 0 and β′imin−1 > 0), isurf = imin−1 for the 532 nm channels and isurf = imin−2 for the395

1064 nm channel.
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10. If surface detection arose in a profile (profile horizontal index p) but not in the previous (p−1) and the following (p+1)

profiles, then the surface detection is canceled if isurf /∈ îsurf ± 1. This last step reduces the surface search region for

isolated surface detection to prevent false detection in very attenuated region.
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Figure 6. Illustration of the horizontal spatial coherence test window substep and the pattern size threshold rejection substep of 2D-McDA

on the 532 nm parallel channel for the case study shown in Fig. 1. (a) Pixels which are over the detection threshold given by Eq. (6) with

the value of k = 1 (orange). (b) Result after applying a 3×21 spatial coherence test window on the detected pixels. (c) Result after rejecting

all patterns composed by less than n= 200 pixels (note that the insert on the top is just an illustration and does show the real content of

the image portion). Before these substeps, surface is first detected (brown), then very strong signal (k = 100) occurring on highly reflecting

liquid clouds is detected (black) and the 600 m below is flagged as "likely artifact" (gray) as it is the region where we see artifacts due to the

time response of photomultiplier tubes (PMTs) in the 532 nm channels. Two detections were also made: one with k = 20 and another with

k = 2, a 11×11 spatial coherence test window, and n= 60.
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Figure 7. Final feature mask of the 532 nm parallel channel.

(a)

(b)

(c)

Figure 8. Curtain of lidar attenuated scattering ratio signal measured by CALIOP during nighttime observations on August 31, 21:46:37

UTC (start point), daytime observations: (a) at 532 nm parallel (same as Fig. 1), (b) at 532 nm perpendicular, and (c) 1064 nm.
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(d)

Figure 9. (a) Composite feature detection mask derived from signals shown in Fig. 8. (b) Same as (a) but using same colors than those used

for VFM. "Strong" (white) are feature detected without averaging in at least one channel, others are flagged "Weak" (yellow). (c) VFM of

the version 4 of the CALIOP data product. (d) Difference between new mask and VFM.
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(a)

(b)

(c)

Figure 10. Curtain of lidar attenuated scattering ratio signal measured by CALIOP during nighttime observations on August 31, 2018,

23:25:54 UTC (start point), over Ethiopia: (a) at 532 nm parallel, (b) at 532 nm perpendicular, and (c) 1064 nm.
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Figure 11. (a) Composite feature detection mask derived from signals shown in Fig. 10. (b) Same as (a) but using same colors than those

used for VFM. "Strong" (white) are feature detected without averaging in at least one channel, others are flagged "Weak" (yellow). (c) VFM

of the version 4 of the CALIOP data product. (d) Difference between new mask and VFM.
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(a)

(b)

(c)

Figure 12. Curtain of lidar attenuated scattering ratio signal measured by CALIOP during a dense smoke event which occurred in Siberia on

July 26, 2006, 06:00:25 UTC (start point), daytime observations: (a) at 532 nm parallel, (b) at 532 nm perpendicular, and (c) 1064 nm.
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Figure 13. (a) Composite feature detection mask derived from signals shown in Fig. 12. (b) Same as (a) but using same colors than those

used for VFM. "Strong" (white) are feature detected without averaging in at least one channel, others are flagged "Weak" (yellow). (c) VFM

of the version 4 of the CALIOP data product. (d) Difference between new mask and VFM.
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Figure A1. Scheme of redistribution in altitude registration.
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