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Abstract. Accurate estimation of the Melting Level (ML) is
essential in radar rainfall estimation to mitigate the bright
band enhancement, classify hydrometeors, correct for rain-
attenuation, and calibrate radar measurements. This paper
presents a novel and robust ML detection algorithm based5

on either Vertical Profiles (VPs) or Quasi-Vertical Profiles
(QVPs) built from operational polarimetric weather radar
scans. The algorithm depends only on data collected by the
radar itself and it is based on the combination of several po-
larimetric radar measurements to generate an enhanced pro-10

file with strong gradients related to the melting layer. The al-
gorithm is applied to one year of rainfall events that occurred
over South East England and the results were validated using
radiosonde data. After evaluating all possible combinations
of polarimetric radar measurements, the algorithm achieves15

the best ML detection when combining VPs of ZH , ρHV and
the gradient of the velocity V whereas for QVPs, combining
profiles of ZH , ρHV and ZDR produces the best results, re-
gardless of the type of rain event. The root mean square error
in the ML detection compared to radiosonde data is∼ 200 m20

when using VPs, and ∼ 250 m when using QVPs.

1 Introduction

The Melting Level (ML) is defined as the altitude of the
0◦C constant-temperature surface (American Meteorologi-
cal Society, 2021b). It is located at the top of the melting25

layer, which represents the altitude interval where the tran-
sition between solid and liquid precipitation occurs (Amer-
ican Meteorological Society, 2021a). As the melting layer
generates distinctive weather radar signatures, e.g., the well-
known radar Bright Band (BB), its detection is important30

for meteorological and hydrological applications of weather
radar rainfall measurements.
When using weather radar data for quantitative precipitation
estimation (QPE), it is necessary to apply several correc-

tions to the radar data before they can be converted into es- 35

timates of rainfall rates (Dance et al., 2019; Hong and Gour-
ley, 2015; Mittermaier and Illingworth, 2003). For instance,
corrections due to the BB are necessary as it generates a re-
gion of enhanced reflectivity due to the melting of hydrome-
teors, which cause an overestimation of rainfall rates (Cheng 40

and Collier, 1993; Rico-Ramirez and Cluckie, 2007). In this
case, the ML location is necessary to determine the loca-
tion of the BB and apply the required algorithms to miti-
gate the effects of this error source in radar QPE (Sánchez-
Diezma et al., 2000; Smyth and Illingworth, 1998; Vignal 45

et al., 1999). Above the BB, a correction for the variation
of the Vertical Profile of Reflectivity (VPR) is also required,
especially during stratiform precipitation, where the reflec-
tivity of snow and ice particles decreases with height. In the
UK, VPR corrections to radar data are usually performed 50

using the ML computed from a numerical weather predic-
tion (NWP) model, (Harrison et al., 2000; Mittermaier and
Illingworth, 2003) assuming a constant BB thickness. Addi-
tionally, most of the radar-based hydrometeor classification
algorithms require some form of separation between liquid 55

and solid precipitation, hence the reliability of accurate iden-
tification of the ML (Hall et al., 2015; Kumjian, 2013a; Park
et al., 2009). Even more, the attenuation of the radar signal at
higher frequencies (C, X, Ka and W bands) is a significant er-
ror source for radar QPE. Attenuation correction algorithms 60

are applied in the rain region, and this requires knowledge of
the height of the ML (Bringi et al., 2001; Islam et al., 2014;
Park et al., 2005; Rico-Ramirez, 2012).
There is a large number of papers that show the relation-
ship between the BB enhancement and the melting layer. 65

Klaassen (1988) modelled the melting layer and found that
the BB enhancement in the radar reflectivity (ZH ) is related
to the density of the ice particles. Based on vertically point-
ing radar measurements, Fabry and Zawadzki (1995) anal-
ysed the dependency of the BB on the precipitation inten- 70

sity and confirmed the relationship between the radar BB
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signatures and the melting of snowflakes in stratiform pre-
cipitation. White et al. (2002) introduced an algorithm based
on Doppler wind profiling radar scans for detecting the BB
height; their results showed a correlation between the melting
layer and the peaks of the gradients of ZH and the Doppler5

vertical velocity (V ). Recently, the development of polari-
metric weather radar has allowed measuring the size and
thermodynamic phase of precipitation particles, which has
improved the identification of the melting layer. For instance,
Baldini and Gorgucci (2006) used the differential reflectivity10

(ZDR) and the differential propagation phase (ΦDP ) taken
at vertical incidence to the analysis of the ML. They showed
that the standard deviation of these measurements along with
ZH and V are useful for the identification of the ML using
C-Band radar data.15

Several algorithms to identify the melting layer using Range
Height Indicator (RHI) scans have been proposed in the
literature. Matrosov et al. (2007) proposed an approach to
identify the melting layer based on RHI correlation coef-
ficient (ρHV ) measurements collected by an X-band radar.20

The method relates the depressions on the ρHV profile to the
melting layer, with the disadvantage that the absence of such
depressions hampers the application of the algorithm. Simi-
larly, for RHI scans Wolfensberger et al. (2016) designed an
algorithm that combinesZH and ρHV to create a new vertical25

profile that enables the detection of strong gradients related
to the boundaries of the melting layer. They applied this algo-
rithm to X-band scans, and their results showed that the algo-
rithm is efficient to characterise the thickness of the melting
layer and as a foundation for hydrometeor classification algo-30

rithms. Based on C-band RHI scans, Shusse et al. (2011) de-
scribed the shape and variation of the melting layer on differ-
ent rainfall systems and provided insights into the behaviour
of ZDR and ρHV in convective precipitation events.
Algorithms to identify the melting layer based on Plan Po-35

sition Indicator (PPI) scans have also been proposed in the
literature. Brandes and Ikeda (2004) developed an empirical
procedure based primarily on idealised profiles of ZH , LDR
and ρHV that are compared with observed profiles to esti-
mate the height of the freezing level; also the estimation of40

the freezing level height is refined using equations related to
the precipitation intensity. Giangrande et al. (2008) analysed
the correspondence between maxima of ZH , ZDR and min-
ima in ρHV to estimate the boundaries of the melting layer
using conventional PPI radar scans. The algorithm is tailored45

for scans with elevations angles between 4◦ and 10◦. Later,
Boodoo et al. (2010) proposed an adaptation of this algo-
rithm, varying the scan elevation and the range of values of
ZH , ZDR and ρHV making the algorithm more sensitive to
less intense signatures of the melting layer.50

As the PPI is the most common product derived from weather
radars, Ryzhkov et al. (2016) proposed the Quasi-Vertical
Profiles (QVPs) technique to seize the benefits of PPIs; this
technique can be used for monitoring the temporal evolution
of precipitation and the microphysics of precipitation. For in-55

stance, Kaltenboeck and Ryzhkov (2017) analysed the evo-
lution of the melting layer in freezing rain events with QVP
signatures, demonstrating the ability of QVPs to represent
several microphysical precipitation features as the dendritic
growth layer and the riming region. Furthermore, Kumjian 60

and Lombardo (2017), and Griffin et al. (2018) introduced
new procedures for generating QVPs of the radial velocity
and specific differential phase (KDP ) to explore the polari-
metric signatures of microphysical processes in winter pre-
cipitation events at S-band frequencies. Despite the enor- 65

mous benefits that QVPs bring in terms of improving our
understanding of the microphysics of precipitation, there is
very little research on the use of QVP-based algorithms to
estimate the ML.
Knowledge of the ML is also useful to calibrate radar mea- 70

surements. For instance, ZDR is prone to calibration errors.
The ML location is helpful to quantify the bias of ZDR

and mitigate errors in rain rate algorithms that use ZH and
ZDR data (Richardson et al., 2017). Depending on the radar
scanning strategy, radar networks worldwide have imple- 75

mented operational algorithms for ZDR calibration that re-
quire knowledge of the ML. Gorgucci et al. (1999) devel-
oped a method where vertical-pointing radar observations in
light rain are used to calibrate ZDR given that the shape of
raindrops seen by the radar at 90◦ elevation is nearly circu- 80

lar and therefore ZDR measurements in light rain should be
around 0 dB. As vertical measurements sometimes are not
available due to mechanical radar restrictions, Ryzhkov et al.
(2005), Bechini et al. (2008), Gourley et al. (2009), among
others, developed algorithms for ZDR calibration analysing 85

the inter-dependency between ZDR and other polarimetric
variables for several targets with a known -intrinsic value of
ZDR, e.g. rain medium or dry snow, hence the importance of
the ML estimation.
Most of the algorithms mentioned above require measure- 90

ments often not available from operational weather radar
networks as weather radars cannot always perform vertical
pointing scans or produce RHI scans to observe the vertical
structure of precipitation events. Hence, this work’s main ob-
jective is to present an automated, operational and robust al- 95

gorithm that can accurately detect the ML based on QVPs or
VPs (Vertical Profiles) collected from operational polarimet-
ric weather radars. The algorithm outputs are validated using
ML heights from high-resolution radiosonde data. Note that
the proposed algorithm is not intended to replace NWP-based 100

ML estimation methods, but it is an alternative way to detect
the ML when only polarimetric weather radar measurements
are available. The paper is organised as follows: the next sec-
tion will describe the datasets used to design and validate the
algorithm. The aim of Section 3 is to examine the signatures 105

of the melting layer on both QVPs and VPs of polarimetric
variables. Section 4 provides a detailed explanation of the
design of the algorithm. Results, implementation, validation
and several examples of the outputs of the algorithm are pre-
sented in Section 5. Section 6 provides a discussion on the 110
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performance and implementation of the algorithm. Finally,
Section 7 provides a summary of the conclusions from this
work.

2 Datasets and Methods

Radiosonde data were used to validate the ML estimated5

from radar observations. The radiosonde is an instrument
that is released into the atmosphere to measure several atmo-
spheric parameters. The UK Met Office (UKMO) uses the
Vaisala RS80 radiosonde model to collect upper-air observa-
tions twice a day at different locations across the UK. The10

ascent of the radiosonde extends to heights of approximately
10-30 km and take measurements at 2-second intervals (Met
Office, 2007). The closest station to the selected radar site is
the Herstmonceux station (see location in Figure 1), which
provides high-resolution radiosonde information of pressure,15

temperature, relative humidity, humidity mixing ratio, sonde
position, wind speed and wind direction. As these measure-
ments provide insights for the ML location, the radiosonde
data were processed to estimate the height of the 0◦C Wet-
Bulb Temperature to evaluate the algorithm performance.20

The Chenies C-band operational weather radar located in
South East England was selected for this work as it was one
of the first UKMO radars upgraded with polarimetric capa-
bilities (Norman et al., 2014). The radar transmits both hor-
izontally and vertically polarised electromagnetic waves si-25

multaneously and receives co-polar signals at the same po-
larisation as that of the transmitted wave, generating mea-
surements such as ZH , ZDR, ρHV and ΦDP . Mean radial
velocity (V ) measurements of the observed precipitation tar-
gets are also available; LDR measurements are also produced30

for the lowest elevation scan (Met Office, 2013). The volume
radar scanning strategy generates different products:

– 5 PPI scans sampled on Long Pulse (LP) mode (pulse
length= 2,000µs; range covered=250 km) at 0.5◦, 1◦,
2◦, 3◦ and 4◦ elevation angles with a 600 m gate reso-35

lution every 5 minutes.

– 5 PPI scans sampled on Short Pulse (SP) mode (pulse
length= 500µs; range covered=115 km) at 1◦, 2◦, 4◦

6◦ and 9◦ elevation angles, every 10 minutes and same
gate resolution as above.40

– One SP PPI scan at vertical incidence (range cov-
ered=12 km) every 10 minutes with 75 m gate resolu-
tion.

– One PPI scan with LDR measurements every 5 minutes
at the lowest elevation (0.5◦).45

The location and other radar characteristics are provided in
Table 1 and Figure 1.

Polarimetric scans related to precipitation events through-
out 2018 were analysed for the design and evaluation of the
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Figure 1. Location and coverage (on SP mode) of the Chenies radar
and location of the Herstmonceux station.

Table 1. Chenies radar characteristics.

Chenies radar

Location 51◦41’21.1"N, 0◦31’46.9"W
Wavelength λ= 5.3 cm
Multiple elevation scans 0.5◦ to 90◦

Beam-width 1.0◦

PRF 900 Hz (SP) - 300 Hz (LP)
RPM 3.6 (SP) - 1.4 (LP)

algorithm. To reduce the probability of ground clutter con- 50

tamination and beam spreading effects, only SP scans from
the 4◦, 6◦, 9◦ and 90◦ elevations angles were retained for
further processing. Then, a pre-processing of the raw-radar-
data is carried out to discard non-meteorological echoes and
construct the profiles of polarimetric variables: 55

– For the 4◦, 6◦ and 9◦ elevations scans, remnant clutter
and anomalous propagation echoes were removed using
the algorithm proposed by Rico-Ramirez and Cluckie
(2008), specifically calibrated with data from this radar.
Then, following the procedure suggested by Ryzhkov 60

et al. (2016), we generated QVPs of ZH , ZDR, ρHV

and ΦDP measurements. The procedure suggests the
azimuthal averaging of the polarimetric measurements
at high elevation scans (10◦-30◦), but such elevation an-
gles were not available on our datasets; hence we used 65
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lower elevation angles to generate the QVPs. Although
it is possible to produce time-averaged QVPs to avoid
local storm effects, we decided to keep the original time
resolution of the QVPs, and so we produced one QVP
for each PPI scan. Details on the construction of the5

QVPs is provided in section 6.

– For the vertical scans, the data related to the first kilome-
tre above ground level (a.g.l.) is not usable due to some
inherent radar limitations, e.g. the de-ionisation time of
the Transmit-Receive (TR) cell (Darlington, 2019, per-10

sonal communication) or clutter contamination. After
discarding the data below this height, an azimuthal av-
eraging of the polarimetric and Doppler velocity data
collected at vertical incidence was performed, generat-
ing the VPs of ZH , ZDR, ρHV , ΦDP and V . For the15

analysed radar datasets, the Spectral width variable was
not available. Based on the profiles of vertical velocity
[V ], we propose a new variable: [gradV ], that calcu-
lates the gradient of the 90◦ velocity profile (note that
gradV ≡ dV/dH). This new variable accentuates the20

profile extremes related to the change in the hydrome-
teor fall velocities from ice/snow to rain. The gradient
of V is computed using first-order central differences in
the interior points and first-order forward or backwards
differences at the boundaries; for an in-depth descrip-25

tion of numerical differentiation and finite-differences
methods see Moin (2010).

Regarding the attenuation corrections needed for ZH and
ZDR, for most of the scans used in this work (especially 90◦

scans and high-elevation scans at 9◦ elevation) we observed30

that rain attenuation was relatively small after analysing the
total differential phase shift. Furthermore, the ML height
is essential to implement rain attenuation correction algo-
rithms. Hence, no attempt was made to correct for attenu-
ation.35

Based on the constructed VPs and QVPs, a total of 94 rain-
fall events with visible signatures of the melting layer on ZH

or ρHV were selected, i.e. an enhancement up to 30 dBZ on
ZH or ρHV constantly decreasing below 0.90. Also, from the
total number of rain events, only 25 events observed by the40

radar shown a suitable temporal matching with the data col-
lected by the radiosondes, i.e. the difference in time between
measurements do not exceed 2 hours. This time window was
set to minimise the impact of the variability of the height of
the ML.45

3 Polarimetric signatures of the melting layer

The VPs and QVPs of the polarimetric measurements are dis-
played in height-versus-time plots. This enables the visuali-
sation of the melting layer signatures on the radar measure-
ments. Figure 2 depicts an stratiform rainfall event recorded50

between 9-10 April 2018 using VPs and QVPs (9◦ elevation

angle). It can be seen that every radar variable exhibits dis-
tinctive features that provide unique information for the iden-
tification of the melting layer on both, VPs and QVPs, e.g.
Figures 2a-2b, and 2c-2d exhibit regions of enhanced values 55

ofZH (BB) andZDR, respectively, that are visible just below
2 km in height. Concurrently, Figures 2e-2f and 2g-2h show
that ρHV and ΦDP , are sensitive to the phase and shape of
hydrometeors, while Figure 2i shows that the fall velocities
of snow particles are lower compared to rain particles, which 60

is an important feature that can be used to detect the ML.
Figure 2j shows the enhanced region where the transition be-
tween the fall velocities of snow and rain particles occurs in
the proposed new variable [gradV ]. The different signatures
expected in the melting layer on the QVPs and VPs are ex- 65

plained next.
For comparison purposes, Figure 3 shows normalised ver-

sions of VPs and QVPs (scaling each profile into the range
[0, 1]) taken from the stratiform event presented in Figure 2;
also, the height of the 0◦C Wet-Bulb isotherm is shown. The 70

normalisation process intensifies the signatures of the melt-
ing layer. Note that the QVPs provide information below 1
km; this is important for the analysis of showers or events
with ML at relatively low altitude.
Given that the main objective of this work is to detect the 75

melting layer boundaries based on the geometric features of
the polarimetric profiles, herein, we will try to explain how
the melting layer shapes the structure of the radar profiles.
Figure 3 shows the presence of enhancements on the po-
larimetric profiles related to the variation of the phase and 80

concentration of the hydrometeors. Taking the 0◦C wet-bulb
height as a reference (just below 2 km in altitude), it is feasi-
ble to associate the upper boundaries of these enhancements
to the ML. These enhancements are not necessarily at the
same height in all polarimetric variables, but this has to do 85

with the backscattering properties of the melting particles
and their relationship with the measured variable. Also, it
is important to highlight that the methods used in the con-
struction of the profiles play a key role in the location of the
peaks, i.e. both, VPs and QVPs result from an azimuthal av- 90

eraging of the rays, representing an average structure of the
storm that helps to enhance the BB signature. So, the BB
peaks in the VPs and QVPs in all radar measurements differ
from the instantaneous profiles observed at individual slant
ranges; this will be subject of discussion in Section 6. 95

The reflectivity (ZH) represents the power backscattered
by precipitation particles, thus providing information about
the concentration, size and phase of the hydrometeors (Hong
and Gourley, 2015). In Figures 2a and 2b it can be seen that
the values of ZH on both QVPs and VPs show similar inten- 100

sities. Also, the well-known BB effect on ZH is visible on
both profiles (around 1.7 km). The BB is caused by the in-
crease in the dielectric constant of melting particles, by the
change in size from large melting snowflakes to raindrops
and by the increase in the fall speed of the hydrometeors that 105

reduce the particle concentration (Fabry, 2015). The BB is
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Figure 2. Height-Time plots ofZH (a-b),ZDR (c-d), ρHV (e-f) and ΦDP (g-h) generated from VPs (left) and QVPs (right) for a precipitation
event recorded by a weather radar located at Chenies, UK. Also, (i) portrays the Doppler vertical velocity of hydrometeors, whilst (j) shows
a plot of the profiles based on the gradient of V measurements [dV /dH].

easily observed in stratiform events; however, it is difficult
to set the melting layer boundaries based only on ZH , e.g. in
Figure 3a the top of the BB is not easy to discern. Moreover,
the profiles of ZH do not show the BB feature in convective
events; therefore, the estimation of ML for convective events5

based only on ZH is not feasible.
The differential reflectivity (ZDR) represents the ratio be-
tween horizontal and vertical reflectivity values (ZH/ZV )
and it is related to the orientation, shape and size of the hy-
drometeors (Islam and Rico-Ramirez, 2014); therefore, ZDR10

measurements for QVPs and VPs may describe different fea-
tures of the particles as the elevation angle varies. For both
QVPs and VPs,ZDR profiles show similar behaviour in strat-
iform events: Figure 3b shows that ZDR exhibit mean small
slope changes on the rain medium (below 1.2 km), but there 15

is a noticeable peak associated with the melting layer on both
VPs and QVPs, and although there is a difference in the peak
height between both formats, the top and bottom boundaries
are at similar heights, especially for the QVPs. Brandes and
Ikeda (2004) and Ryzhkov et al. (2016) showed that the pres- 20
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Figure 3. Normalised version of VPs and QVPs generated from polarimetric scans recorded at different elevation angles, related to a
stratiform-type rain event. The 0◦C wet-bulb height is shown with the dash-dotted line.

ence of melting, randomly oriented ice particles within the
melting layer and the mixing of hydrometeors produce the
peaks in ZDR often present in stratiform events. However,
for profiles related to convective events (not shown), the VPs
sometimes exhibit an inverse peak exactly above the rain5

medium and then generating a noisy, random pattern on the
melting layer, that makes the estimation of the ML more dif-
ficult using VPs of ZDR. Finally, the most significant differ-
ence for this variable can be seen in Figures 2c and 2d where
the values of ZDR for VPs and QVPs differ from each other,10

especially in the melting layer and above. It is also impor-
tant to highlight that ZDR provides valuable information for
QPE. However, it usually shows a bias that must be corrected,
e.g. in Figure 2c there is a bias in ZDR (∼−0.35 dB) as
we expect near-to-zero values for ZDR in the rain region for15

vertically pointing measurements as raindrops are symmet-
rical on average when observed from underneath (Gorgucci
et al., 1999). A subsequent analysis of ‘birdbath’ scans in
light rain through the whole dataset confirmed a persistent
offset in ZDR. This reaffirms the importance of the detection20

of the melting layer boundaries, as it helps to set limits for
the implementation of a ZDR calibration algorithm.
The correlation coefficient (ρHV ) measures the correlation
between the backscatter amplitudes at vertical and horizon-
tal polarisations. It is sensitive to the distribution of parti-25

cle sizes and shapes, hence being sensitive to the hydromete-
ors phase, becoming a valuable hydrometeor classifier help-
ing to identify non-meteorological echoes (Islam and Rico-
Ramirez, 2014). Additionally, ρHV is a reliable indicator of
the quality of the radar data as in the rain medium the correla-30

tion is close to 1, becoming an indicator of the quality of the
polarimetric radar measurements (Kumjian, 2013a). Figures
2e and 2f show that ρHV is close to 1 within the rain region,
this is a good indicator of the quality of the datasets. Fig-
ure 3c shows that the melting layer causes a similar response35

on ρHV as in ZH and ZDR, but in the opposite direction,

resulting in a depression on the profiles starting at 1.4-1.5
km in height for QVPs and VPs, respectively. This depres-
sion results from the shift between high values of ρHV , re-
lated to raindrops and ice crystals and lower values triggered 40

by the variety of shapes and axis ratios of the hydrometeors
(Kumjian, 2013b). The behaviour of ρHV is similar on both,
VPs and QVPs from 9◦ elevation, for stratiform or convec-
tive events, where the major difference lies in the depth of the
depressions. This may be caused by the resolution and eleva- 45

tion angle of the original scans. On the other hand, the QVPs
constructed from lower elevation angles, i.e. 4◦ and 6◦ ex-
hibit less pronounced peaks related to the melting layer and
a pronounced decrease in ρHV above the BB that can make
difficult to identify the ML. 50

As can be seen in Figures 2g, 2h, and 3d, the signatures of the
melting layer on the differential propagation phase (ΦDP )
are, to a certain degree, ambiguous in our datasets, espe-
cially on the QVPs. ΦDP represents the difference between
the phase of the radar signal at horizontal polarisation and 55

that at vertical polarisation, providing valuable information
about the shape and concentration of the hydrometeors (Is-
lam and Rico-Ramirez, 2014). Hence, the peaks on this type
of profiles may be related to a greater concentration of parti-
cles, due to the presence of the melting layer or the dendritic 60

growth layer (DGL) as previously explored by Griffin et al.
(2018), Kaltenboeck and Ryzhkov (2017) and Ryzhkov et al.
(2016). Figure 3d shows that the QVPs of ΦDP from 9◦ el-
evation, exhibit a small peak at 1.7 km in height related to
the melting layer, but is not as pronounced as with the other 65

polarimetric variables, although there are significant peaks
aloft (between 2.8 and 3.8 km), that may represent particle
(ice or snowflakes) alignment on the DGL, as suggested by
Kaltenboeck and Ryzhkov (2017), while lower elevation an-
gles do not show strong signatures on the melting layer nor 70

the DGL. In contrast, for 90◦ elevation scans, there is a well-
defined depression in ΦDP related to melting and particle
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growth (Brandes and Ikeda, 2004) at 1.8 km in height that
closely matches the height of the BB; regarding the signa-
tures of the DGL on the VPs, due to the noisiness of the pro-
file above the ML, it is difficult to determine if these peaks
are related to the DGL.5

Last but not least, Figures 2i and 3e show the profiles related
to the Doppler vertical velocities (V ) and the signatures of
the melting layer on this variable. It can be seen that the fall
velocity [ms−1] of the hydrometeors is relatively constant
and close to zero above the ML, which is related to the fall10

velocity of ice and snow particles, then there is a sharp in-
crease in the fall velocity of the precipitation particles in the
melting layer that becomes constant again in the rain region.
However, it is challenging to incorporate the velocity pro-
file into the ML detection because its features are not easy15

to identify using an automated peak-search algorithm. Con-
versely, the VP of the gradient of V (gradV ), shown in Fig-
ure 2j and in Figure 3e (dotted line), exhibits a BB enhance-
ment and peak similar to the rest of polarimetric variables,
where the upper and lower curvatures of the peak match the20

top and bottom extents of the melting layer.

4 Algorithm to identify the melting level

The melting level algorithm (MLA) has been designed to au-
tomatically detect the ML using either QVPs or VPs, under
the premise that the peaks on each polarimetric profile and25

their curvatures are related to the melting layer. The MLA
is based on the procedure proposed by Wolfensberger et al.
(2016) that combines ZH and ρHV to create a new pro-
file with enhanced melting layer features. However, Figure
3 shows that there are additional variables, such as [gradV ],30

that may improve the identification of the ML. Therefore,
we propose an algorithm that includes all the radar vari-
ables, computes all the possible combinations and estimate
the melting layer boundaries. A subsequent analysis of the
outputs of the algorithm in combination with radiosonde data35

determines the combination that is the best predictor of the
ML. Some considerations are made for its design, e.g. to
minimise the effect of beam broadening, the analysis is con-
strained to a height of 5 kilometres (for 9◦ scans, the height
of the centre of the beam is similar to 30 km in range). Also,40

as shown in Figure 3, some profiles get noisy above the ML
or contain spurious echoes aloft, making necessary to set an
initial upper extent for the algorithm to work. The MLA is
divided into two parts. The first part determines if the profile
contains elements to detect the melting layer based on the45

combination of two profiles and setting an upper limit for its
implementation. The second part estimates the ML based on
a combination of the polarimetric profiles and their features.
The algorithm uses either QVPs or VPs, but we avoid com-
bining both profiles as VPs might not be available in other50

weather radar networks. A flowchart that illustrates the MLA
steps is shown in Figure 4 and described below.
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k = 0.08 [QVPs]

Figure 4. Flowchart of the proposed MLA.

1. Part 1
The first part of the MLA identifies profiles that are
likely to contain signatures related to the melting layer 55

and set an upper limit in the profiles to make use of all
the available variables.

1.a The algorithm takes advantage of the distinc-
tive signatures on the profiles of ZH and ρHV

on both, VPs and QVPs, to perform an initial 60

identification of rain echoes. These two profiles
are normalised and combined into a single pro-
file (Pcomb) as suggested by Wolfensberger et al.
(2016), but using different thresholds related to
drizzle, heavy rain, snow and ice (Kumjian, 2013a; 65

Fabry, 2015). Hence, values of ZH between 5 and
60 dBZ and ρHV between 0.85 and 1 are nor-
malised to 0 and 1: [ZH(dBZ)[5,60]→ Z∗H [0,1]]
and [ρHV ( )[0.85,1]→ ρ∗HV [0,1]]. Values outside
these intervals are fixed to 0 and 1, correspondingly. 70

The normalisation is carried out using the min-max
normalisation procedure. Then, the normalised pro-
files are combined using the complement of ρHV to
enhance the peaks present in the profiles:

Pcomb = Z∗H · (1− ρ∗HV ) (1) 75
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Note that (*) refers to a normalised variable.
The profile Pcomb is likely to show an enhanced
peak if potential melting layer signatures were
present in the profiles of ZH and ρHV .

1.b The MLA locates the peaks on the profile Pcomb5

comparing neighbouring values: a peak is a sam-
ple whose direct neighbours have smaller magni-
tudes. Inversely, the valleys (or boundaries of the
peaks) within the profile can also be detected using
a similar rationale. As several peaks can be present10

in the profile, the peak with the higher magnitude
(i.e. the horizontal distance between the peak and
the origin) is set as Ppeak. Then, to identify profiles
with a Ppeak strong enough to be related to poten-
tial melting layer signatures, a threshold ‘k’ is set: if15

the magnitude of Ppeak is less than the threshold k,
(set to 0.05 for VPs and 0.08 for QVPs), the MLA
determines that the gradients are not strong enough
to correspond to melting layer signatures and there-
fore the profile does not contain elements to detect20

the ML. This step is illustrated in Figure 5a, where
the magnitude of Ppeak (∼ 0.14) is greater than the
threshold ‘k’. Further discussion on the value of
this parameter is provided in Sections 4.1 and 6.

1.c If the magnitude of Ppeak is greater than k, an up-25

per limit (UL) is set taking the height of Ppeak and
adding 750 meters above. This value is selected as
usually, the melting layer thickness can reach val-
ues less than about 800 m (Fabry and Zawadzki,
1995); hence 750 m is sufficient to refine the search30

of the ML. Figure 5a illustrates this step, where 750
m are added to the height of Ppeak (∼ 1.51 km) to
set an upper limit (∼ 2.26km).

2. Part 2
In the second part of the algorithm, we incorporate the35

rest of the polarimetric variables to analyse its capabili-
ties to refine the detection the melting layer boundaries
and determine the combination that better detects the
ML.

2.a In this step, the profiles of all the radar variables40

are cut below UL. Then, and considering that Z∗H
and ρ∗HV were already normalised in step 1.a, the
other variables are also normalised but using the
minimum and maximum values in each profile as
thresholds. To incorporate all the variables into the45

algorithm, the complement of the variables is used
when appropriate. This is made to generate profiles
with analogue peaks that enhance the footprints of
the melting layer when combined with other vari-
ables. Equation 2 and Equation 3 are derived based50

on the patterns observed in VPs and QVPs. These
equations vary according to the combination of the

variables presented in Table 2.

P ∗i = (1− gradV ∗) · (Z∗H) · (Z∗DR) 55

· (1− ρ∗HV ) · (1−Φ∗DP ) (2)

P ∗i = (Z∗H) · (Z∗DR) · (1− ρ∗HV ) · (Φ∗DP ) (3)

where i depends on the combination of the vari-
ables used according to Table 2. 60

The algorithm computes all the possible combina-
tions of the profiles to analyse the influence of each
variable, in this case, generating 31 different pro-
files if using VPs and 15 profiles when using QVPs.

2.b The profiles (P ∗i ) generated in the previous step 65

will very likely show a peak related to the melt-
ing layer. The next step in the MLA is to apply a
peak-enhancement technique to refine the bound-
aries of this peak. This can be done using the fol-
lowing equation: 70

Pi = P ∗i − (w ·P ∗′′i ) (4)

Where Pi is the enhanced profile, P ∗i is the pro-
file given by Equations 2 or 3, w is a weighting
factor and P ∗′′i is the second derivative of P ∗i . The
optimum choice of the parameter w depends upon 75

the signal-to-noise ratio and the desirable sharpen-
ing extent. Table 2 lists the enhanced profiles pro-
duced by combining different polarimetric profiles,
and Figure 5b shows the enhancement of the peak
and valleys. Details on the value of the parameter w 80

are presented in the Sections 4.1 and 6.

2.c For each profile Pi, the maximum enhancement in
the BB has a magnitude given by Ppeak and com-
puted as in step 1.b. Then the parameter k is used to
discard profiles with peaks not related to the melt- 85

ing layer [k = 0.05 for VPs; k = 0.08 for QVPs].

2.d The top and bottom boundaries of the BB enhance-
ment in Pi can be placed by searching the inverse
peaks (valleys) directly above and below Ppeak. Fi-
nally, the algorithm allocates these points as the 90

boundaries of the melting layer. This step is shown
in Figure 5c, where the selected profile P26 is high-
lighted. The top valley of Pi is set as the estimated
height of the ML (MLTop).

As can be seen in Figure 5a, the combination of Z∗H 95

and 1− ρ∗HV produces a profile with a peak (Ppeak) that is
useful to detect the presence of the melting layer. An ade-
quate choice of the magnitude of the parameter (k) is im-
portant to discard profiles with a Ppeak that is not strong
enough to be related to the melting layer. However, addi- 100

tional variables can be used (see Equations 2 and 3) to re-
fine the detection of the ML . The upper limit (UL) allows
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Table 2. Possible combinations of polarimetric variables for VPs and QVPs used for the ML detection.

[VPs] [QVPs] P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

1−gradV ∗ - d d d d d d d d d d d d d d d
Z∗

H Z∗
H

d d d d d d d t t t t t t t t
Z∗

DR Z∗
DR

d d d t t t t d d d d t t t t
1− ρ∗HV 1− ρ∗HV

d t t d d t t d d t t d d t t
1−Φ∗

DP Φ∗
DP

t d t d t d t d t d t d t d t
[VPs] [QVPs] P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

1−gradV ∗ - t t t t t t t t t t t t t t t t
Z∗

H - d d d d d d d d t t t t t t t t
Z∗

DR - d d d d t t t t d d d d t t t t
1− ρ∗HV - d d t t d d t t d d t t d d t t
1−Φ∗

DP - d t d t d t d t d t d t d t d t
Note: * refers to the normalised version of the variables.

(a) (b) (c)

Figure 5. Depiction of the implementation of the algorithm for the
ML detection.

the use of other variables that otherwise could not be part
of the algorithm due to noisiness or spurious echoes present
at the top of the profiles. Figure 5b shows the importance
of the refinement of the profile, e.g. the profile combination
P ∗26 = (1−gradV ∗) ·(Z∗H) ·(1−ρ∗HV ) (blue line) has a peak5

related to the melting layer and the valley located at the top
of this peak is close to the ML, but it is difficult for a peak-
detection algorithm to detect its height as it is not as pro-
nounced as required. The use of the first derivative of the
profile, i.e. P ∗

′

26 (grey line), is not helpful as the peaks are10

not close to the ML. The profile P26 (green line) results from
the implementation of Equation 4, where a value ofw = 0.75
enhance the peak and its valleys enough for the algorithm to

detect their location. A proper choice of the parameter w de-
pends on the desired weight to the original profile rather than 15

its second derivative. The impact of the parameters k and w
on the algorithm is discussed in the following section.

4.1 Implementation of the ML algorithm

As described before, the MLA performs a pre-classification
of profiles likely to contain melting layer signatures. Some 20

tests were carried out by replacing Z∗H with other variables
(e.g. ZDR or 1− gradV ∗) to identify improvements in the
pre-classification. From Figure 3b it is clear that the QVPs
of ZDR exhibit a pronounced peak related to the melting
layer even for low elevation angles, but unfortunately ZDR 25

is not calibrated and the thresholds for normalising this vari-
able may vary depending on the elevation angle. On the other
hand, replacing Z∗H with the profile 1− gradV ∗ for the VPs
could improve the pre-classification, but this may restrict the
implementation of the algorithm, i.e. it would be only ap- 30

plicable if vertical velocity profiles are available. Although
we observed some improvements using these variables in the
first part of the MLA, especially for rain showers, we wanted
to keep this part as simple and robust as possible to enable the
reproducibility of the algorithm. Hence we used the combi- 35

nation of Z∗H and ρHV for part 1 of the algorithm as initially
proposed by Wolfensberger et al. (2016).
On the other hand, the algorithm relies on the parameters k
and w, as shown in Figures 5a, and 5b. These parameters can
be adjusted according to the radar datasets, e.g. the parame- 40

ter k can be affected by the quality of ρHV : in our datasets
and after the removal of non-meteorological echoes, ρHV ex-
hibits values close to 0.85 in the melting layer, on both QVPs
and VPs, but this may vary depending on the type of radar,
scanning strategy and quality of the datasets. We set k = 0.05 45

for VPs and k = 0.08 for QVPs empirically, and these values
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allow the algorithm to discard enhancements in the profile
not related to the melting layer. Moreover, several tests were
carried out using time-averaged QVPs, resulting in smoother
profiles, and this parameter was helpful to identify profiles
with melting layer signatures. On the other hand, Equation5

4 is applied to the profiles to enhance the BB peak and the
top/bottom boundaries (i.e. valleys) within the profile, thus
refining the detection of the ML. This equation combines the
original profile with its second derivative, weighted with the
parameter w. As shown in Figure 5b, the second derivative10

of the profile (yellow line) exhibits deeper peaks, but its top
boundary is still far from the measured ML. After several
trials, we set w = 0.75 as this value proves to enhance the
peaks of the original profile without compromising the match
of the top boundary and improving the ML detection. Like-15

wise, this parameter can be adjusted depending on the radar
datasets, e.g. profiles that exhibit smoother peaks due to the
nature of its construction process and the resolution of the
original scans, or profiles with vertical resolution too coarse
can be adjusted with the parameter w for a better algorithm20

performance.

5 Results

5.1 VP and QVP comparison

Both VPs and QVPs proved to be an efficient way to monitor
the temporal evolution of the melting layer, but the elevation25

angle used to build the QVPs affects in different ways each
radar variable, as described in Section 3 and shown in Fig-
ures 2 and 3. Hence, to support the performance and outputs
of the algorithm, we assessed the consistency between the
ZH profiles constructed from different elevation angles, as30

this is the variable less prone to significant variations due to
the elevation angle. For the rest of the variables, it is not pos-
sible to compare QVPs as their characteristics vary with the
elevation angle used to build the QVPs.
To carry out this analysis, we manually classified the rain35

events recorded by the radar according to the recommenda-
tions of Fabry and Zawadzki (1995) and Rico-Ramirez et al.
(2007). From the total of 94 rainfall events, 68 events were
classified as stratiform. This category includes low-level rain
and rain with BB as they showed the well-known enhance-40

ment of reflectivity observed within the melting layer or
look-alike drizzle events below the 0◦C. On the other hand,
26 events recorded mainly during the summer met the char-
acteristics of showers, i.e. indistinguishable signatures of the
melting layer in the ZH profiles, in which higher values of45

reflectivity are present; the latter is the type of precipitation
less common in the UK (Collier, 2003). The comparison be-
tween VPs and QVPs takes into account the time stamp and
spatial resolution of the profiles. The Pearson correlation co-
efficient (r) is computed to analyse the consistency between50

the VPs and QVPs. The results for stratiform and convective
events are shown in Figures 6 and 7, respectively.

Figure 6 shows that reflectivity values related to light and
moderate rain rates (expected on stratiform-type events) are
similarly depicted on both VPs and QVPs. However, the 55

agreement diminishes when decreasing the elevation angle,
mainly because higher values of ZH do not always match
their pairs as the elevation decrease. This could be explained
by the averaging process carried out in the construction pro-
cess of the profiles, as the radar resolution volume increases 60

with distance. On the other hand, Figure 7 shows a more
scattered distribution of ZH for shower-type events, in which
higher values of ZH (related to moderate to heavy rain-rates)
are present. Again, the correlation decreases for lower ele-
vation angles, and it can be seen that there are mismatches 65

for cells with higher values of reflectivity. This can be re-
lated to local storm effects and spatially nonuniform convec-
tive elements present in the QVPs, as explored by Ryzhkov
et al. (2016). It is worth mentioning that QVPs constructed
from lower elevation angles were also assessed (results not 70

shown), but similar behaviour was observed, e.g. correlation
decreases even further. Also, a similar analysis was carried
out using other polarimetric variables. However, the results
were not consistent as only ZH describe similar properties
of the precipitation measurements taken at these elevation 75

angles.
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5.2 ML detection from VPs

The MLA outputs were analysed to find the combination
of VPs that better detects the ML. These outputs are com-
pared against 0◦C wet-bulb isotherms over one year of rain-
fall events. Since soundings are released twice daily, the5

radiosonde data is extended at several time-steps to create
short time-windows and enable a comprehensive compari-
son with the radar data. Performance metrics [Pearson cor-
relation coefficient (r), Mean Absolute Error (MAE), Root
Mean Square Error (RMSE)] between the height of the 0◦C10

Wet-Bulb isotherm and the estimated ML are computed. Fig-
ure 8 shows the results for a 60-min window, i.e. the height
of the 0◦C Wet-Bulb isotherm is assumed constant 30-min
before and after the time stamp of the radiosonde.

(a)

(b)

Figure 8. Errors in the ML detection for VP using a ±30 minute
window. In (a) the bar length represents the MAE (in km) and colour
represents the number of vertical profiles with strong signatures de-
tected by every polarimetric combination; in (b) the bar length rep-
resents the RMSE (in km) for every polarimetric combination and
colour represents the Pearson correlation coefficient

Figure 8 shows the capabilities of all polarimetric vari-15

ables for the detection of the ML. In Figure 8a, the variable n
profiles is an indicator of the number of profiles that, accord-
ing to the algorithm, contain peaks strong enough to be re-
lated to the melting layer. This variable can only be validated
by a visual inspection of the algorithm outputs, as some vari-20
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Figure 9. Heights of the 0◦C wet-bulb isotherm versus ML de-
tected by the algorithm using the combination P26 for several time
windows. The 1:1 line is shown in blue. MAE and RMSE in km.

ables may incorrectly classify some peaks as melting-layer-
related. Overall, Figure 8 shows that the combinations that
include Z∗H , [1−ρ∗HV ] or [1−gradV ∗] improve the accuracy
of the MLA e.g. P9, P11 or P26, as the correlation and the er-
rors are relatively low for these combinations. After a visual 25

assessment of the performance of each combination and sup-
ported by the statistics computed above, we determine that
the profile combination P26 = [Z∗H ·(1−ρ∗HV )·(1−gradV ∗)]
is the best predictor of the ML. Then, several time windows
are set to assess the accuracy of the MLA over one year of 30

radar data, as shown in Figure 9. This analysis confirms the
good performance of the combination P26 on the ML detec-
tion, even when increasing the time window, as the RMSE
and MAE are close to 200 m and r = 0.95. Another indi-
cator taken into account in the visual inspection of the algo- 35

rithm output was the detection of the melting layer bottom
and its steadiness regarding the ML.

Examples of the detection of the melting layer for strati-
form and convective events using the profile P26 are shown
in Figure 10. Figures 10a and 10b, show HTI plots of reflec- 40

tivity and velocity gradients and the output of the MLA using
combination P26 in both, stratiform or convective events. The
algorithm shows a good performance, especially for strati-
form events where the ML height and the rain zone are accu-
rately defined. For the convective event, the ML is correctly 45

identified, albeit the bottom of the melting layer is not en-
tirely detected. This is a drawback when using the algorithm
based on VPs and highlights the problems when low-altitude
melting layers are present.

5.3 ML detection from QVP 50

The MLA is applied using QVPs generated from scans at
three different elevation angles (4◦, 6◦ and 9◦). After several
trials on the parameters k and w in the algorithm implemen-
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Figure 10. Comparison of the MLA outputs based on the variable
P26 at 90◦ elevation angle for two different rain events: (a) shows
the detection of the melting layer for a stratiform event displayed
over an HTI plot of ZH , and (b) shows the performance for a con-
vective event displayed over an HTI plot of gradV .

tation, only the highest elevation produced satisfactory ML
estimation results. The explanation of this has its foundation
in Figure 3c, where QVPs from lower elevation angles dis-
play shapes that complicate the implementation of the algo-
rithm. For instance, the profile of ρHV exhibits a peak related5

to the ML, but above this peak the values of ρHV decrease
sharply, whilst the profile of ZH exhibits smoother peaks and
when the normalisation process is carried out, the parameter
k cannot correctly filter gradients related to the ML. Thus,
after several trials and supported by the analysis presented10

in Section 5.1, we decided not to use the lower elevation an-
gles (4◦ and 6◦). Using the same windows as in the VPs, we
computed several performance metrics (r,MAE,RMSE)
between the 0◦C wet-bulb isotherms and detected MLs. The
performance of the algorithm using different profiles and a15

time window of 60-min (i.e. using radar profiles 30-min be-
fore and after the radiosonde timestamp) is shown in Figure
11.

Figure 11a shows that the number of profiles covered by
the time window is somewhat greater than the number of20

profiles covered in the implementation of the VPs. This is
expected because the coverage area of the PPIs from where
the QVPs were constructed is greater than the vertical scans.
Overall, the four indicators in Figure 11 stress the influence
of ZH and ρHV in the estimation of the ML height and reveal25

that adding the combination Z∗DR to the analysis, i.e. P12,

(a)

(b)

Figure 11. Errors in the ML detection for QVPs using a ±30 minute
window. In (a) the bar length represents the MAE (in km) and colour
represents the number of QVPs with strong signatures detected by
every polarimetric combination; in (b) the bar length represents the
RMSE (in km) for every polarimetric combination and colour rep-
resents the Pearson correlation coefficient;
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Figure 12. Heights of the 0◦C wet-bulb isotherm versus ML esti-
mated by the algorithm for several time windows using QVPs from
9◦ elevation scans. The 1:1 line is shown in blue. MAE and RMSE
in km.
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P14 or P15 improve the delimitation of the ML, given that
these combinations exhibit high values of correlation (r) and
the errors are below 250 m. Based on these results, and com-
bined with a visual assessment of the outputs of the algorithm
over a whole year of precipitation profiles, we concluded that5

the profile that combines Z∗H , Z∗DR and (1− ρ∗HV ), i.e. P14

provides the best detection of the ML. The performance of
the algorithm using this combination is shown in Figure 12.

Figure 12 shows that error and correlation coefficient de-
crease as the time-interval increase. Given that the errors10

are close to 250 m for short-time windows, this combina-
tion proves to be accurate for the ML detection, making al-
lowance for the original resolution of the scans (600 m). Two
examples of the outputs of the algorithm using the profile P14

are shown in Figure 13 for the same stratiform and convec-15

tive events as in section 5.2. The combination P14 shows that
the ML is correctly detected and the delineation of the rain
region is well-executed. For the convective event of Figure
13b, the outputs of the algorithm are accurate for the ML es-
timation although some gaps are present due to the filtering20

of profiles in the first part of the algorithm.
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Figure 13. Comparison of the MLA outputs based on the variable
P10 for QVPs constructed from 9◦ elevation angle scans. (a) shows
the detection of the melting layer for a stratiform event displayed
over an HTI plot of ZH ; (b) shows the performance for a convective
event displayed over an HTI plot of ZDR.

6 Discussion

We constructed VPs and QVPs of polarimetric variables to
explore precipitation events and its features. As shown in
Figure 2, both types of profiles display differences that are 25

influenced by the scan elevation angle and the methods used
for the construction of the profiles (Giangrande et al., 2008;
Kumjian and Lombardo, 2017; Ryzhkov et al., 2016). Re-
garding the construction process of the profiles, there are
several points worth discussion: (i) it is possible to generate 30

‘time-averaged’ QVPs to smooth the effects related to local
storm structures, as the averaging process over the radar do-
main combined with temporal averaging may reduce the sig-
nal noise and, at some extent, it is possible to discard profiles
with signatures not related to the melting layer. However, the 35

duration of the rain events and other factors raise a question
about the correct time-window length. After several attempts
with different time-windows, we observed that for stratiform
events, the signatures of the melting layer are often easier to
discern, but for convective events, variables that may help to 40

detect the ML, e.g. ZDR or ρHV , are affected by the tem-
poral averaging, blurring the melting layer signatures. Thus,
we present examples of ‘instantaneous’ QVPs; however, we
kept in mind this matter for the MLA design; (ii) the spa-
tial variation of the rain events is a limitation of both, VPs 45

and QVPs. The former capture the storm structure only di-
rectly above the radar location; on the other hand, for the
QVPs the PPIs may contain sectors with non-homogeneous
echoes, e.g. at distant ranges from the radar where the beam
is considerably bigger, combining mixed precipitation or at 50

earlier stages of the storm evolution, where such echoes are
not sufficient to generate QVPs with clear signatures of the
melting layer or even valid QVPs. This horizontal hetero-
geneity introduces uncertainty into the QVPs, as stated by
Ryzhkov et al. (2016). This limitation on the generation of 55

the QVPs requires further investigation and it is out of the
scope of this work, being our main objective the detection
of melting layer signatures; (iii) due to the averaging pro-
cess on the construction of the profiles, the BB shape and the
height of the BB peak do not exactly match profiles found 60

in previous studies, especially from profiles generated from
measurements collected using vertical cross-sections. For in-
stance, Brandes and Ikeda (2004) in their Figure 1 showed
that the BB peak in ZH is higher in altitude compared to the
BB peak in ZDR whereas in our Figure 3a and 3b the peaks 65

are at similar heights due to the azimuthal averaging. Our
datasets show similar signatures as those shown by Brandes
and Ikeda (2004) (figures not shown) when the profiles are
extracted from slant ranges. Although the BB peaks are not
the same in our VPs (or QVPs) due to the azimuthal aver- 70

aging, the BB boundaries are on average at similar heights,
hence not being a major problem for implementing the MLA.
From the analysis of the QVPs and VPs, we observed that
ZH is a variable susceptible to the different types of precip-
itation on both VPs and QVPs, allowing the characterisation 75



14 Sanchez-Rivas and Rico-Ramirez: Melting level detection

of the rain profiles, as previously explored by Fabry and Za-
wadzki (1995), Kitchen et al. (1994) and Klaassen (1988).
Nevertheless, this also accentuates the trouble of detecting
the ML based only on the reflectivity profiles. This empha-
sises the need to incorporate other polarimetric variables into5

the analysis.
Regarding ZDR, this variable raises several questions about
its potential to detect the ML. ZDR is a polarimetric vari-
able prone to calibration errors (Vivekanandan et al., 2003),
and our datasets are not the exception, as shown in Figure10

2c. We decided not to carry out a calibration process at this
point, because knowledge of the melting layer boundaries is
necessary, as suggested by Gorgucci et al. (1999), Gourley
et al. (2009) or Park et al. (2005). Moreover, the values of
ZDR vary regarding the elevation angle, as shown in Figures15

2c and 2d and proved by Ryzhkov et al. (2005), where they
found that ZDR decrease with elevation angles for weather
targets. Regardless of these drawbacks, the profiles of ZDR

show its sensitivity to the variance on the hydrometeor char-
acteristics as can be seen in Figure 3b, enabling the detection20

of the ML when using a normalised version.
On the other hand, ρHV stands out as a tell-tale of the ML,
on both QVPs and VPs, as shown in Figures 2e, 2f and 3c.
This agrees with the findings of Brandes and Ikeda (2004),
Matrosov et al. (2007), Shusse et al. (2011) Tabary et al.25

(2006) or Wolfensberger et al. (2016), that included ρHV

into their algorithms. Also, we analysed the quality of the
radar datasets on several rain events based on this variable
and found that ρHV in the rain medium is around 0.99 so the
quality of this variable is reliable for further processing.30

For our datasets, ΦDP profiles show complex signatures that
are difficult to classify, as shown in Figure 3d. Since the el-
evation angles used for the construction of the QVPs are be-
low 10◦, the peaks in ΦDP related to the melting layer are
weak and not well defined. However, when using higher el-35

evation angles the peak in ΦDP should increase, as shown
by Trömel et al. (2014). There are also other peaks present
at the top of the QVPs, but these peaks may be related to
the dendritic growth layer, as explored by Kaltenboeck and
Ryzhkov (2017). Additionally, the VPs of ΦDP presented in40

Figure 3d differs from the profiles showed by Brandes and
Ikeda (2004) as in their Figure 1, ΦDP increase on the ML,
but for our VPs, there is an inverse peak caused by the ML.
Once again, this is related to the averaging process when con-
structing our profiles.45

Finally, the Doppler velocity profiles prove to be a great tool
to monitor the development of precipitation events as this
variable describe the increase of the fall velocity of hydrom-
eteors. Height-versus-Time plots of these profiles show an
area where the velocity is nearly zero, describing the shift50

between ice, snow and melting particles, as shown in Fig-
ure 2i. However, it is not easy to incorporate this variable to
an automated peak-detection algorithm. Hence, we propose
a simple but effective way to incorporate this variable into
the ML estimation, computing the profile’s derivative. The55

proposed method transforms the profile into a similar shape
of the rest of the polarimetric variables to enable its incorpo-
ration into an automated peak-detection algorithm, as can be
seen in Figures 2j and 3e (dotted line).
We also assessed the consistency between QVPs and VPs 60

of ZH to make sure that the low-elevation angles available
in our datasets are still useful to compute reliable QVPs, as
Ryzhkov et al. (2016) suggested that QVPs should be built
from data collected at higher elevation angles that exceed
20◦. The results for the lower elevation angles (4◦ and 6◦) 65

agree with the findings by Ryzhkov et al. (2016) proving that
decreasing the antenna elevation degrades the resolution of
the QVPs. However, the QVPs collected at 9◦ elevation an-
gles are still in good agreement with the VPs of ZH ; in over-
all, there is a good agreement between datasets in stratiform 70

events as the correlation coefficient is close to 0.7, but in con-
vective events, the differences between the profiles increase,
as can be seen in Figure 6 and Figure 7. Therefore, we con-
cluded that the QVP can be generated from elevation scans of
9◦ as the effects of beam broadening and horizontal inhomo- 75

geneity are not as pronounced as expected and this enables
the use of these QVPs of polarimetric variables for the ML
detection .
Based on all the different signatures triggered by the melting
layer, we designed an algorithm that detects strong gradients 80

within a profile resulting from the combination of several
radar measurements. The algorithm is based on the method
proposed by Wolfensberger et al. (2016), but it was modi-
fied to include all the combinations of polarimetric variables
and evaluate their capabilities to detect the melting layer 85

boundaries. Also, we propose a simple method to enhance
the peaks within the profiles to refine the detection of the
ML. This method differs from previous studies where the
melting layer and its boundaries are detected by complex
methods that compute second-order statistics of polarimet- 90

ric profiles (Baldini and Gorgucci, 2006), assume idealised
profiles (Brandes and Ikeda, 2004), use a curvature detec-
tion method (Fabry and Zawadzki, 1995) or methods that ro-
tate the coordinate system to locate the melting layer bound-
aries (Rico-Ramirez and Cluckie, 2007). The results of the 95

MLA were validated by comparing them with heights of 0◦C
wet-bulb isotherms. Using this data, we demonstrated the
potential of each one of the polarimetric variables to detect
the ML, by presenting performance metrics of the computed
profiles and its combinations, as shown in Sections 5.2 and 100

5.3. For the VPs, we demonstrated that the proposed pro-
file gradV is helpful for the detection of the ML (see Fig-
ure 8), especially in combination with other variables, e.g.
P26 = [Z∗H ·(1−ρ∗HV )·(1−gradV ∗)] accurately outlines the
melting layer, regardless if it was applied to convective or 105

stratiform events. Regarding the melting layer bottom, it is
important to stress that only a visual assessment enables the
validation of the performance of the algorithm on this mat-
ter, but as shown in Figure 10, the proposed variable steadily
demarcates the boundaries of the melting layer. 110
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On the other hand, when applying the algorithm to QVPs,
adding ZDR to the analysis provided valuable information
for the identification of the ML. Hence the combination P14

is selected as the best predictor of the ML. As shown in Fig-
ure 11, the accuracy improves compared to profiles that only5

include Z∗H and 1− ρ∗HV . Also, this variable adequately de-
limits the melting layer especially for stratiform events and
also detects the melting layer signatures in convective events,
as shown in Figure 13.
Therefore, we selected these two profiles P14 and P2610

for QVPs and VPs, respectively, as the combinations that
achieve the higher accuracy on the detection of the ML and,
at a certain degree, the melting layer characterisation. These
combinations proved to be accurate, with an average error
close to the resolution of the radar and the mismatch in time15

and space. The proposed algorithm produces errors within
200m in the ML estimation, consistent with previous work
as Brandes and Ikeda (2004); Baldini and Gorgucci (2006);
Kitchen et al. (1994); Wolfensberger et al. (2016). Finally, it
is worth noting that the algorithm enables the detection of the20

ML based on radar measurements only, without relying on
data generated from NWP model runs. This allows the im-
plementation of radar rainfall correction schemes based on
radar measurements only.

7 Conclusions25

In this paper, we generated QVPs and VPs of polarimetric
variables collected by an operational C-band radar to explore
the melting layer signatures. These signatures are difficult
to observe in the traditional PPI format. Also, the QVPs
represent bigger spatial-distributed events than VPs as the30

VPs can only measure events that are effectively happening
above the radar. Even more, for the datasets used in this
work, scans taken at 90◦ elevation presents limitations
when reading data on the first kilometre due to technical
restrictions, this situation restrain the observation of rainfall35

features at relative lower heights, while QVPs are not
affected by this constraint.
We performed a numerical comparison of the VP and QVPs
of reflectivity to demonstrate the consistency of the mea-
surements involving the elevation angle of the scans. The40

analysis shows that QVPs generated using elevation angles
at 9◦ exhibit good agreement with VPs (r ∼ 0.7) while
elevations below this elevation increase the discrepancy with
vertical scans and are not suitable for the detection of the
ML.45

We analysed the signatures of the polarimetric variables
to characterise the melting layer because they represent a
diversity of microphysical processes of the hydrometeors,
and we concluded that these features have an impact on the
shape of the polarimetric profiles and therefore can improve50

the detection of the ML.
We developed a robust, operational MLA that detects the

signatures of the melting layer using polarimetric QVPs
and VPs. The fundamentals of the design of the MLA are:
(i) a simple method to detect peaks and valleys within the 55

profiles; (ii) the combination of normalised variables and
(iii) the incorporation of two parameters (k and w) that can
be calibrated depending on the characteristics and type of
the profiles.
We proposed a profile [gradV ] for velocities taken at vertical 60

incidence, that proves to be a helpful variable for the ML
estimation.
We showed the capabilities of all the radar variables and
its combinations to detect the ML, providing individual
performance metrics and analysing their performance on 65

convective and stratiform events. For VPs, the combination
P26, that use the normalised version of the reflectivity,
the correlation coefficient and the gradient of the ve-
locity, i.e. [Z∗H · (1− ρ∗HV ) · (1− gradV ∗)] achieve an
accurate detection of the ML. For QVPs, the combination 70

P14 = [Z∗H · (Z∗DR) · (1− ρ∗HV )] is selected as the combina-
tion that better detects the melting layer boundaries.
The MLA proved to be accurate as the errors
(MAE,RMSE) between the selected outputs of the
MLA and the data collected by radiosonde are close to 200 75

m.
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