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Abstract. Information about the height and loading of sulfur dioxide (SO2) plumes from 12 

volcanic eruptions is crucial for aviation safety and for assessing the effect of sulfate aerosols on 13 

climate. While SO2 layer height has been successfully retrieved from backscattered Earthshine 14 

ultraviolet (UV) radiances measured by the Ozone Monitoring Instrument (OMI), previously 15 

demonstrated techniques are computationally intensive and not suitable for near real-time 16 

applications. In this study, we introduce a new OMI algorithm for fast retrievals of effective 17 

volcanic SO2 layer height. We apply the Full Physics Inverse Learning Machine (FP_ILM ) 18 

algorithm to OMI radiances in the spectral range of 310-330 nm. This approach consists of a 19 

training phase that utilizes extensive radiative transfer calculations to generate a large dataset of 20 

synthetic radiance spectra for geophysical parameters representing the OMI measurement 21 

conditions. The principal components of the spectra from this dataset in addition to a few 22 

geophysical parameters are used to train a neural network to solve the inverse problem and 23 

predict the SO2 layer height. This is followed by applying the trained inverse model to real OMI 24 

measurements to retrieve the effective SO2 plume heights. The algorithm has been tested on 25 

several major eruptions during the OMI data record. The results for the 2008 Kasatochi, 2014 26 

Kelud, 2015 Calbuco, and 2019 Raikoke eruption cases are presented here and compared with 27 

volcanic plume heights estimated with other satellite sensors. For the most part, OMI-retrieved 28 

effective SO2 heights agree well with the lidar measurements of aerosol layer height from Cloud-29 

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and thermal infrared 30 

retrievals of SO2 heights from the infrared atmospheric sounding interferometer (IASI). The 31 

errors in OMI retrieved SO2 heights are estimated to be 1-1.5 km for plumes with relatively large 32 

SO2 signals (> 40 DU). The algorithm is very fast and retrieves plume height in less than 10 min 33 

for an entire OMI orbit. 34 

 35 
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 36 

1 Introduction 37 

 38 

The observation and tracking of emissions from volcanic eruptions are crucial for both air traffic 39 

safety and for assessing climate forcing impacts from volcanic sulfate aerosols. In the last 10 40 

years, volcanoes have emitted roughly 20-25 million metric tons of sulfur dioxide (SO2) per year 41 

through passive degassing (Carn et al, 2017). Explosive volcanic eruptions, however, can 42 

additionally release large SO2 amounts high into the atmosphere. SO2 can be converted to sulfate 43 

aerosols within 2-3 days in the troposphere (Lee et al., 2011) and within a few weeks in the 44 

lower stratosphere (von Glasow et al., 2009, Krotkov et al., 2010). Sulfate aerosols are known to 45 

have a cooling effect on climate, especially if an SO2 plume is injected into the lower 46 

stratosphere and remains there for longer periods of time. This is demonstrated by significant 47 

eruptions such as Mt. Pinatubo in 1991 that temporarily reduced global temperatures by up to 48 

0.5℃ (McCormick et al, 1995). Aside from releasing SO2, volcanoes also emit large amounts of 49 

ash into the atmosphere which can have adverse impacts on air travel. Ash from volcanic plumes 50 

can often interfere with flight paths, greatly reduce visibility near the ground, and cause damage 51 

to the aircraft including engine failure (Carn et al., 2009). In  addition, SO2 causes sulfidation in 52 

the engines, an effect that can reduce their lifetimes in the long term. From 1953 to 2009, over 53 

120 aviation incidents involving volcanic activity were reported, with roughly 80 of them 54 

involving serious damage to the airframe or engine (Guffanti et al., 2010). There is also the 55 

possibility of highly concentrated volcanic SO2 plumes producing acidic aerosols which can 56 

cause irritation of the eyes, nose and respiratory airways of occupants inside airplanes (Schmidt 57 

et al., 2014). In many cases SO2 and ash are often collocated, thus making estimates of SO2 layer 58 

height useful for aviation hazard mitigation and volcanic plume forecasting. Lastly, the accurate 59 

determination of SO2 height can ideally aid in producing accurate SO2 vertical column depth 60 

(VCD) estimates given that those retrievals typically use a fixed a priori vertical distribution of 61 

SO2 in the absence of additional information on SO2 height. 62 

With remote sensing, these volcanic plumes can be regularly observed from space. In 63 

particular, hyperspectral spectrometers such as the Ozone Monitoring Instrument (OMI), 64 

GOME-2, OMPS, TROPOMI and others, have provided frequent and increasingly accurate 65 

observations of global SO2 amounts, through retrieval algorithms from backscattered radiance 66 

measurements. The OMI instrument, a Dutch-Finish contribution to the NASA Aura satellite, 67 
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has been operational since 2004. OMI has 60 cross track positions (rows) and has a 13 × 24 km2 68 

spatial resolution at the nadir position (Levelt et al., 2006). The instrument uses two UV channels 69 

and one visible channel to measure backscattered radiances from the Earth’s atmosphere. About 70 

half of the OMI rows are affected by the row anomaly which affects the quality of OMI Level 1 71 

and Level 2 data. This anomaly affects individual rows and slowly evolves over time. It is 72 

thought to occur due to a physical obstruction caused by the loosening of material on the interior 73 

of sensor (Torres et al., 2018). In general, SO2 slant column amounts are retrieved from these 74 

measurements through the differential optical absorption spectroscopy (DOAS) technique and 75 

then converted to vertical columns using Air Mass Factors (AMFs). The 310.5-340 nm range in 76 

OMI’s UV2 channel is used in retrieving SO2, with focus on the 310.8 and 313 nm wavelengths. 77 

The band residual algorithm (Krotkov et al., 2006) and the Linear Fit (LF) algorithm (Yang et 78 

al., 2007) were first used as the OMI operational algorithms for retrieving planetary boundary 79 

layer (PBL) SO2 and volcanic SO2 vertical column densities (VCDs) respectively. These were 80 

replaced with the principal component analysis (PCA) based algorithm (Li et al., 2013) which 81 

retrieves SO2 amounts directly from spectral radiance measurements. The same technique was 82 

also applied to OMI volcanic SO2 retrievals (Li et al., 2017). This data-driven approach does not 83 

rely on extensive radiative transfer modeling and has led to reduced biases and significant 84 

improvements (Fioletov et al., 2015). For volcanic retrievals, algorithms still have uncertainties 85 

in SO2 mass in volcanic plumes, especially in the presence of relatively larger errors in the 86 

assumed a priori profiles. 87 

In addition to column amounts, backscattered radiances can provide important 88 

information about the height of an SO2 layer. Conceptually, a change in altitude of an SO2 plume 89 

alters the number of backscattered photons going through the layer. If a plume is high in the 90 

atmosphere, more photons that are scattered from below the layer pass through the absorbing 91 

SO2 plume. This results in larger SO2 absorption structures in the measured radiance spectra, 92 

especially in the 310-320 nm range where Rayleigh scattering is dominant. Relative to the SO2 93 

amount, obtaining a fast retrieval of the height of a volcanic plume presents a greater challenge. 94 

Until recently, retrieval techniques have involved a direct spectral fitting approach that use 95 

backscattered ultraviolet (BUV) measurements in conjunction with extensive forward radiative 96 

transfer modeling. For instance, the Iterative Spectral Fitting (ISF) algorithm (Yang et al., 2009) 97 

for OMI was utilized to determine the altitude of SO2  layer by adjusting the height while 98 
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minimizing the differences between measured radiances and forward RT calculations. Another 99 

study has utilized an optimal estimation algorithm along with the VLIDORT radiative transfer 100 

(RT) model to retrieve SO2 density and plume height from the GOME-2 instrument (Nowlan et 101 

al., 2011). Sulfur dioxide amounts and plume heights have also been estimated with the infrared 102 

atmospheric sounding interferometer (IASI), through brightness temperature changes and 103 

relative intensities of absorption lines (Clarisse et al., 2008). For these techniques, extensive 104 

radiative transfer modeling is needed, in addition to a variety of assumptions including a 105 

reasonable first guess for the plume altitude. Newer schemes were later developed for GOME-2 106 

using the SOPHRI algorithm (Rix et al., 2012), a DOAS based technique that included 107 

minimizing differences between plume height from simulated spectra and the assumed height 108 

from measured spectra. This technique allowed for reasonably fast retrievals that could be used 109 

in near real-time, thanks to the use of pre-calculated GOME spectra stored in a look up table 110 

classified according to SO2 column, SO2 heights and other physical parameters. An updated 111 

algorithm was also developed for IASI (Clarisse et al., 2014), this time implementing an optimal 112 

estimation fit approach with pre-calculated Jacobians. Faster and more efficient methods for 113 

GOME-2 (Efremenko et al., 2017) and TROPOMI (Hedelt et al., 2019) have made use of 114 

machine learning algorithms, specifically neural networks (NNs), to develop a trained, full- 115 

physics inverse learning machine (FP_ILM) for retrieving SO2 plume height. This approach has 116 

shown good accuracy and speed fast enough for near-real-time operations. The FP_ILM has also 117 

been used for retrieving ozone profile shapes (Xu et al., 2017) and geometry-dependent 118 

Lambertian equivalent reflectivity (Loyola et al., 2020). The primary advantage of this approach 119 

is the execution speed. By separating the training phase, which involves large amounts of time 120 

consuming radiative transfer computations and machine learning model training, from the 121 

application phase, the desired parameter can be retrieved within milliseconds for a single satellite 122 

ground pixel using the inverse model. However, similar methods of retrieving SO2 layer height 123 

have not yet been implemented for OMI. Now in this study, the FP_ILM has been applied to 124 

OMI to estimate SO2 layer height from backscattered Earthshine radiance measurements. The 125 

retrieval was tested on four past volcanic eruption cases and performance was assessed through 126 

machine learning metrics, as well as comparisons to other datasets such as those from 127 

TROPOMI, IASI and CALIOP lidar instruments.  128 

 129 
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2 Methodology: 130 

 131 

The FP_ILM approach consists of two parts, the training phase and the application (or 132 

operational) phase. The training phase starts with the generation of a synthetic training dataset of 133 

top of the atmosphere (TOA) reflectance spectra from a radiative transfer model. This spectral 134 

dataset is then used to train a Multi-Layer Perceptron Regression (MLPR) NN model to predict 135 

the SO2 layer height as an output. In the application phase, the trained inverse model is applied to 136 

real OMI radiance measurements. This inverse model is optimized from the training, and the 137 

predictions of SO2 layer height based on the model are very fast as compared with the time-138 

consuming RT calculations during the training phase. The main steps of the algorithm are shown 139 

in a flowchart (Figure 1) and discussed in detail in the next sections. 140 

 141 

2.1 Forward Radiative Transfer Model 142 

 143 

The first step in the training phase is to build a large data set of synthetic backscattered 144 

Earthshine reflectance spectra from forward radiative transfer (RT) calculations. These 145 

calculations are performed using the LInearized Discrete Ordinate Radiative Transfer (LIDORT) 146 

model with the rotational Raman scattering (RRS) capability (Spurr et al., 2008). This version of 147 

the model treats first-order inelastic Raman scattering in addition to all orders of elastic 148 

(Rayleigh) scattering processes. Rotational Raman scattering occurs when a photon is scattered 149 

at lower or higher energy levels than the incident radiation. RRS cannot be neglected; it is known 150 

to be responsible for the Ring effect (Grainger and Ring 1962), a spectral interference signature 151 

characterized by the filling-in of Fraunhofer lines and telluric-absorber features. Allowing for 152 

RRS in the RT model leads to differences in calculated radiances compared to  those made with 153 

purely elastic scattering, as characterized by the filling-in factor. This quantity is generally of the 154 

order of a few percent, consistent with estimates that 4% of the total scattering in the 155 

atmospheric is inelastic (Young, 1981). Fundamentally the SO2 layer height information can be 156 

retrieved by backscattered radiance spectra because the amount of scattering occurring in the 157 

overlying atmosphere is determined by the height of the volcanic SO2 plume. This is 158 

demonstrated by comparing two otherwise identical RT calculations with different SO2 layer 159 

heights (Figure 2a). At shorter wavelengths where Rayleigh scattering is stronger, there is less 160 

backscattered radiance for the case with higher SO2 plume height, particularly at shorter 161 

wavelengths < 320 nm (Figure 2b). Likewise, the filling-in factor (Figure 2c) shows the 162 
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importance of including RRS in the RT calculations as in some cases there can be 2-3% 163 

difference between the Raman and elastic calculations. 164 

All LIDORT-RRS calculations in this study were performed for the 310-330 nm spectral 165 

range, which captures strong SO2 and ozone absorption features. The model is supplied with 166 

ozone (Daumont et al., 1992) and SO2 absorption (Bogumil et al., 2003)  cross sections, 167 

atmospheric profile, ozone profile and a high resolution Fraunhofer solar irradiance spectrum. 168 

The atmospheric profile has 48 layers and contains a temperature/pressure/height grid from the 169 

standard US atmosphere, with an increased vertical resolution of 0.5 km below 12 km. The 170 

ozone profile is determined by the total column amount, latitude zone and month as specified in 171 

the TOMS V7 ozone profile climatology (Bhartia, 2002), while the SO2 profile is assumed to be 172 

a Gaussian shape with a full width half maximum (FWHM) of 2.5 km. The solar spectrum is a 173 

re-gridded version of the high resolution synthetic solar reference spectrum (Chance and Kurucz, 174 

2010), originally with a spectral resolution of 0.01 nm. The re-gridded version has a resolution of 175 

0.05 nm, finer than that for OMI (0.16 nm sampling for a FWHM spectral resolution of ~0.5 176 

nm). The advantage of using this reference spectrum over the instrument-measured irradiance is 177 

that only one set of calculations is needed; they can be applied to multiple instruments and 178 

instrument cross track positions without utilizing unique measured solar flux spectra for each 179 

situation. Using instrument-measured solar flux data may carry less potential error and be able to 180 

better handle issues with instrument degradation. However, the downside is that the inverse 181 

model would need to be re-trained whenever a new measured solar flux spectrum is used. Since 182 

we expect the retrieval to be primarily sensitive to SO2 absorption signatures, the radiative 183 

transfer calculation was performed for a molecular atmosphere with no aerosol scattering.  184 

In order to obtain a large number of different spectra, eight key physical parameters were 185 

varied for the LRRS calculations. These parameters include solar zenith angle (SZA), relative 186 

azimuth angle (RAA), viewing zenith angle (VZA), surface albedo, surface pressure, O3 column 187 

amount, SO2 column amount and SO2 layer height. The ranges of these parameters are given in 188 

Table 1. 189 

The number of calculations and the parameter sets for each simulation were determined through 190 

a smart sampling technique (Loyola et al. 2016). A selective parameter grid with sets of 191 

parameters for each simulation was established through the use of Halton sequences (Halton, 192 

1962) in 8 dimensions. The calculations are continued until the moments of the output data, 193 
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mean and median converged across all wavelengths. In total around 200,000 calculations were 194 

done to achieve sufficiently comprehensive sample size for the variation in the eight parameters 195 

across all rows of OMI. This sampling was done in order to ensure that 1) each set of parameters 196 

was unique and training data is diverse; and 2) that the sample size of the entire dataset is large 197 

enough for the machine learning application. 198 

 199 

2.2 Data pre-processing 200 

 201 

After the RT calculations are completed, the spectra are convolved with OMI instrument slit 202 

function. Since each cross-track position of OMI contains a unique slit function, the appropriate 203 

function was applied based on the VZA input for that particular calculation. The VZA ranges 204 

from 0-70° across all rows in the OMI swath, with the middle (nadir) rows having a VZA of 205 

close to 0. For each row, only spectra within +/- 3° of the actual VZA were convolved with the 206 

appropriate slit functions. In addition, Gaussian noise with a  signal-to-noise ratio (SNR) of 1000 207 

was added to the spectra. While the SNR of OMI tends to be lower (Schenkeveld et al., 2017), 208 

adding too much noise can greatly decrease performance of the machine learning (Table 2). The 209 

root mean squared error (RMSE) and mean absolute difference (MAE) between the SO2 height 210 

from the RT calculation parameter sets and the height predicted by the neural network were used 211 

as metrics (see Section 3). At SNRs of less than 500, the performance starts to increasingly 212 

degrade. Between 1000 and 500 SNR, there is an increase of around 0.1 km in RMSE. However, 213 

adding some degree of noise is necessary to account for errors in satellite instrument 214 

measurements. 215 

Next, principal component analysis (PCA) was applied to the spectral dataset for each 216 

row, in order to extract the most significant features of the spectra, and to reduce dimensionality. 217 

Since each convolved sample consists of 142 wavelength points, the dimensionality of this 218 

problem becomes very large. However, PCA transforms each sample to a set of weights based on 219 

8 principal components (PCs). These principal components explain 99.998% of the variance in 220 

the synthetic dataset (Figure 3). Including additional PCs does not add any significant value to 221 

the retrieval and may even lead to overfitting. Prior to starting the machine learning process, the 222 

dataset is split into a training subset (90%) and a testing subset (10%). The training subset is used 223 

for the neural network learning, while the testing subset only deployed verifying the performance 224 

of the network to predict the output. 225 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schenkeveld%20VE%5BAuthor%5D&cauthor=true&cauthor_uid=29657582
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 226 

2.3 Machine Learning using a Neural Network 227 

 228 

The 8 PCs, and selected parameters including the SZA, RAA, VZA, surface pressure and 229 

surface albedo were used as input for training a MLPR, which is sometimes referred to as a deep 230 

neural network. The output layer of the NN contains the effective SO2 layer height. Column 231 

amounts of SO2 and O3 were not included in the training or in the application stage because of 232 

the large dependency of column amounts on SO2 layer height and due to biases in OMI ozone 233 

retrieval in the presence of the enhanced SO2 plume, respectively. To improve stability, the 234 

inputs (PC weights, SZA, VZA, etc.) and output (effective SO2 height) are scaled between -0.9 235 

and 0.9 according to the minimum and maximum of each input variable prior to input into the 236 

NN. In a NN, the input and output layers are connected by hidden layers containing neurons 237 

(also known as nodes). Each neuron is connected to others by a series of weights, by means of 238 

which the input data is passed to the next level as a weighted sum of all inputs. Inside the neural 239 

network, the Adam optimizer with a stochastic gradient descent algorithm (Kingman et al., 2014) 240 

is used to minimize the loss function, in this case the mean squared error (MSE) between the 241 

result of each iteration and the actual SO2 layer height used to generate the synthetic spectral 242 

sample. With each iteration, the partial derivative of the MSE with respect to each node is 243 

calculated; this is used to update the weights. The training of a NN progresses by cycling through 244 

iterations of the entire training dataset, called epochs, until the training and validation MSE is 245 

minimized and there is no improvement to be obtained from further training. Throughout the 246 

training, the NN uses 10% of the training subset for validation to assess the performance with 247 

each iteration. This validation set is different from the independent test data that was set aside 248 

from training. The “tanh” (hyperbolic tangent) activation function is applied at the hidden layers 249 

to further increase stability in the NN. Other activation functions (e.g., ReLU and PReLU) were 250 

tested, however tanh was found to produce slightly better NN performance. There is also 251 

considerable flexibility in the structure of the NN, in particular the number of hidden layers and 252 

nodes in each layer. The final configuration of the NN in this study includes 2 hidden layers with 253 

20 and 10 nodes in the first and second layer, respectively. This was determined  through testing 254 

and analyzing the errors of the NN with respect to the synthetic test data set and the quality of 255 

the retrieval results after application to satellite measurements.   More complex configurations of 256 

hidden layers and number of neurons were also tested and found to have worse performance 257 
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when using OMI data as input. Hence the relatively simple configuration was chosen as the final 258 

setup for this study. 259 

 In neural networks a common problem known as overfitting often occurs when the 260 

machine learning model is tuned so closely to the training inputs that it does not perform well on 261 

new data. During training this can be diagnosed if the validation error is much higher than the 262 

training error. To reduce overfitting, L2 regularization was implemented in the training. The 263 

regularization reduces the effect of small and very large weight values by penalizing the MSE 264 

loss function. For this study, the training was done separately for each OMI row due to the 265 

different VZAs and slit functions between rows; however, the configuration of the NN was kept 266 

constant between rows. The only difference in the training is the number of training epochs 267 

conducted for each row before the solution becomes optimal for that row. The number of epochs 268 

varies slightly but is in the 200-300 range for all rows. The final trained version of the NN, the 269 

inverse operator, contains the optimal weights needed to predict the SO2 layer height from an 270 

input of separate test data. 271 

 An important aspect for neural network performance is the number of training samples. 272 

Aside from smart sampling, the appropriate number of samples for training can be determined by 273 

comparing errors from training runs where different percentages of training samples were 274 

removed (e.g. 10%, 20%, 50%) beforehand.  The mean absolute error between height predicted 275 

by the NN and the test set height was calculated when using different numbers of input samples. 276 

With a 50% reduction in training samples, the absolute error went up by around 0.3 km. In 277 

contrast, reducing the training set by 10% had little impact on the error (see Table A1). These 278 

results provide confirmation that for this case the training data are adequate, and that there would 279 

likely be diminishing returns in NN performance with a larger training dataset. 280 

2.4 Application to satellite measurements 281 

In the application phase of the retrieval, the inverse operator is applied to OMI radiance 282 

spectra, resulting in a predicted SO2 layer height for each ground pixel in the OMI swath. For 283 

this the OMI L1B Geolocated Earthshine radiance dataset is used. Since OMI only provides 284 

absolute radiances, these data were normalized with respect to the same solar flux spectrum as 285 

used in the generation of the synthetic spectra. In other words, the measured input becomes the 286 

fraction of backscattered radiance to the incoming solar irradiance (i.e., reflectance spectrum). 287 

Prior to normalizing, the irradiance spectrum was convolved with an OMI slit function for the 288 
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particular OMI row and orbit. The irradiance spectrum is convolved with the appropriate OMI 289 

slit function in order to have consistency in wavelength points between the measured radiances, 290 

synthetic radiances and irradiance of each row. To follow the same procedure as was used in the 291 

training step, the PCA operator from the training phase is applied to the OMI spectra to perform 292 

the dimensionality reduction and obtain a set of PC weights for each sample. The other inputs are 293 

VZA, SZA, RAA, albedo and surface pressure parameters from the OMI data files. As in the 294 

training phase, all inputs are scaled to the [-0.9, 0.9] range. After SO2 heights are retrieved 295 

separately for each row, one height value is given for each pixel (and spectral sample). The 296 

application phase of the retrieval takes only 2-3 seconds for a given row. This short duration 297 

includes the application of the training phase PCA operator to OMI measurements, the scaling of 298 

inputs and the deployment of the inverse operator. The whole process is repeated for each row in 299 

order to get a prediction for an entire OMI swath. For some rows the retrieval is unreliable due to 300 

the row anomaly, which negatively affects the quality of the OMI L1B radiance data at all 301 

wavelengths and consequently L2 retrievals. 302 

 303 

3 Impacts of various parameters on the performance of the trained inverse model  304 

 305 

From the training phase, it becomes clear that the performance of the algorithm will 306 

depend on several factors. As demonstrated in Fig. 3, an important factor is the SO2 column 307 

amount. Overall, the NN makes better predictions for the test data subset for SO2 amounts > 40 308 

DU. Below 40 DU, information content on  the layer height to be retrieved becomes increasingly 309 

small, as evidenced by large differences between predicted heights and those in the actual test set 310 

(Figure 5a). Additionally, larger SO2 loadings result in greater sensitivity between two heights, 311 

as seen by comparisons of SO2 height Jacobians for multiple amounts (Figure 4). Quantitatively, 312 

if samples with SO2 amounts less than 40 DU are excluded, the RMSE decreases from 1.48 to 313 

1.15 km (Table 3). As with other sensitivity analyses, the RMSE and MAE in Table 3 are  314 

calculated between the predicted output from NN and the height from the independent test 315 

dataset.  We can therefore expect the retrieval to produce reasonable results for moderate to large 316 

volcanic eruptions. In widely dispersed plumes where the SO2 VCD is low or for volcanic 317 

degassing events, the retrieval would be less accurate . The second major dependency is on SZA. 318 

The problem here stems from the occurrence of relatively large errors in RT modeling due to 319 

shallow light paths and lower OMI SNR at the higher SZAs.  Reasonably accurate results are to 320 
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be expected only for SZA < 75º. Figure 2b shows significant differences in predicted and actual 321 

heights in spectra associated with large SZAs, after removal of low VCD samples. For the final 322 

training approach, it was therefore necessary to exclude spectra with large SZAs. Dependencies 323 

on other physical parameters are small when compared with these two issues discussed here, 324 

although there is some evidence that high surface albedo also increases error. If we remove 325 

spectra with albedo > 0.6 there is a minor improvement in RMSE from 0.93 to ~0.89 km. 326 

However, even with strong volcanic SO2 signals, we can realistically expect that on average the 327 

absolute error to be at least 1 km, due to inherent simplifications in the neural network retrieval 328 

approach. The errors in actual retrievals using OMI data are expected to be larger (see Section 329 

4.4).  330 

 331 

4. OMI SO2 Effective Layer Height Results 332 

 333 

For testing the FP_ILM retrieval on OMI data, four volcanic eruption cases with sufficiently 334 

strong SO2 signals were selected (i.e. where peak SO2 VCDs were greater than 40 DU). Each 335 

case is described in detail in the following subsections. For each case, comparisons were made to 336 

other satellite-derived datasets where available, for example  the  CALIOP lidar onboard 337 

CALIPSO, the IASI SO2 layer height retrieval (Clarisse et al., 2014), and the GOME-2 338 

(Efremenko et al., 2017) and TROPOMI retrievals (Hedelt et al., 2019). It is important to note 339 

that the CALIOP lidar only indicates the height of the ash plume and not the SO2 height. 340 

Although ash and SO2 plumes are often collocated, this is not always the case, making direct 341 

comparisons difficult.  342 

 343 

4.1 Kasatochi (2008) 344 

Kasatochi is a volcano located on the Aleutian Islands of Alaska (52.178°N,175.508°W). It 345 

underwent a series of eruptions beginning late in the day on August 7th, 2008, which injected 346 

great amounts of ash and SO2 into the stratosphere. Overall the explosion released roughly 2 347 

million tons of SO2, at the time the highest SO2 loading since the Mt Pinatubo eruption (Yang et 348 

al, 2010). SO2 effective layer heights retrieved using the machine learning model for OMI (orbit 349 

21650) on August 10th, 2008, were around 11-12 km with some portions being slightly lower 350 

(Figure 6a). This is in reasonable agreement with previous SO2 height retrievals of 9-11 km 351 

which used the ISF algorithm for OMI (Yang et al., 2010), considering that the uncertainty of 352 
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both retrievals are around 2 km.  Likewise, Nowlan et al. (2011) showed that the majority of the 353 

plume was around 10 km, and up to 15 km in some parts. There is also agreement with IASI 354 

(Figure 6b) and CALIOP data (Figure 6d) which showed plume heights of 10-12 km and 12.5 355 

km respectively. It is important to note that the IASI overpass occurred later in the day than those 356 

for OMI and CALIPSO. Another verification source we used was the GOME-2 SO2 layer height 357 

retrieval that uses FP_ILM (Efremenko et al., 2017). The study found a height of around 10 km 358 

and up to 14 km in areas of high SO2 loading for August 10th (Figure 6c). The GOME-2 overpass 359 

occurred 4 hours earlier than OMI. The mean, median, standard deviation and the inner quartile 360 

range (IQR) of the three retrievals (Table 4) also show good agreement for this case. Although 361 

the OMI results agree well in general with the results of these studies and datasets, the retrieval is 362 

less sensitive with respect to detecting variability in the SO2 layer height within the plume.  363 

 364 

4.2 Kelud (2014) 365 

Kelud, a stratovolcano located in East Java, Indonesia (7.935°S, 112.315°E), erupted on 366 

February 13th, 2014 at 1550 UTC, in the process depositing ash in a 500 km diameter around the 367 

volcano and leading to mass evacuations from nearby towns.  Even though this case has 368 

somewhat lower SO2 VCDs than those from Raikoke and Kasatochi, the peak SO2 VCDs of ~60-369 

70 DU should still allow for retrievals with reasonable accuracy (see section 2). The OMI 370 

retrieval results indicate that the maximum height of the main plume was 18-19 km (Figure 7a), 371 

although other studies suggest that several smaller layers of SO2 and ash were located as high as 372 

26 km (Vernier et al., 2016) on the previous day. However, the SO2 loading at that level was 373 

most likely too low for an accurate retrieval using OMI radiances. CALIOP lidar detected ash 374 

plumes at around 19.5 km and the IASI retrievals registered the plume at 17.5 km over the same 375 

area as that for OMI. The height of the ash plume from this eruption was also estimated using 376 

Multifunctional Transport Satellite (MTSAT 2) observations and transport modeling (Kristiansen 377 

et al., 2015). That study found an injected height of around 17 km, which is in agreement with 378 

the OMI result, especially when considering the most probable heights on the PDF (Figure 8b). 379 

We note here that only a small portion of the plume was retrieved with our algorithm, given the 380 

relatively low SO2 VCDs and interference due to the OMI row anomaly. It is promising to note 381 

that the OMI retrieval was able to identify heights at the upper end of the height range used in 382 

the training phase. On the other hand, while the retrieval can extrapolate to heights above 20 km, 383 
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the accuracy would likely degrade due to the lack of training data with heights outside of this 384 

limit. 385 

 386 

4.3 Calbuco (2015)  387 

 388 

The Calbuco volcano is located in Chile (41.331°S, 72.609°W). The primary eruption 389 

had a volcanic explosivity index (VEI) of 4 and occurred on April 22nd with little warning. The 390 

primary plume ascended higher than 15 km, while plumes from smaller subsequent eruptions 391 

stayed in the troposphere. The volcanic plume spread northeast in the following days, resulting in 392 

flight cancellations at Uruguayan and south Brazilian airports. The OMI-retrieved SO2 effective 393 

layer heights in the area of greatest VCD was in the 15-17 km range. In the same region, IASI 394 

results (Figure 7c) show similar plume heights, approximately around 15 km, although as with 395 

the previous events, the overpass times of the two instruments are different. CALIOP lidar shows 396 

the ash plume to at roughly 17 km (Figure 7e). Unfortunately, the overpass of CALIPSO occurs 397 

over an area of OMI’s swath that is affected by the row anomaly, and this makes a direct 398 

comparison unfeasible. Nevertheless, the CALIPSO aerosol layer height is still comparable to 399 

OMI-retrieved effective SO2 layer heights for the portion of the plume further to the west. The 400 

retrieval for OMI is consistent with the other instruments for SO2 plumes, with the exception of 401 

that part of the plume with SO2 below 30-40 DU (see Figure A1), for which results were not 402 

plotted in Figure 7a due to lower biases. 403 

 404 

4.4 Raikoke (2019) 405 

The eruption of the Raikoke stratovolcano (48.2932°N, 153.254°E), located on the Kuril Islands 406 

of Russia, occurred on June 21st, 2019 at 1800 UTC. A series of explosions during the eruption 407 

sent large amounts of ash and SO2 into the lower stratosphere. Maximal loadings of SO2 408 

measured by OMI and other sensors exceeded 500 DU. In the following days the plume 409 

underwent dispersion and spread out over the northern Pacific Ocean and later over eastern 410 

Russia. Early estimates of plume injection height for the eruption were predominantly in the 10-411 

13 km range with potentially larger heights in some areas of the plume. In Figures 9a and 9b, the 412 

SO2 effective layer heights retrieved from OMI data are shown for the Raikoke plume on June 413 

23rd and June 24th respectively. The plume heights for both days are predominantly in the range 414 

10-12 km, although some areas of the plume had estimated peak heights of 13-14 km. In 415 
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comparison, the TROPOMI results show slightly larger heights (13-14 km) for June 24th and 416 

similar heights to OMI for June 23rd (Figure 9c and d). The IASI SO2 height product also shows 417 

fairly good agreement, with heights mainly at the 10-11 km level (Figure 9e and f). It is also 418 

useful to look at a distribution of heights predicted for the domain (Figure 10) in order to get a 419 

more quantitative comparison between the datasets. Based on this distribution, there is clearly at 420 

least 2 km difference between the most probable heights from OMI and those from TROPOMI 421 

for June 24th (Figure 10b and d) and slightly lower heights in the distribution for IASI. This is 422 

also displayed in Table 4 which shows a 2-3 km difference in the mean and median of retrieved 423 

heights between OMI and TROPOMI. Additionally the IQR and standard deviation provide a 424 

quantitative measure of the variation in the distribution of the retrieved heights, which can 425 

change from one orbit to another. Note that points with lower than 30 DU are not included in the 426 

PDFs for all sensors. The results are also compared with CALIOP lidar onboard CALIPSO, 427 

which shows ash plume heights of 12-13 km for both days (Figure 11a and 11b). Although there 428 

is overestimation for some OMI pixels, especially for June 24th, the section of the plume with the 429 

CALIPSO flyover has similar heights (around 12.5 km) to  lidar-determined aerosol layer 430 

altitudes. Lastly, we note that a recent study highlighted probabilistic height retrievals using the 431 

Crosstrack Infrared Sounder (CrIS) for Raikoke. This study found a median height of 10-12 km 432 

across a large part of the plume, however with some areas upwards of 15 km. While there are 433 

some notable differences across all of the datasets, the OMI retrieval for this case falls within the 434 

general consensus of plume height estimates  for this volcanic event.  435 

 436 

4.5 Discussion of errors 437 

It is clear that predicting SO2 layer height with FP_ILM is an efficient process, but one that is not 438 

flawless in terms of accuracy. As comparisons between instruments/retrievals have shown, on 439 

average there were 1-2 km differences in heights, especially for the Raikoke event, although we 440 

consider this to be good agreement given the estimated MAE and RMSE associated with this 441 

retrieval. In this regard, the retrieval is an approximate  estimate of the SO2 plume height rather 442 

than a precise determination. Differences in the retrieved heights between different 443 

studies/algorithms result from differences in instruments, forward model assumptions and 444 

retrieval techniques as well as uncertainties in each retrieval. For instance, IASI is a thermal IR 445 

instrument and its retrieval does not use FP_ILM. Therefore exact agreement with IASI results is 446 
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difficult to achieve, especially since the IASI retrieval itself has a stated error range of ±2 km, 447 

although its retrievals serve as a good verification dataset. The stated uncertainty for TROPOMI 448 

retrievals (Hedelt et al., 2019) is ~2 km for SO2 amounts of greater than 20 DU, similar to our 449 

estimated uncertainties for OMI.  While the general retrieval approach for TROPOMI (Hedelt et 450 

al., 2019) is similar to that for OMI in the present study, there are also important instrument 451 

differences that can lead to differences in the retrieved heights between the two instruments, such 452 

as the pixel size, noise, radiometric accuracy and the level of degradation. TROPOMI has a 453 

much finer spatial resolution compared to OMI, with footprints typically 5.5x3.5 km2 up to 454 

maximum size 7x3.5 km2; TROPOMI also has larger maximal SO2 signals. Consequently, 455 

TROPOMI is better able to resolve localized variations in the height throughout the plume, and 456 

is likely to be more accurate overall due to better SNR. However, current TROPOMI L1 data are 457 

known to have issues with instrument degradation and radiometric accuracy in the UV spectral 458 

range (Ludewig et al., 2020); this could be a potential contributing factor the differences between 459 

the two instruments. OMI retrievals show more or less uniform height levels across the entire 460 

plume with the peak heights in areas with the best SO2 signal. Note, CALIOP lidar profiles 461 

sometimes show disagreements with OMI retrieved heights, because CALIOP only identifies the 462 

height of the ash or aerosol plume. It also offers a comparison for only a single cross section of 463 

the entire plume per orbit. Despite the uncertainties, the consensus provided by different 464 

instrumental datasets can provide a reasonable estimate for the SO2 layer height, and if done in 465 

near real time, can aid in decision making with regards to aviation safety.  466 

  Another source of error is present in the training phase. One difficulty here is finding the 467 

ideal choice of neural network setup. With many parameters to consider, such as the number of 468 

input PCs, number of layers, number of nodes, learning rate, regularization, weight initialization, 469 

etc., it is very time consuming to optimize the neural network setup. We have found a relatively 470 

simply configuration that performed reasonably well with both test data and real OMI 471 

measurements for all scenarios and events considered. However, even after optimization of the 472 

parameters, random error inherently exists in the neural network. A measure of random error can 473 

be obtained by altering the random state of the neural network whilst keeping other parameters 474 

constant. For ten trial runs with different random seeds, variations of the MAE error were around 475 

0.15-0.2 km (see Table A2). Although the differences in the errors calculated with the synthetic 476 

test data are relatively small, larger changes can be expected during the application phase. 477 
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Indeed, when applying the inverse models to OMI, there is noticeable, up to 1 km variation in the 478 

retrieved height for the same pixels. It is thus difficult to improve results further than ~1 km 479 

absolute error, even in the training phase. In the application phase, some additional error comes 480 

from the differences between synthetic spectra and real satellite measurements with noise errors. 481 

For example, with an SNR of 500 used in training, which is a typical noise level for OMI, the 482 

RMSE of the neural network prediction is around 1.25 km (Table 3). This can be considered the 483 

lower limit of retrieval error when the inverse operator is used on OMI measurements. Lastly, 484 

some deviations between the measured and synthetic training spectra originate from the RT 485 

modeling. The calculations contain several assumptions including the SO2 plume shape, 486 

atmospheric profiles, gas profiles, and a molecular scattering atmosphere. Further testing is 487 

required in order to determine if the inclusion of aerosols in RT calculations would improve the 488 

algorithm performance. 489 

 490 

5 Conclusion 491 

 492 

In this study we have introduced a new algorithm for OMI retrievals of the volcanic SO2 493 

effective layer height from UV earthshine radiances. This algorithm is based on an existing 494 

FP_ILM method which combines a computationally time-consuming training phase with full 495 

radiative transfer model simulations and a machine learning approach to develop a fast inverse 496 

model for the extraction of plume height information from radiance spectra. Fast performance 497 

means that the algorithm can be considered for operational deployment, given that the retrieval 498 

of a SO2 layer height prediction from the inverse model takes only a matter of milliseconds for a 499 

single OMI ground pixel. For the training, a synthetic dataset of earthshine radiance spectra were 500 

created with the LIDORT-RRS RT model for a variety of conditions based on choices of 8 501 

physical parameters determined with smart sampling techniques. A dimensionality reduction was 502 

performed through PCA in order to reduce the complexity of the problem and to separate those 503 

features that best capture the great majority of variance of the dataset; 8 principal components 504 

were sufficient for this purpose. Dimensionally-reduced data together with the associated 505 

parameters were used to train a double hidden-layer neural network to predict SO2 plume height 506 

from any given input data. The  PCA from the training phase and the inverse operator resulting 507 

from the optimal NN framework were then applied to real satellite radiance spectra and 508 

parameters to get  retrieved values of SO2 plume heights for several volcanic eruption events. 509 
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Through comparisons with CALIPSO lidar overpasses, as well as TROPOMI and IASI 510 

retrievals, it was shown that the retrieval for OMI can estimate reasonable SO2 layer height for 511 

all the events considered, with absolute errors in the range of 1-2 km. These results can give an 512 

indication of plume heights achieved during medium- to large-scale eruptions, and guide 513 

important decisions in aviation hazard mitigation. For all events treated in this study, there was 514 

general agreement with CALIOP lidar, although SO2 could not be retrieved for the locations of 515 

the CALIPSO flight path for the Kelud and Calbuco cases due to OMI row anomaly issues.  516 

Uncertainties and sources of error in using this approach open up possibilities for future 517 

work in improving the accuracy of the retrieval. We assumed that ash and sulfur dioxide plumes 518 

are mostly collocated when using CALIPSO as a source to verify the plume height. Although 519 

this is often true, dispersion of the plume in the days following the eruption can separate the two 520 

components.  Therefore, tracking these plumes become challenging when using reflectance 521 

spectra alone; further analysis may need to include trajectories or wind data.  The model was 522 

trained on synthetic spectra calculated for molecular atmosphere conditions in the absence of any 523 

aerosol loading.  The impact of including aerosols in the simulations is another subject for a 524 

follow-up study. We also intend to generate data sets of synthetic spectra by using a vector RRS 525 

model to account for polarization. For improving the performance and efficiency of the machine 526 

learning, the use of neural network ensembles and a further optimized setup of NN structure and 527 

parameters will be explored. Other future work will include extending the application of FP_ILM 528 

to the Suomi-NPP OMPS instrument as well as exploring the ability to predict multiple outputs 529 

simultaneously from this approach. 530 
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 531 

Figure 1: The flowchart of the FP_ILM methodology for retrieving OMI SO2 Effective Layer Height. 532 
The steps above the dashed line are part of the training phase done prior to incorporation of OMI 533 
measurements. The application phase involves deployment of the trained model to the OMI radiance 534 
measurements to obtain estimates of effective volcanic SO2 layer heights.  535 

 536 
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 537 
Figure 2: (a) Simulated top of the atmosphere (TOA) Earthshine radiances for two different SO2 layer 538 
heights (10 km and 20 km) from the LIDORT-RRS model. Also shown:(b) the SO2 height Jacobian 539 
(change in radiance per km between the two spectra) along with the absorption cross-sections of SO2 for 540 
reference; (c) the filling-in factor. The filling-in factor is defined as the difference between the total and 541 
elastic-only radiance results, divided by the total radiance, expressed as a percentage. An SO2 column 542 
amount of 200 DU was used in the two calculations and all other parameters were kept constant except 543 
for the SO2 layer height. 544 
 545 

 546 
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 547 
Figure 3: Explained variance ratio as a function of the number of principal components of the 548 

spectral dataset.  549 

 550 

 551 
Figure 4: SO2 Height Jacobians (dI/dz) for 4 different assumed SO2 column amounts. The 552 

Jacobians were calculated from the difference between two radiance spectra with 10 km and 20 553 

km SO2 height. All other physical parameters were identical in the calculation of the spectra. 554 

 555 

 556 
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 557 
Figure 5: Dependence of retrieval errors on (a) SO2 amount and (b) SZA for cases with SO2 VCD > 40 558 
DU. The error is defined as the difference between the SO2 layer height predicted by the neural network 559 
using inputs from the independent test set, and the actual height from the same samples. The test set 560 
comprises 10% of the original spectral dataset withheld from training the neural network. The plots show 561 
that the retrieval error is mostly within +/- 2.5 km for SZA < 70, but increases significantly for large 562 
SZAs.  563 
 564 
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 565 
Figure 6: Comparison between the volcanic plume heights from (a) OMI, (b) IASI, (c) GOME-2 566 

and (d) CALIOP lidar 532-nm attenuated backscatter, for the 2008 Kasatochi eruption. The black 567 

dotted line in (a) shows the CALIPSO track. Some rows of OMI in this case were affected by the 568 

row anomaly, as seen by the gaps in the plume. The red dots in (d) show the OMI retrieval near 569 

the CALIPSO path and the black dashed line denotes the height of the ash plume observed by 570 

CALIPSO. 571 

  572 



 23 

 573 
Figure 7: Comparisons of plume heights for the 2015 Calbuco eruption (left) and the Kelud 574 

eruption (right) for OMI (a,b), IASI (c,d) and 532-nm total attenuated backscatter from the 575 

CALIOP lidar (e,f). For OMI, only pixels with > 30 DU of SO2 are shown and retrievals were 576 

unavailable for some parts of the plume due to the row anomaly. The black dotted line in (a) and 577 

(b) marks the CALIPSO track. The white rectangles in (e) and (f) show the location of the plume 578 

in the lidar profile. Direct comparison with CALIPSO was not possible due to obstruction by the 579 

OMI row anomaly 580 

 581 



 24 

 582 
Figure 8: Probability histograms of SO2 effective layer height retrievals for (a) the Calbuco 583 

eruption on April 24, 2015 and (b) the Kelud eruption on February 14, 2014. 584 

 585 
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 586 
Figure 9: The SO2 layer height retrieval for the Raikoke eruption plume on June 23rd, 2019 (left) 587 

and June 24th, 2019 (right) for the OMI (a, b), TROPOMI (c, d) and IASI (e, f) instruments. For 588 

all 3 sensors, only pixels where SO2 VCD > 30 DU are shown.  589 

 590 
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 591 
Figure 10: Probability histograms of SO2 layer height retrievals for (a,b) OMI and (c,d), 592 

TROPOMI on June 23rd, 2019 (left) and June 24th, 2019 (right) and (e,f) IASI. Only pixels with 593 

SO2 column amount greater than 30 DU are included. These plots correspond to the results 594 

plotted in Figures 4a-f.  595 

 596 
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 597 
Figure 11: CALIPSO lidar 532-nm attenuated backscatter for the Raikoke eruption on (a) June 598 

23rd and (b) June 24th, 2019. The black dashed line symbolizes the height of ash plume seen by 599 

CALIPSO and red dots show the results from the OMI retrieval along CALIPSO’s flight path. 600 

The flyovers occurred shortly after 01:30 and 00:30 UTC on June 23rd and 24th respectively, 601 

around the same time as OMI. 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 
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Table 1: Ranges of the eight physical parameters varied in LIDORT-RRS for the synthetic 611 

spectra calculations. 612 

Parameter Range 

Solar Zenith Angle 0-90° 

Viewing Zenith Angle 0-70° 

Relative Azimuth Angle 0-180° 

Surface albedo 0-1 

Surface pressure 250-1013.25 hPa 

O3 VCD 225-525 DU 

SO2 VCD 0-1000 DU 

SO2 Layer Height 2.5-20 km 

 613 

Table 2: The RMSE and the mean absolute difference (km) of all data points in the independent 614 

test set after adding noise as indicated by different SNR values. All other parameters and input 615 

data were kept constant. SZA < 75 degrees and SO2 VCD > 40 DU were excluded from the test 616 

set for these comparisons. 617 

 No noise SNR=1000 750 500 200 100 

Mean Absolute 

Difference (y_known - 

y_pred) (km) 

0.894  0.904  0.939 0.996 1.114 1.362 

RMSE (km) 1.454 1.498 1.521 1.632 1.807 2.143 

R-coefficient 0.988 0.985 0.983 0.980 0.972 0.955 

 618 

 619 

 620 

Table 3: The RMSE and the mean absolute difference of all data points in the test set under 621 

different conditions. For each condition, the appropriate points were removed and excluded in 622 

error calculations. All cases in this table used synthetic training spectra with added SNR 1000. 623 

  

All cases 
SO2 > 20 

DU 

SO2 > 40 

DU 

 SO2 > 60 

DU 
SZA < 75º 

SO2 > 40 DU and 

SZA < 75º 
Albedo < 0.6 

SO2 > 40 DU , 

SZA < 75º ,  

Albedo < 0.6 

RMSE 1.487 1.216 1.150 1.109 1.281 0.931 1.524 0.895 

Absolute Mean 

Difference (km) 

(Predicted – 

Actual) 

0.910 0.834 0.803 0.782 0.795 0.697 0.895 0.667 

 624 
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Table 4: Statistical comparisons of the SO2 height retrievals for two days of  the Raikoke 625 

eruption and the Kasatochi eruption cases.  626 

  Raikoke (June 23rd, 2019) Raikoke (June 24th, 2019) Kasatochi 

Metric (km) OMI IASI TROPOMI OMI IASI TROPOMI OMI IASI GOME-2 

Std. Deviation 1.67 0.85 1.96 2.38 0.65 1.04 1.39 0.72 1.29 

Median 10.60 9.00 12.10 10.30 10.00 13.24 9.70 10.00 10.21 

Mean 10.20 9.63 12.15 10.00 9.83 13.30 9.84 10.40 10.02 

IQR 1.79 1.00 2.71 2.68 1.00 1.20 1.36 1.00 1.67 

 627 

 628 

Appendix A 629 

 630 

Table A1: Mean absolute difference and RMSE for different reductions of the original training 631 

dataset. The test was performed on training sets for five different OMI rows and the errors were 632 

averaged. 633 

% of samples withheld 0 10 20 30 40 50 

Mean Abs Difference 0.95 0.98 1.02 1.08 1.12 1.24 

RMSE 1.46 1.45 1.62 1.69 1.79 2.00 

 634 

 635 

Table A2:  Effect of altering random seed number on error obtained using the test dataset, and 636 

the SO2 height retrieval result after application to OMI. For the results, heights for two different 637 

pixels within the orbit from the Raikoke event (June 24th, 2019) are shown. Heights were 638 

retrieved using separate inverse models trained using 10 random states.  639 

  
Random Seed 

Number 
1 2 3 4 5 6 7 8 9 10 

NN Training  

error 
Abs. Mean Error 0.98 1.14 1.03 1.16 1.08 1.18 1.05 1.01 1.12 0.98 

RMSE 1.69 1.85 1.71 1.78 1.79 1.92 1.71 1.67 1.73 1.70 

Application 

(Raikoke - OMI 

Orbit 79463) 

Sample pixel 1  10.52 10.69 10.49 9.72 9.98 10.23 10.53 10.19 10.07 10.48 

Sample pixel 2 12.42 13.15 12.08 11.70 11.88 12.01 12.38 11.22 11.94 12.16 

 640 

 641 

 642 

 643 
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 644 
Figure A1: OMI SO2 VCD for the four volcanic cases: (a) Kasatochi on August 10th, 2008, (b) 645 

Kelud on February 14th, 2014, (c) Calbuco on April 24th, 2015 and (d) Raikoke on June 24th, 646 

2019. In these maps, only pixels with SO2 > 10 DU are shown. 647 

 648 

 649 
Data availability. OMI SO2 L1 and L2 data can be accessed via the Goddard Earth Sciences Data and 650 

Information Services Center (GES DISC) at https://earthdata.nasa.gov/eosdis/daacs/gesdisc. IASI SO2 651 

LH data is available via the IASI AERIS portal https://iasi.aeris-data.fr/. NASA CALIPSO data can be 652 

downloaded from https://www-calipso.larc.nasa.gov/ and images can be found at https://www-653 

calipso.larc.nasa.gov/products/lidar/browse_images/production. TROPOMI L2 SO2 data can be obtained 654 

at https://s5phub.copernicus.eu/dhus/\#/home while the LH is experimental and is not yet publicly 655 

available online. The results of OMI SO2 layer height retrieval presented in this study can be obtained 656 

from the author by request. 657 
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