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Abstract. Due to the discretized nature of rain, the measurement of a continuous precipitation rate by disdrometers is subject

to statistical sampling errors. Here, Monte Carlo simulations are employed to obtain the precision of rain detection and rate as

a function of disdrometer collection area and compared with World Meteorological Organization guidelines for a one-minute

sample interval and 95% probability. To meet these requirements, simulations suggest that measurements of light rain with rain

rates R ≤ 0.50 mm h−1 require a collection area of at least 6 cm × 6 cm, and for R = 1 mm h−1, the minimum collection area5

is 13 cm × 13 cm. For R = 0.01 mm h−1, a collection area of 2 cm × 2 cm is sufficient to detect a single drop. Simulations

are compared with field measurements using a new hotplate device, the Differential Emissivity Imaging Disdrometer. The

field results suggest an even larger plate may be required to meet the stated accuracy, likely in part due to non-Poissonian

hydrometeor clustering.

1 Introduction10

Ground-based precipitation sensors are commonly used to validate larger scale
::::::::::::::
remotely-sensed precipitation measurement

systems including satellite (TRMM), WSR-88D radar measurements (Kummerow et al., 2000; Fulton et al., 1998), and numer-

ical weather prediction models (Colle et al., 2005) aimed at hydrology, agriculture, transportation, and recreation applications

(WMO, 2018; Estévez et al., 2011; Campbell and Langevin, 1995; Brun et al., 1992). The ability of an automated weather

station to detect the presence of even very light precipitation can be crucial for weather forecasting in remote locations where a15

human observer is not available to verify the presence of rainfall (Horel et al., 2002; Miller and Barth, 2003). Light rain or driz-

zle can severely impede road safety (Andrey and Yagar, 1993; Andrey and Mills, 2003; Bergel-Hayat et al., 2013; Theofilatos

and Yannis, 2014).

Disdrometers measure particle drop size distributions and provide calculated precipitation rate from the integrated mass

flux. Among available disdrometers are the mechanical Joss Waldvogel (JW) disdrometer (Joss and Waldvogel, 1967), laser or20

optical sensors such as the OTT Parsivel2 (Tokay et al., 2013; Bartholomew, 2014), and video disdrometers such as the 2DVD

(Kruger and Krajewski, 2002; Thurai et al., 2011; Brandes et al., 2007). In instrument development, striking a balance between

sampling area size and accurate fine-scale precipitation detection is a well-known problem. Among other instrument-specific

considerations, disdrometer accuracy depends on the sampling area and time interval. Gultepe (2008) highlights a universal
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difficulty in accurately measuring very light precipitation. In their study, they compared different co-located precipitation sen-25

sors and found large absolute and relative errors (32-44%) for all instruments when precipitation rate R < 0.3 mm h−1, but the

relative errors were approximately 10% whenR > 1.5 mm h−1. Despite these observations, they found that optical and hotplate

disdrometers can more accurately detect light precipitation compared to weighing gauges, despite having comparatively small

sampling areas, typically 50 cm2, where the VRG101 weighing gauge sampling area is 400 cm2. Here, we focus solely on the

effect of disdrometer sampling area and time interval on the precision of precipitation rate measurement distinct from any other30

uncertainties associated with the instruments themselves.

The World Meteorological Organization (WMO) recommends that a disdrometer measure precipitation intensities between

0.02 and 2,000 mm h−1 with an output averaging time of one-minute (WMO, 2018). Measurement uncertainty is defined as

“the uncertainty of the reported value with respect to the true value and indicates the interval in which the true value lies within

a stated probability” specified to be 95%. For liquid precipitation intensity, the uncertainty requirements for rates of 0.2 to35

2 mm h−1 are ± 0.1 mm h−1, and for precipitation rates > 2 mm h−1 they are 5% (see Table 2). For < 0.2 mm h−1, the

requirement is only detection.

Most commercial instruments do not reach such strict standards. Table 1 provides the reported uncertainties for several

precipitation instruments. The instrumentation used by ASOS weather stations located at major airports utilizes a Heated

Tipping Bucket (HTB) for precipitation accumulation and a Light Emitting Diode Weather Identifier (LEDWI) for precipitation40

type and intensity. The LEDWI uses signal power return to determine the drop size distribution of rain or snow, then classifies

the precipitation intensity based on the size distribution (Nadolski, 1998). A significant limitation of the ASOS system is that

it cannot discriminate drizzle from light rain, and it qualitatively expresses small amounts as a trace (Wade, 2003; Nadolski,

1998).

Vaisala manufactures a range of optical precipitation sensors that detect and categorize precipitation from the forward scat-45

tering of a light beam, including the PWD12, PWD22, PWD52, and FD71P. The PWD12 detects rain, snow, unknown precip-

itation, drizzle, fog, and haze. The PWD22 has the same resolution and accuracy as the PWD12, but it also detects freezing

drizzle, freezing rain, and ice pellets (Vaisala, 2019b). The PWD52 has an increased observation range of 50 km, compared to

20 km for the PWD 22 (Vaisala, 2018a). All three PWD instruments have a precipitation intensity resolution of 0.05 mm h−1

for a 10-minute sampling interval at 10% uncertainty (Vaisala, 2019b). The PWD22 is included with tactical weather instru-50

mentation intended for U.S. military and aviation operations (TACMET) and reports precipitation type in WMO METAR code

format (Vaisala, 2018b). The FD71P has a higher stated sampling frequency and resolution than the PWD instruments of 0.01

mm h−1 with 2.2% uncertainty in a 5-second measurement cycle (Vaisala, 2019a), although there has yet to be independent

scientific evaluation of the device.

Hotplate disdrometers offer an alternative with the advantage of requiring fewer assumptions as mass is inferred from the55

energy required for evaporation. The Yankee Environmental Systems TPS-3100 determines liquid water precipitation rate

of rain or snow by taking the power difference between an upward and a downward-facing hot plate as a measure of the

latent heat energy required to evaporate precipitation (Rasmussen et al., 2010). The technology is currently marketed as the

Pond Engineering Laboratories K63 Hotplate Total Precipitation Gauge (Pond Engineering, 2020). The hotplate is 5 inches
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in diameter, or 126.7 cm2, which is equivalent to a square with a width of 11.26 cm. It measures precipitation rate with a60

resolution of 0.10±0.5 mm h−1 and can detect the onset of light snow within one minute (Yankee Environmental Systems,

2011; Pond Engineering, 2020).

Table 1. Precipitation measurement instrument specifications

Model Type Resolution Uncertainty Time Meets WMO

[mm h−1] [s] Requirement

Vaisala PWD12/22/52 Optical 0.05 10% 600 N

Vaisala FD71P Optical 0.01 2.2% 5 Y

ASOS HTB Tipping Bucket 0.25 0.5 mm or 4%* 60 N

ASOS LEDWI Optical 0.25 > 4 mm h−1 60 N

YES TPS-3100 / Pond K63 Hotplate 0.10 0.5 mm h−1 60 N

WMO 0.10 0.1 mm h−1 or 5%* 60

*Whichever is greater

A newer hotplate disdrometer, yet to be commercialized, is the Differential Emissivity Imaging Disdrometer (DEID) de-

veloped at the University of Utah. The DEID measures the mass of individual hydrometeors using a hotplate and a thermal

camera, which provide accurate, fine-scale measurements. A larger hotplate sampling area increases the operating cost through65

higher power consumption. The work here was originally motivated by a desire to minimize DEID power and maximize mea-

surement precision, although the calculations are applicable more generally to other disdrometers such as those described. We

employ a Monte Carlo approach (Liu et al., 2012, 2018; Jameson and Kostinski, 1999, 2001a, 2002) to stochastically generate

raindrops based on canonical size distributions aimed at determining the minimum required disdrometer collection area and

sampling frequency for precise measurement of precipitation rates between 0.01 and 10 mm h−1. We consider the precipitation70

rate uncertainty relative to WMO standards. Inherent precipitation measurement uncertainties associated with the instrument

mechanism are not addressed here. Where Joss and Waldvogel (1969) approached the problem analytically by assuming the

interarrival times of droplets up to 6 mm in diameter are distributed according to a Poisson distribution, here we approach

the problem numerically by employing a Monte Carlo approach. In principle, the results should converge, although the Monte

Carlo approach also facilitates the calculation here of the time required to measure the “first drop" in a precipitation event. Joss75

and Waldvogel (1969) defined a sample size as the product of an area and a sample time. Under the assumption that raindrop

size follows an exponential distribution, to measure a precipitation rate of R = 1 mm h−1 to a precision of 10% within 95%

confidence bounds, the required sample size is 1.5 m2 s, corresponding to a cross-sectional sampling area of A = 250 cm2 with

a square
::::::::
sampling

:::
area

:
width W = 15.8 cm for a nominal 60 s collection interval. The required square width W found in this

work for the same parameters is 13 cm.80
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2 DEID
:::::::::

Differential
::::::::::
Emissivity

:::::::
Imaging

::::::::::::
Disdrometer principle

The DEID obtains the mass of individual precipitation particles by assuming conservation of energy during heat transfer from

a square plate to a melting hydrometeor. To determine particle size during evaporation, a thermal camera is directed at a heated

aluminum sheet. Since aluminum is a thermal reflector (thermal emissivity ε≈ 0.03), whereas water is not (ε≈ 0.96), particles

are seen
::::
have

::::
high

:::::::::
brightness

::::::::::
temperature

::::
and

::::::
appear as white regions on a

:::
low

::::::::
brightness

:::::::::::
temperature,

:
black background.85

From the measured cross-sectional surface area, temperature, and evaporation time of each hydrometeor, the effective diameter

and volume, and mass of each particle can be calculated with high precision (Singh et al., 2021). A piece of polyimide tape with

ε≈ 0.95 is placed on the side of the sampling area as a reference for the differential emissivity calculation and determination

of the camera’s pixel resolution. For the study described here, the DEID’s aluminum plate had an area of 15.24 cm × 15.24

cm and the camera pixel resolution was 0.2 mm. Polyimide tape applied to the surface restricted the collection area to A ≈ 790

cm × 5 cm, equivalent to a square width of W = 5.8 cm. Thermal camera imagery with a sampling frequency between 2 and

60 Hz was used to determine the cross-sectional surface area, temperature, and evaporation time of each hydrometeor (Singh

et al., 2021). From these parameters, individual hydrometeor mass is calculated from conservation of energy, whereby the heat

gained by the hydrometeor is equal to the heat lost by the hotplate when evaporating water through

cp∆T

∫
dm+Leqv

∫
dm=

t∫
0

K

H
A(t)(Tp−Tw(t))dt (1)95

where cp is the specific heat capacity of water at constant pressure, ∆T is the difference in temperature between 0 and time t,

m is the mass of the hydrometeor, and Leqv is the equivalent latent heat required for the conversion of the hydrometeor to gas.

For liquid precipitation Leqv = Lv where Lv is the latent heat of vaporization of water. K is the thermal conductivity of the

plate, H is hotplate thickness, A(t) is the area of the water droplet at time t, Tp is the temperature of the hotplate, and Tw(t) is

the temperature of the water at time t.100

Equation
::::
When

::::::::::
combining

::
the

::::::::
constants

::::
into

:
a
::::::
single

:::::
value

:::
Kd,

:::
Eq.

:
(1) simplifies to

∫
dm=Kd

t∫
0

A(t)(Tp−Tw(t))dt

∫
dm=Kd

t∫
0

A(t)(Tp−Tw(t))dt

::::::::::::::::::::::::::::

(2)

where the constant Kd is determined experimentally.105

The precipitation rate RDEID is calculated from the total mass of hydrometeors evaporated on the hotplate during a given

sample time interval. For each frame of the hotplate captured by the thermal camera,

RDEID =
βfsKdAevapImean

ρwAhot
(3)
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Figure 1. Photograph of the DEID
:::::
during

:::
the

:::
Red

::::
Butte

::::
field

:::::::::
experiment

:
in
::::
Salt

::::
Lake

::::
City,

::::
Utah with the thermal camera and

:::::
pointed

::
at

:::
the

hotplate circled
:::::
surface.

where β = 3.6×106 mm s mm
:
m−1 h−1, fs is the camera resolution in frames per second

::::::
(frame

::::
s−1), Aevap is the total area

of water on the sampling area
::::
(m2), Imean is the pixel intensity related to the temperature difference between the plate and110

water through Tp−Tw(t)≈ (255− Imean)/256×Tp, ρw is the density of water (1000 kg m−3), and Ahot is the hotplate area

in units of meters squared.
::::
(m2).

:::::::::::
Hydrometeor

:::::
catch

::::::::::
inefficiency

::
is

::
a

::::
large

::::::::::
contributor

::
to

:::::::::::
precipitation

::::
rate

:::::::::::
measurement

:::::
error,

:::::::::
especially

:::
in

::::::::::
bucket-type

::::::::::
precipitation

::::::
gauges

::::::::::::::::::
(Pollock et al., 2018).

:::::::::::::::::::::
Rasmussen et al. (2010)

::::
found

::::
that

:::
the

:::::::
Yankee

:::::::
hotplate

:::
had

::
a
:::::
catch

::::::::
efficiency

:::
of

::::
only

::::
50%

::::
with

:::::
wind

:::::
speed

:::
of

::
5

::
m

::::
s−1

:::
and

:::::
35%

::::
with

:::::
wind

:::::
speed

:::
of

:
8
:::

m
::::
s−1.

::::
The

:::::
DEID

:::::::::
underwent

::
a
:::::
series

::::::::::
calibration115

::::
wind

::::::
tunnel

::::
tests

::
to
:::::::::

determine
:::

the
::::::

effect
::
of

:::::
wind

:::
on

:::::
mass

::::::::::::
measurements.

:::::::
During

:::::
these

:::::::::::
experiments,

::::
mass

:::::::::::::
measurements

:::::::
remained

:::::::::::::
approximately

:::::::
constant,

::::::::
revealing

::::
that

:::::
catch

::::::::::
inefficiency

::
is

:::
not

:
a
::::::::::

contributor
::
to

:::
the

:::::::::::
precipitation

:::
rate

::::::::::::
measurement

:::::::::::::::
(Singh et al., 2021)

:
.
::::
The

::::
high

::::
catch

:::::::::
efficiency

::::
from

:::
the

:::::
DEID

::::
was

:::::::::::
demonstrated

::::::
during

:
a
:::::
storm

::::
that

::::
took

:::::
place

::
at

::::
Alta,

:::
UT

:::
on

::::
April

:::
16,

:::::
2020

:::::::
between

:::::
0000

:::
and

:::::::::
1600UTC

::::::
(Figure

:::
10

::
of

::::::::::::::::
Singh et al. (2021)

::
).

:::
The

:::::::::
co-located

::::::::
weighing

::::::
gauge

:::
was

:::::::
located

:::::
inside

::
of

::
a

::::
wind

::::::
fence,

:::::
while

:::
the

:::::
DEID

::::
was

::::
not.

:::::::
Despite

::::
wind

::::::
speeds

::::::
during

:::
the

:::::
storm

:::::::
ranging

:::::
from

::::
4-13

::
m

::::
s−1

::::::::
sustained120

::::
with

::::
8-19

::
m

:::
s−1

::::::
gusts,

:::::
DEID

:::::::::::
precipitation

:::::::::::
measurements

:::::
were

::::::
within

:::
6%

::
of

:::
the

:::::::::
co-located

::::::::
weighing

::::::
gauge.

:::
For

:::
this

:::::::
reason,

::::::::::
precipitation

::::
rate

::
as

:
a
:::::::
function

::
of
:::::
catch

:::::::::
efficiency

:
is
:::
not

::::::::
explored

::
in

:::
this

:::::
work.

:
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3 Monte Carlo simulations

3.1 Size distribution generation

For a range of collection areas A and time intervals ∆t, a rain drop distribution is generated stochastically and compared with125

the assumed rate R. Initially, we adopt a
::
the

:
Marshall-Palmer (Marshall and Palmer, 1948) drop size distribution

n(D) = n0e
−ΛD (4)

where n0 = 8000 m−3 mm−1 and Λ = 4.1R−0.21 mm−1. D ranges between 0 and Dmax in linear bins evenly spaced by ∆D.

We establish Dmax = 6 mm to account for the expected breakup of large raindrops (Villermaux and Bossa, 2009) and ∆D

= 0.25 mm for 50 bins. The value of ∆D is arbitrary but was chosen to approximate the spatial measurement resolution of130

the prototype DEID. For an assumed value of R, the array of drops is stochastically generated according to Eq. (4) where

NMP =
∑
n(D)∆D is the total number of drops generated from each bin. Each drop in the bin is assigned a diameter of

Dmean =D+ ∆D/2. For each value of Dmean, the fall speed is

v = aDb
mean (5)

where the coefficient a and the exponent b are determined for the Stokes regime forDmean ≤ 0.08 mm, the intermediate regime135

for 0.08 mm ≤ Dmean < 1.2 mm. and the turbulent regime for Dmean ≥ 1.2 mm following Lamb and Verlinde (2011). The

maximum value of v is used to determine the sample volume of the generated Marshall-Palmer distribution of drops vmaxA∆t

m3.

The calculated size distribution of drops incident on the collection area during sampling time ∆t is then

N(D)coll = n(D)Av∆t (6)140

with units of inverse millimeter
:::::
mm−1. The total calculated number of dropsNcoll incident on the collection area is a summation

of Eq. (6) over the range 0 to Dmax.

Note that the size distribution for N(D)coll does not converge to N(D)MP for long sampling times because smaller drops

fall slowly. Rather, as will be discussed, the distribution more closely resembles a gamma distribution (Ulbrich and Atlas, 1984)

. Nevertheless, the contribution of small drops to ground-based measurements of precipitation tends to be small as they are145

comparatively less massive. Also, precipitation particles form primarily from droplet collisions in the updrafts within clouds,

and so must attain the size that they fall sufficiently fast to leave cloud base and fall to the ground where they can be sampled

by ground-based instruments (Garrett, 2019).
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3.2 Calculated precipitation rate

Ncoll drops are randomly sampled assuming a
::
the

:
Marshall-Palmer distribution. From the drops that impact the collection area,150

the calculated precipitation rate Rcalc is (cf. Lane et al., 2009)

Rcalc = α
π

6

50∑
i=1

NiD
3
i

A∆t
(7)

where α = 3.6 /1000
::::::
×10−3 m2 s mm−1

::

−2
:
h−1 and Ni is the number of drops with diameter Di with i corresponding to bin

number. 100 simulations ofRcalc are performed for each value of equivalent sampling area widthW =
√
A, each evenly spaced

by 1 cm. The 95th and 5th percentile bounds of Rcalc are specified as the upper and lower bounds of sampling uncertainty155

(Rcalc/R− 1).

3.3 First and Hundredth Drop

To determine the sampling time required to detect the onset of precipitation, 100 simulations were performed for R = 0.01,

0.1, and 1 mm h−1 and for 100 evenly spaced width bins W between 1 cm and 20 cm. For each width bin, the number size

distribution (Fig. 4a) was calculated from n(D) for a 1 m3 volume directly above the collection area with height h= 1/A. A160

sample of drops is generated from Eq. (6). To ensure that the drop with the smallest sizeDmean could feasibly fall from the top

to the bottom of the sample volume, ∆t= h/v is maximized using the fallspeed
:::
fall

:::::
speed

:
of the minimum value of Dmean.

In general small drops contribute negligibly to calculations of precipitation rate (Smith et al., 2003) but due to their higher

concentrations they may nonetheless be the first detected. Accordingly, the functional form of n(D) is adjusted from the more

simple exponential form described by Eq. (4) to a gamma distribution165

n(D) = n0D
µe−ΛD (8)

So that small particles with D < 1 mm are not over-represented (Ulbrich and Atlas, 1984), the drop size distribution is

modified by the shape parameter µ . The drop distribution is
:::
and generated according to Eq. (6)and each .

:::::
Each

:
drop is

assigned a random height ∆z above the collection area within a distance h above the plate . The
:::
and

:::
the

:
time elapsed for the

plate to detect a drop is tp = ∆z/v. The shortest of these times is the first drop detection time t1(Fig. 4). .
:

170

Following the collection approach taken by Marshall et al. (1947), reproduction of a
::
the

:
Marshall-Palmer size distribution

is assumed to require collection of 100 drops. The time elapsed for the calculated incidence of 100 drops is t100(Fig. 4).
:
. If

fewer than 100 drops were obtained in Ncoll, a new sample of drops is obtained from Eq. (6) with an increased value of ∆t.
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4 Results

4.1 Monte Carlo simulations175

The sampling uncertainty in the precipitation rate is illustrated in Fig. 2. Precipitation rates of R = 0.02, 0.20, and 2.00 mm

h−1 were analyzed for a standard sampling time of 60 seconds. Collection areas smaller than approximately 6 cm× 6 cm meet

WMO standards for R ≤ 0.50 mm h−1, but a collection area of over 10 cm × 10 cm is required for R> 1 mm h−1.

To illustrate the relationship between accuracy and sampling time, Fig. 3 compares R = 0.10, 1.00, and 10.00 mm h−1

with sampling times of 10 seconds, 5 minutes, and 10 minutes. For heavy rain rates of 10 mm h−1, for a time interval of 5180

minutes, a disdrometer
:::::::
sampling

::::
area

:
width of 4 cm yields measured rain rates with a precision of ±5% error for 95% of the

measurements. The intersection between 95th and 5th percentile bounds and WMO accuracy criteria occurs at larger collection

areas as R increases.

First drop simulation results are shown in Fig. 4. Three simulations were performed using three values of µ, where µ= 0

represents the Marshall-Palmer exponential distribution and closely represents the distributions generated by the uncertainty185

simulations. Following Ulbrich and Atlas (1984), DEID measurements show values of µ between 1 and 2 best represent the

distribution of drops that arrive on the hotplate (Fig. 5b and 6b). Monte Carlo calculations of the size distribution Ncoll are

shown in Fig. 4.
:::
Note

::::
that

:::
the

::::
size

:::::::::
distribution

:::
for

::::::::
N(D)coll:::::

does
:::
not

:::::::
converge

:::
to

::::::::
N(D)MP:::

for
::::
long

::::::::
sampling

:::::
times

:::::::
because

::::::
smaller

:::::
drops

::::
fall

::::::
slowly.

::::::
Rather,

::::
the

::::::::::
distribution

::::
more

:::::::
closely

:::::::::
resembles

:
a
:::::::

gamma
::::::::::
distribution

:::::::::::::::::::::
(Ulbrich and Atlas, 1984)

:
.

:::::::::::
Nevertheless,

:::
the

::::::::::
contribution

:::
of

:::::
small

:::::
drops

::
to

::::::::::::
ground-based

::::::::::::
measurements

::
of

:::::::::::
precipitation

:::::
tends

::
to
:::

be
:::::
small

::
as

:::::
they

:::
are190

:::::::::::
comparatively

::::
less

:::::::
massive.

:::::
Also,

:::::::::::
precipitation

:::::::
particles

:::::
form

::::::::
primarily

::::
from

::::::
droplet

:::::::::
collisions

::
in

:::
the

:::::::
updrafts

:::::
within

:::::::
clouds,

:::
and

::
so

:::::
must

:::::
attain

:::
the

:::
size

::::
that

::::
they

:::
fall

:::::::::
sufficiently

::::
fast

::
to

:::::
leave

::::
cloud

:::::
base

:::
and

:::
fall

::
to

:::
the

::::::
ground

::::::
where

::::
they

:::
can

:::
be

:::::::
sampled

::
by

:::::::::::
ground-based

::::::::::
instruments

:::::::::::::
(Garrett, 2019).

:
For µ = 2, few of the smallest drops with D < 1 mm are incident on the collection

area. A square collection
::::::::
sampling

::::
area width of 2 cm × 2 cm is sufficient to detect the onset of light precipitation with a rate

of R = 0.01 mm h−1 within one minute.195

Table 2. Minimum collection area required to meet WMO precision criteria for various precipitation rates and time intervals evaluated within

one centimeter intervals

∆ t = 10 s ∆ t = 60 s ∆ t = 300 s ∆ t = 600 s

Rate (mm h−1) WMO Precision Width (cm)

0.01 First Drop (µ=2) 5 2 < 1 < 1

0.10 First Drop (µ=2) <1 1 <1 <1

0.20 ±0.1 mm h−1 6 1 1 <1

0.50 ±0.1 mm h−1 14 6 3 3

1.00 ±0.1 mm h−1 25 13 5 4

2.00 ±0.1 mm h−1 & ±5% 40 20 8 5

10.00 ±5% 30 15 6 4
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Figure 2. Precipitation rate Rcalc calculated 1000 times for each W with a uniformly distributed random selection of particle sizes from

a
:::
the Marshall-Palmer distribution with diameters up to 6 mm for ∆t = 60 s. Vertical curves represent a PDF of calculated Rcalc with the

widths scaled according to the widest curve. 95th and 5th percentile bounds are smoothed and shown in red, dotted lines. WMO standards

(±5% (dashed) and ±0.1 mm h−1 (dot-dashed)) are shown as horizontal lines. The intersection of these lines indicates the required square

disdrometer sampling
:::
area

:
width to determine R according to WMO standards.
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Figure 3. Comparison of R = 0.10, 1.00, and 10.00 mm h−1 for ∆t = 10 s, 5 minutes, and 10 minutes. The applicable WMO standards for

each rate (±5% (dashed) and ±0.1 mm h−1 (dot-dashed)) are shown as horizontal lines.
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Figure 4. Generated size distributions (left) First Drop Simulation (middle), and 100th Drop Simulation (right) for µ = 0, 1, and 2 (top,

middle, and bottom).
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4.2 Application to DEID measurements

During a field campaign that took place at the University of Utah between April 2019 and March 2020, the DEID recorded the

mass and density of individual hydrometeors, along with the one-minute-averaged precipitation rateRDEID for six rain events

and five snow events with data spanning 1185 total minutes. DEID particle mass distributions for two contrasting one-minute

samples of convective moderate (RDEID = 4.2 mm h−1) and light (RDEID = 0.1 mm h−1) rain are shown in Fig. 5 and 6.200

These samples were selected from rain-only events with measuredRDEID values closest to the values ofR that were analyzed

in Section 4.1. These disdrometer data are used here in place of an assumed size distribution to calculate Rcalc (Eq. 7) in 100

iterations, each taken from data randomly sampled over time interval segments of ∆t = 10, 20, 30, 40, and 50 s (Fig. 5c and

6c) and plate area segments of W = 1, 2, 3, 4, and 5 cm (Fig. 5d and 6d). Segments of ∆t include all particles within the

DEID collection area and segments in W encompass the entire 60 second time interval. In a three dimensional space of plate205

cross-sectional area and sampling time, the associated number concentration of drops for each case is shown in Fig. 5a-b and

Fig. 6a-b.

The version of the DEID used in this study had a maximum collection area width of W = 5.8 cm. For the moderate rain

case, the WMO precision requirement is ±5% (dashed lines). The
:::::::
moderate

::::
rain

:::::
where

::
R

::
=

:
1
::::
mm

::::
h−1,

:::
the

:
derived minimum

required hotplate
:::::::
sampling

::::
area

:
width to meet WMO requirements is larger than 10 cm, larger than the plate used

::
13

:::
cm. That210

is, the size of plate used was insufficient for the measurement of rain this intense. For light rain, the statistical uncertainty

bounds at 95% confidence converge to within ±0.1 mm h−1 of the DEID 1-minute measured rate for a plate collection area

width of W ∼ 3 cm. This value is larger than the width of 2 cm suggested by the Monte Carlo calculation shown in Table 2.

One possibility is that the raindrop interarrival time and spacing were not in fact Poissonian (Jameson and Kostinski, 2001b). In

the event of clusteringthen ,
:
a larger plate would be required to provide an accurate assessment of the average rain rate during215

a given time interval.

To assess whether this
::
the

::::::::
presence

::
of

::::::::::::
non-Poissonian

:::::::::
clustering is the case, two-point correlation functions η were calculated

following Shaw et al. (2002). A value of unity indicates interarrival times that are Poissonian and values greater than unity the

presence of non-random clustering. Based on the location of hydrometeor centroids as they arrive on the DEID plate, storm-

averaged values of η were found to be equal to 1.01 for rain falling under light winds on March 8, 2020, between 13:38 and220

15:49 MST, and equal to 1.10 for the period between 05:00-07:34 MST earlier that day when high winds were present. For

contrast, the value of η was 1.55 for a snow event with large aggregate snowflakes that took place on January 14, 2020 at

12:43-14:06 MST. While more extensive analysis is required, the implication is that non-Poissonian clustering can occur.
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(a) (b)

(c) (d)

Figure 5. Recalculation of Rcalc (Eq. 7) from 1000 uniformly distributed, randomly sampled iterations of a 1-minute DEID data set from

March 8, 2020 at 1443 MST with rain rate RDEID = 4.2 mm h−1 (a). Rcalc was recalculated using uniformly distributed random segments

of time (c) and hotplate
:::::::
sampling

:::
area

:
width (d). As t→ 60 and W →WDEID , Rcalc approaches RDEID .

13



(a) (b)

(c) (d)

Figure 6. Recalculation of Rcalc from 1000 iterations of a 1-minute DEID data set from March 8, 2020 at 1514 MST with rain rate RDEID

= 0.1 mm h−1 (a). Rcalc was calculated using uniformly distributed random segments of time (c) and hotplate
::::::

sampling
::::
area width (d). As

t→ 60 and W →WDEID , Rcalc approaches RDEID .
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5 Conclusions

A Monte Carlo approach was used to determine the minimum required cross-sectional collection area for a disdrometer to225

measure a given precipitation rate with a WMO target precision at 95% probability for a one-minute collection period. Intrinsic

instrument uncertainties were not considered, only those associated with statistical sampling errors associated with the raindrop

size distribution. Following these criteria, a square collection area of 6 cm × 6 cm is sufficient to detect the onset of light rain

with R ≤ 0.50 mm h−1.

For R > 1 mm h−1, a sample area of over 10 cm × 10 cm is required, although a smaller collection area may achieve the230

required accuracy by increasing the sampling time. For example, in ten minutes, a 4 cm × 4 cm collection area can measure

10 mm h−1 precipitation rates to within the WMO required precision 95% of the time. A collection area as small as 2 cm × 2

cm may detect the onset of light drizzle with R = 0.01 mm h−1 within one minute, even in instances where small particles in

the drop size distribution fall too slowly to intercept the collection area.

Theoretical results obtained from Monte Carlo simulations were compared with observed field measurements from a new235

precipitation sensor, the Differential Emissivity Imaging Disdrometer, for both light and moderate rain. Randomly selected

segments of decreasing sampling time and area from the DEID were used to recalculate the precipitation rate. The results

suggest a larger plate may be required to meet a specified precision than those indicated by the Monte Carlo simulations that

were performed. A possible explanation is the presence of non-Poissonian clustering that was revealed by two-point correlation

function calculations, particularly during high wind and snow events.240

The results presented here have general implications for the sampling limitations of other widely used particle-by-particle

disdrometers such as the PARSIVEL with a sample area of 48.6 cm2 or effective W of 7 cm (Battaglia et al., 2010), and

the 2DVD (Kruger and Krajewski, 2002) with a W of 10cm. Despite their sizable collection areas, like the DEID
::::::::::
Differential

:::::::::
Emissivity

:::::::
Imaging

::::::::::
Disdrometer, they may nonetheless fail to meet WMO standards if operated at a nominal 1 minute sampling

interval.245
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Appendix A:
::::::::::::
Nomenclature

:::::::::
Variables:

::
A

:::::::
sampling

::::
area

:
[
:::
m2]

:::
Aw ::::::::::::

cross-sectional
::::
area

::
of

:
a
:::::::::::
hydrometeor

::
as

::
it

::::::
appears

:::
on

:::
the

:::::::
hotplate [

::
m2]

:::::
Aevap ::::

total
::::::::::::
cross-sectional

::::
area

::
of

:::::::::
evaporated

:::::
water

:::
on

::
the

:::::::
hotplate

:
[
::
m2]

::
D

:::::::
spherical

::::::::
diameter

::
of

:
a
::::::::
raindrop [

:::
mm]

:
h
: :::::

height
::::::
above

:::::::
hotplate

::::
with

::::::::
sampling

::::
area

::
A

:::::::
required

::
to

:::::
create

::
a
:
1
:::
m3

::::::
sample

:::::::
volume [

::
m]

:::::
Imean: ::::

mean
:::::
pixel

:::::::
intensity

::
of

:::::
each

::::::::::
hydrometeor

:

::
m

::::
mass [

::
kg]

::::
Ncoll: ::::::

number
::
of

:::::
drops

::::::::
simulated

:::
to

:::
fall

::
on

:::
the

:::::::
hotplate

::::::
during

:
a
:::::
given

::::
time

:::::::
interval [

:::::
mm−1]

:::::
NMP ::::::

number
::
of

:::::
drops

:::::::::
associated

::::
with

:::
the

::::::::
Marshall

::::::
Palmer

:::::::::
distribution

:
[
:::::
mm−1]

::
R

:::
true

:::::::::::
precipitation

:::
rate

:
[
:::
mm

::::
h−1]

::::
Rcalc: ::::::::

calculated
:::::::::::
precipitation

:::
rate

:
[
:::
mm

::::
h−1]

::::::
RDEID: ::::::::::

precipitation
::::
rate

::::::::
measured

::
by

:::
the

:::::
DEID

:
[
:::
mm

:::
h−1]

::
Tw: ::::

water
::::::::::
temperature

:
[
::

◦C
::
or

::
K]

::
Tp: ::::::

hotplate
::::::::::
temperature

:
[
::

◦C
::
or

::
K]

::
t1 ::::

time
::
to

:::::
detect

:::
the

:::
first

:::::
drop [

:
s]

:::
t100: ::::

time
::
to

:::::
detect

:::
the

:::::
100th

::::
drop

:
[
:
s]

:
v
: ::::::::::

hydrometeor
:::
fall

:::::
speed

:
[
:
m

::::
s−1]

::::
vmax: ::::::::

maximum
:::
fall

:::::
speed

:::::::::
associated

::::
with

:::
the

:::::::
smallest

:::::::::::
hydrometeor

::
in

:::
the

::::::
sample

::::
drop

::::
size

:::::::::
distribution

:
[
:
m

::::
s−1]

::
W

: :::::
square

::::::::
sampling

::::
area

:::::
width

::
=

:::

√
A

:
[
:::
cm]

:
z
: ::::::::

randomly
:::::::
assigned

:::::::
raindrop

::::::
height

:::::
above

:::::::
hotplate [

::
m]

:
η
: ::::::::

two-point
:::::::::
correlation

:::::::
function

::::::::::::::::
(Shaw et al., 2002)

:
µ
: :::::

shape
:::::::::
parameter:

:::::::
controls

::::::
number

::
of

:::::
small

:::::::
particles

::
in
::::
size

::::::::::
distribution
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:::::::::::
Parameters:

::::
Ahot ::::::

hotplate
:::::::
surface

::::
area [

::
m2]

::
cp ::::::

specific
::::
heat

:::::::
capacity

::
of

:::::
water

::
at

:::::::
constant

:::::::
pressure

::
=
::::
4.28

:::::
×103

:
J
::::
K−1

:::::
kg−1

:

:::::
Dmax ::::::::

maximum
::::::::
generated

:::::
drop

:::::::
diameter

::
=

:
6
::::
mm

::::::
Dmean ::::

mean
::::::::
diameter

:::::
value

::
in

::::
each

:::
bin [

:::
mm]

::
fs ::::::

camera
::::::::
resolution

:
[
:::::
frame

::::
s−1]

::
H

::::::
hotplate

::::::::
thickness

::
=
::::::
0.0508

::
m

:

::
K

::::::
thermal

:::::::::::
conductivity

::
of

::
Al

::
=

:::
205

:::
W

::::
m−1

::::
K−1

:

:::
Kd ::::::::::::

experimentally
::::::
derived

::::::::
constant

:
=
::::
1.54

::::::
×10−3

:::
kg

:::
s−1

::::
K−1

:::::
m−2

::::
Leqv ::::::::

equivalent
:::::
latent

::::
heat

:::::::
required

:::
for

:::
the

:::::::::
conversion

::
of

:::
the

:::::::::::
hydrometeor

::
to

:::
gas

:

::
Lv: ::::

latent
::::
heat

::
of

:::::::::::
vaporization

::
of

:::::
water

::
=

::::
2.26

:::::
×106

:
J
::::
kg−1

:

:::::::
WDEID :::::

square
::::::::
sampling

::::
area

:::::
width

::
of

:::
the

:::::
DEID

:
[
:::
cm]

:
α
: :::::::::

conversion
:::::
factor

:
=
:::
3.6

:::::::
×10−3

:::
m2

:
s
::::::
mm−2

:::
h−1

:
β
: :::::::::

conversion
:::::
factor

::::
from

::
m

::::
s−1

::
to

:::
mm

::::
h−1

::
=

:::
3.6

:::::
×106

:::
mm

:
s
:::::
m−1

:::
h−1

:

:
ε

::::::
thermal

:::::::::
emissivity

:
Λ
: ::::

slope
:::::::::
parameter

:
=
:::
4.1

:::::::
R−0.21

::
for

:::
the

::::::::
Marshall

::::::
Palmer

::::::::::
distribution

::
ρw: ::::::

density
::
of

:::::
liquid

:::::
water

::
=

::::
1000

:::
kg

::::
m−3

250
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