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Abstract. The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large 

parts of the world. To investigate whether a regional-scale reduction of anthropogenic CO2 emissions during the COVID-19 

pandemic can be detected using space-based observations of atmospheric CO2 we have analysed a small ensemble of OCO-2 20 

and GOSAT satellite retrievals of column-averaged dry-air mole fractions of CO2, i.e. XCO2. We focus on East China and use 

a simple data-driven analysis method. We present estimates of the relative change of East China monthly emissions in 2020 

relative to previous periods limiting the analysis to October to May periods to minimize the impact of biogenic CO2 fluxes. 

The ensemble mean indicates an emission reduction by approximately 10% ± 10% in March and April 2020. However, our 

results show considerable month-to-month variability and significant differences across the ensemble of satellite data products 25 

analysed. For example, OCO-2 suggests a much smaller reduction (~1-2% ± 2%). This indicates that it is challenging to reliably 

detect and to accurately quantify the emission reduction with current satellite data sets. There are several reasons for this 

including the sparseness of the satellite data but also the weak signal; the expected regional XCO2 reduction is only on the 

order of 0.1-0.2 ppm. Inferring COVID-19 related information on regional-scale CO2 emissions using current satellite XCO2 

retrievals likely requires, if at all possible, a more sophisticated analysis method including detailed transport modelling and 30 

considering a priori information on anthropogenic and natural CO2 surface fluxes. 
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1 Introduction 

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas significantly contributing to global warming (IPCC, 

2013). CO2 has many natural and anthropogenic sources and sinks and our current understanding of them has significant gaps 35 

(e.g., Ciais et al., 2014; Chevallier et al., 2014; Reuter et al., 2017c; Crisp et al., 2018; Friedlingstein et al., 2019). Efforts are 

ongoing to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, 

and to verify the effectiveness of policies such as the Paris Agreement (https://unfccc.int/process-and-meetings/the-paris-

agreement/the-paris-agreement, last access: 8-Sept-2020) aiming to reduce greenhouse gas emissions (e.g., Ciais et al., 2014, 

2015; Pinty et al., 2017, 2019; Crisp et al., 2018; Matsunaga and Maksyutov, 2018; Janssens-Maenhout et al., 2020).  40 

Retrievals of XCO2 from the satellite sensors SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999; 

Reuter et al., 2010, 2011), TANSO-FTS/GOSAT (Kuze et al., 2016) and from the Orbiting Carbon Observatory-2 (OCO-2) 

satellite (Crisp et al., 2004; Eldering et al., 2017; O’Dell et al., 2012, 2018) have been used in recent years to obtain information 

on natural CO2 sources and sinks (e.g., Basu et al., 2013; Chevallier et al., 2014, 2015; Reuter et al., 2014a, 2017c; Schneising 

et al., 2014; Houweling et al., 2015; Kaminski et al., 2017; Liu et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer et 45 

al., 2019; Miller and Michalak, 2020), on anthropogenic CO2 emissions (e.g., Schneising et al., 2008, 2013; Reuter et al., 

2014b, 2019; Nassar et al., 2017; Schwandner et al., 2017; Matsunaga and Maksyutov, 2018; Miller et al., 2019; Labzovskii 

et al., 2019; Wu et al., 2020; Zheng et al., 2020a; Ye et al., 2020) and for other applications such as climate model assessments 

(e.g., Lauer et al., 2017; Gier et al., 2020) or data assimilation (e.g., Massart et al., 2016).  

Here we use an ensemble of satellite retrievals of XCO2 to determine whether COVID-19 related regional-scale (here ~20002 50 

km2) CO2 emission reductions can be detected and quantified using the current space-based observing system. This is important 

in order to establish the capabilities of current satellites, which have been optimized to obtain information on natural carbon 

sources and sinks, but not to obtain information on anthropogenic emissions. Nevertheless, data from existing satellites have 

already been used to assess anthropogenic emissions (see publications cited above). These assessments and the assessment 

presented in this publication are relevant for future satellites focussing on anthropogenic emissions such as the planned 55 

European Copernicus Anthropogenic CO2 Monitoring (CO2M) mission (e.g., ESA, 2019; Kuhlmann et al., 2019;  Janssens-

Maenhout et al., 2020), which is based on the CarbonSat concept (Bovensmann et al., 2010; Velazco et al., 2011; Buchwitz et 

al., 2013; Pillai et al., 2016; Broquet et al., 2018; Lespinas et al., 2020). 

We focus on China because regional-scale COVID-19 related CO2 emission reductions are expected to be largest there early 

in the pandemic (Le Quéré et al., 2020; Liu et al., 2020). Satellite data have been used to estimate China’s CO2 emissions 60 

during the COVID-19 pandemic as shown in Zheng et al., 2020b, but that study inferred CO2 reductions from retrievals of 

nitrogen dioxide (NO2) not using XCO2. Estimates of emission reductions have also been derived from bottom-up statistical 

assessments of fossil fuel use and other economic indicators. According to Le Quéré et al., 2020, China’s CO2 emissions 

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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decreased by 242 MtCO2 (uncertainty range 108 – 394 MtCO2) during January – April 2020. As China’s annual CO2 emissions 

are approximately 10 GtCO2/year (Friedlingstein et al., 2019), i.e., approximately 3.3 GtCO2 in a 4-month period assuming 65 

constant emissions, the average relative (COVID-19 related) change during January – April 2020 is therefore approximately 

7% ± 4% (0.242/3.3 ± 0.14/3.3). This agrees reasonably well with the estimate reported in Liu et al., 2020, which is 9.3% for 

China during the first quarter of 2020 compared to the same period in 2019. Liu et al., 2020, also indicate some challenges in 

terms of interpreting CO2 emission reductions as being caused by COVID-19, e.g., the fact that the first months of 2020 were 

exceptionally warm across much of the northern hemisphere. CO2 emissions associated with home heating may have therefore 70 

been somewhat lower than for the same period in 2019, even without the disruption in economic activities and energy 

production caused by COVID-19 and related lockdowns.  

Sussmann and Rettinger, 2020, studied ground-based remote sensing XCO2 retrievals of the Total Carbon Column 

Observing Network (TCCON) to find out whether related atmospheric concentration changes may be detected by the 

TCCON and brought into agreement with bottom-up emission-reduction estimates. Our study is one of the first attempts to 75 

determine whether COVID-19 related regional-scale CO2 emission reductions can be detected using existing space-based 

observations of XCO2. Tohjima et al., 2020, inferred estimates of China’s CO2 emissions from modelled and observed ratios 

of CO2 and methane (CH4) surface concentrations at Hateruma Island, Japan. They report for China fossil fuel emission 

reductions of 32 ± 12% and 19 ± 15% for February and March 2020, respectively, which is about 10% higher compared to 

the results shown in Le Quéré et al., 2020 (see Tab.1 of Tohjima et al., 2020). From model sensitivity simulations they 80 

conclude that even a 30% reduction of China’s fossil fuel CO2 emissions would only result in a 0.8 ppm XCO2 reduction 

over China and that it therefore would be very challenging to detect any COVID-19 related signal with the existing remote 

sensing satellites GOSAT and OCO-2. Their conjecture has essentially been confirmed by Chevallier et al., 2020. They used 

XCO2 from OCO-2 in combination with other data sets and the modelling of CO2 emission plumes of localized CO2 sources 

to obtain estimates of CO2 emissions focussing on several COVID-19 relevant regions such as China, Europe, India and the 85 

USA. They concluded that these places have not been well observed by the OCO‐2 satellite because of frequent or persistent 

cloud conditions and they give recommendations for future carbon-monitoring systems.  Zeng et al., 2020, used modelling, 

GOSAT XCO2 and other data sets. They conclude that GOSAT is able to detect a short-term global mean XCO2 anomaly 

decrease of 0.2-0.3 ppm after temporal averaging (e.g., monthly) but for East China they could not identify a statistically 

robust COVID-19 related anomaly. Satellite-derived results related to this application are also provided in the internet (e.g., 90 

ESA-NASA-JAXA, 2020). Ground-based XCO2 retrievals of the Total Carbon Column Observing Network (TCCON) have 

also been used to address this issue (Sussmann and Rettinger, 2020). Sussmann and Rettinger, 2020, studied XCO2 retrievals 

to find out whether related atmospheric concentration changes can be detected by the TCCON. 

Regional-scale reductions of tropospheric NO2 columns have been reported for China (e.g., Zhang et al., 2020; Bauwens et 

al., 2020), but for CO2 such an assessment is more challenging because of small XCO2 changes on top of a large background. 95 

For example, over extended anthropogenic source areas such as East China, the XCO2 enhancement due to anthropogenic 
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emissions is typically only approximately 1 - 2 ppm (0.25% - 0.5% of 400 ppm) or even less (see, e.g., Schneising et al., 

2008, 2013; Hakkarainen et al., 2016, 2019; Chevallier et al., 2020; Tohjima et al., 2020; and this study).  A 10% emission 

reduction would therefore only change the regional XCO2 enhancement by 0.1 to 0.2 ppm. This is below the single 

measurement precision of current satellite XCO2 data products (at footprint size, i.e., 10.5 km diameter for GOSAT (Kuze et 100 

al., 2016) and 1.3 x 2.3 km2 for OCO-2 (O’Dell et al., 2018)), which is about 1.8 ppm (1-sigma) (e.g., Dils et al., 2014; 

Kulawik et al., 2016; Buchwitz et al., 2015, 2017a; Reuter et al., 2020) for GOSAT and around 1 ppm for OCO-2 (Wunch et 

al., 2017; Reuter et al., 2019). In our study we focus on XCO2 monthly averages. Averaging reduces the noise of the satellite 

retrievals (e.g., Kulawik et al., 2016) but also eliminates day-to-day XCO2 variations (e.g., Agustí-Panareda et al., 2019), 

which cannot be interpreted using our simple analysis methods.  The accuracy of the East China satellite XCO2 retrievals 105 

averaged over monthly timescales is difficult to assess because of limited reference data. The validation of the satellite data 

products is primarily based on comparisons with ground-based XCO2 retrievals from the TCCON, a relatively sparse 

network with an uncertainty of about 0.4 ppm (Wunch et al., 2010).  

The purpose of this study is to investigate - using satellite XCO2 retrievals - if satellite-derived East China fossil fuel (FF) CO2 

emissions in 2020 (COVID-19 period) differ significantly compared to pre-COVID-19 periods. Ideally, we would like to know 110 

by how much emissions have been reduced due to COVID-19. This question, however, cannot be answered using only satellite 

data because they do not contain any information on how much would have been emitted without COVID-19. Instead, we aim 

at answering the following question: Are satellite-derived East China FF CO2 emissions early in the pandemic (here: January 

– May 2020) significantly lower compared to pre-COVID-19 periods?  

To answer this question, we analyse relative differences of estimates of East China monthly FF emissions during different time 115 

periods. We focus on October to May periods and we refer to different periods via the year where a period ends, i.e., we call 

the period October 2019 to May 2020 “year 2020 period” or simply “2020”, the period October 2018 to May 2019 is called 

2019, etc. Specifically, we compute and analyse differences of monthly emissions in the year 2020 period relative to previous 

year 2016 to 2019 periods, i.e., we use 4 periods for comparison with the year 2020 period. To focus on the COVID-19 aspect, 

we subtract for each period the October to December (OND) mean value and we refer to these time series as OND anomalies. 120 

These OND anomalies are time series at monthly resolution of relative emission difference between different periods relative 

to OND. Negative OND anomalies during the COVID-19 period would then suggest (depending on uncertainty) that an 

emission reduction during the COVID-19 period has been detected.  

The structure of our manuscript reflects this procedure: In the Data Section 2 we present the satellite and model input data 

used for this study. In the Methods Section 3 we present the analysis method, which consists of two main steps. The purpose 125 

of the first step is to isolate the East China FF emission signal from the XCO2 satellite retrievals. This is done by subtracting 

appropriate XCO2 background values from the XCO2 retrievals to obtain XCO2 anomalies, ΔXCO2. We use two methods to 

compute ΔXCO2. We describe one method, the “DAM method”, in detail in Sect. 3.1 and only shortly explain the second 

method (“TmS method”) referring for details to Appendix A. In the second step (Sect. 3.2) we compute estimates of East 
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China monthly FF CO2 emissions from the XCO2 anomalies. These emission estimates are then used to compute the OND 130 

anomalies explained above. In Results Section 4 we present and discuss the results, i.e., the application of the described 

methods to the satellite data. A summary and conclusions are given in Sect. 5. 

 
 
2 Data 135 

In this section, we present a short overview about the input data used for this study.   

2.1 Satellite XCO2 retrievals 

This study uses four satellite XCO2 Level 2 (L2) data products. An overview about these data sets is provided in Tab. 1. The 

first product listed in Tab. 1 is the latest version of the bias-corrected OCO-2 XCO2 product delivered to the Goddard Earth 

Science Data and Information Services Center (GES DISC) by the OCO-2 team (ACOS v10r Lite). The other three satellite 140 

XCO2 datasets are different versions of the GOSAT XCO2 product derived using retrieval algorithms developed by groups at 

the University of Leicester, U.K. (UoL-FP v7.3), the SRON Netherlands Institute for Space Research (RemoTeC v2.3.8), and 

the University of Bremen, Germany (FOCAL v1.0).  

The XCO2 estimates derived from OCO-2 (e.g., O’Dell et al., 2018) and GOSAT (e.g., Kuze et al., 2016) observations are 

complementary because these two spacecraft use different sampling strategies.  OCO-2 has been operating since September 145 

2014.  Its spectrometers collect about 85000 cloud-free XCO2 soundings each day along a narrow (< 10 km) ground track as 

it orbits the Earth 14.5 times each day from its sun synchronous 1:36 PM orbit. The OCO-2 soundings provide continuous 

measurements with relatively high spatial resolution (1.3 x 2.3 km2) along each track, but the individual ground tracks are 

separated by almost 25° longitudes in any given day. This spacing is reduced to approximately 1.5° longitude after a 16-day 

ground track repeat cycle. GOSAT has been returning 300 to 1000 cloud-free XCO2 soundings each day since April 2009. Its 150 

TANSO-FTS spectrometer collects soundings with 10.5 km diameter surface footprints, separated by approximately 250 km 

along and across its ground track at it orbits from north to south across the sunlit hemisphere.   

2.2 Model CO2 data 

We use data from NOAA’s (National Oceanic and Atmospheric Administration) CO2 assimilation system, CarbonTracker 

(CT2019) (Jacobson et al., 2020; Peters et al., 2007) to define the relationship between XCO2 anomalies and fossil fuel 155 

emissions.  CarbonTracker is a global atmospheric inverse model that assimilates atmospheric CO2 measurements to produce 

modelled fields of atmospheric CO2 mole fractions by adjusting land biosphere and ocean CO2 surface fluxes. An overview 

about CT2019 set is provided in Tab. 2 including references and access information. In short, CarbonTracker has a 

representation of atmospheric transport based on weather forecasts, and modules representing air-sea exchange of CO2, 

photosynthesis and respiration by the terrestrial biosphere, and release of CO2 to the atmosphere by fires and combustion of 160 

fossil fuels. 
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3. Methods 

3.1 Methods to compute XCO2 anomalies (ΔXCO2) 165 

Satellite XCO2 retrievals contain information on anthropogenic CO2 emissions (e.g., Schneising et al., 2013; Reuter et al., 

2014b, 2019; Nassar et al., 2017) but extracting this information requires appropriate data processing and analysis. For a 

strong (net) source region XCO2 is typically higher compared to its surrounding area. Our method is based on computing and 

subtracting XCO2 background values. The purpose of this background correction is to isolate the regional emission signal by 

removing large-scale spatial and day-to-day temporal XCO2 variations, which cannot be dealt with in our simple data-driven 170 

method to estimate emissions.  

XCO2 varies temporally and spatially (e.g., Agustí-Panareda et al., 2019; Reuter et al., 2020; Gier et al., 2020), for example, 

due to quasi-regular uptake and release of CO2 by the terrestrial biosphere, which results in a strong seasonal cycle, 

especially over northern mid and high latitudes. Compared to fluctuations originating from the interaction of the terrestrial 

biosphere and the atmosphere, the spatio-temporal XCO2 variations due to anthropogenic fossil fuel (FF) CO2 emissions are 175 

typically much smaller (e.g., 1 ppm compared to 10 ppm (Schneising et al., 2008, 2013, 2014; Agustí-Panareda et al., 

2019)).  

A method used for background correction is the one described in Hakkarainen et al., 2019 (see also Hakkarainen et al., 2016, 

for a first publication of that method). We use two different methods for background correction. We refer to these methods 

as “Daily Anomalies via (latitude band) Medians” (DAM), which is essentially identical with the method described in 180 

Hakkarainen et al., 2019, and a second method called “Target minus Surrounding” (TmS). 

Hakkarainen et al., 2019, applied their method to the OCO-2 Level 2 XCO2 data product to filter out trends and seasonal 

variations in order to isolate CO2 source/sink signals. For background correction, Hakkarainen et al., 2019, calculate daily 

medians for 10-degree latitude bands and linearly interpolate the resulting values to each OCO-2 data point.  Instead of 

interpolation, we compute the median around each latitude (“running median”) using a latitude band width of ±15 deg. We 185 

use a larger width compared to Hakkarainen et al., 2019, as we also apply our method to GOSAT data, which are much 

sparser than OCO-2 data. Our investigations showed that the width of the latitude band is not critical. The band needs to be 

wide enough to contain a statistically significant sample, but narrow enough to resolve large latitudinal gradients in CO2. We 

subtract the corresponding median from each single XCO2 observation in the original Level 2 XCO2 data product files to 

obtain a data set of XCO2 anomalies, ΔXCO2
DAM.  190 

In order to verify that our results do not critically depend on the details of one method we also use the second TmS method. 

Here we obtain the background by averaging XCO2 in a region surrounding the target region (see Tab. 3 for the latitude and 

longitude corner coordinates of the target and its surrounding region).  
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We call these background corrected XCO2 retrievals XCO2 anomalies and satellite-derived maps and time series of these 

XCO2 anomalies are presented and discussed in Sect. 4.1. These XCO2 anomalies are then used to compute East China FF 195 

CO2 emission estimates, CO2
FF, as described in the following sub-section. 

 

3.2 Computation of emission estimates (CO2FF)    

To determine whether satellite XCO2 retrievals can provide information on relative changes of anthropogenic CO2 emissions 

for the East China target region, we must establish a relationship between the XCO2 anomalies (see Sect. 3.1) and the desired 200 

estimates of the target region fossil fuel (FF) emissions. To develop a method to convert the XCO2 anomalies, ΔXCO2, to FF 

emission estimates, CO2
FF, we use an existing model data set, the CarbonTracker CT2019 data set described in Sect. 2.2, which 

contains atmospheric CO2 fields and corresponding CO2 surface fluxes during 2015 – 2018. 

Figure 1 shows CT2019 XCO2 maps (left) and corresponding surface CO2 flux maps (right) for selected days in the January 

to May 2018 period. The XCO2 has been computed by vertically integrating the CT2019 CO2 vertical profiles (weighted with 205 

the surface pressure normalized pressure change over each layer). The model data are sampled at local noon, which is close to 

the overpass time of the satellite data sets used here. The spatio-temporal sampling of a specific satellite XCO2 data product is 

not considered here, i.e., we use the CT2019 data set independent of any satellite data product apart for the sampling at local 

noon. As can be seen from Fig. 1, XCO2 is clearly elevated over the East China target region (red rectangle) relative to its 

surrounding region on 15-January-2018 (Fig. 1(a)) and on 15-March-2018 (Fig. 1(c)). On 15-May-2018 (Fig. 1(e)) the target 210 

region and parts of the surrounding region contain large areas of lower than average XCO2, a pattern which primarily results 

from carbon uptake by vegetation during the growing season, which starts in eastern China around May each year. The CO2 

fluxes, which are shown on the right-hand side panels of Fig. 1, show similar spatial pattern as the XCO2 maps but due to 

atmospheric transport and the long lifetime of atmospheric CO2 there is no one-to-one correspondence between atmospheric 

XCO2 and surface emissions. The CO2 fluxes are the sum of several contributing fluxes including FF emissions, biogenic 215 

fluxes and other fluxes (fires, oceans). 

Figure 2(a) shows time series obtained by applying the DAM method to CT2019 XCO2 for the East China target region. The 

CT2019 data set not only contains atmospheric CO2 concentrations but also its components due to fossil fuel (FF) emissions 

and biogenic (BIO) and other fluxes. From the CT2019 data set we computed total XCO2 (TOT), and its FF and BIO 

components. From these components we subtracted the background using the DAM method and the corresponding monthly 220 

ΔXCO2
DAM time series are shown in Fig. 2(a). As can be seen from Fig. 2(a), total ΔXCO2

DAM (black line) is dominated by its 

FF (red line) and BIO (green line) components (their sum, i.e., FF + BIO (grey line), is close to TOT (black line)). As can also 

be seen, FF emissions for East China (red line) are larger than the BIO fluxes (green line) at least during October to April. 

During May to September the BIO fluxes are negative due to uptake of atmospheric CO2 by the terrestrial biosphere and their 

absolute value is on the same order or may even significantly exceed the FF emissions. As a consequence, total ΔXCO2
DAM 225 
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(black line) gets negative. During these months, the total anomaly (black line) is closer to BIO (green line) than to FF (red 

line). 

The task for the satellite inversion is to obtain estimates of East China FF CO2 emissions from the satellite-derived (total) 

XCO2 anomalies, ΔXCO2
DAM (black line in Fig. 2(a)). To determine to what extent this is possible, we fitted CT2019 

ΔXCO2
DAM (i.e., the quantity that we can also obtain from satellites) to the East China CT2019 FF CO2 emissions (which are 230 

the known “true emissions” in this model data assessment exercise). The results are shown in Fig. 2(b) for October to May 

periods. The estimated emissions (black crosses) have been obtained via a linear fit of ΔXCO2
DAM to the CT2019 FF emissions 

(red dots). The two parameters of the linear fit are also shown in 2(b): Scaling factor A (= 0.90) and offset B (= 7.41). As can 

be seen, the estimated emissions agree reasonably well with the “true” emissions. The linear correlation coefficient R is 0.83 

(see Fig. 2(c)) and the relative difference in terms of mean and standard deviation is 0.2% ± 5% (see Fig. 2(d)). However, for 235 

individual months the error can be as large as 10%. From this we conclude that the (approximately 2-sigma) uncertainty of our 

method is approximately 10%.  

A similar figure but generated using the TmS method is shown in Appendix A as Fig. A1. As can be seen, the results shown 

in Fig. A1 (b) to (d) are similar to the ones shown in Fig. 2 (b) to (d) but the linear correlation is slightly worse and the errors 

are slightly larger. In contrast, the time series shown in panels (a) differ significantly. This is because of the different 240 

background corrections used for the two methods. But despite these significant differences the quality of the derived emissions 

is similar (the standard deviation of the monthly biases is 5.5% for TmS and 4.8% for DAM, see panels (d)). Nevertheless, the 

DAM method gives slightly better results compared to the TmS method and this is also confirmed by applying both methods 

to the satellite data (see Sect. 4). Therefore, the DAM method is our baseline method and we focus on results obtained with 

the DAM method. 245 

It is perhaps surprising that the offset (fit parameter B, see above) is so large (7.41 for DAM and 7.63 for TmS). Probably one 

would assume that the XCO2 anomalies ΔXCO2 are directly proportional to the target region fossil fuel emissions, i.e., one 

would assume that FF is (approximately) equal to a constant multiplied by ΔXCO2 (no offset added) (for example, for FF = 8 

GtCO2/year and ΔXCO2 = 2 ppm one would have expected that the conversion factor is 4 GtCO2/year/ppm). In that case, as  

we are only interested in relative changes in emissions, we would not need to know the exact value of the scaling factor. 250 

However, when analysing the satellite data, we found that ΔXCO2 is around 2 ppm for January but decreases in subsequent 

months, nearly approaching zero in May (which is consistent with the CT2019 results shown in Fig. 2(a)). As anthropogenic 

emissions are not expected to change that much within a few months (and zero emissions around May are not realistic at all) 

we concluded that the simple proportionality assumption does not hold. To investigate this we used the CT2019 data set to test 

and improve our method and the results are reported in this section. We applied our method to CT2019 XCO2 (as shown in 255 

Fig. 2) and compared the retrieved FF values with the (“true”) CT2019 FF values. We found large differences, which could be 

significantly reduced by adding an offset to the linear fit as discussed above. The reason for the large offset is the influence of 
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the biosphere. Around May the uptake of atmospheric CO2 due to the biosphere is so large that ΔXCO2 is close to zero - but 

the FF emissions are not - and the East China target regions is essentially “carbon neutral” or even a net sink (see also Fig. 1).   

As explained, scaling factor A and offset B are obtained empirically via a linear fit using CT2019 data (Fig. 2(b)) and used for 260 

the conversion of the satellite XCO2 anomalies during the entire time period January 2015 to May 2020 (as will be shown in 

Sect. 4). As can be seen from Fig. 2 (b) and (c), the retrieval biases are within ±10% during 2015-2018. We assume in our 

study that the same conversion is also appropriate for 2019 and 2020. However, it cannot be ruled out that 2019 or 2020 were 

significantly different compared to previous years with respect to aspects relevant for our study. To address this, we compare 

period  October 2019 to May 2020 results with the corresponding results from previous October to December periods to find 265 

out to what extent the period of interest, i.e., October 2019 to May 2020, is significantly different taking into account the year-

to-year variability, which we use to obtain uncertainty estimates. 

The methods described in this section have been applied to convert satellite-derived target region XCO2 anomalies, ΔXCO2, 

into estimated target region FF CO2 emissions, CO2
FF. How this has been done using the DAM method for background 

correction is explained in the following Sect. 4, where we refer for the corresponding TmS method results to Appendix A.   270 

 
 
4. Results and discussion 
 
In this section, we present results obtained by applying the DAM method (see Methods Sect. 3.1) to the satellite data to 275 

obtain XCO2 anomalies from which we derive FF emission estimates (see Methods Sect. 3.2).   

  
 
4.1 Application of the DAM method to satellite XCO2 retrievals 

The DAM method has been applied to the OCO-2 and GOSAT satellite XCO2 data products listed in Tab. 1. Figure 3 shows 280 

a global OCO-2 DAM XCO2 anomaly map at 1ox1o resolution for the period 2015 – 2019. A similar map is shown in 

Hakkarainen et al., 2019 (see their Fig. 3, top panel). The degree of agreement confirms the finding reported in Sect. 3.1 that 

the generation of these anomaly maps does not critically depend on how exactly the median is computed and used to subtract 

“the background”. Hakkarainen et al., 2019, discuss their OCO-2 derived maps in quite some detail also in terms of seasonal 

averages and comparisons with model simulations. They show that positive anomalies correspond to fossil fuel combustion 285 

over major industrial areas including China. Their seasonal maps (see their Fig. 4) show a strong positive anomaly over East 

China (similar as shown here in Fig. 3) except for the June-August (JJA) summer season, where the XCO2 anomaly can be 

negative. This is consistent with the CT2019 results presented in Sect. 3.2. 

A zoom into Fig. 3 is presented in Fig. 4, which shows more details for China and its surrounding area. As can be seen from 

Fig. 4, ΔXCO2
DAM is positive especially in the region between Beijing, Wuhan and Hong Kong with highest values in the 290 

area between Beijing and Shanghai. This positive anomaly indicates that this region is a strong CO2 source region as also 
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discussed in Hakkarainen et al., 2019. As already explained, there is no one-to-one correspondence (especially not for every 

grid cell) between local XCO2 anomalies and local CO2 emissions (or uptake) because the emitted CO2 is transported and 

mixed in the atmosphere. Furthermore, the satellite data are typically sparse due to strict quality filtering to avoid potential 

XCO2 biases, for example, due to the presence of clouds. Cloud contaminated ground scenes are identified to the extent 295 

possible via the corresponding retrieval algorithm (see references listed in Tab. 1) and flagged to be “bad” and are therefore 

not used for this analysis. The sparseness of the satellite data set is obvious from Fig. 5, which shows OCO-2 DAM XCO2 

anomaly maps for February during the six years 2015 to 2020. 

A key difference between the OCO-2 and the GOSAT data products is the different sampling of the target region, with 

GOSAT having much sparser coverage compared to OCO-2. This is illustrated in Fig. 6, which shows February to March 300 

2020 averages of the OCO-2 XCO2 data product (Fig. 6a) and the three GOSAT data products (Fig. 6b – 6d) at 1ox1o 

resolution. The OCO-2 product shown in Fig. 6a is NASA’s OCO-2 operational “Atmospheric CO2 Observations from 

Space” (ACOS) algorithm version 10r bias corrected XCO2 product (the so called Lite product), which is referred to in this 

publication via the product identifier (ID) CO2_OC2_ACOS. The three GOSAT XCO2 products are (see details and 

references as given in Tab. 1): Fig. 6b: University of Leicester’s GOSAT product (ID CO2_GOS_OCFP); Fig. 6c: SRON 305 

Netherlands Institute for Space Research GOSAT product (CO2_GOS_SRFP); Fig. 6d: University of Bremen’s GOSAT 

product (CO2_GOS_FOCA) as retrieved with the “Fast atmOspheric traCe gAs retrievaL” (FOCAL) retrieval algorithm 

initially developed for OCO-2 (Reuter et al., 2017a, 2017b). As can be seen from Fig. 6, the spatial sampling of the target 

region is different for each product as only quality-filtered (i.e., “good”) data are shown and the quality filtering is algorithm 

specific (see references listed in Tab. 1).  310 

Figure 6 also shows as red rectangle the East China target region as defined for this study (the geographical coordinates are 

listed in Tab. 3).  The fossil fuel (FF) CO2 emissions of this target region are approximately 8 GtCO2/year, i.e., the selected 

target region covers approximately 80% of the FF emissions of entire China, which are approximately 10 GtCO2/year (Le 

Quéré et al., 2018; Friedlingstein et al., 2019). In the following section we present East China FF emission estimates as derived 

from the satellite XCO2 anomalies during and before the COVID-19 period. 315 

 
 
 
4.2 Emission estimates 
 320 
Carbon dioxide fossil fuel emission estimates, CO2

FF, have been derived from the XCO2 anomalies, ΔXCO2, computed for 

each of the four satellite XCO2 data products listed in Tab. 1. In this section the emission results are presented and discussed. 

We focus on results based on ΔXCO2 derived with the DAM method and refer to Appendix A for results based on the TmS 

method.   

  325 



11 
 

 
4.2.1 Emission estimates from NASA’s OCO-2 (version 10r) XCO2 

Figure 7 shows the results obtained by applying the DAM method to product CO2_OC2_ACOS (see Tab. 1) for the East China 

target region for the period January 2015 to May 2020 (the TmS version of this figure is shown as Fig. A2 in Appendix A). 

Figure 7(a) shows daily DAM XCO2 anomalies as thin grey line and the corresponding monthly averages as red dots. The 330 

amplitude (approximately ±1 ppm) and time dependence (e.g., the minimum in the middle of each year) is similar as for 

CT2019 (Fig. 2(a) black line). To ensure that there are a sufficiently large number of observations per month, two criteria need 

to be fulfilled: There must be a minimum number of days per month (here: 5) and a minimum number observations per day 

(here: 30). The latter criterion is also relevant for the daily data shown in Fig. 7(a) (grey line). We also used other combinations 

of these two parameters (as shown below, e.g., Fig. 9). 335 

Figure 7(b) shows monthly ΔXCO2
DAM for different October to May periods and Fig. 7(c) shows the corresponding estimated 

FF emissions, CO2
FF(DAM). Figure 7(d) shows relative differences of the time series shown in Fig. 7(c). For example, the blue 

data are referred to as “(2020-2019)/2019” in Fig. 7(d), where 2019 refers to the blue data in Fig. 7(c), which corresponds to 

the period ending in May 2019. Shown are differences of year 2020 data (red in Fig. 7(c)) minus data from previous periods, 

i.e., Fig. 7(d) shows to what extent 2020 (strictly speaking the period 10.2019 – 5.2020, i.e., the period which ends in 2020) 340 

differs relative to previous October to May periods. 

To find out if we can detect a difference between the COVID-19 period and pre-COVID-19 periods, we subtract from each 

time series shown in Fig. 7(d) the October to December (OND) mean value. The corresponding time series are shown in Fig. 

7(e) and are referred to as “OND anomalies” in the following. As can be seen from Fig. 7(e), the OND anomalies vary within 

±5%. Values before January scatter around zero as the mean value of OND anomalies is zero by definition during October to 345 

December. In January the values also scatter around zero. After January most values are negative indicating reduced emissions 

compared to pre-COVID-19 periods. This can be seen more clearly in Fig. 8, where the same data as in Fig. 7(e) are shown 

but in addition the ensemble mean (light blue thick lines and dots) and median (royal blue thick lines and dots) has been added 

including uncertainty estimates as computed from the standard deviation of the ensemble members. 

Figures 7 and 8 have been generated with the requirement that for each day at least 30 observations need to be available in the 350 

target region and for each month at least 5 days fulfilling this 30 observations/day requirement. Figure 9 is similar to Fig. 8 

except that also results for additional combinations have been added, i.e., other combinations of minimum number of 

observations per day and minimum number of days per month. As can be seen, the results depend somewhat on which 

combination of these parameters is used, but the ensemble median and its uncertainty (royal blue symbols and lines) is similar. 

The ensemble median values are similar and negative during February to May 2020. The large uncertainties (vertical lines; 1-355 

sigma error estimates) reflect the scatter of the ensemble members. The errors bars (1-sigma) overlap with the zero (i.e., no 

reduction) line indicating that it cannot be claimed with confidence that a significant drop of the emissions during the COVID-

19 period has been detected.  
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4.2.2 Emission estimates from GOSAT XCO2 data products 360 

The same analysis method as applied to NASA’s OCO-2 data product (Sect. 4.2.1) has also been applied to the three 

GOSAT XCO2 data products listed in Tab. 1. The results are shown in Fig. 10 for product CO2_GOS_OCFP, in Fig. 11 for 

product CO2_GOS_SRFP, and in Fig. 12 for product CO2_GOS_FOCA. The month-to-month variations are larger for these 

GOSAT products compared to OCO-2 product (note the different scale of the y-axes compared to Fig. 9). This is because 

GOSAT products are much sparser compared to the OCO-2 product (as shown in Fig. 6) and because the single observation 365 

random error is larger for GOSAT compared to OCO-2. As can be seen from a comparison of the results obtained for the 

three GOSAT products (Figs. 10 - 12) there are large difference among the results obtained from these products. For 

example, product CO2_GOS_OCFP (Fig. 10) suggests that the largest emission reduction is in April, in contrast to the other 

two products. The large spread of the GOSAT results means that no clear conclusions can be drawn concerning East China 

emission reductions during the COVID-19 period. 370 

 

4.2.3 Ensemble mean and uncertainty   

An overview about the results obtained from all four satellite data products using the DAM method is shown in Fig. 13 (the 

corresponding TmS version of this figure is shown as Fig. A3 in Appendix A). The results obtained from the individual 

products (as shown in royal blue in Figs. 9 - 12) are shown here using reddish colours (the corresponding numerical values 375 

are listed in Tab. 4). Also shown in Fig. 13 is the mean of the ensemble members and its estimated uncertainty (in dark blue); 

the corresponding numerical values are listed in the bottom row of Tab. 4. The ensemble mean suggests emission reductions 

by approximately 10% ± 10% in March and April 2020. However, as can also be seen, there are significant differences 

across the ensemble of satellite data products. For example, the analysis of the OCO-2 data suggests a much smaller 

emission reduction of only about 1-2%.  Because of the large differences between the individual ensemble members it is 380 

concluded that the expected emission reduction cannot be reliably detected and accurately quantified with our method. 

 
 

5 Summary and conclusions 

We have analysed a small ensemble of satellite XCO2 data products to investigate whether a regional-scale reduction of 385 

atmospheric CO2 during the COVID-19 pandemic can be detected for East China. Specifically, we analysed four XCO2 data 

products from the satellites OCO-2 and GOSAT. For this purpose, we used a simple data-driven approach, which involves the 

computation of XCO2 anomalies, ΔXCO2, using a method called DAM (Daily Anomalies via (latitude band) Medians). This 

method, which is essentially identical with the method developed at Finnish Meteorological Institute (FMI, Hakkarainen et al., 

2019), helps to isolate local or regional XCO2 enhancements originating from anthropogenic CO2 emissions from large-scale 390 

daily XCO2 background variations (note however that the FMI method is not supposed to extract exclusively anthropogenic 
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emission contributions to XCO2, see Hakkarainen et al., 2019). In addition to the DAM method we also used a second method 

for the computation of ΔXCO2, which is referred to TmS (Target minus Surrounding). Using model and satellite data we found 

that the results obtained with the DAM method provide better results compared to the TmS method. Therefore, we focussed 

on DAM-based results but also report selected results obtained with the TmS method (reported separately in Appendix A).   395 

We analysed satellite data between January 2015 to May 2020 and compared year 2020 monthly XCO2 anomalies with the 

corresponding monthly XCO2 anomalies from previous periods.  

In order to link the satellite-derived XCO2 anomalies to East China fossil fuel (FF) CO2 emissions, we used output from 

NOAA’s CO2 assimilation system CarbonTracker (CT2019) covering the years 2015 to 2018. We focus on October to May 

periods to minimize the impact of the terrestrial biosphere. Using CT2019, we show that ΔXCO2 can be converted to FF 400 

emission estimates, denoted CO2
FF, via a linear transformation. The two coefficients slope and offset of this linear 

transformation have been obtained empirically via a linear fit, i.e., we established a linear empirical equation to relate the two 

quantities ΔXCO2 and CO2
FF. We show using CT2019 that the retrieved emissions during October to May periods agree within 

10% with the CT2019 East China FF emissions. 

For the analysis of the satellite data we focus on the October 2019 to May 2020 period, which covers months during the 405 

COVID-19 pandemic but also pre-COVID-19 months. We compare results obtained during this period with earlier October to 

May periods to find out to what extent year 2020 differs from previous years. Our analysis is limited to October to May periods 

because our simple data-driven analysis method cannot deal with the large and highly variable terrestrial biosphere CO2 fluxes 

outside of this period. On the other hand this period is challenging for satellite retrievals because of the low sun angles 

especially during the winter months and cloudiness.  410 

We applied our method to each of the four satellite XCO2 data products to obtain monthly emission estimates, CO2
FF, for East 

China. We focus on changes relative to pre-COVID-19 periods. Our results show considerable month-to-month variability 

(especially for the GOSAT products) and significant differences across the ensemble of satellite data products analysed. The 

ensemble mean suggests emission reductions by approximately 10%±10% in March and April 2020. This estimate is 

dominated by the GOSAT ensemble members. Analysis of the OCO-2 product yields smaller values indicating a reduction of 415 

only about 1-2% with an uncertainty of approximately ±2%. 

The large uncertainty, which is on the order of the derived reduction (i.e., 100%, 1-sigma), and the large spread of the results 

obtained for the individual ensemble members, indicates that it is challenging to reliably detect and to accurately quantify the 

emission reduction using the current generation of space based methods and the simple DAM-based analysis strategy adopted 

here.  420 

These findings, which are consistent with other recent studies (e.g., Chevallier et al., 2020, Zeng et al., 2020), are not 

unexpected. Regional XCO2 enhancements due to fossil fuel emissions are typically only 1 to 2 ppm and even a 10% emission 

reduction would therefore only correspond to a reduction of the fossil fuel related regional XCO2 enhancement by 0.1 to 0.2 
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ppm. XCO2 variations as small as 0.2 ppm are below the estimated uncertainty of the single footprint satellite XCO2 retrievals. 

The uncertainty of single observations, which is typically around 0.7 ppm (e.g., Buchwitz et al., 2017a; Reuter et al., 2020), 425 

has been obtained by comparisons with ground-based Total Carbon Column Observing Network (TCCON) XCO2 retrievals, 

which have an uncertainty of 0.4 ppm (1-sigma, Wunch et al., 2010). In this study we focus on monthly averaged data because 

our analysis method cannot properly deal with day-to-day variability and because of the sparseness of the satellite data. 

Averaging results in reducing the random error but investigations have shown that random errors do not simply scale with the 

inverse of the square root of number of observations added due to (unknown) systematic errors and error correlations (Kulawik 430 

et al., 2016). Of course also other sources of uncertainty are relevant in this context, in particular time dependent atmospheric 

transport and varying biogenic CO2 contributions (e.g., Houweling et al., 2015, and references given therein). 

We conclude that inferring COVID-19 related information on regional-scale CO2 emissions using current (quite sparse) 

satellite XCO2 retrievals requires, if at all possible, a more sophisticated analysis method including the use of detailed a priori 

information and atmospheric transport modelling.  435 

The extent to which COVID-19 related emission reductions can be resolved on smaller scales - such as power plants or cities 

(e.g., Nassar et al., 2017; Reuter et al., 2019; Zheng et al., 2020a; Wu et al., 2020) has not been investigated in this study. For 

this purpose, XCO2 retrievals from NASA’s OCO-3 mission are promising, especially because of its Snapshot Area Map 

(SAM) mode, which permits the mapping of XCO2 over ~80 km by 80 km areas around localized anthropogenic CO2 emission 

sources  (see https://ocov3.jpl.nasa.gov/ (last access: 28-Aug-2020)). Even more complete coverage is planned for the 440 

Copernicus CO2M mission in the future (e.g., Janssens-Maenhout et al., 2020). 

 
 
  

https://ocov3.jpl.nasa.gov/
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Appendix A 475 

As explained in the main text, a second method has been applied to the CT2019 and the satellite data. This method is called 

“Target minus Surrounding” (TmS) and differs from the DAM method in the approach to determine the XCO2 background. 

Whereas the DAM method computes the (daily) background as the median of the XCO2 values in latitude bands, the TmS 

background is computed from the XCO2 values in an area surrounding the target region (the coordinates are listed in Tab. 3). 

 480 

The TmS results are discussed in the main text. Here we only show three figures. Figure A1 is the same as Fig. 2 but using 

the TmS method instead of the DAM method. Figure A2 is the TmS version of Fig. 7 and Fig. A3 is the TmS version of Fig. 

13. 

 

  485 
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Tables: 

Table 1. Overview of the satellite XCO2 Level 2 (L2) input data products. (#) Products are available via the Copernicus Climate 

Data Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview (last access: 23-880 

September-2020)) currently until end of 2019. Year 2020 data will be made available via the CDS in mid 2021 but are available 

from the authors on request (see contact information). 

Satellite  Algorithm  Product 

version 

Product ID 

 

References Data provider and 

data access information 

OCO-2 ACOS v10r CO2_OC2_ACOS 

 

O’Dell et al., 2018; 

Kiel et al., 2019; 

Osterman et al., 2020 

Product “OCO2_L2_Lite_FP 10r” obtained from 

NASA’s Earthdata GES DISC website: 

https://disc.gsfc.nasa.gov/datasets?keywords=OCO-

2%20v10r&page=1 (last access: 15-Aug-2020) 

GOSAT UoL-FP v7.3 CO2_GOS_OCFP 

 

Cogan et al., 2012; 

Boesch et al., 2019 

Generated by Univ. Leicester (contact: Antonio Di 

Noia: adn9@leicester.ac.uk) and available via the 

CDS (#) 

GOSAT RemoTeC v2.3.8 CO2_GOS_SRFP 

 

Butz et al., 2011; Wu 

et al., 2019 

Generated by SRON (contact: Lianghai Wu: 

L.Wu@sron.nl) and available via the CDS (#) 

GOSAT FOCAL v1.0 CO2_GOS_FOCA 

 

Noël et al., 2020 Generated by Univ. Bremen and available on 

request (contact: Stefan Noël:  

Stefan.Noel@iup.physik.uni-bremen.de) 

 

  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
mailto:adn9@leicester.ac.uk
mailto:L.Wu@sron.nl
mailto:Stefan.Noel@iup.physik.uni-bremen.de
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Table 2. Overview of the CarbonTracker CT2019 data set. For this study we used data from the period January 2015 to December 

2018. 

Model / 

Version 

Details Reference Access 

CarbonTracker 

CT2019 

Atmospheric CO2 molefraction profiles 

(spatio-temporal sampling: 3ox2o, 3-

hourly) and CO2 fluxes (spatio-temporal 

sampling: 1ox1o, 3-hourly) 

Jacobson et al., 2020 

DOI: 

http://dx.doi.org/10.25925/39m3-6069 

(last access: 22-July-2020)  

 

CarbonTracker CT2019, 

http://carbontracker.noaa.gov  

(last access: 22-July-2020) 

  

 
 890 
 
 
Table 3. Corner coordinates of the East China target region as analysed in this study.  

Region ID Comments Latitude range  

[deg North] 

Lontitude range  

[deg East]  

 

East China 
Target region for 

DAM and TmS 

methods 

28 – 44 102 – 126 

Extended region for 

TmS method 

18 -54 93 - 135 

 

  895 

http://dx.doi.org/10.25925/39m3-6069
http://carbontracker.noaa.gov/
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Table 4. Numerical values of the ensemble-based CO2FF(DAM) results as shown in Fig. 13. Listed are the median values and 

corresponding 1-sigma uncertainties (in brackets). The dimensionless values listed here represent the relative CO2FF(DAM) change 900 

for January-May 2020 relative to October-December 2019 and previous years (“OND” anomalies, see main text).  

 

Month 

Product ID 

October 

2019 

November 

2019 

December 

2019 

January 

2020 

February 

2020 

March 

2020 

April 

2020 

May 

2020 

CO2_OC2_ACOS -0.004 

(0.025) 

0.001 

(0.024) 

-0.010 

(0.015) 

0.008 

(0.026) 

-0.010 

(0.024) 

-0.003 

(0.020) 

-0.018 

(0.023) 

-0.019 

(0.027) 

CO2_GOS_OCFP -0.049 

(0.046) 

0.026 

(0.038) 

0.071 

(0.050) 

-0.110 

(0.077) 

-0.055 

(0.087) 

-0.151 

(0.101) 

-0.281 

(0.055) 

-0.141 

(0.158) 

CO2_GOS_SRFP -0.076 

(0.031) 

0.111 

(0.030) 

-0.061 

(0.054) 

0.038 

(0.101) 

-0.064 

(0.053) 

0.011 

(0.081) 

-0.082 

(0.059) 

0.024 

(0.077) 

CO2_GOS_FOCA -0.057 

(0.042) 

0.053 

(0.029) 

0.008 

(0.040) 

-0.044 

(0.062) 

0.046 

(0.081) 

-0.176 

(0.066) 

-0.041 

(0.069) 

-0.080 

(0.064) 

Ensemble -0.047 

(0.031) 

0.048 

(0.047) 

0.002 

(0.054) 

-0.027 

(0.065) 

-0.021 

(0.050) 

-0.085 

(0.091) 

-0.106 

(0.120) 

-0.054 

(0.072) 
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Figures: 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

Figure 1: Left: CT2019 XCO2 (left, in ppm) and corresponding CO2 surface fluxes (right, in MtCO2/year/cell) for 15-Jan-2018 

(first row), 15-Mar-2018 (middle) and 15-May-2018 (bottom). The red rectangle encloses the East China target region as defined 910 

for this study. 
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Figure 2: Results obtained by applying the DAM method to CT2019 XCO2 for East China. (a): Different monthly ΔXCO2DAM 

components: Total ΔXCO2DAM (TOT) and its FF (red) and biogenic (BIO, green) components and their sum (FF + BIO). The non-915 
shaded time periods October to May indicate the periods analysed in this publication. (b) East China October to May FF CO2 

emissions (red dots) and estimated emissions CO2FF(DAM) (black crosses) as obtained from total ΔXCO2DAM (TOT as shown in panel 

(a)) using the formula shown in (b). (c) Scatter plot of estimated versus true (i.e., CT2019) FF emissions. (d) Relative difference of 

estimated and true emissions.  
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 920 

 

 

Figure 3: DAM XCO2 anomaly map at 1o x 1o resolution generated from OCO-2 Level 2 XCO2 (v10r, land) for 2015 to 2019.  
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Figure 4: As Fig. 3 but for China and surrounding areas.  

 930 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
 

Figure 5: As Fig. 4 but for (a) February 2015 to (f) February 2020.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 6: Panel (a): OCO-2 XCO2 (version 10r, product ID CO2_OC2_ACOS) over land at 1ox1o resolution for February-March 940 
2020. The red rectangle encloses the investigated East China target region. Panels (b)-(d) as panel (a) but for products 

CO2_GOS_OCFP (b), CO2_GOS_SRFP (c), and CO2_GOS_FOCA (d) (see Tab. 1 for details).  
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Figure 7: DAM analysis of the OCO-2 ACOS version 10r XCO2 product (CO2_OC2_ACOS) for the region East China from January 

2015 to May 2020. (a) The thin grey line shows the daily DAM XCO2 anomalies, i.e., daily ΔXCO2DAM. The red dots are the 

corresponding monthly values, which are also shown in (b) for different October – May periods. (c) As (b) but for CO2FF(DAM), i.e., 950 
for the estimated East China monthly FF emissions (see main text). The data for October 2019 – May 2020 (10.2019-5.2020) are 

shown in red (see annotation for other periods).  (d) Relative CO2FF(DAM) differences for different periods. In blue, for example, the 

differences correspond to the period 10.2019-5.2020 (shown in red in panel (c)) minus 10.2018-5.2019 (shown in blue in (c)). (e) As 

(d) but after the October to December mean value (“OND anomalies”). The following parameters have been used to generate this 

figure: Minimum number of observations/day: 30, minimum number of days/month: 5. 955 
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Figure 8: Ensemble members CO2FF(DAM) OND anomalies derived from satellite product CO2_OC2_ACOS. The thin lines and small 

symbols show the same data also shown in the bottom panel of Fig. 7. The thick dots and lines show the corresponding ensemble 960 
median, mean and scatter. The following parameters have been used to generate this figure (see also annotation): Minimum number 

of observations/day: 30; minimum number of days/month: 5.  
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Figure 9: The same as Fig. 8 but with additional combinations of minimum number of observations/day (30 as in Fig. 8 and in 

addition: 50, 15 and 10) and minimum number of days/month (5 as in Fig. 8 and in addition 10) (see annotation). 

 970 

  



42 
 

 
 

 
 975 

Figure 10: The same as Figs. 9 but for the product CO2_GOS_OCFP. Results are shown for several values of the required minimum 

number of observations/day: 2, 4, 6, 8, 10 and 15. The required minimum number of days/month is 5. 
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Figure 11: The same as Fig. 10 but for the product CO2_GOS_SRFP.  
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Figure 12: The same as Fig. 10 but for the product CO2_GOS_FOCA.  990 
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 995 
 
Figure 13: Overview of the ensemble-based CO2FF(DAM) results for January-May 2020 relative to October-December 2019 and 

previous years (also shown in Figs. 9 – 12) via reddish colours for each of the four analysed satellite XCO2 data products (see Tab. 

1). The corresponding ensemble mean value and its uncertainty is shown in dark blue. The uncertainty has been computed as 

standard deviation of the ensemble members. The corresponding numerical values of the ensemble members are listed in Tab. 4. 1000 
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Figure A1: The same as Fig. 2 but using the Target minus Surrounding (TmS) method. 1005 
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Figure A2: The same as Fig. 7 but using the TmS method. 1010 
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Figure A3: The same as Fig. 13 but using the TmS method. 
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