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Dear Andreas Richter, 

 

Thank you very much for your suggestions. 

 

• L11: "weighted vertical columns of CO2 mixing ratios" - I'm confused by this formulation. To me, the result 

of the measurements are vertically averaged CO2 mixing ratios, not columns 

We have changed the wording to: “The integrated-path differential-absorption lidar CHARM–F is installed onboard 

an aircraft, in order to detect weighted column-integrated dry-air mixing ratios of CO2.” We use the word “column” 

to indicate that the vertical integration limits correspond to the scanned volume beneath the aircraft, not the entire 

atmosphere. For clarification we refer to Eq. (3) in Ehret et al. 2017 (https://doi.org/10.3390/rs9101052) descriptive 

for the satellite mission MERLIN and therefore methane, but of course equivalent for CO2: 

𝑋𝐶𝐻4 ≡
∫ 𝑚𝑟(𝑝)𝑊𝐹(𝑝, 𝑇)𝑑𝑝
𝑝𝑇
0

 

∫ 𝑊𝐹(𝑝, 𝑇)𝑑𝑝
𝑝𝑇
0

=
𝐷𝐴𝑂𝐷

∫ 𝑊𝐹(𝑝, 𝑇)𝑑𝑝
𝑝𝑇
0

=

ln [
𝑃𝑜𝑓𝑓(𝑟𝑇)𝐸𝑜𝑛
𝑃𝑜𝑛(𝑟𝑇)𝐸𝑜𝑓𝑓

] − 𝐷𝐴𝑂𝐷𝑜𝑡ℎ𝑒𝑟 𝑔𝑎𝑠𝑒𝑠  

2 ∫ 𝑊𝐹(𝑝, 𝑇)𝑑𝑝
𝑝𝑇
0

 

where 

𝑊𝐹(𝑝, 𝑇) =
𝜎𝑜𝑛(𝑝, 𝑇) − 𝜎𝑜𝑓𝑓(𝑝, 𝑇)

𝑔(𝑝)𝑀𝑎𝑖𝑟(1 + 𝑀𝐻2𝑂 𝑞(𝑝)𝑎𝑖𝑟)
 

mr being the dry-air mixing ratio of CH4 at a given pressure p, pT being the pressure at the reflecting surface (target) 

and qdry is the water vapor mixing ratio with respect to dry air. 

 

• L95: molecular, absorption => molecular absorption 

Emended 

 

• L107: "Δσ(z) is the difference between the absorption cross section of the two laser pulses given in square 

meter" - not entirely precise as the cross-section is the one of CO2, not of the laser pulse and the difference is 

because of the difference in wavelength. What about "Δσ(z) is the difference between the CO2 absorption 

cross section for the two laser wavelengths given in square meter"? 

Emended 

 

• L107: Cross-section is not explicitly mentioned in the Figure, just "absorption" 

At this point, the Figure depicts the principle of an IPDA lidar schematically. A high cross-section corresponds to a 

high absorption, while a low cross-section corresponds to a low absorption. 

In the Caption we’ve changed “absorption wavelength” to “absorption line“, as a molecule doesn’t have a wavelength. 

Moreover, we’ve appended the following sentence to the caption: “The black line in (b) schematically depicts the 

measurement principle, not the actual spectral absorption line shape of CO2.” 

If there are no objections from your side, we would like to stick to the label "absorption". 

 

• Caption Figure 4: "and horizontal spacing of 250 m and 50 m" - not sure how to interpret this 

It’s the distance between the individual towers. We’ve changed the sentence to: “The towers have a height of 120 m 

and distances of 250 m and 50 m between each other.” 

 

• L228: Errors according to => Errors resulting from 

Emended 

 

• L230: need not be => need not to be 

Emended 

 

• L242 and elsewhere: two-tenth: I find this way of separating the error into its components quite unusual, 

why not say "20% of the uncertainty..."? 

https://doi.org/10.3390/rs9101052
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The intention was to not go into the quantitative details of the values of the error components, but to outline their 

rough attribution fraction. In this way, we thought, we’d guide the reader most straight forward, to the importance of 

the error attribution by the wind. Moreover, we intended to prevent the reader from confusing the error fractions with 

the actual values of the errors, since we also give these as percentages in several places. 

Be that as it may, we consent that this is an unusual way, but feel it is constructive at this point. To make the attribution 

more visually accessible, we have changed the written-out attributions into fractional numbers. 

We would like to keep it this way, if you disagree, please let us know. 

 

• Section 4: I'm not sure what the right way of determining the mean wind in the model results really is. For a 

realistic comparison to the measurements, the right wind would be that of the model run at lower resolution. 

I would assume, that strong turbulence will lead to strong fluctuations in wind speed and direction over time 

and altitude, and in a real world application, this will further increase the uncertainty of the assumed wind 

vector and thus the emission estimate. My concern is, that by trying to find the best wind vector from the 

simulation, the uncertainty is actually underestimated. 

Measurement uncertainties in a real-world application would certainly add up to that. However, the purpose of our 

assessment is not to provide an uncertainty estimate. We want to pinpoint to the variations in the retrieved emission 

rates that arise from inhomogeneities induced by turbulence alone and the potential of avoiding times of strong 

turbulence. In this consideration, we have tried to keep systematic errors to a minimum. This is the reason why we 

do not simulate measurement noise, for that matter. 

 

• L373: higher number of crossings are required => larger number of crossings is required 

Emended 

 

 

All individual changes can be reviewed in the marked-up manuscript version below. 

 

On behalf of all Co-Authors, 

Sebastian Wolff 
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Abstract. Anthropogenic point sources, such as coal-fired power plants, produce a major share of global CO2 emissions. 

International climate agreements demand their independent monitoring. Due to the large number of point sources and their 

global spatial distribution, the implementation of a satellite-based observation system is convenient. Airborne active remote 10 

sensing measurements demonstrate that the deployment of lidar is promising in this respect. The integrated-path differential-

absorption lidar CHARM–F is installed onboard an aircraft, in order to detect weighted column-integrated dry-air mixing ratios 

of weighted vertical columns of CO2 mixing ratios, below the aircraft along its flight track. During the Carbon Dioxide and 

Methane mission (CoMet) in spring 2018, airborne greenhouse gas measurements were performed, focusing on the major 

European sources of anthropogenic CO2 emissions, i.e., large coal–fired power plants. The flights were designed to transect 15 

isolated exhaust plumes. From the resulting enhancement in the CO2 mixings ratios, emission rates can be derived via the 

cross–sectional flux method. On average, our results roughly correspond to reported annual emission rates, with wind speed 

uncertainties being the major source of error. We observe significant variations between individual overflights, ranging up to 

a factor of 2. We hypothesize that these variations are mostly driven by turbulence. This is confirmed by a high–resolution 

large eddy simulation that enables us to give a qualitative assessment of the influence of plume inhomogeneity on the cross–20 

sectional flux method. Our findings suggest avoiding periods of strong turbulence, e.g., midday and afternoon. More favorable 

measurement conditions prevail during nighttime and morning. Since lidars are intrinsically independent of sunlight, they have 

a significant advantage in this regard. 

1 Introduction 

CO2 causes the strongest radiative forcing among all anthropogenic greenhouse gases (e.g., Myhre et al. (2014)). Therefore, it 25 

plays a crucial role with respect to human-induced climate change. In 2018, CO2 has reached a global annual average of 407.4 

ppm at the Earth’s surface, an increase of 47 % compared to the year ~1750 (Friedlingstein et al., 2019). One-third of all 

anthropogenic CO2 emissions stem from localized point sources, in particular coal–fired power plants (Oda and Maksyutov, 

2011). For Europe, they even account for 45% of CO2 emissions (Super et al., 2020). The Paris Climate Agreement aims to 

reduce anthropogenic greenhouse gas (GHG) emissions by means of nationally determined contributions (NDCs), which are 30 
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based on national capabilities and the level of economic development (UNFCCC, 2015). Therein it is foreseen that as of 2023 

a global stocktake will take place every 5 years. This requires independent measurements to verify each nation's emission 

reports of CO2, but also of other greenhouse gases, such as CH4. Currently, there is no independent global emission verification 

system available, and a complete record of all emissions globally is still far from reality. To achieve this goal, satellite missions 

are indispensable. Satellite missions are expected to detect CO2 emissions from large power plants and cities, e.g., the future 35 

European Carbon Constellation CO2M (Bézy et al., 2019; Broquet et al., 2018; Kuhlmann et al., 2020), and other mission 

ideas still in the pre-development phase (Kiemle et al., 2017; Strandgren et al., 2020). Furthermore, CH4 emissions can also 

be detected, as is done by GHGSat–D for coal mine ventilation shafts (Varon et al., 2020), or the Sentinel-5 Precursor for the 

oil and natural gas-producing sector (Pandey et al., 2019; Zhang et al., 2020). Under particularly favorable conditions, it is 

already possible to detect CO2 emissions of power plants from space, as is done with data from NASA's OCO-2 mission 40 

(Nassar et al., 2017; Reuter et al., 2019). However, at the moment no operating satellite mission is able to quantify emissions 

from large power plants, on a regular basis. In the development phase for potential missions, airborne measurement campaigns 

serve as a test of the methods. During the operating phase, they are needed for verification of the space-borne results. 

In May/June 2018, the CoMet (Carbon Dioxide and Methane mission) field campaign took place. The objective of CoMet was 

to investigate the fluxes of the major human-influenced GHG on local, regional, and sub-continental scales. These fluxes were 45 

to be determined more precisely than previously possible. Furthermore, supporting activities for GHG stocktaking were 

provided. The CoMet campaign saw the deployment of a suite of airborne instruments to measure atmospheric CH4 and CO2, 

alongside a variety of ground-based instruments. In particular, the synergetic use of active remote sensing (lidar) (Amediek et 

al., 2017; Wildmann et al., 2020), passive spectrometry (Krautwurst et al., 2021; Luther et al., 2019), and in situ measurements 

(Fiehn et al., 2020; Gałkowski et al., 2021; Kostinek et al., 2020) supported by modeling activities (Chen et al., 2020; Nickl et 50 

al., 2020), as well as the validation of existing (e.g., Sentinel–5P, GOSAT (Greenhouse Gases Observing Satellite)) and the 

preparation of upcoming (e.g., MERLIN (Methane Remote Sensing Lidar Mission)) GHG satellite missions were aimed at. 

Hereby, the German research aircraft HALO (High Altitude and Long Range Research Aircraft) acted as the airborne flagship 

of that campaign. HALO was equipped with the new airborne CO2 and CH4 IPDA (integrated-path differential-absorption) 

lidar CHARM–F (CO2 and CH4 Remote Monitoring–Flugzeug) built and operated by DLR as an airborne demonstrator for 55 

the upcoming MERLIN mission (Ehret et al., 2017). CHARM–F simultaneously measures the column-averaged dry-air mixing 

ratios of carbon dioxide (XCO2) and methane (XCH4) between aircraft and ground (Amediek et al., 2017). The influence of 

other trace gases, in particular H2O, on the mixing ratio measurements is negligible. As a result of the pulse repetition frequency 

(50 Hz, double pulse) and divergence (~1.5 mrad) the pattern on the ground is a sequence of overlapping footprints. The 

vertical column measurements are insensitive to vertical redistribution of the trace gases. The insensitivity towards optically 60 

thin clouds, aerosol layers, and varying surface albedo, and the instrument design with e.g., active laser frequency control is a 

further strong asset of the IPDA lidar approach. Albedo variations basically affect the measurement precision (statistical 

uncertainty), whereas the influence on the bias is negligible (Amediek et al., 2009).  
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During the CoMet campaign, HALO probed various local plumes of different coal-fired power plants. As a case study, the 

paper in hand focuses on the measurement flight of 23 May 2018, where the CO2 exhaust plume of the power plant 65 

Jänschwalde, close to the Polish-German border was surveyed. The specific goal is to quantify the CO2 fluxes of the power 

plant. An established method for quantifying emission rates of point sources is the cross-sectional flux method, which is a 

product of mean wind speed and an integrated concentration enhancement along a cross-sectional overflight of the exhaust 

plume. This principle has been applied for air-/space-borne nadir-viewing remote sensing (Krings et al., 2018; Menzies et al., 

2014; Varon et al., 2018; Reuter et al., 2019), mobile ground-based sun-viewing remote sensing (Luther et al., 2019), as well 70 

as airborne in situ measurements (Cambaliza et al., 2014; Conley et al., 2016; Fiehn et al., 2020; White et al., 1976). Amediek 

et al. (2017) have described how this principle can be realized with CHARM–F. Using CHARM–F data from the respective 

overflights, we strive to accurately assess the error and advance the general methodology. 

When determining the cross-sectional flux, one of the major error sources is the local wind field. On the one hand, because the 

wind speed is directly included in the calculation, on the other hand, because atmospheric turbulence can broaden or constrict 75 

the spatial extent of the exhaust plume. This is a well-known problem, which contributes significantly to the measurement 

error (Kuhlmann et al., 2019; Luther et al., 2019; Strandgren et al., 2020; Varon et al., 2018; Jongaramrungruang et al., 2019; 

Kumar et al., 2020). Consequently, the observed CO2 column enhancements between subsequent plume transects may vary 

considerably, despite a constant emission rate. We hypothesize that these turbulence-induced variations dominate the 

measurement error of the emission estimates rather than the GHG column measurement uncertainty itself. To assess the impact 80 

of this atmospheric turbulence on our measurement results, we perform a large eddy simulation (LES) in order to resolve local 

plume structures. By doing so, we can to compare different ambient weather and turbulence conditions. We aim to separate 

more and less favorable conditions, to determine an adequate distance between emission source and measurement locations, 

and to find out how many independent plume measurements will be necessary, in order to obtain an appropriate emission rate 

accuracy, as a function of those environmental conditions. 85 

This paper is organized as follows: Section 2 introduces the IPDA lidar method, describes the retrieval of the emission rate, 

and the methodical errors. Section 3 reports on the plume measurement results. Section 4 provides the simulation setup, while 

the subsequent results are presented in Sect. 5. A discussion is given in Sect. 6, followed by the conclusion in Sect. 7 and the 

outlook in Sect. 8. 

2 Cross-sectional flux method 90 

2.1 Flux calculation 

The dataset underlying this work originates from IPDA lidar CHARM–F. A more detailed description of the lidar system can 

be found in Amediek et al. (2017). At its core, CHARM-F consists of a pulsed, tunable laser source and a detector. Installed 

on an aircraft or satellite, the nadir-oriented lidar emits two laser pulses that propagate through the atmosphere until they are 

backscattered at a surface. The two backscattered laser pulses are detected by the lidar. The wavelength of one laser pulse 95 
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corresponds to the absorption wavelength of the greenhouse gas under consideration. In the following, this laser pulse is 

referred to as online. Due to molecular, absorption the intensity of the online laser pulse decreases while propagating through 

the atmosphere.: The wavelength of the other (offline) laser pulse is slightly shifted such that almost no absorption by the 

greenhouse gas takes place, but the interaction with the remaining atmospheric components is unaltered. 

 

 

Figure 1: Figure by Amediek et al. (2017). The measurement geometry of a lidar, illustrated by the example of CHARM–F carried on the 

aircraft HALO. Two laser pulses are emitted towards the earth with a delay of 500 µs. The laser pulse with the wavelength λon is on the 

absorption wavelength line of CO2 (1572.02 nm), the laser pulse with the wavelength λoff is not (1572.12 nm). By comparing the 

backscattered intensities, the CO2 concentration in the measured cone volume can be calculated. The measured volume is usually referred 

to as a vertical air column, since the column length, i.e., the aircraft’s altitude above ground (~ 6500 m), is very large compared to the 

diameter of the reflecting surfaces (~ 10 m). The distance of consecutive laser pulse pairs is 3 m. The black line in (b) schematically 

depicts the measurement principle, not the actual spectral absorption line shape of CO2. 

 

Using a beam splitter, a small part of both the online and the offline laser pulse energy (Eon/off) is deflected onto a detector 100 

while still in the lidar system. Together with the radiation fluxes entering the lidar telescope Pon/off the differential optical 

absorption depth (DAOD) can be calculated (Ehret et al., 2008): 

𝐷𝐴𝑂𝐷 =
1

2
· 𝑙𝑛 (

𝑃𝑜𝑓𝑓/𝐸𝑜𝑓𝑓

𝑃𝑜𝑛/𝐸𝑜𝑛
)           (1) 

Note that for the DAOD a single value is obtained for the entire vertical air column. It is a metric for the greenhouse gas 

concentration of the measured column and is also defined by the following relationship: 105 

𝐷𝐴𝑂𝐷 = 𝐷𝐴𝑂𝐷𝑏 + Δ𝐷𝐴𝑂𝐷 = 𝐷𝐴𝑂𝐷𝑏 +
1

𝑀
∫ Δσ(z) ⋅ Δ𝑐(𝑧) 𝑑𝑧
𝑓𝑙

0
≈ 𝐷𝐴𝑂𝐷𝑏 +

Δ𝜎̅̅ ̅̅  

𝑀
∫ Δ𝑐(𝑧) 𝑑𝑧
𝑓𝑙

0
   (2) 
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Here, DAODb is the background differential absorption optical depth, ΔDAOD is the enhancement in the DAOD induced by 

the plume, M is the molecular mass of CO2 in gram, and Δc(z) is the enhanced CO2 density induced by the plume in gram per 

cubic meter. Δσ(z) is the difference between the CO2 absorption cross section of for the two laser pulses wavelengths given in 

square meter (cf. Fig. 1). It is referred to as the differential-absorption cross section. Generally, Δσ(z) is not constant over the 110 

plume’s vertical extension, due to the decreasing pressure with altitude. However, the decreases in pressure associated with 

typical vertical plume extensions are small. As an approximation, we use the mean value over the vertical extent of the plume 

Δσ . This aspect is discussed in more detail in Sect. 3. The vertical integral limits are the ground (z = 0 m) and the respective 

height of the aircraft fl. Variations in flight altitude, as well as topography, may cause variations in the surveyed column length 

and thus ultimately in the measured DAOD. In this study, these variations are negligible, since the flight altitude was 115 

deliberately kept constant and the topography around the power plant under consideration is sufficiently flat. 

This DAOD dataset is used to determine the CO2 emission rate of a point source utilizing the flux calculation method 

introduced by Amediek et al. (2017). As schematically depicted in Fig. 2, a crossing of the exhaust plume leads to a DAOD 

enhancement. This is caused by the additional absorption of laser radiation by the CO2 molecules of the plume. The 

instantaneous flux through the lidar cross-section, in the moment of the overflight, is given in kilogram per second and denoted 120 

by q: 

𝑞 = 𝐴 ⋅
𝑀

𝛥𝜎̅̅ ̅̅
⋅ 𝑢 ⋅ 𝑠𝑖𝑛 (𝜑)           (3) 

Given in meter, the parameter A corresponds to the integrated DAOD enhancement over the background DAOD in the 

direction of the aircraft flight track as shown in Fig. 2b. In the following, it is referred to as integrated enhancement. The mean 

horizontal wind speed u is given in meter per second and the angle between the wind direction and the aircraft’s flight direction 125 

is denoted as φ (in the following referred to as relative wind direction). Furthermore, it is assumed that no uptake by the soil 

takes place when the gas plume hits the ground and that the flight altitude is high enough (i.e., well above the Planetary 

Boundary Layer) to cover the entire vertical extent of the plume. 
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Figure 2: Crossing an exhaust plume illustrated by the example of CHARM–F carried on the aircraft HALO. (a) Two laser pulses are 

emitted towards the earth with a short delay. The laser pulse with the wavelength λon is on the absorption wavelength of CO2, the laser 

pulse with the wavelength λoff is not. By comparing the backscattered intensities, the DAOD can be calculated (see Sect. 2.1). An ideal 

exhaust plume of a point source has a Gaussian-shaped mean concentration distribution both horizontally and vertically. (b) A 

perpendicular crossing of the plume yields a Gaussian-shaped DAOD dataset. 

 

The two closely spaced sounding wavelengths are selected in such a way that the impact from unknown particles is minimized 

while keeping the absorption by water vapor is as low as possible. This is due to the very weak water vapor differential–130 

absorption cross section, which is more than 4 orders of magnitude smaller than the differential–absorption cross section for 

CO2. Thus the influence of additional water vapor in the plume released by the cooling or coal drying systems of the power 

plant is negligible (Kiemle et al., 2017). Moreover, the selected CO2 absorption line is sufficiently temperature-insensitive, 

such that the influence of temperature variations within the plume can be neglected (see also Kiemle et al. (2017)). Under these 

conditions, the flux error is mainly driven by uncertainties of the four parameters A, Δσ , u, and φ. Assuming that these 135 

parameters are not correlated, the relative accuracy in the flux calculation can then be estimated by error propagation means: 

δ𝑞

𝑞
= √(

δ𝐴

𝐴
)
2

+ (
δ(Δσ̅̅ ̅̅ ) 

Δ𝜎̅̅ ̅̅  
)
2

+ (
δ𝑢

𝑢
)
2

+ (
δ𝜑

tan (𝜑)
)
2

        (4) 

With δA/A, δ( Δσ )/ Δσ , δu/u denoting the relative uncertainties of these parameters. From this, it is obvious that crossing 

the plume perpendicular to the wind direction as displayed in Fig. 2a would give the highest accuracy for any fluctuation of 

the wind direction δφ. On the other hand, atmospheric conditions at low wind speeds or situations with high atmospheric 140 

turbulence are in general less favorable because of the high uncertainty in the mean wind speed and wind direction. Varon et 

al. (2018) have identified 2 m/s as the minimum threshold of wind speed for the applicability of the cross-sectional flux method. 
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This minimum value is also referred to by Sharan et al. (1996), arguing that above this threshold, advection dominates over 

diffusion. 

2.2 Background separation 145 

For the calculation of the integrated enhancement A and its uncertainty, it is crucial to distinguish between the DAOD value 

attributable to the background concentration of CO2 and the fraction attributable to the exhaust plume of the point source. As 

shown in Eq. (2), the measured DAOD along the flight track is the sum of background term DAODb and the enhancement due 

to the plume interaction ΔDAOD. A complicating factor is that the background term may not be constant. There are small 

variations in local CO2 concentration from other anthropogenic sources (traffic, cities, etc.) or local interaction with the 150 

biosphere. Also, small CO2 gradients caused by the sounding of different air masses in the vicinity of the plume may have an 

impact on the background term. In the following, we describe a suitable method that enables us to extract ΔDAOD from the 

measured dataset, while allowing the background term to be variable. 

An example of the plume extraction procedure is shown in Fig. 3. The plume must first be detected as an enhancement not 

attributable to noise in the data. For this, we examine a 0.2 km running mean of the DAOD dataset (Fig. 3a). The choice of 0.2 155 

km is made because it corresponds to the diameter of the pixels of the simulation (see Sect. 4). The larger the window for the 

running mean, the less noise is present and the clearer the plume enhancement can be seen. Then again, peaks threaten to be 

blurred if the window width becomes too large. 
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Figure 3: Plume crossing at a point source distance of 1.53 km. In (a) the gray curve shows the raw data, with a standard deviation of 5.2 

%, while the black curve shows a 0.2 km (64 data points) running mean (RM), with a standard deviation reduced to 0.9 %. In (b) the 

green curve is a 4 km (1293 data points) RM. Green vertical dashed lines mark the intersections between the 0.2 km RM and 4 km RM, 

which are defined as the plume’s limits. Colored purple in (c) shows the region of the data used to construct a mean value of the data 

before and after the plume’s limits. This mean value is used to bypass the plume enhancement and is also colored purple. In (d) again a 4 

km running mean over the bypassed dataset is shown in brown. This data, which has slight variability, is used as the background term 

DAODb. Finally, in (e) and (f) the enhanced term ΔDAOD, i.e., difference between 0.2 km RM and DAODb, is plotted in black. Note the 

different scales on the y-axis. In (e) the area underneath the curve is colored red, as an example of the parameter Asum determined with a 

Riemann sum. Alternatively, a Gaussian fit can be applied to ΔDAOD, providing the parameter Afit as a fit-parameter, as shown as a blue 

line in (f). 

 

Starting from the middle of the plume enhancement we define the plume’s limits as the intersections between the 0.2 km 

running mean (RM) and another 4 km running mean (Fig. 3b). Applying a running mean broadens and flattens the plume. For 160 

larger running mean widths, such as 4 km, the flattening is so severe that the plume is only distinguishable from the background 

as a raised plateau (see Fig. 3b). The limits are then defined as the intersections between the 0.2 km running mean and the 4 

km running mean. For the calculation of this mean we consider a window with a width equal to that of the plume, colored 

violet in Fig. 3c. At last, we execute another 4 km running mean over the raw dataset, with bypassed plumes, resulting in the 
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background term DAODb, shown in brown in Fig. 3d. This procedure allows for a variability in the background term on a scale 165 

of a few hundred meters. Smaller scale gradients cannot be attributed to the background and are incorporated in the 

enhancement term ΔDAOD, thereby not being distinguishable from noise. 

The mean wind speed u and its mean relative direction φ are extracted from model data provided by ECMWF. The molecular 

mass M and the differential–absorption cross section Δσ are physical properties of CO2 and available in various databases such 

as HITRAN2016 (Gordon et al., 2017). The only parameter that results from a measurement by CHARM–F, or a respective 170 

simulation, is the integrated enhancement A. For this purpose Amediek et al. (2017) described two distinct methods. The first 

method is a Riemann sum over all enhancement values ΔDAODi, multiplied with their respective spatial distance Δyi between 

two successive data points: 

𝐴𝑠𝑢𝑚 = (∑ Δ𝐷𝐴𝑂𝐷𝑖 ⋅ Δ𝑦𝑖  𝑖 )          (5) 

The second method makes use of the fact that, on average, the plume is subject to Gaussian dispersion behavior. According to 175 

the function F(y) in Eq. (6), a nonlinear least squares fit is applied to the ΔDAOD values of the plume. 

𝐹(𝑦) =
𝐴𝑓𝑖𝑡

𝐴2∙√2𝜋
∙ 𝑒
− 
1

2
 · (
𝑦 − 𝐴1
𝐴2

)
2
 
          (6) 

By doing so the integrated enhancement is obtained as the fit parameter Afit. A1 is the peak’s position along the flight track and 

A2 the turbulent dispersion parameter, which is a measure for the width of the plume. The fit method yields very low values 

for the uncertainty of the parameter A. However, the Riemann sum is not depending on any model assumption for the 180 

calculation of the integrated ΔDAOD along the flight track. Both methods were investigated in the course of this work and 

showed nearly identical results. Therefore, the results in Table 1 correspond to the mean value of the two methods. 

3 Airborne measurements 

In this work the measurement flight of HALO on 23 May 2018 between 10:24 and 11:36 is investigated. Located in the south–

east of the German federal state of Brandenburg, close to the Polish–German border, the Lausitz Energie Kraftwerke AG 185 

(LEAG) operates the coal–fired power plant Jänschwalde. It is one of the largest power plants in Europe, both in terms of 

annual electricity generation and annual CO2 emissions. For the year 2017, the power plant operators have reported an emission 

quantity of 24.0 Tg(CO2) to the European Environment Agency (E-PRTR, 2020). The exhaust gases of this power plant are 

emitted through the cooling towers at a height of ~ 120 m. Figure 4 shows the flight track of the aircraft, along with a picture 

of the cooling towers. In total, the point source was flown over seven times downwind, two times upwind, and once directly 190 

overhead the cooling towers. In three of the downwind overflights, no enhancement in DAOD is visible. For these transects, 

the distance to the point source is greater than 4.6 km. At such distances, it can be assumed that the exhaust gases are too 

diluted with the surrounding air to generate a measurable signal. 



12 

 

 

 

Figure 4: Flight track of HALO in the vicinity of the coal–fired power plant Jänschwalde. The black line on the left depicts the flight 

track of HALO between 10:24 and 11:36 on the 23 May 2018. The red square marks the position of the power plant Jänschwalde. The 

arrow shows the mean wind direction during the observation period. The right picture shows the nine cooling towers facing southwest. 

There the exhaust is released. The towers have a height of 120 m and distances of 250 m and 50 m between each other.horizontal spacing 

of 250 m and 50 m.  

 

In order to evaluate the uncertainty of the calculated integrated enhancement, a total of 15 different data subsets centered to 

the plume’s position, with varying width, are examined. To ensure that the Riemann sum completely covers the plume, the 195 

smallest subset is twice as wide as the plume limits, determined according to Fig. 3. The width of the remaining subsets is 

expanded by 400 m each. 

To further evaluate Eq. (3) the differential–absorption cross section Δσ is calculated using the Voigt-profile model with input 

from HITRAN 2016 database for the line parameters (Gordon et al., 2017). This calculation requires the knowledge of pressure 

and temperature profiles, which are extracted from the simulation introduced in Sect. 4. For the lidar measurements, the online 200 

wavelength was tuned to the CO2 absorption line center at λon = 1572.02 nm, while the offline wavelength was adjusted to λoff 

= 1572.12 nm in the wing of this line (cf. Fig. 1b). Based on this wavelength selection and a flight altitude of 8000 m, the 

background DAODb is approximately 0.5, while the plume causes a ~ 10 % enhancement to this value (~ 0.05), as depicted in 

Fig. 3. The absorption cross section is not constant over the plume’s vertical extension, mainly due to the decreasing pressure 

and resulting decrease in collisional line broadening with altitude. The relative change in the absorption cross section along 205 

the vertical course of the plume depends on the exact online position with respect to the absorption line center. To take a 

possible cross section change for our measurements into account, representative mean values for the distances at x1 ≈ 1500 m 

and x2 ≈ 4700 m (see Table 1) are calculated using the slender plume approximation (Amediek et al., 2017; Seinfeld and 

Pandis, 1997): 
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        (7) 210 

In this equation, the ground (z = 0 m) and max = 4000 m denote the integration boundaries. h is the height of the cooling 

towers. The key parameter in this equation is the turbulence parameter σz, which is a proxy for the plume extension in the 

vertical direction, at the respective distance. Different expressions for this parameter for various atmospheric stability 

conditions can be found in the literature, e.g., Seinfeld and Pandis (1997). 

Assuming a moderately turbulent atmosphere, we found plume widths of σz = 170 m and 600 m for the two distances. However, 215 

if the atmospheric turbulence is less pronounced, the vertical plume widths are only σz = 90 m and 250 m, respectively. Due 

to the lack of further information on turbulence characteristics during our measurements, we consider both plume widths in 

the calculation below. The change of Δσ(z) versus altitude above ground in Eq. (8) is calculated at grid cell spacing of 1 m in 

the vertical direction using the following 2nd order polynomial function: 

∆𝜎(𝑧) = 7.10652 ∙ 10−27 𝑚2 + 8.60755 ∙ 10−31 𝑚 ∙ 𝑧 + 8.02673 ∙ 10−35 ∙ 𝑧2      (8) 220 

Consequently the differential-absorption cross section at the height of the ground (70 m a.s.l.), corresponds to Δσ(z = 0 m) = 

7.10652∙10-27 m2. The constant factors of this equation are the result of fitting this function to some representative cross section 

values from Voigt-profile calculations over the altitude range of 4000 m. The deviations of this approximation to the exact 

Voigt-profile calculations are less than 0.1 %, which is regarded negligible. Finally, Eq. (7) gives the following results: 

∆𝜎(𝑥1 = 1500 𝑚) = 7.27 ∙ 10
−27 𝑚2 ± 0.04 ∙ 10−27 𝑚2  and ∆𝜎(𝑥2 = 4700 𝑚) = 7.47 ∙ 10

−27 𝑚2 ± 0.24 ∙ 10−27 𝑚2 . 225 

The overscore indicates the mean value of the aforementioned turbulence scenarios with corresponding plume vertical widths 

at each distance and the errors indicate the differences. Close to the source (~ 1500 m), the relative cross section uncertainty 

is ~ 0.6 % and therefore negligible, whereas, at a distance of 4700 m, the relative error is ~ 3.2 % and not negligible in the 

overall error budget outlined by Eq. (4). 

Possible systematic errors, due to uncertainties of the line parameters, are less than 2 % (Gordon et al., 2017). Errors according 230 

to resulting from the wavelength setting with the CHARM–F instrument are considered very small compared to the other 

contributors and therefore need not to be extensively discussed in this study (~ 0.5 %, see Amediek et al. (2017)). 

The wind data are taken from operational analysis data of the ECMWF model. This is done by first interpolating the 4-

dimensional gridded model data onto the flight path at the altitude of the power plant's exhaust shaft. Secondly, a mean value 

of the wind speed and direction along the flight track, together with an estimate of their relative errors are calculated according 235 

to Ackermann (1983). 
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Table 1: Flight measurement results of individual crossings for the Jänschwalde power plant on 23 May 2018, following the nomenclature 

of Eq. (3) 

Crossing Measurement 

local 

time 

flight track 

in km 

distance 

in km 

A 

in m 

Δσ  

in 10-27 m2 

q 

in kg(CO2)/s 

mean q 

in kg(CO2)/s 

mean u 

in m/s 

mean φ 

in ° 

10:50 200 1.46 15.36 ± 0.67 7.27 ± 0.04 760 ± 60 

650 ± 240 5.06 ± 0.36 103.34 ± 6.40 

10:57 268 4.77 9.04 ± 0.42 7.47 ± 0.24 470 ± 40 

11:10 388 1.67 19.29 ± 0.46 7.27 ± 0.04 950 ± 80 

11:27 536 1.78 8.45 ± 1.11 7.27 ± 0.04 420 ± 40 
 

 

Table 1 shows the measured integrated enhancements, the wind data, and the resulting fluxes for the four exploitable 

overflights, alongside the obtained mean values, under the assumption that during the measurement both the wind direction, 

as well as the wind speed were reasonably constant. The flight segments were not exactly perpendicular to the mean wind 

direction. With a relative angle of φ = 103° a correction factor of sin(103°) = 0.97 is applied (see Eq. (3)). The mean wind 240 

speed is well above the threshold of 2 m/s, introduced at the end of Sect. 2.1. 

The individual flux uncertainties, calculated with Eq. (4), are relatively small and range between 8–10 %. It is to be emphasized 

that the integrated enhancement A is the only parameter in the calculation of the instantaneous flux in Eq. (3), coming from 

the IPDA lidar measurement itself. On average, two-tenth
2

10
 of this individual measurement uncertainty is due to the uncertainty 

of the integrated enhancement δA/A. Taken together, one-tenth
1

10
 can be attributed to the uncertainty of the mean differential–245 

absorption cross section of CO2 δ( Δσ )/ Δσ  and the mean relative wind direction δφ/tan(φ). The major contributor to the 

flux uncertainty, however, is the uncertainty of the mean wind speed δu/u, which accounts for two-thirds
7

10
. 

The reported value of 760 kg(CO2)/s (24.0 Tg(CO2)/yr) (E-PRTR, 2020) lies within the error range of the mean value of 650 

± 240 kg(CO2)/s (20.3 ± 7.9 Tg(CO2)/yr). Nevertheless, the variations between the individual crossings are very large, both in 

the integrated enhancement A, as well as in the calculated fluxes. The second and third crossings differ by approximately a 250 

factor of 2 (see Table 1). These variations cannot be explained by our uncertainty estimation, but rather by atmospheric 

turbulence that distorts the plume. Therefore, this work further investigates the influence of atmospheric turbulence and the 

resulting inhomogeneity in the propagation of exhaust plumes. To achieve this, we make use of the mesoscale numerical 

weather prediction system model WRF (Weather Research and Forecasting model). 
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4 Simulation setup 255 

To investigate the influence of atmospheric turbulence and the resulting inhomogeneity in the propagation of exhaust plumes, 

we use WRF-ARW, the Advanced Research Version of the Weather Research and Forecasting model (Skamarock et al., 2008). 

It is a well-established platform to investigate the transport of plumes (Zhao et al., 2019; Bhimireddy and Bhaganagar, 2018; 

Yver et al., 2013). The model configuration can be found in Table 2. 

Table 2: WRF model configuration 

 Setting Reference 

WRF version WRF 3.8.1 Skamarock et al. (2008) 

Dynamical solvers Advanced Research WRF  

Meteorological boundary conditions Operational ECMWF analysis ECMWF (2018) 

Simulated time span 06:00 UTC on 21 June – 06:00 UTC on 24 June in 2018  

Spin-up 6 h  

Number of vertical layers 56  

Model top 200 hPa  

Radiation Rapid Radiative Transfer Model Scheme            

(ra_lw_physics = ra_sw_physics = 4) 

Iacono et al. (2008) 

Microphysics Morrison 2-moment Scheme                                

(mp_physics = 10) 

Morrison et al. (2009) 

Land surface model Unified Noah Land-Surface Model                      

(sf_surface_physics = 2) 

Tewari et al. (2004) 

Surface layer physics Revised MM5 Scheme                                          

(sf_sfclay_physics = 1) 

Jimenez et al. (2012) 

 

 

Considering typical source distances of the measurement crossings (see Table 1), in addition to the spread of the plumes (see 260 

Fig. A1), it is clear that our investigations need to be implemented with a horizontal resolution in the sub-kilometer range. To 

achieve this, we introduce three nested domains, with the coordinates of the middle cooling tower as the center of the domains 

(see Fig. 5). The domain configurations can be found in Table 3. As meteorological initial and boundary conditions, operational 

ECMWF analysis data is used with a horizontal resolution of 9 km. 
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Table 3: Configuration of quadratic domains 

Domain D1 D2 D3 

Horizontal 

resolution 
5 km 1 km 0.2 km 

Computational 

time step 
30 s 5 s 1 s 

Number of grid 

points 
100 150 175 

Domain size, W-E 

and S-N 
500 km 150 km 35 km 

Planetary 

Boundary Layer 

Physics 

MYNN Level 2.5 

Nakanishi and 

Niino (2009) 

MYNN Level 2.5 

Nakanishi and 

Niino (2009) 

LES PBL 

Moeng et al. (2007) 

Eddy coefficient 

option 

2d Deformation 

(km_opt = 4) 

2d Deformation 

(km_opt = 4) 

3d TKE 

(km_opt = 2) 

Turbulence and 

mixing option 

Simple diffusion 

(diff_opt = 1) 

Simple diffusion 

(diff_opt = 1) 

Full diffusion 

(diff_opt = 2) 
 

 

As suggested by Powers et al. (2017) we run the inner domain D3 as a large eddy simulation (WRF-LES). This makes it 265 

possible to resolve local turbulence (Moeng et al., 2007). Several studies show that WRF-LES is an adequate tool to model 

plume trajectories, in conjunction with turbulence and passive tracer dispersion (Nunalee et al., 2014; Nottrott et al., 2014). 

Only the plume of the power plant is simulated, without any CO2 background field. WRF-ARW has the option to predefine a 

tracer variable tr(t,x,y,z) which has the properties of a passive tracer, as used in Blaylock et al. (2017). It represents a four-

dimensional field of space-time. A detailed description of the calculation of simulated DAOD can be found in Appendix A. 270 

Therein Eq. (A3) is used to calculate the DAOD enhancement corresponding to the horizontal dispersion of the tracer, as 

shown in Fig. 6. 
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Figure 5: Location of three times nested domains (black squares) of the WRF simulation. They are centered to the power plant 

Jänschwalde (red square). The domains have a side length of 500 km (D1), 150 km (D2), 35 km (D3) and a horizontal resolution of 5 km 

(D1), 1 km (D2) and 0.2 km (D3). Vertically, 57 eta levels are introduced ranking from the ground up to a top layer pressure of 200 hPa. 

 

The WRF simulation provides a data output every 2 minutes. One virtual plume crossing is evaluated for each output time step 

at a point source distance of 1.5 km. This corresponds to our measurements (see Table 1). Since neither background field nor 

noise is simulated, it does not matter at which distance to the point source the virtual flyover takes place. Nevertheless, we try 275 

to match the virtual survey as closely as possible to real conditions. Just as in the real measurement, the virtual crossings are 

arranged perpendicular to the propagation direction of the plume (cf. Sect. 2.1). However, in a turbulent atmosphere, it is not 

trivial to precisely identify this direction of propagation. In this work, we consider the center of mass of the emitted tracers 

within a radius of twice the point source distance, i.e., 3 km. A connecting line between this center of mass and the point source 

corresponds to the propagation direction. 280 
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Figure 6: Exemplary snapshots of simulated exhaust plumes. The flight track of the virtual plume overflight is shown as a black line. At 

the top of the respective middle panel the local time is given in Central European Summer Time (CEST, i.e., UTC+2), at the bottom α 

denotes the local solar altitude. The first colorbar represents the DAOD enhancement and refers to the respective middle panel, which 

shows the horizontal dispersion of the plume. The second colorbar represents the mass per area and refers to the top and right panels, 

which show the vertical dispersion. In a corresponding measurement, DAOD enhancement values beneath 0.008 would not be 

distinguishable from noise and are therefore displayed blue. Values higher than 0.01 exceed the noise and can be identified as plume 

enhancement in a real measurement. A ΔDAOD value of 0.02 corresponds to an enhancement of 4 % with respect to a background of 0.5 

(cf. Fig. 3). The color maps follow the guidelines for a perception-based color map presented by Stauffer et al. (2015). 

 

For the calculation of the virtually retrieved emission rate, the mean wind speed and direction are needed (see Eq. (3)). To 

obtain these from the simulation, the following procedure is performed. First, for each data output step the horizontal wind 

components at the mean height of the plume are retrieved by vertical integration, weighted with tracer mass content. Second, 

the resulting 2D wind field is linearly interpolated onto the virtual flight path, yielding a 1D field with the horizontal wind 

components along the flight track. Last, the wind components are integrated, weighted with the DAOD along the flight track, 285 

resulting in the mean wind used for calculation. 

5 Simulation results 

WRF is able to simulate realistic plume dispersion. The DAOD enhancement values correspond to our measurements. 

Exemplary snapshots of the simulated plume during the course of a whole day can be found in Appendix A in Fig. A2. 

Additionally, an animated GIF of the simulated plume can be found under https://doi.org/10.5281/zenodo.4266513 (Wolff, 290 

2020). In the nocturnal absence of solar irradiation, the turbulence decreases, leading to narrow, homogeneous plume 

dispersion, within a laminar flow. The exhaust plume follows Gaussian behavior, as depicted in Fig. 6 at 23:30. Contrary to 

this, we find boundary layer turbulence during daytime. 

https://doi.org/10.5281/zenodo.4266513
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Strong solar heating of the surface generates convective air masses, which in turn cause a cascade of eddies. Consequently, 

locally reverse and counter-gradient flow, i.e., flow opposite to the main wind direction, emerges. This results in local puffs of 295 

above-average column concentration enhancements within the exhaust plume, while eddy-generated local flow in the same 

direction as the ambient wind causes constrictions of lower column concentrations in a plume (Stull, 1988). Such plume 

structures deviate from Gaussian behavior, as can be seen in Fig. 6 at 17:54. 

 

 

Figure 7: Histogram of virtually retrieved emission rates. The histogram shows a slightly skewed distribution towards smaller emission 

rates than the input emission rate (red dashed line). It depicts all 1980 emission rates retrieved over 66 simulated hours between 12 UTC 

on 21 May and 6 UTC on 24 May. 

 

Locally increased CO2 column concentration results in a high value in the integrated enhancement A, in contrast to an 

overflight over a constriction. Following Eq. (3) this corresponds to a high value of the emission rate q. It should also be 300 

stressed that the spatial extent of such puffs is smaller than that of complementary constrictions. Therefore, a skewed 

distribution of the retrieved emission rates is to be expected, as Fig. 7 confirms. 

On 23 May 2018, four measurement flyovers of the power plant Jänschwalde took approximately one hour, as presented in 

Sect. 3. As spin-up we discard the first 6 hours of the simulation (see Table 2). That is 66 hours of simulation, which leaves us 

with a total of 1980 virtual plume flyovers. The corresponding results of the emission rate, which are calculated using Eq. (3), 305 

are displayed as a histogram in Fig. 7 and as a time series in Fig. 8a. 
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Figure 8: Virtual overflight results in the course of the day. In (a) it can be seen that rising solar altitude α entails turbulence. Especially, 

midday turbulence causes deviations of the retrieved emission rates q from the input emission rate qin. In (b) the integrated enhancement 

A shows equivalent behavior, while the variations in wind speed u are comparatively small. It is during the midday turbulence, that the 

virtual flight tracks are not exactly perpendicular to the instantaneous wind direction at the plume crossing, which becomes apparent in 

the correction factor sin(φ) in (c). In the night hours, as well as the morning the retrieved emission rates agree very well with the input 

emission rate qin. The wind speed u surpasses the threshold value of 2 m/s at all times. 

 

In Fig. 8a it can be seen how the diurnal course of solar altitude α influences the retrieved emission rates q. The random 

occurrence of inhomogeneities in the plume propagation, caused by local turbulence, leads to large variations in the results of 

successive crossings. Turbulence lags behind solar altitude because the surface needs time to heat up. It is also apparent that 

the emission rate deviations vary from day to day, both in intensity, as well as in dwell time. 310 

The implications for the measurement results can be reduced by averaging over a multitude of retrieved emission rates. Next, 

we investigate how often the exhaust plume must be surveyed, to achieve a mean emission rate with satisfactory accuracy. 

From experience with the Jänschwalde measurement presented in Sect. 3, as well as other point source measurements during 

the CoMet campaign, which are not presented in this work, we assume a time delay in the range of 6 to 18 minutes between 

two successive crossings. With typical wind speeds in the range of 5–8 m/s and spatial scales of puffs and constrictions of 315 

about 1–2 km, our range of time delay exceeds the residence time of coherent plume structures, thus preventing repeated 

measurements of identical air masses. The model setup provides one measurement every 2 minutes, resulting in a vast number 

of permutations of successive virtual crossings available for merging (see Table A1). For each of these permutations, a mean 

value is calculated, which is then compared with the initiated emission rate qin. To evaluate the turbulence-induced 

inhomogeneity in the daily course, we compare two-hour time frames. We execute a total of 60 virtual overflights in such a 320 
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two-hour time frame. The number of possible permutations increases exponentially to 5000 if four crossings are merged and 

even on to 312500 if seven crossings are merged (see Table A1). This high number of permutations is based on the identical 

60 single crossing emission rates, which are displayed in the histograms in Fig.9. 

 

 

Figure 9: Box-whisker-plot of the relative difference to the input emission rate qin within two-hour time frames. The right axis shows the 

associated retrieved emission rates. The width of the distribution decreases with a higher number of crossings. For all time frames it can 

be stated that with an increasing number of merged crossings the width of the distribution decreases. The largest differences to qin are 

observed in the afternoon. Different colors represent a different number of virtual crossings merged for averaging. The inner boxes range 

from the first to the third quartile, thus containing 50 % of the values. The median is marked within as a black dash. The upper whisker 

is drawn up to the 95th percentile, while the lower whisker is drawn to the 5th percentile Consequently 90% of the values are in between 

the two whiskers. All values outside the whiskers are outliers and plotted as dots.  

 

Figure 9 presents the resulting distribution of this relative difference to the input emission rate as a box-whisker-plot. The 

spread of the respective box-whisker-plot is an indicator of turbulence. It is evident that with an increasing number of 325 

overflights merged for averaging the spread of the relative differences decreases, while the measurement precision increases. 

A high emission rate measured by a single overflight scanning a puff is compensated if the subsequent overflight measures a 

lower emission rate. With a higher number of overflights averaged, it is more likely to measure both high and low concentration 

air masses. Yet, although the precision can be improved by increasing the number of overflights, even for ten overflights it is 

inferior to the precision of nighttime measurements. Additionally, not only the precision but also the accuracy is compromised 330 

during times of strong turbulence, i.e., in the afternoon. As aforementioned, the spatial extent of turbulence-induced puffs is 

smaller than the one of the complementary constrictions. Therefore, such puffs are likely to be less frequent and only partially 

scanned when measured at a low sampling frequency. Consequently, the retrieved emission rates will be biased low. This is 

an effect that occurs especially during strong turbulence. In Fig. 9 a strongly turbulent day (22 May) is compared to a less 

turbulent day (23 May). Both precision and accuracy are superior on a less turbulent day. 335 
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In contrast, the night hours show little turbulence and high precision. Even with a single overflight, small differences to the 

true emission rate are to be expected. Here, a higher number of overflights will only cause minor improvements. At this point, 

it should be mentioned that the representation of nightly plume propagation must be critically reviewed. The plume height 

decreases so much that the propagation takes place only in the lowest four model layers. The fact that a bias of approx. ±5% 

remains at night is not surprising from this point of view. This study should therefore be understood as a qualitative assessment. 340 

The key finding is that avoiding situations of high turbulence brings an enormous improvement for both precision and accuracy. 

Even with a significantly higher number of measurement overflights, a comparable improvement cannot be attained.  

6 Discussion 

Regarding the lidar measurements during the CoMet campaign on 23 May 2018, we find that the mean emission rate, derived 

from repeated plume overflights, is in rough agreement with the average emission reported by the power plant operator for the 345 

year 2017. The cross-sectional flux method is straight forward to apply. The exhaust plume generates column enhancements 

in the differential absorption optical depth (DAOD), with a good signal-to-noise ratio, in the order of 10 %. The product of 

enhanced column concentration integrated along the flight track and mean wind speed, provides the flux through the lidar 

cross-section, at the instant of the overflight. This instantaneous flux of an individual overflight measurement can be 

determined with an error ranging between 8–10 %. This error is mainly driven by uncertainties of the integrated enhancement, 350 

the mean differential-absorption cross section, the mean relative wind direction, and the mean horizontal wind speed. On 

average, we find that two-tenth
2

10
 of the flux error can be attributed to uncertainty in the determination of the integrated 

enhancement, i.e., the integrated enhancement of the DAOD signal, which is the only parameter that needs to be derived from 

the IPDA lidar measurement. One-tenth
1

10
 can be attributed to the uncertainties of the mean differential-absorption cross section 

of CO2 and the relative wind direction, taken together. The main source of error, however, is the mean horizontal wind speed, 355 

with a contribution of two-thirds
7

10
. This highlights the need for more accurate wind information. Future studies will examine 

CHARM-F measurements in the Upper Silesian Coal Basin to determine CH4 emissions from coal mines. In this area, ground-

based Doppler wind lidars have been installed. It is expected that nudging the simulation towards the wind soundings will 

result in an improvement of the wind vector estimation, ultimately reducing the overall error in the flux determination. 

It is necessary to distinguish between instantaneously measured flux and actual emission rate. In theory, an exhaust plume 360 

behaves Gaussian on average and the mean emission rate of the point source lies within the error range of the instantaneously 

measured fluxes. Contrary to this, our overflights reveal large variations between the individually retrieved instantaneous 

fluxes, which cannot be attributed to measurement uncertainties. These variations do not occur because the measurement error 

increases, but because plume segments with varying CO2 content are probed. The actual measurement error is minor compared 

to these variations (cf. Table 1). As described in Sect. 5, strong solar heating causes turbulence, which forces the plume to 365 
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deviate from Gaussian behavior. This deviation can be restricted by averaging over a multiple of instantaneous fluxes, as the 

results from our measurement flights suggest. 

To analyze this effect in more detail, we employ the atmospheric transport model WRF in a high-resolution large eddy 

simulation (LES) setup. We find that the model simulates realistic plume dispersion. Typical DAOD values, as well as 

turbulence-induced distortions, show the same order of magnitude as our measurements. However, as we evaluate only four 370 

overflights in the measurement, we cannot make any statement about the absolute accuracy of the simulation, which is also 

not the intention of this work. Qualitatively, the simulation provides the following insights. During the night the plumes are 

weakly distorted and have a Gaussian shape because laminar flow dominates. Over the course of the day, turbulence increases, 

reaching its peak in the mid-afternoon and distorting the plumes to non-Gaussian shapes. Thus, with increasing turbulence, a 

higher larger number of crossings are is required for averaging in order to obtain sufficient emission rate precision. According 375 

to our simulation, nighttime measurements require fewer overflights. Under such conditions, even a single instantaneous cross-

sectional flux measurement yields an accuracy of up to ~95 %. In cases of very pronounced turbulence (i.e., in the afternoon), 

even an impractically high number of overflights will neither reach the precision, nor the accuracy of a single nighttime 

overflight.  

At this point, we cannot derive any limits for solar altitude or local times that should be avoided, as the simulation reveals that 380 

the turbulence intensity varies from day to day (see Fig. 8 and Fig. 9). Generally, we find that the most significant turbulence 

occurs in the afternoon. For future campaign planning, we recommend to also perform measurements at night or in the morning, 

which is possible with lidar. 

7 Conclusion 

The present study continues the investigations by Amediek et al. (2017) on the quantification of fluxes of local greenhouse gas 385 

emission sources using the integrated-path differential-absorption (IPDA) lidar CHARM–F and the cross-sectional flux 

method. While the preceding study was concentrated on CH4 emissions from hard coal mines, here, we exploit the results from 

the CoMet campaign in 2018. We investigate CO2 plume overflights of the coal-fired power plant Jänschwalde, conducted to 

quantify its emission rate and to assess how accurately the cross-sectional flux method can be applied. Since CHARM–F 

measures both greenhouse gases simultaneously, our findings also apply to isolated CH4 point sources. 390 

With regard to cross-sectional flux measurements, the current work suggests avoiding mid-afternoon periods of strong 

turbulence. On the one hand, this is because the uncertainties in the wind speed are most pronounced at these times, being the 

major source of error in a single measurement. On the other hand, this is due to the distortions of exhaust plumes in a turbulent 

wind field, which lead to substantial deviations from Gaussian plume dispersion. Under strong turbulence, the cross-sectional 

flux method cannot provide an accurate measurement of the emission rate, not even in the average of a vast number of 395 

overflights. Therefore, measurement flights performed during nighttime are beneficial. In this respect, intrinsic independence 

from solar irradiation is a clear advantage of active remote sensing over passive approaches. Whenever sunlight is needed to 
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perform the measurement, less turbulent conditions, for example in the morning after sunrise, or winter, should be preferred. 

Further, it shall be pointed out that, with a lidar, cross-sectional plume measurements can also be performed over water bodies, 

whose detrimental reflective properties often impede the use of passive remote sensing (Gerilowski et al., 2015; Krautwurst et 400 

al., 2021; Larsen and Stamnes, 2006). Therefore, plumes from offshore installations can also be addressed with this approach. 

Independent of the location of the point source, there are restrictions regarding the adequate distance of a plume overflight to 

the point source. We report that at a point source distance of more than 4.6 km no enhancement is visible and therefore no 

plume detection can be performed. In addition to that, we find that the uncertainty of the mean differential-absorption cross 

section increases with a larger vertical extension of the plume, which correlates with distance. At a point source distance of 405 

1.5 km, this uncertainty is negligible. Concerning the detectability of the plume, we can locate distinct enhancements at a 

distance of 1.5 km. Nevertheless, the closer to the point source the overflight takes place, the more constrained the plume and 

consequently the more pronounced the column enhancement is. It must be considered, however, that the horizontal extension 

is also smaller and thus fewer data points lie within the plume. In the case of CHARM–F, this can be compensated by a higher 

repetition rate. 410 

8 Outlook 

Apart from the CHARM-F measurements, the CoMet campaign also saw the deployment of other airborne instruments to 

measure atmospheric CH4 and CO2, supported by a variety of ground–based, in situ and remote sensing instruments. They 

were predominantly based in the vicinity of one of the major hot–spot regions of CH4 emissions in Europe, the Upper Silesian 

Coal Basin (USCB). Investigations of local and regional CH4 emissions from this region are, in view of the preparation for the 415 

upcoming MERLIN mission, a particular field of interest. The possibility to synergistically use active remote sensing (lidar), 

passive spectrometry, and in situ measurements supported by modeling activities, allow for unique cross comparisons, which 

are beyond the scope of the present paper. Such cross comparisons will be subject of subsequent investigations, as well as 

other HALO measurement flights, as it flew along latitudinal trajectories, performed regional survey flights (e.g., over the 

Mount Etna) and also probed the local plume of not only Jänschwalde, but also Bełchatów in Poland, which is considered 420 

Europe's largest coal-fired power plant, in terms of CO2 emission. The measured data can make an important contribution to 

the validation of existing satellite missions (e.g., Sentinel–5P, GOSAT). Further aircraft campaigns (e.g., CoMet–2.0) are 

foreseen which will provide additional opportunities for methodical refinements, including advancements on model-

measurement synergies. 
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Appendix A 

Figures of individual HALO crossings on 23 May 2018: 

 

 

Figure A1: Individual transects listed in Table 1. Red vertical lines mark the smallest data extract used for the Riemann sum, as described 

in Sect. 3. 

 

 

Calculation of simulated DAOD: 

At the initialization position of the power plant, the value of the tracer variable is increased by the value 1 at each time step. 

In this study, it is defined only in the inner domain D3. 430 

𝑡𝑟(𝑡 + Δ𝑡, 𝑥, 𝑦, 𝑧) = 𝑡𝑟(𝑡, 𝑥, 𝑦, 𝑧) + 1         (A1) 

Here, Δt corresponds to the computational time step of the third domain, i.e., one second (Table 3). At the same time the tracer 

is distributed in the domain D3 by advection and turbulent dispersion. The corresponding mass concentration c(t,x,y,z) at any 

grid point x,y,z at time t is obtained as follows: 

𝑐(𝑡, 𝑥, 𝑦, 𝑧) =  𝑡𝑟(𝑡, 𝑥, 𝑦, 𝑧) ·
𝑞𝑖𝑛·Δ𝑡

Δ𝑥·Δy·Δ𝑧(𝑡,𝑥,𝑦,𝑧)
         (A2) 435 
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For the input emission rate qin a constant value of 760 kg(CO2)/s (24.0 Tg(CO2)/yr) is initialized, which corresponds to the 

total annual emission for the year 2017 reported to the European Environment Agency by the operators (E-PRTR, 2020). Δx 

and Δy correspond to the temporally and spatially constant horizontal size of a grid point (0.2 km). The vertical layer size 

Δz(t,x,y,z) corresponds to the spatial distance between two model levels. In the simulation this distance is computed in pressure 

coordinates and depends on all four dimensions. Since the pressure varies only slightly between successive time steps, the 440 

temporal dependence of Δz is small. At locations with flat topography the dependence of Δz on the horizontal coordinates x 

and y is also small, at locations with large topographic changes (e.g., steep slopes) the dependence is more significant. The 

product Δx∙Δy∙Δz(t,x,y,z) corresponds to the volume of the respective grid box. Within this volume the value of the tracer 

variable and thus the concentration is constant. 

In order to compare the simulated data with an IPDA lidar measurement, the concentration array must be summed up vertically 445 

and multiplied by the quotient of the mean differential-absorption cross section and the molecular mass: 

𝐷𝐴𝑂𝐷𝑤𝑟𝑓(𝑡, 𝑥, 𝑦) =
Δσ̅̅ ̅̅

𝑀
· ∑ 𝑐(𝑡, 𝑥, 𝑦, 𝑧𝑗) · Δ𝑧𝑗(𝑡, 𝑥, 𝑦, 𝑧)

𝑗𝑡𝑜𝑝
𝑗=1

       (A3) 

The index j marks the respective vertical layer. Consequently j∊{1,56} applies, and zj is defined to correspond to the lower 

edge of the respective layer. 
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Exemplary snapshots of simulated DAOD: 

 

 

Figure A2: Exemplary snapshots of simulated plume and virtual flight track. At the respective top local time is given in Central European 

Summer Time (CEST, i.e., UTC+2), at the bottom α denotes the local solar altitude. The daily solar irradiation causes a deep, convective 

boundary layer with turbulent plume dispersion within. In the nocturnal absence of solar irradiation, the boundary layer shrinks, leading 

to narrow, homogeneous plume dispersion, within a laminar flow. Every two minutes a virtual measurement is performed yielding 60 

measurements within a time frame of 2 hours. One representative snapshot within the two-hour time frame is shown. Some snapshots 

show disjointed exhaust plumes. This is due to vertical wind shearing and the resulting different vertical advection directions. 
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Table A1: Number of possible permutations of successive virtual crossings used for averaging 

# of measurements  
# of possible 

permutations 

1 60 

4 5000 

7 312500 

10 9765625 
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