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Abstract. The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large 

parts of the world. We report results from a first attempt to determineTo investigate whether a regional-scale reduction of 

anthropogenic CO2 emissions during the COVID-19 pandemic can be detected using space-based observations of atmospheric 20 

CO2. For this purpose, we have analysed a small ensemble of OCO-2 and GOSAT satellite retrievals of column-averaged dry-

air mole fractions of CO2, i.e. XCO2. We focus on East China because COVID-19 related CO2 emission reductions are expected 

to be largest there early in the pandemic. We analysed four XCO2 data products from the satellites Orbiting Carbon 

Observatory-2 (OCO-2) and Greenhouse gases Observing SATellite (GOSAT). We use a data-driven approach that does not 

rely on a priori information about CO2 sources and sinks and ignores atmospheric transport. Our approach utilises the 25 

computation of XCO2 anomalies, ΔXCO2, from the satellite Level 2 data products using a method called DAM (Daily 

Anomalies via (latitude band) Medians). DAM removes large-scale, daily XCO2 background variations, yielding XCO2 

anomalies that correlate with the location of major CO2 source regions such as East China. We analysed satellite data between 

January 2015 and May 2020 and compared monthly XCO2 anomalies in 2020 with corresponding monthly XCO2 anomalies 

of previous years. In order to link the XCO2 anomalies to East China fossil fuel (FF) emissions, we used XCO2 and 30 

corresponding FF emissions from NOAA’s (National Oceanic and Atmospheric Administration) CarbonTracker version 
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CT2019 from 2015 to 2018. Using this CT2019 data set, we found that the relationship between target region ΔXCO2 and the 

FF emissions of the target region is approximately linear and we quantified slope and offset via a linear fit. We use the 

empirically obtained linear equation to compute ΔXCO2
FF, an estimate of the target region FF emissions, from the satellite-

derived XCO2 anomalies, ΔXCO2. We focus on October to May periods to minimize contributions from biospheric carbon 35 

fluxes and quantified the error of our FF estimation method for this period by applying it to CT2019. We found that the 

difference of the retrieved FF emissions and the CT2019 FF emissions in terms of the root-mean-square-error (RMSE) is 0.39 

GtCO2/year (4%). We applied our method to NASA’s (National Aeronautics and Space Administration) OCO-2 XCO2 data 

product (version 10r) and to three GOSAT products. We focus on estimates of the relative change of East China monthly 

emissions in 2020 relative to previous months. Our results show considerable month-to-month variability (especially for the 40 

GOSAT products) and significant differences across the ensemble of satellite data products analysed. The ensemble mean 

indicates emission reductions by approximately 8% ± 10% in March 2020 and 10% ± 10% in April 2020 (uncertainties are 1-

sigma) and somewhat lower reductions for the other months in 2020. Using only the OCO-2 data product, we obtain smaller 

reductions of 1-2% (depending on month) with an uncertainty of ±2%. The large uncertainty and the differences of the results 

obtained for the individual ensemble membersand use a simple data-driven analysis method. We present estimates of the 45 

relative change of East China monthly emissions in 2020 relative to previous periods limiting the analysis to October to May 

periods to minimize the impact of biogenic CO2 fluxes. The ensemble mean indicates an emission reduction by approximately 

10% ± 10% in March and April 2020. However, our results show considerable month-to-month variability and significant 

differences across the ensemble of satellite data products analysed. For example, OCO-2 suggests a much smaller reduction 

(~1-2% ± 2%). This indicates that it is challenging to reliably detect and to accurately quantify the emission reduction. with 50 

current satellite data sets. There are several reasons for this including the sparseness of the satellite data but also the weak 

signal (; the expected regional XCO2 reduction is only on the order of 0.1-0.2 ppm), the sparseness of the satellite data, 

remaining biases and limitations of our relatively simple data-driven analysis approach. Inferring COVID-19 related 

information on regional-scale CO2 emissions using current satellite XCO2 retrievals likely requires, if at all possible, a more 

sophisticated analysis method including detailed transport modelling and considering a priori information on anthropogenic 55 

and natural CO2 surface fluxes. 

 

1 Introduction 

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas significantly contributing to global warming (IPCC, 

2013). CO2 has many natural and anthropogenic sources and sinks and our current understanding of them has significant gaps 60 

(e.g., Ciais et al., 2014; Chevallier et al., 2014; Reuter et al., 2017c; Crisp et al., 2018; Friedlingstein et al., 2019). Efforts are 

ongoing to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, 

and to verify the effectiveness of policies such as the Paris Agreement (https://unfccc.int/process-and-meetings/the-paris-
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agreement/the-paris-agreement, last access: 8-Sept-2020) aiming to reduce greenhouse gas emissions (e.g., Ciais et al., 2014, 

2015; Pinty et al., 2017, 2019; Crisp et al., 2018; Matsunaga and Maksyutov, 2018; Janssens-Maenhout et al., 2020).  65 

Retrievals of XCO2 from the satellite sensors SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999; 

Reuter et al., 2010, 2011), TANSO-FTS/GOSAT (Kuze et al., 2016) and from the Orbiting Carbon Observatory-2 (OCO-2) 

satellite (Crisp et al., 2004; Eldering et al., 2017; O’Dell et al., 2012, 2018) have been used in recent years to obtain information 

on natural CO2 sources and sinks (e.g., Basu et al., 2013; Chevallier et al., 2014, 2015; Reuter et al., 2014a, 2017c; Schneising 

et al., 2014; Houweling et al., 2015; Kaminski et al., 2017; Liu et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer et 70 

al., 2019; Miller and Michalak, 2020), on anthropogenic CO2 emissions (e.g., Schneising et al., 2008, 2013; Reuter et al., 

2014b, 2019; Nassar et al., 2017; Schwandner et al., 2017; Matsunaga and Maksyutov, 2018; Miller et al., 2019; Labzovskii 

et al., 2019; Wu et al., 2020; Zheng et al., 2020a; Ye et al., 2020) and for other applications such as climate model assessments 

(e.g., Lauer et al., 2017; Gier et al., 2020) or data assimilation (e.g., Massart et al., 2016).  

Here we use an ensemble of satellite retrievals of XCO2 to determine whether COVID-19 related regional-scale (here ~20002 75 

km2) CO2 emission reductions can be detected and quantified using the current space-based observing system. This is important 

in order to establish the capabilities of current satellites, which have been optimized to obtain information on natural carbon 

sources and sinks, but not to obtain information on anthropogenic emissions. Nevertheless, data from existing satellites have 

already been used to assess anthropogenic emissions (see publications cited above). These assessments and the assessment 

presented in this publication are relevant for future satellites focussing on anthropogenic emissions such as the planned 80 

European Copernicus Anthropogenic CO2 Monitoring (CO2M) mission (e.g., ESA, 2019; Kuhlmann et al., 2019;  Janssens-

Maenhout et al., 2020), which is based on the CarbonSat concept (Bovensmann et al., 2010; Velazco et al., 2011; Buchwitz et 

al., 2013; Pillai et al., 2016; Broquet et al., 2018; Lespinas et al., 2020). 

We focus on China because regional-scale COVID-19 related CO2 emission reductions are expected to be largest there early 

in the pandemic (Le Quéré et al., 2020; Liu et al., 2020). Satellite data have been used to estimate China’s CO2 emissions 85 

during the COVID-19 pandemic (as shown in Zheng et al., 2020b),, but that study inferred CO2 reductions from retrievals of 

nitrogen dioxide (NO2) not using XCO2. Estimates of emission reductions have also been derived from bottom-up statistical 

assessments of fossil fuel use and other economic indicators. According to Le Quéré et al., 2020, China’s CO2 emissions 

decreased by 242 MtCO2 (uncertainty range 108 – 394 MtCO2) during January – April 2020. As China’s annual CO2 emissions 

are approximately 10 GtCO2/year (Friedlingstein et al., 2019), i.e., approximately 3.3 GtCO2 in a 4-month period assuming 90 

constant emissions, the average relative (COVID-19 related) change during January – April 2020 is therefore approximately 

7% ± 4% (0.242/3.3 ± 0.14/3.3). This agrees reasonably well with the estimate reported in Liu et al., (2020),, which is 109.3% 

for China during the first quarter of 2020 compared to the same period in 2019. Liu et al., (2020), also indicate some challenges 

in terms of interpreting CO2 emission reductions as being caused by COVID-19, e.g., the fact that the first months of 2020 

were exceptionally warm across much of the northern hemisphere. CO2 emissions associated with home heating may have 95 
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therefore been somewhat lower than for the same period in 2019, even without the disruption in economic activities and energy 

production caused by COVID-19 and related lockdowns.  

Sussmann and Rettinger, 2020, studied grond-based remote sensing XCO2 retrievals of the Total Carbon Column Observing 

Network (TCCON) to find out whether related atmospheric concentration changes may be detected by the TCCON and 

brought into agreement with bottom-up emission-reduction estimates. To the best of our knowledge, our study is the first 100 

attempt to determine quantitativelyOur study is one of the first attempts to determine whether COVID-19 related regional-

scale CO2 emission reductions can be detected using existing space-based observations of XCO2, although some qualitative 

results related to this application are also provided in the internet (e.g., ESA-NASA-JAXA, 2020). . Tohjima et al., 2020, 

inferred estimates of China’s CO2 emissions from modelled and observed ratios of CO2 and methane (CH4) surface 

concentrations at Hateruma Island, Japan. They report for China fossil fuel emission reductions of 32 ± 12% and 19 ± 15% 105 

for February and March 2020, respectively, which is about 10% higher compared to the results shown in Le Quéré et al., 

2020 (see Tab.1 of Tohjima et al., 2020). From model sensitivity simulations they conclude that even a 30% reduction of 

China’s fossil fuel CO2 emissions would only result in a 0.8 ppm XCO2 reduction over China and that it therefore would be 

very challenging to detect any COVID-19 related signal with the existing remote sensing satellites GOSAT and OCO-2. 

Their conjecture has essentially been confirmed by Chevallier et al., 2020. They used XCO2 from OCO-2 in combination 110 

with other data sets and the modelling of CO2 emission plumes of localized CO2 sources to obtain estimates of CO2 

emissions focussing on several COVID-19 relevant regions such as China, Europe, India and the USA. They concluded that 

these places have not been well observed by the OCO‐2 satellite because of frequent or persistent cloud conditions and they 

give recommendations for future carbon-monitoring systems.  Zeng et al., 2020, used modelling, GOSAT XCO2 and other 

data sets. They conclude that GOSAT is able to detect a short-term global mean XCO2 anomaly decrease of 0.2-0.3 ppm 115 

after temporal averaging (e.g., monthly) but for East China they could not identify a statistically robust COVID-19 related 

anomaly. Satellite-derived results related to this application are also provided in the internet (e.g., ESA-NASA-JAXA, 

2020). Ground-based XCO2 retrievals of the Total Carbon Column Observing Network (TCCON) have also been used to 

address this issue (Sussmann and Rettinger, 2020). Sussmann and Rettinger, 2020, studied XCO2 retrievals to find out 

whether related atmospheric concentration changes can be detected by the TCCON. 120 

Regional-scale reductions of tropospheric NO2 columns have been reported for China (e.g., Zhang et al., 2020; Bauwens et 

al., 2020), but for CO2 such an assessment is more challenging because of small XCO2 changes on top of a large background. 

For example, over extended anthropogenic source areas such as East China, the XCO2 enhancement due to anthropogenic 

emissions is typically only approximately 1 - 2 ppm (0.25% - 0.5% of 400 ppm) or even less (see, e.g., Schneising et al., 

2008, 2013; Hakkarainen et al., 2016, 2019; Chevallier et al., 2020; Tohjima et al., 2020; and this study).  A 10% emission 125 

reduction would therefore only change the regional XCO2 enhancement by 0.1 to 0.2 ppm. This is below the single 

measurement precision of current satellite XCO2 data products, (at footprint size, i.e., 10.5 km diameter for GOSAT (Kuze et 

al., 2016) and 1.3 x 2.3 km2 for OCO-2 (O’Dell et al., 2018)), which is about 1.8 ppm (1-sigma) (e.g., Dils et al., 2014; 
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Kulawik et al., 2016; Buchwitz et al., 2015, 2017a; Reuter et al., 2020) for GOSAT and around 1 ppm for OCO-2 (Wunch et 

al., 2017; Reuter et al., 2019). This implies that the satellite data need to be averaged to reduce random error (noise) 130 

contributions. Therefore, we focus on XCO2 monthly averages.In our study we focus on XCO2 monthly averages. Averaging 

reduces the noise of the satellite retrievals (e.g., Kulawik et al., 2016) but also eliminates day-to-day XCO2 variations (e.g., 

Agustí-Panareda et al., 2019), which cannot be interpreted using our simple analysis methods.  The accuracy of the East 

China satellite XCO2 retrievals averaged over monthly timescales is difficult to assess because of limited reference data. The 

validation of the satellite data products is primarily based on comparisons with ground-based XCO2 retrievals from the 135 

TCCON, a relatively sparse network with an uncertainty of about 0.4 ppm (Wunch et al., 2010). The estimated precision and 

accuracy of the satellite XCO2 retrievals as obtained from comparisons with TCCON XCO2 retrievals is typically on the 

order of 0.7 ppm (e.g., Buchwitz et al., 2017a; Reuter et al., 2020) but this estimate assumes error-free TCCON retrievals, 

i.e., it neglects the non-negligible uncertainty of TCCON.  

The purpose of this study is to investigate - using satellite XCO2 retrievals - if satellite-derived East China fossil fuel (FF) CO2 140 

emissions in 2020 (COVID-19 period) differ significantly compared to pre-COVID-19 periods. Ideally, we would like to know 

by how much emissions have been reduced due to COVID-19. This question, however, cannot be answered using only satellite 

data because they do not contain any information on how much would have been emitted without COVID-19. Instead, we aim 

at answering the following question: Are satellite-derived East China FF CO2 emissions early in the pandemic (here: January 

– May 2020) significantly lower compared to pre-COVID-19 periods?  145 

To answer this question, we analyse relative differences of estimates of East China monthly FF emissions during different time 

periods. We focus on October to May periods and we refer to different periods via the year where a period ends, i.e., we call 

the period October 2019 to May 2020 “year 2020 period” or simply “2020”, the period October 2018 to May 2019 is called 

2019, etc. Specifically, we compute and analyse differences of monthly emissions in the year 2020 period relative to previous 

year 2016 to 2019 periods, i.e., we use 4 periods for comparison with the year 2020 period. To focus on the COVID-19 aspect, 150 

we subtract for each period the October to December (OND) mean value and we refer to these time series as OND anomalies. 

These OND anomalies are time series at monthly resolution of relative emission difference between different periods relative 

to OND. Negative OND anomalies during the COVID-19 period would then suggest (depending on uncertainty) that an 

emission reduction during the COVID-19 period has been detected.  

The structure of our manuscript is structured as followsreflects this procedure: In Sect. the Data Section 2 we present the 155 

satellite and model input data used for this study and in Sect. . In the Methods Section 3 we present the analysis method. The 

, which consists of two main section is Sect. 4 where steps. The purpose of the first step is to isolate the East China FF 

emission signal from the XCO2 satellite retrievals. This is done by subtracting appropriate XCO2 background values from the 

XCO2 retrievals to obtain XCO2 anomalies, ΔXCO2. We use two methods to compute ΔXCO2. We describe one method, the 

“DAM method”, in detail in Sect. 3.1 and only shortly explain the second method (“TmS method”) referring for details to 160 

Appendix A. In the second step (Sect. 3.2) we compute estimates of East China monthly FF CO2 emissions from the XCO2 
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anomalies. These emission estimates are then used to compute the OND anomalies explained above. In Results Section 4 we 

present and discuss the results., i.e., the application of the described methods to the satellite data. A summary and 

conclusions are given in Sect. 5. 

 165 
 
2 Data 

In this section, we present a short overview about the input data used for this study.   

2.1 Satellite XCO2 estimatesretrievals 

This study uses four satellite XCO2 Level 2 (L2) data products. An overview about these data sets is provided in Tab. 1 170 

including references and access information.. The first product listed in Tab. 1 is the latest version of the bias-corrected OCO-

2 XCO2 product delivered to the Goddard Earth Science Data and Information Services Center (GES DISC) by the OCO-2 

team (ACOS v10r Lite). The other three satellite XCO2 datasets are different versions of the GOSAT XCO2 product derived 

using retrieval algorithms developed by groups at the University of Leicester, U.K. (UoL-FP v7.3), the SRON Netherlands 

Institute for Space Research (RemoTeC v2.3.8), and the University of Bremen, Germany (FOCAL v1.0).  175 

The XCO2 estimates derived from OCO-2 (e.g., O’Dell et al., 2018) and GOSAT (e.g., Kuze et al., 2016) observations are 

complementary because these two spacecraft use different sampling strategies.  OCO-2 has been operating since September 

2014.  Its spectrometers collect about 85000 cloud-free XCO2 soundings each day along a narrow (< 10 km) ground track as 

it orbits the Earth 14.5 times each day from its sun synchronous 1:36 PM orbit. The OCO-2 soundings provide continuous 

measurements with relatively high spatial resolution (1.3 x 2.25 km3 km2) along each track, but the individual ground tracks 180 

are separated by almost 25° longitudelongitudes in any given day. This spacing is reduced to approximately 1.5° longitude 

after a 16-day ground track repeat cycle. GOSAT has been returning 300 to 1000 cloud-free XCO2 soundings each day since 

April 2009. Its TANSO-FTS spectrometer collects soundings with ~10.65 km diameter surface footprints, separated by 

approximately 250 km along and across its ground track at it orbits from north to south across the sunlit hemisphere.   

2.2 Model CO2 data 185 

We use data from NOAA’s (National Oceanic and Atmospheric Administration) CO2 assimilation system, CarbonTracker 

(CT2019) (Jacobson et al., 2020; Peters et al., 2007) to define the relationship between XCO2 anomalies and fossil fuel 

emissions.  CarbonTracker is a global atmospheric inverse model that assimilates atmospheric CO2 measurements as well as 

estimates of emissions from fossil fuels and fires and other sources into an atmospheric transport model to estimate emissions 

and uptake of CO2 by the land biosphere and oceans. An overview about CT2019 set is provided in Tab. 2 including references 190 

and access information. A description of CT2019 can also found on the CT2019 website 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/index.php, last access: 24-September 2020): “CarbonTracker produces 

model predictions of atmospheric CO2 mole fractions, to be compared with the observed atmospheric CO2 mole fractions. The 
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difference between them is attributed to differences in the sources and sinks used to make the prediction (the so-called 'first-

guess') and the sources and sinks affecting the true atmospheric CO2. Using numerical techniques, these differences are used 195 

to solve for a set of sources and sinks that most closely matches the observed CO2 in the atmosphere.to produce modelled 

fields of atmospheric CO2 mole fractions by adjusting land biosphere and ocean CO2 surface fluxes. An overview about 

CT2019 set is provided in Tab. 2 including references and access information. In short, CarbonTracker has a representation of 

atmospheric transport based on weather forecasts, and modules representing air-sea exchange of CO2, photosynthesis and 

respiration by the terrestrial biosphere, and release of CO2 to the atmosphere by fires and combustion of fossil fuels.”. 200 

 
 
3. Methods 

To analyse the satellite data with respect3.1 Methods to regionally elevatedcompute XCO2 due to anomalies (ΔXCO2) 

Satellite XCO2 retrievals contain information on anthropogenic CO2 emissions, we (e.g., Schneising et al., 2013; Reuter et 205 

al., 2014b, 2019; Nassar et al., 2017) but extracting this information requires appropriate data processing and analysis. For a 

strong (net) source region XCO2 is typically higher compared to its surrounding area. Our method is based on computing and 

subtracting XCO2 background values. The purpose of this background correction is to isolate the regional emission signal by 

removing large-scale spatial and day-to-day temporal XCO2 variations, which cannot be dealt with in our simple data-driven 

method to estimate emissions.  210 

XCO2 varies temporally and spatially (e.g., Agustí-Panareda et al., 2019; Reuter et al., 2020; Gier et al., 2020), for example, 

due to quasi-regular uptake and release of CO2 by the terrestrial biosphere, which results in a strong seasonal cycle, 

especially over northern mid and high latitudes. Compared to fluctuations originating from the interaction of the terrestrial 

biosphere and the atmosphere, the spatio-temporal XCO2 variations due to anthropogenic fossil fuel (FF) CO2 emissions are 

typically much smaller (e.g., 1 ppm compared to 10 ppm (Schneising et al., 2008, 2013, 2014; Agustí-Panareda et al., 215 

2019)).  

A method used for background correction is the one described in Hakkarainen et al., 2019 (see also Hakkarainen et al., 2016, 

for a first publication of that method). We use a method referred to two different methods for background correction. We 

refer to these methods as DAM (“Daily Anomalies via (latitude band) Medians). The ” (DAM method), which is essentially 

identical with the method described in Hakkarainen et al., 2016 and 2019. They2019, and a second method called “Target 220 

minus Surrounding” (TmS). 

Hakkarainen et al., 2019, applied their method to the OCO-2 Level 2 XCO2 data product to filter out trends and seasonal 

variations in order to isolate CO2 source/sink signals. For background correction, Hakkarainen et al., 2019, explain their 

method as follows: “In order to obtain the background, we calculate the daily medians for each 10-degree latitude bandbands 

and linearly interpolate the resulting values to each OCO-2 data point. The median was chosen because it better represents 225 
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the typical value in each latitude band, and it is not skewed towards extreme values”.  Our approach is very similar, but 

instead Instead of interpolation, we compute the median around each latitude (“running median”) using a latitude band width 

of ±15 deg. We use a larger width compared to Hakkarainen et al., 2019, becauseas we also apply our method to GOSAT 

data, which are much sparser than OCO-2 data. Our investigations showed that the width of the latitude band is not critical 

but. The band needs to be wide enough to contain a statistically significant sample, but narrow enough to resolve large 230 

latitudinal gradients in CO2. We subtract the corresponding median from each single XCO2 observation as contained in the 

original Level 2 XCO2 data product files to obtain a data set of XCO2 anomalies, ΔXCO2. For illustration, we gridded these 

anomalies to obtain global maps. Figure 1 shows such a DAM XCO2 anomaly map at 1ox1o resolution covering the time 

period 2015 – 2019. The resulting spatially resolved XCO2 anomalies are very similar as the one shown in Hakkarainen et 

al., in the original Level 2 XCO2 data product files to obtain a data set of XCO2 anomalies, ΔXCO2
DAM. 2019 (see their Fig. 235 

3, top panel). The good agreement confirms the finding reported above that the generation of these anomaly maps does not 

critically depend on how exactly the median is computed and used to subtract “the background”. 

A zoom into Fig. 1 is presented in Fig. 2, which shows more details for China and surrounding areas. As can be seen from 

Fig. 2, the DAM ΔXCO2 has a positive anomaly especially in the region between Beijing, Wuhan and Hong Kong with 

highest values in the area between Beijing and Shanghai. This positive anomaly indicates that this region is an important 240 

CO2 source region. Of course, there is no one-to-one correspondence (especially not for every grid cell) between these XCO2 

anomalies and local CO2 emissions (or uptake) because the emitted CO2 is transported and mixed in the atmosphere. 

Furthermore, the satellite data are typically sparse due to strict quality filtering to avoid potential XCO2 biases, for example, 

due to the presence of clouds. Cloud contaminated ground scenes are identified to the extent possible via the corresponding 

retrieval algorithm and flagged to be “bad” (see references listed in Tab. 1) and are therefore not used for this analysis. The 245 

sparseness of the satellite data set is obvious from Fig. 3, which shows DAM XCO2 anomaly maps for the month of 

February during the six years from 2015 to 2020. 

The geographical coordinates of the East China target region investigated here are listed in Tab. 3.  The fossil fuel (FF) CO2 

emissions of this target region are approximately 8 GtCO2/year, i.e., the selected target region covers approximately 80% of 

the FF emissions of entire China, which are approximately 10 GtCO2/year (Le Quéré et al., 2018; Friedlingstein et al., 2019). 250 

For our East China analysis, we compute regional averages of DAMIn order to verify that our results do not critically depend 

on the details of one method we also use the second TmS method. Here we obtain the background by averaging XCO2 in a 

region surrounding the target region (see Tab. 3 for the latitude and longitude corner coordinates of the target and its 

surrounding region).  

We call these background corrected XCO2 retrievals XCO2 anomalies and satellite-derived maps and time series of these 255 

XCO2 anomalies by averaging the ΔXCO2 values for all satellite ground scenes (footprints) as located in the East China 
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target region for each day in the period January 2015 to May 2020.are presented and discussed in Sect. 4.1. These East China 

daily time series XCO2 anomalies are then further averagedused to obtain monthlycompute East China ΔXCO2FF CO2 

emission estimates, CO2
FF, as presenteddescribed in the following sub-section. 

 260 
 
4. Results and discussion 
 
4.1 Application of the DAM method to model data 

 265 

3.2 Computation of emission estimates (CO2FF)    

To determine whether satellite XCO2 retrievals can provide information on relative changes of anthropogenic CO2 emissions 

for the East China target region, we must establish thea relationship between the DAM XCO2 anomalies (see Sect. 3.1) and 

the desired estimates of the target region fossil fuel (FF) emissions. For this purposeTo develop a method to convert the XCO2 

anomalies, ΔXCO2, to FF emission estimates, CO2
FF, we use an existing model data set, the CarbonTracker (CT2019) data set 270 

described in Sect. 2.2. , which contains atmospheric CO2 fields and corresponding CO2 surface fluxes during 2015 – 2018. 

Figure 41 shows CT2019 XCO2 maps (left) and corresponding surface CO2 flux maps (right) for selected days in the January 

to May 2018 period. The XCO2 has been computed by vertically integrating the CT2019 CO2 vertical profiles (weighted with 

the surface pressure normalized pressure change over each layer). The model data are sampled at local noon, which is close to 

the overpass time of the satellite data sets used here. The spatio-temporal sampling of a specific satellite XCO2 data product is 275 

not considered here, i.e., we use the CT2019 data set independent of any satellite data product apart for the sampling at local 

noon. As can be seen from Fig. 1As can be seen from Fig. 4, XCO2 is clearly elevated over the East China target region (red 

rectangle) relative to its surrounding region on 15-January-2018 (panel Fig. 1(a)) and on 15-March-2018 (panel Fig. 1(c)). On 

15-May-2018 (panel Fig. 1(e)) the target region and parts of the surrounding region contain large areas of lower than average 

XCO2, a pattern which primarily results from carbon uptake by vegetation during the growing season, which starts in eastern 280 

China around May each year. The CO2 fluxes, which are shown inon the right-hand side panels of Fig. 41, show similar spatial 

pattern as the XCO2 maps but as already explained, due to atmospheric transport and the long lifetime of atmospheric CO2 

there is not ano one-to-one correspondence between atmospheric XCO2 and surface emissions due to atmospheric transport.. 

The CO2 fluxes are the sum of several contributing fluxes including FF emissions, biosphericbiogenic fluxes and other fluxes 

(e.g., due to fires and the, oceans). 285 

Figure 52(a) shows time series obtained by applying the DAM method to CT2019 XCO2 for the East China target region. The 

top panel showsThe CT2019 data set not only contains atmospheric CO2 concentrations but also its components due to fossil 

fuel (FF) emissions and biogenic (BIO) and other fluxes. From the CT2019 FF emissions as thick red line. For each day,data 

set we computed total XCO2 (TOT), and its FF and BIO components. From these components we subtracted the background 

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftfarbe: Automatisch

Formatiert: Schriftart: Nicht Fett

Formatiert: Schriftfarbe: Automatisch



10 
 

using the DAM method and the corresponding monthly ΔXCO2
DAM time series are shown in Fig. 2(a). As can be seen from 290 

Fig. was applied to CT2019 XCO2 2(a), total ΔXCO2
DAM (black line) is dominated by its FF (red line) and BIO (green line) 

components (their sum, i.e., FF + BIO (grey line), is close to compute daily (and then monthlyTOT (black line)). As can also 

be seen, FF emissions for East China (red line) are larger than the BIO fluxes (green line) at least during October to April. 

During May to September the BIO fluxes are negative due to uptake of atmospheric CO2 by the terrestrial biosphere and their 

absolute value is on the same order or may even significantly exceed the FF emissions. As a consequence, total ΔXCO2
DAM 295 

(black line) gets negative. During these months, the total anomaly (black line) is closer to BIO (green line) than to FF (red 

line). 

The task for the satellite inversion is to obtain estimates of East China FF CO2 emissions from the satellite-derived (total) 

XCO2 anomalies, ΔXCO2. The monthly CT2019 ΔXCO2 values were linearlyΔXCO2
DAM (black line in Fig. 2(a)). To determine 

to what extent this is possible, we fitted to the monthlyCT2019 ΔXCO2
DAM (i.e., the quantity that we can also obtain from 300 

satellites) to the East China CT2019 FF CO2 emissions to obtain a quantity referred to as ΔXCO2
FF, (which closely 

resemblesare the FFknown “true emissions as shown” in the top panel of Fig. 5.this model data assessment exercise). The 

linear fit yields ΔXCO2
FF = 0.914 x ΔXCO2 + 7.106, with ΔXCO2 in parts per million (ppm) and ΔXCO2

FF in GtCO2/year. 

Using this linear transformation, ΔXCO2 can be transformed into ΔXCO2
FF and daily and monthly ΔXCO2

FF valuesresults are 

shown in Fig. 5 as thin grey line and blue dots, respectively.2(b) for October to May periods. The estimated emissions (black 305 

crosses) have been obtained via a linear fit of ΔXCO2
DAM to the CT2019 FF emissions (red dots). The two parameters of the 

linear fit are also shown in 2(b): Scaling factor A (= 0.90) and offset B (= 7.41). As can be seen, the estimated emissions agree 

reasonably well with the “true” emissions. The linear correlation coefficient R is 0.83 (see Fig. 2(c)) and the relative difference 

in terms of mean and standard deviation is 0.2% ± 5% (see Fig. 2(d)). However, for individual months the error can be as large 

as 10%. From this we conclude that the (approximately 2-sigma) uncertainty of our method is approximately 10%.  310 

Initially, we assumed that ΔXCO2 isA similar figure but generated using the TmS method is shown in Appendix A as Fig. A1. 

As can be seen, the results shown in Fig. A1 (b) to (d) are similar to the ones shown in Fig. 2 (b) to (d) but the linear correlation 

is slightly worse and the errors are slightly larger. In contrast, the time series shown in panels (a) differ significantly. This is 

because of the different background corrections used for the two methods. But despite these significant differences the quality 

of the derived emissions is similar (the standard deviation of the monthly biases is 5.5% for TmS and 4.8% for DAM, see 315 

panels (d)). Nevertheless, the DAM method gives slightly better results compared to the TmS method and this is also confirmed 

by applying both methods to the satellite data (see Sect. 4). Therefore, the DAM method is our baseline method and we focus 

on results obtained with the DAM method. 

It is perhaps surprising that the offset (fit parameter B, see above) is so large (7.41 for DAM and 7.63 for TmS). Probably one 

would assume that the XCO2 anomalies ΔXCO2 are directly proportional to the target region fossil fuel emissions, i.e., we 320 

assumedone would assume that FF is (approximately) equal to a constant multiplied by ΔXCO2 (no offset added). If we were) 

(for example, for FF = 8 GtCO2/year and ΔXCO2 = 2 ppm one would have expected that the conversion factor is 4 
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GtCO2/year/ppm). In that case, as  we are only interested in relative changes in emissions, we would not need to know the 

exact valuesvalue of the scaling factor. WeHowever, when analysing the satellite data, we found that ΔXCO2 is around 2 ppm 

for January but decreases in subsequent months, nearly approaching zero in May (notwhich is consistent with the CT2019 325 

results shown here but seein Fig. 5, top panel, showing 2(a time series of ΔXCO2
FF (blue dots)). As anthropogenic emissions 

are not expected to change that much within a few months (and zero emissions around May are not realistic at all) we concluded 

that the simple proportionality assumption does not hold. We thenTo investigate this we used the CT2019 data set to test and 

improve our method. and the results are reported in this section. We applied our method to CT2019 XCO2 (as shown in Fig. 

2) and compared the retrieved FF values with the (“true”) CT2019 FF values as used by CT2019. We found large differences, 330 

which could be significantly reduced by adding an offset. To obtain numerical values for the offset (see parameter B in Fig. 5, 

top panel) and for the scaling factor (see parameter A in Fig. 5, top panel) we used a to the linear fit as discussed above. The 

reason for the large offset is the influence of the biosphere. Around May the uptake of atmospheric CO2 due to the biosphere 

is so large that ΔXCO2 is close to zero - but the FF emissions are not - and the East China target regions is essentially “carbon 

neutral” or even a net sink (see also Fig. 1).   335 

As explained above, i.e., these two parameters , scaling factor A and offset B are obtained empirically.  via a linear fit using 

CT2019 data (Fig. 2(b)) and used for the conversion of the satellite XCO2 anomalies during the entire time period January 

2015 to May 2020 (as will be shown in Sect. 4). As can be seen from Fig. 2 (b) and (c), the retrieval biases are within ±10% 

during 2015-2018. We assume in our study that the same conversion is also appropriate for 2019 and 2020. However, it cannot 

be ruled out that 2019 or 2020 were significantly different compared to previous years with respect to aspects relevant for our 340 

study. To address this, we compare period  October 2019 to May 2020 results with the corresponding results from previous 

October to December periods to find out to what extent the period of interest, i.e., October 2019 to May 2020, is significantly 

different taking into account the year-to-year variability, which we use to obtain uncertainty estimates. 

We use target region monthly ΔXCO2
FF as a satellite-based estimate of target region monthly FF emissions. The middle and 

the bottom panels of Fig. 5 show the absolute and the relative monthly differences between ΔXCO2
FF and the FF emissions, 345 

respectively. Also listed are several quantities used to characterise the level of agreement/disagreement: D is the mean 

difference, S is the standard deviation of the difference, RMSE is the root-mean-square-error and R is the linear correlation 

coefficient of the monthly ΔXCO2
FF and FF values. As can be seen, the RMSE is 0.45 GtCO2/year (6%) for the entire time 

series 2015 – 2018. The RMSE is reduced to 0.39 GtCO2/year (4%) if the analysis is restricted to time periods covered by the 

months October to May, which is the relevant period for this study as it covers pre-COVID-19 (October – December 2019) 350 

and COVID-19 (January – May 2020) periods. Excluding June to September data reduces the RMSE because (during this 

summer period) disturbances from biospheric fluxes (i.e., photosynthesis related fluxes during the vegetation growing season) 

are largest. As shown in Fig. 5, ΔXCO2
FF is to a good approximation proportional to FF emissions and for this study it is 

assumed that relative changes of the monthly ΔXCO2
FF values can be used as a sufficiently accurate proxy for relative changes 

of the monthly FF emissions. 355 
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The methodThe methods described in this section hashave been applied to convert satellite-derived target region XCO2 

anomalies, ΔXCO2, into ΔXCO2
FF. Monthly ΔXCO2

FF values have been computed for each satellite data product and used to 

find out if FF reductions during the COVID-19 pandemic can be detected in these time series, as will be estimated target region 

FF CO2 emissions, CO2
FF. How this has been done using the DAM method for background correction is explained in the 

following sub-sections.Sect. 4, where we refer for the corresponding TmS method results to Appendix A.   360 

 
 
4. Results and discussion 
 
 365 
 
In this section, we present results obtained by applying the DAM method (see Methods Sect. 3.1) to the satellite data to 

obtain XCO2 anomalies from which we derive FF emission estimates (see Methods Sect. 3.2).   

  
 370 
4.21 Application of the DAM method to satellite XCO2 retrievals 

The DAM method has been applied to the OCO-2 and GOSAT satellite XCO2 data products listed in Tab. 1. Figure 3 shows 

a global OCO-2 DAM XCO2 anomaly map at 1ox1o resolution for the period 2015 – 2019. A similar map is shown in 

Hakkarainen et al., 2019 (see their Fig. 3, top panel). The degree of agreement confirms the finding reported in Sect. 3.1 that 

the generation of these anomaly maps does not critically depend on how exactly the median is computed and used to subtract 375 

“the background”. Hakkarainen et al., 2019, discuss their OCO-2 derived maps in quite some detail also in terms of seasonal 

averages and comparisons with model simulations. They show that positive anomalies correspond to fossil fuel combustion 

over major industrial areas including China. Their seasonal maps (see their Fig. 4) show a strong positive anomaly over East 

China (similar as shown here in Fig. 3) except for the June-August (JJA) summer season, where the XCO2 anomaly can be 

negative. This is consistent with the CT2019 results presented in Sect. 3.2. 380 

A zoom into Fig. 3 is presented in Fig. 4, which shows more details for China and its surrounding area. As can be seen from 

Fig. 4, ΔXCO2
DAM is positive especially in the region between Beijing, Wuhan and Hong Kong with highest values in the 

area between Beijing and Shanghai. This positive anomaly indicates that this region is a strong CO2 source region as also 

discussed in Hakkarainen et al., 2019. As already explained, there is no one-to-one correspondence (especially not for every 

grid cell) between local XCO2 anomalies and local CO2 emissions (or uptake) because the emitted CO2 is transported and 385 

mixed in the atmosphere. Furthermore, the satellite data are typically sparse due to strict quality filtering to avoid potential 

XCO2 biases, for example, due to the presence of clouds. Cloud contaminated ground scenes are identified to the extent 

possible via the corresponding retrieval algorithm (see references listed in Tab. 1) and flagged to be “bad” and are therefore 

not used for this analysis. The sparseness of the satellite data set is obvious from Fig. The DAM method described in the 

previous section has been applied to a small ensemble of XCO2 retrievals from OCO-2 and GOSAT (see details listed in 390 
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Tab. 1) and the results are presented below. As noted above, a5, which shows OCO-2 DAM XCO2 anomaly maps for 

February during the six years 2015 to 2020. 

A key difference between the OCO-2 and the GOSAT data products is the different sampling of the target region, with 

GOSAT having much sparser coverage compared to OCO-2. This is illustrated in Fig. 6, which shows February to March 

2020 averages of the OCO-2 XCO2 data product (Fig. 6a) and the three GOSAT data products (Fig. 6b – 6d) at 1ox1o 395 

resolution. The OCO-2 product shown in Fig. 6a is NASA’s OCO-2 operational “Atmospheric CO2 Observations from 

Space” (ACOS) algorithm version 10r bias corrected XCO2 product (the so called Lite product), which is referred to in this 

publication via the product identifier (ID) CO2_OC2_ACOS. The three GOSAT XCO2 products are (see details and 

references as given in Tab. 1): Fig. 6b: University of Leicester’s GOSAT product (ID CO2_GOS_OCFP); Fig. 6c: SRON 

Netherlands Institute for Space Research GOSAT product (CO2_GOS_SRFP); Fig. 6d: University of Bremen’s GOSAT 400 

product (CO2_GOS_FOCA) as retrieved with the “Fast atmOspheric traCe gAs retrievaL” (FOCAL) retrieval algorithm 

initially developed for OCO-2 (Reuter et al., 2017a, 2017b). As can be seen from Fig. 6, the spatial sampling of the target 

region is different for each product as only quality-filtered (i.e., “good”) data are shown and the quality filtering is algorithm 

specific (see references listed in Tab. 1).  

Figure 6 also shows as red rectangle the East China target region as defined for this study (the geographical coordinates are 405 

listed in Tab. 3).  The fossil fuel (FF) CO2 emissions of this target region are approximately 8 GtCO2/year, i.e., the selected 

target region covers approximately 80% of the FF emissions of entire China, which are approximately 10 GtCO2/year (Le 

Quéré et al., 2018; Friedlingstein et al., 2019). In the following section we present East China FF emission estimates as derived 

from the satellite XCO2 anomalies during and before the COVID-19 period. 

 410 
 
 
4.2. Emission estimates 
 
Carbon dioxide fossil fuel emission estimates, CO2

FF, have been derived from the XCO2 anomalies, ΔXCO2, computed for 415 

each of the four satellite XCO2 data products listed in Tab. 1 Application. In this section the emission results are presented 

and discussed. We focus on results based on ΔXCO2 derived with the DAM method and refer to Appendix A for results 

based on the TmS method.   
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 420 
4.2.1 Emission estimates from NASA’s OCO-2 (version 10r) XCO2 

Figure 7 shows the results obtained by applying the DAM method to product CO2_OC2_ACOS (see Tab. 1) for the East China 

target region for the period January 2015 to May 2020. The top panel (the TmS version of this figure is shown as Fig. A2 in 

Appendix A). Figure 7(a) shows the daily DAM XCO2 anomalies as thin grey line and the corresponding monthly averages as 

red dots. The amplitude (approximately ±1 ppm) and time dependence (e.g., there is athe minimum in the middle of each year) 425 

is similar as expected as can be concluded from a comparison with the corresponding for CT2019 results shown in (Fig. 5 (but 

note2(a) black line). To ensure that Fig. 7 shows ΔXCO2 whereas Fig. 5 shows ΔXCO2
FF, which differs somewhat in amplitude 

and offset due to the applied linear transformation as explained in Sect. 4.1). Two there are a sufficiently large number of 

observations per month, two criteria need to be fulfilled for the monthly data shown in this figure: (i) The : There must be a 

minimum number of days per month is(here: 5) and (ii) thea minimum number of observations per day is(here: 30, i.e., at least 430 

5 days per month having (). The latter criterion is also relevant for each day) at least 30 observations per day in the target 

region need to be available for a month to be accepted (results forthe daily data shown in Fig. 7(a) (grey line). We also used 

other combinations of these two parameters are presented (as shown below).  , e.g., Fig. 9). 

The middle panel of Fig. 7 shows monthly ΔXCO2
FF for October - May for five different periods:  October 2019 – May 2020 

(red), October 2018 – May 2019 (blue) and three corresponding periods in earlier years (see annotation as listed in the figure 435 

panel).  As can be seen from this panel, the red curve (October 2019 – May 2020) shows, apart from March 2020, somewhat 

lower values in the period February 2020 – May 2020 (i.e., during the “COVID-19 period”) compared to January 2020 and 

earlier months (“pre-COVID-19 period”). However, the time dependence shows significant month-to-month variability. 

Furthermore, a similar time dependency is also present for October 2015 – May 2016 (pink). In comparison to the other periods 

from earlier years, the (red) October 2019 – May 2020 values are mostly close to the maximum (or even exceed) the values of 440 

the other curves corresponding to earlier October – May time periods. 

The bottom panel of Figure 7 shows the corresponding relative differences, as we are mostly interested in relative (percentage) 

changes of the target region FF emissions. The blue dots (and connecting lines) show the relative difference between the red 

dots from in the middle panel (this time series ends in May 2020) and the blue dots shown in the middle panel (this time series 

ends in May 2019). If for simplicity we refer to time series ending in May as “2020” (red dots in middle panel) and “2019” 445 

(blue dots in middle panel), then the blue dots displayed in the bottom panel show “(2020-2019)/2019”, i.e., they are a proxy 

for the relative change of the target region FF emissions of the corresponding months in 2020 relative to 2019 (for January to 

May; for October to December the difference corresponds to 2019 relative to 2018). The green dots show the corresponding 

relative differences for 2020 relative to 2018, the orange dots correspond to the relative differences for 2020 relative to 2017 

and the pink dots show the relative differences for 2020 relative to 2016. As can be seen from the bottom panel of Fig. 7, the 450 

relative difference between the time series ending in May 2020 and in May 2019 (blue dots in the bottom panel) also shows 

significant variability from month to month. Compared to all previous differences (2020-2018, 2020-2017, etc.) one sees that 
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these differences are mostly positive and typically somewhere in the range between 0% and +10%. Figure 7 indicates that 

during October 2019 to May 2020 target region FF emissions are on average a few percent higher compared to previous years. 

The data shown in the bottom panel of Fig. 7 are also shown in Fig. 8 (see thin lines using different colours) but together with 455 

derived monthly median (and mean) values. In addition, vertical bars are shown to indicate the scatter of the monthly values. 

As we are primarily interested in changes during the January to May 2020 period compared to preceding months (October – 

December 2019) and compared to previous years, the median has been computed for each month and the October – December 

2019 (i.e., pre-COVID-19 OND months) mean value has been subtracted to highlight the difference of 2020 relative toFigure 

7(b) shows monthly ΔXCO2
DAM for different October to May periods and Fig. 7(c) shows the corresponding estimated FF 460 

emissions, CO2
FF(DAM). Figure 7(d) shows relative differences of the time series shown in Fig. 7(c). For example, the blue data 

are referred to as “(2020-2019)/2019” in Fig. 7(d), where 2019 refers to the blue data in Fig. 7(c), which corresponds to the 

period ending in May 2019. Shown are differences of year 2020 data (red in Fig. 7(c)) minus data from previous periods, i.e., 

Fig. 7(d) shows to what extent 2020 (strictly speaking the period 10.2019 – 5.2020, i.e., the period which ends in 2020) differs 

relative to previous October to May periods. 465 

To find out if we can detect a difference between the COVID-19 period and pre-COVID-19 periods, we subtract from each 

time series shown in Fig. 7(d) the October to December (OND) mean value. The corresponding time series are shown in Fig. 

7(e) and are referred to as “OND anomalies” in the following. As can be seen from Fig. 7(e), the OND anomalies vary within 

±5%. Values before January scatter around zero as the mean value of OND anomalies is zero by definition during October to 

December. In January the values also scatter around zero. After January most values are negative indicating reduced emissions 470 

compared to pre-COVID-19 periods. This can be seen more clearly in Fig. 8, where the same data as in Fig. 7(e) are shown 

but in addition the ensemble mean (light blue thick lines and dots) and median (royal blue thick lines and dots) has been added 

including uncertainty estimates as computed from the standard deviation of the ensemble members. 

 2019. The corresponding monthly medians are shown as thick royal blue symbols (and connecting lines) and the scatter - as 

computed from the standard deviation of the monthly values – is shown as royal blue vertical bars. The light blue symbols and 475 

lines show the corresponding values when using the mean instead of the median. In grey, the “original” median values are 

shown, i.e., in grey, the median values are shown before the offset has been subtracted (i.e., the “absolute” values are shown 

in grey and the corresponding “OND anomaly” is shown in royal blue). The royal blue curve indicates that ΔXCO2
FF, our 

proxy for the target region FF emissions, is 2-3% lower in February to April 2020 compared to October to December 2019 

and earlier years. Due to the large scatter and significant month-to-month variability and possibly also for other reasons (e.g., 480 

the unusual meteorological conditions in the first few months of 2020, see, for example, Liu et al., 2020) it is unclear to what 

extent this reduction is related to COVID-19 countermeasures.  
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Figures 7 and 8 have been generated with the requirement that, for each day, at least 30 observations need to be available in 

the target region and that for each month, at least 5 days fulfilling this 30 observations/day requirement are available.. Figure 

9 is similar to Fig. 8 except that also results for additional combinations have been added, i.e., other combinations of minimum 485 

number of observations per day and minimum number of days per month have been added. Here. As can be seen, the results 

depend somewhat on which combination of these parameters is used, but the overall end result as shown via the royal blue 

symbols and lines is fairly stable as it depends only marginally on which set of combinations is used as can be seen when 

comparing Fig. 9ensemble median and its uncertainty (royal blue symbols and lines) is similar. The ensemble median values 

are similar and negative during February to May 2020. The large uncertainties (vertical lines; 1-sigma error estimates) reflect 490 

the scatter of the ensemble members. The errors bars (1-sigma) overlap with the zero (i.e., no reduction) line indicating that it 

cannot be claimed with Fig. 8confidence that a significant drop of the emissions during the COVID-19 period has been 

detected.  

 

4.2.2 Application to Emission estimates from GOSAT XCO2 data products 495 

The same analysis method as applied to NASA’s OCO-2 data product (see Sect. 4.2.1) has also been applied to the three 

GOSAT XCO2 data products listed in Tab. 1. The results are shown in Fig. 10 for product CO2_GOS_OCFP, in Fig. 11 for 

product CO2_GOS_SRFP, and in Fig. 12 for product CO2_GOS_FOCA. The month-to-month variations are larger for these 

GOSAT products compared to OCO-2 product (note the different scale of the y-axes compared to Fig. 9). This is because 

GOSAT products are much sparser compared to the OCO-2 product (as shown in Fig. 6) and because the single observation 500 

random error is larger for GOSAT compared to OCO-2. As can be seen from a comparison of the results obtained for the 

three GOSAT products (Figs. 10 - 12) there are large difference among the results obtained from these products. For 

example, product CO2_GOS_OCFP (Fig. 10) suggests that the largest emission reduction is in April, in contrast to the other 

two products. The large spread of the GOSAT results means that no clear conclusions can be drawn concerning East China 

emission reductions during the COVID-19 period. 505 

The month-to-month variations are larger for these products compared to product CO2_OC2_ACOS (e.g., Figs. 9; note the 

different scales of the y-axes). This is very likely because GOSAT products are sparse compared to the OCO-2 product (see 

Fig. 6) but also because the single observation random error (precision) is larger for GOSAT.  

Analysis of product CO2_GOS_OCFP (Fig. 10) suggests that on average, emissions are reduced in 2020 (approximately -

12% ± 12%) but strong conclusions cannot be drawn because of large uncertainty (approximately 12%, 1-sigma). Product 510 

CO2_GOS_SRFP (Fig. 11) shows no clear time dependence due to large month-to-month variability and the same seems to 

be true for product CO2_GOS_FOCA (Fig. 12). 
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4.2.3 Ensemble mean and uncertainty   

An overview about the results obtained from all four satellite data products using the DAM method is shown in Fig. 13. (the 515 

corresponding TmS version of this figure is shown as Fig. A3 in Appendix A). The results obtained from the individual 

products (as shown in royal blue in Figs. 9 - 12) are shown here using reddish colours (the corresponding numerical values 

are listed in Tab. 4). Also shown in Fig. 13 is the mean of the ensemble members and its estimated uncertainty (in dark blue); 

the corresponding numerical values are listed in the bottom row of Tab. 4. In Fig. 13, theThe ensemble mean shows on 

average slightly lower values during March and April 2020 compared to the other months, suggesting an emission reduction 520 

suggests emission reductions by several percent (-8approximately 10% ± 10% in March and -10% in April). 2020. However, 

the 1-sigma uncertainties shown as dark blue vertical lines are large (±10%) and typically overlap with the zero, i.e., no 

change, line. Furthermore, as already discussedcan also be seen, there are considerable month-to-month variations and 

significant differences across the ensemble of satellite data products. For example, the analysis of the OCO-2 data suggests a 

much smaller emission reduction of only about 1-2%.  Because of the large differences between the results obtained from the 525 

individual satellite data products. Itensemble members it is therefore concluded that the expected emission reduction cannot 

be reliably detected and accurately quantified with our method. 

 
 

5 Summary and conclusions 530 

We have analysed a small ensemble of retrieved satellite XCO2 data products to investigate whether a regional-scale reduction 

of atmospheric CO2 during the COVID-19 pandemic can be detected overfor East China. Specifically, we analysed four XCO2 

data products from the satellites OCO-2 and GOSAT. For this purpose, we used a simple data-driven approach, which involves 

the computation of XCO2 anomalies, ΔXCO2, using a method called DAM (Daily Anomalies via (latitude band) Medians). 

This method, which is essentially identical with the method developed at Finnish Meteorological Institute (FMI, Hakkarainen 535 

et al., 2019), helps to isolate local or regional XCO2 enhancements originating from anthropogenic CO2 emissions from large-

scale daily XCO2 background variations. (note however that the FMI method is not supposed to extract exclusively 

anthropogenic emission contributions to XCO2, see Hakkarainen et al., 2019). In addition to the DAM method we also used a 

second method for the computation of ΔXCO2, which is referred to TmS (Target minus Surrounding). Using model and satellite 

data we found that the results obtained with the DAM method provide better results compared to the TmS method. Therefore, 540 

we focussed on DAM-based results but also report selected results obtained with the TmS method (reported separately in 

Appendix A).   We analysed satellite data between January 2015 to May 2020 and compared year 2020 monthly XCO2 

anomalies with the corresponding monthly XCO2 anomalies from previous monthsperiods.  

In order to link the satellite-derived XCO2 anomalies to East China fossil fuel (FF) CO2 emissions, we used output from 

NOAA’s CO2 assimilation system CarbonTracker (CT2019).) covering the years 2015 to 2018. We focus on October to May 545 

Formatiert: Zeilenabstand:  1.5 Zeilen

Formatiert: Zeilenabstand:  1.5 Zeilen



18 
 

periods to minimize the impact of the terrestrial biosphere. Using CT2019, we show that ΔXCO2 can be linearly 

transformedconverted to “FF related XCO2 enhancements”,emission estimates, denoted ΔXCO2
FF,CO2

FF, via a linear 

transformation. The two coefficients slope and offset of this linear transformation have been obtained empirically via a linear 

fit, i.e., we established a linear empirical equation to relate thesethe two quantities. We use this empirical equation to compute 

ΔXCO2
FF, an estimate of the target region FF emissions, from the satellite-derived XCO2 anomalies, ΔXCO2. We focus on 550 

October to May periods  and foundCO2
FF. We show using CT2019 that the root-mean-square-error (RMSE) of retrieved 

emissions during October to May periods agree within 10% with the CT2019 East China FF emissions. 

For the analysis of the satellite data we focus on the October 2019 to May 2020 period, which covers months during the 

COVID-19 pandemic but also pre-COVID-19 months. We compare results obtained during this period with earlier October to 

May periods to find out to what extent year 2020 differs from previous years. Our analysis is limited to October to May periods 555 

because our FF estimationsimple data-driven analysis method is approximately 0.39 GtCO2/year (4%). These months are less 

affected by disturbances from natural terrestrial vegetation carboncannot deal with the large and highly variable terrestrial 

biosphere CO2 fluxes (using all months the RMSEoutside of this period. On the other hand this period is larger, namely 0.45 

GtCO2/year or 6%) and appropriate as they cover relevant pre-COVID-19 (e.g., October – December 2019) and COVID-19 

(January – May 2020) periods. However, challenging for satellite retrievals during these months are more challenging because 560 

of the low sun angles especially during the winter months and cloudiness.  

We applied our method to each of the four satellite XCO2 data products and computedto obtain monthly ΔXCO2
FFemission 

estimates, CO2
FF, for East China (“retrieved East China monthly FF emissions”).. We focus on changes relative to pre-COVID-

19 periods. Our results show considerable month-to-month variability (especially for the GOSAT products) and significant 

differences across the ensemble of satellite data products analysed. The ensemble mean suggests emission reductions by 565 

approximately 8% ± 10%±10% in March 2020 and 10% ± 10% in April 2020 (uncertainties are 1-sigma) and somewhat lower 

reductions for the other months in 2020. These values are. This estimate is dominated by the GOSAT ensemble members. 

Analysis of the OCO-2 product yields smaller values showingindicating a reduction of only about 1-2% with an uncertainty 

of approximately ±2%. 

The large uncertainty, which is on the order of the derived reduction (i.e., 100%, 1-sigma), and the large spread of the results 570 

obtained for the individual ensemble members, indicates that it is challenging to reliably detect and to accurately quantify the 

emission reduction using the current generation of space based methods and the simple DAM-based analysis strategy adopted 

here.  

These findings, which are consistent with other recent studies (e.g., Chevallier et al., 2020, Zeng et al., 2020), are not 

unexpected. Fossil fuel emissions related regionalRegional XCO2 enhancements due to fossil fuel emissions are typically only 575 

1 to 2 ppm and even a 10% emission reduction would therefore only correspond to a reduction of the fossil fuel related regional 

XCO2 enhancement by 0.1 to 0.2 ppm. XCO2 variations as small as 0.2 ppm are below the estimated uncertainty of the single 
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footprint satellite XCO2 retrievals. ThisThe uncertainty of single observations uncertainty, which is typically around 0.7 ppm 

(e.g., Buchwitz et al., 2017a; Reuter et al., 2020), has been obtained by comparisons with ground-based Total Carbon Column 

Observing Network (TCCON) XCO2 retrievals, which have an uncertainty of 0.4 ppm (1-sigma, Wunch et al., 2010). To 580 

reduce random errors,In this study we usefocus on monthly averaged data because our analysis method cannot properly deal 

with day-to-day variability and because of the sparseness of the satellite data. Averaging results in reducing the random error 

but investigations have shown that random errors do not simply scale with the inverse of the square root of number of 

observations added (Kulawik et al., 2016). due to (unknown) systematic errors and error correlations (Kulawik et al., 2016). 

Of course also other sources of uncertainty are relevant in this context, in particular time dependent atmospheric transport and 585 

varying biogenic CO2 contributions (e.g., Houweling et al., 2015, and references given therein). 

We conclude that inferring COVID-19 related information on regional-scale CO2 emissions using current (quite sparse) 

satellite XCO2 retrievals requires, if at all possible, a more sophisticated analysis method including the use of detailed a priori 

information and atmospheric transport modelling.  

The extent to which COVID-19 related emission reductions can be resolved on smaller scales - such as power plants or cities 590 

(e.g., Nassar et al., 2017; Reuter et al., 2019; Zheng et al., 2020a; Wu et al., 2020) has not yet been investigated in detail (to 

the best of our knowledge).this study. For this purpose, XCO2 retrievals from NASA’s OCO-3 mission are also very promising, 

especially because of its Snapshot Area Map (SAM) mode, which permits the mapping of XCO2 over ~80 km by 80 km areas 

around localized anthropogenic CO2 emission sources  (see https://ocov3.jpl.nasa.gov/ (last access: 28-Aug-2020)). Even more 

complete coverage is planned for the Copernicus CO2M mission in the future (e.g., Janssens-Maenhout et al., 2020). 595 
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Appendix A 

As explained in the main text, a second method has been applied to the CT2019 and the satellite data. This method is called 630 

“Target minus Surrounding” (TmS) and differs from the DAM method in the approach to determine the XCO2 background. 

Whereas the DAM method computes the (daily) background as the median of the XCO2 values in latitude bands, the TmS 

background is computed from the XCO2 values in an area surrounding the target region (the coordinates are listed in Tab. 3). 

 

The TmS results are discussed in the main text. Here we only show three figures. Figure A1 is the same as Fig. 2 but using 635 

the TmS method instead of the DAM method. Figure A2 is the TmS version of Fig. 7 and Fig. A3 is the TmS version of Fig. 

13. 
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 1035 
Tables: 

Table 1. Overview of the satellite XCO2 Level 2 (L2) input data products. (#) These productsProducts are available via the 

Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview 

(last access: 23-September-2020)) currently until end of 2019. Year 2020 data will be made available via the CDS in mid 2021 but 

are also available from the authors on request. (see contact information). 1040 

Satellite  Algorithm  Product 

version 

Product ID 

 

References Data provider and 

data access information 

OCO-2 ACOS v10r CO2_OC2_ACOS 

 

O’Dell et al., 2018; 

Kiel et al., 2019; 

Osterman et al., 2020 

Product “OCO2_L2_Lite_FP 10r” obtained from 

NASA’s Earthdata GES DISC website: 

https://disc.gsfc.nasa.gov/datasets?keywords=OCO-

2%20v10r&page=1 (last access: 15-Aug-2020) 

GOSAT UoL-FP v7.3 CO2_GOS_OCFP 

 

Cogan et al., 2012; 

Boesch et al., 2019 

Generated by authors (#)Generated by Univ. 

Leicester (contact: Antonio Di Noia: 

adn9@leicester.ac.uk) and available via the CDS 

(#) 

GOSAT RemoTeC v2.3.8 CO2_GOS_SRFP 

 

Butz et al., 2011; Wu 

et al., 2019 

Generated by authors (#)Generated by SRON 

(contact: Lianghai Wu: L.Wu@sron.nl) and 

available via the CDS (#) 

GOSAT FOCAL v1.0 CO2_GOS_FOCA 

 

Noël et al., 2020 Generated by authorsUniv. Bremen and available 

on request (contact: Stefan Noël:  

Stefan.Noel@iup.physik.uni-bremen.de) 

 

  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
mailto:adn9@leicester.ac.uk
mailto:L.Wu@sron.nl
mailto:Stefan.Noel@iup.physik.uni-bremen.de
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Table 2. Overview of the CarbonTracker CT2019 data set. For this study we used data from the period January 2015 to December 

2018. 1045 

Model / 

Version 

Details Reference Access 

CarbonTracker 

CT2019 

Atmospheric CO2 molefraction profiles 

(spatio-temporal sampling: 3ox2o, 3-

hourly) and CO2 fluxes (spatio-temporal 

sampling: 1ox1o, 3-hourly) 

Jacobson et al., 2020 

DOI: 

http://dx.doi.org/10.25925/39m3-6069 

(last access: 22-July-2020)  

 

CarbonTracker CT2019, 

http://carbontracker.noaa.gov  

(last access: 22-July-2020) 

  

 
 
 
 1050 
Table 3. Corner coordinates of the East China target region as analysed in this study.  

Region ID Comments Latitude range  

[deg North] 

Lontitude range  

[deg East]  

 

East China 
Target region for 

DAM and TmS 

methods 

28 – 44 102 – 126 

 Extended region for 

TmS method 

18 -54 93 - 135 
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 1055 
 
Table 4. Numerical values of the ensemble-based ΔXCO2FFCO2FF(DAM) results as shown in Fig. 13. Listed are the median values and 

corresponding 1-sigma uncertainties (in brackets). The dimensionless values listed here represent the relative ΔXCO2FFCO2FF(DAM) 

change for January-May 2020 relative to October-December 2019 and previous years. The listed data refer to the difference 

relative to October to December 2019, i.e., the corresponding offset (October to December 2019 mean) has been subtracted. 1060 

(“OND” anomalies, see main text).  

 

Month 

Product ID 

October 

2019 

November 

2019 

December 

2019 

January 

2020 

February 

2020 

March 

2020 

April 

2020 

May 2020 

CO2_OC2_ACOS -0.000004 

(0.023025) 

0.005001 

(0.032024) 

-0.005010 

(0.018015) 

0.015008 

(0.029026) 

-0.008010 

(0.020024) 

-0.007003 

(0.016020) 

-0.018 

(0.023 

(0.017) 

-0.016019 

(0.028027) 

CO2_GOS_OCFP -0.084049 

(0.077046) 

0.025026 

(0.074038) 

0.058071 

(0.053050) 

-0.133110 

(0.035077) 

-0.056055 

(0.051087) 

-0.151 

(0.087101) 

-0.242281 

(0.031055) 

-0.110141 

(0.160158) 

CO2_GOS_SRFP -0.067076 

(0.039031) 

0.130111 

(0.045030) 

-0.063061 

(0.049054) 

0.043038 

(0.091101) 

-0.064 

(0.061053) 

0.024011 

(0.093081) 

-0.106082 

(0.046059) 

0.010024 

(0.082077) 

CO2_GOS_FOCA -0.048057 

(0.049042) 

0.052053 

(0.062029) 

-0.004008 

(0.043040) 

-0.041044 

(0.042062) 

-0.016046 

(0.104081) 

-0.189176 

(0.057066) 

-0.040041 

(0.070069) 

-0.110080 

(0.063064) 

Ensemble -0.050047 

(0.036031) 

0.053048 

(0.055047) 

-0.004002 

(0.049054) 

-0.029027 

(0.078065) 

-0.036021 

(0.028050) 

-0.081085 

(0.105091) 

-0.103106 

(0.099120) 

-0.057054 

(0.063072) 
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Figures: 1070 

 

 

 

Figure 1 

: DAM XCO2 anomaly map at 1o x 1o resolution generated from OCO-2 Level 2 XCO2 (v10r, land) for 2015 to 2019.  1075 
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 1080 

Figure 2: As Fig. 1 but for China and surrounding areas.  
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(e) 

 

(f) 

 

 1085 

Figure 3: As Fig. 2 but for (a) February 2015 to (f) February 2020.  
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(e) 

 

(f) 

 

 1090 

Figure 4Figure 1: Left: CT2019 XCO2 (left, in ppm) and corresponding CO2 surface fluxes (right, in MtCO2/year/cell) for 15-Jan-

2018 (first row), 15-Mar-2018 (middle) and 15-May-2018 (bottom). The red rectangle encloses the East China target region as 

defined for this study. 

 
  1095 
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Figure 52: Results obtained by applying the DAM method to CT2019 XCO2. Top panel: The thick red line shows the CT2019 fossil 

fuel (FF) monthly CO2 emissions in GtCO2/year for target region East China. The thin grey line shows daily ΔXCO2FF(a): Different 1100 
monthly ΔXCO2DAM components: Total ΔXCO2DAM (TOT) and the blue dots show monthly ΔXCO2FF (see main text for a detailed 

explanation). Middle panel: Absolute difference between monthly ΔXCO2FFits FF (red) and the CT2019 FF target region emissions. 

Listed is the mean difference D, the standard deviation of the difference S, the linear correlation coefficient Rbiogenic (BIO, green) 

components and the root-mean-square error (RMSE). All quantities (except R) are listed for all months (green dots) and separately 

for the monthstheir sum (FF + BIO). The non-shaded time periods October to May (blueindicate the periods analysed in this 1105 
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publication. (b) East China October to May FF CO2 emissions (red dots) and estimated emissions CO2FF(DAM) (black crosses). Bottom 

panel: the same) as obtained from total ΔXCO2DAM (TOT as shown in panel (a)) using the formula shown in (b). (c) Scatter plot of 

estimated versus true (i.e., CT2019) FF emissions. (d) Relative difference of estimated and true emissions.  

 

 1110 

 

Figure 3: DAM XCO2 anomaly map at 1o x 1o resolution generated from OCO-2 Level 2 XCO2 (v10r, land) for 2015 to 2019.  
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 1115 

the middle panel

 
 

Figure 4: As Fig. 3 but for the relative differences (as fraction, not percent, see panel title) instead of the absolute differences. China 

and surrounding areas.  1120 
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(e) 

 

(f) 

 
 

Figure 5: As Fig. 4 but for (a) February 2015 to (f) February 2020.  1125 
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 1130 

Figure 6: Panel (a): OCO-2 XCO2 (version 10r, product ID CO2_OC2_ACOS) over land at 1ox1o resolution for February-March 

2020. The red rectangle encloses the investigated East China target region. Panels (b)-(d) as panel (a) but for products 

CO2_GOS_OCFP (b), CO2_GOS_SRFP (c), and CO2_GOS_FOCA (d) (see Tab. 1 for details).  
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 1140 

Figure 7: DAM analysis of the OCO-2 ACOS version 10r XCO2 product (CO2_OC2_ACOS) for the region East China from January 

2015 to May 2020. Top:(a) The thin grey line shows the daily DAM XCO2 anomalies, i.e., daily DAM ΔXCO2ΔXCO2DAM. The red 

dots are the corresponding monthly values. Middle: Monthly ΔXCO2FF. The red dots (and lines) refer to the time period , which are 

also shown in (b) for different October – May periods. (c) As (b) but for CO2FF(DAM), i.e., for the estimated East China monthly FF 

emissions (see main text). The data for October 2019 – May 2020, the blue dots to period October 2018 – May  (10.2019, the green 1145 
dots to period October 2017 – May 2018, etc. (see annotation). Bottom panel: the same as the middle panel but for relative differences 

of the monthly values:  Blue dots: relative difference of the values of the red dots shown in the middle panel (ending May -5.2020) 

and the blue dotsare shown in the middle panel (ending May 2019) denoted in the annotation as “(2020-2019)/2019”. Also shown are 
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the relative red (see annotation for other periods).  (d) Relative CO2FF(DAM) differences for different periods. In blue, for example, 

the differences for 2020 and 2018 (green), 2020 and 2017 (orange) and 2020 and 2016 (pink).correspond to the period 10.2019-5.2020 1150 
(shown in red in panel (c)) minus 10.2018-5.2019 (shown in blue in (c)). (e) As (d) but after the October to December mean value 

(“OND anomalies”). The following parameters have been used to generate this figure: Minimum number of observations/day: 30, 

minimum number of days/month: 5. 
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 1155 

 
 

Figure 8: Product CO2_OC2_ACOS ΔXCO2FF differences as shown in the bottom panel of Fig. 7 but including the corresponding 
median, mean and scatter. The relative differences as shown in the bottom panel of Fig. 7 are shown here via small symbols with 
thin connecting lines (using different colours for different years, see annotation) and with an offset subtracted, which corresponds 1160 
to the October to December (OND) 2019 mean value, i.e., the data are shown here as anomaly relative to OND 2019 (“OND 
anomaly”). The corresponding median and standard deviation is shown in royal blue (the corresponding mean and standard 
deviation is show in light blue). The median of the original data (no offset subtracted) is shown as thick grey dots and lines, i.e., the 
offset is the difference between the royal blue and the grey lines. 
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Figure 8: Ensemble members CO2FF(DAM) OND anomalies derived from satellite product CO2_OC2_ACOS. The thin lines and small 

symbols show the same data also shown in the bottom panel of Fig. 7. The thick dots and lines show the corresponding ensemble 

median, mean and scatter. The following parameters have been used to generate this figure (see also annotation): Minimum number 

of observations/day: 30; minimum number of days/month: 5.  1170 
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Figure 9: The same as Fig. 8 but with additional combinations of minimum number of observations/day (30 as in Fig. 8 and in 

addition: 50, 15 and 10) and minimum number of days/month (5 as in Fig. 8 and in addition 10) (see annotation). 
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 1185 

Figure 10: The same as Figs. 9 but for the product CO2_GOS_OCFP. Results are shown for several values of the required minimum 

number of observations/day: 2, 4, 6, 8, 10 and 15. The required minimum number of days/month is 5. 

 

 

  1190 



60 
 

 

 



61 
 

 
 

Figure 11: The same as Fig. 10 but for the product CO2_GOS_SRFP.  1195 
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Figure 12: The same as Fig. 10 but for the product CO2_GOS_FOCA.  
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 1210 
Figure 13: Overview of the ensemble-based ΔXCO2FFCO2FF(DAM) results for January-May 2020 relative to October-December 2019 

and previous years (also shown in Figs. 9 – 12) via reddish colours for each of the four analysed satellite XCO2 data products (see 

Tab. 1). The corresponding ensemble mean value and its uncertainty is shown in dark blue. The uncertainty has been computed as 

standard deviation of the ensemble members. The corresponding numerical values of the ensemble members are listed in Tab. 4. 
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Figure A1: The same as Fig. 2 but using the Target minus Surrounding (TmS) method. 
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Figure A2: The same as Fig. 7 but using the TmS method. 
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Figure A3: The same as Fig. 13 but using the TmS method. 
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