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Abstract. Due to the discretized nature of rain, the measurement of a continuous precipitation rate by disdrometers is subject

to statistical sampling errors. Here, Monte Carlo simulations are employed to obtain the precision of rain detection and rate as

a function of disdrometer collection area and compared with World Meteorological Organization guidelines for a one-minute

sample interval and 95% probability. To meet these requirements, simulations suggest that measurements of light rain with rain

rates R ≤ 0.50 mm h−1 require a collection area of at least 6 cm × 6 cm, and for R > 1 mm h−1, the minimum collection area5

is 10 cm × 10 cm. For R = 0.01 mm h−1, a collection area of 2 cm × 2 cm is sufficient to detect a single drop. Simulations

are compared with field measurements using a new hotplate device, the Differential Emissivity Imaging Disdrometer. The

field results suggest an even larger plate may be required to meet the stated accuracy, although for reasons that remain to be

determined.

1 Introduction10

Ground-based precipitation sensors are commonly used to validate larger scale precipitation measurement systems including

satellite (TRMM), WSR-88D radar measurements (Kummerow et al., 2000; Fulton et al., 1998), and numerical weather pre-

diction models (Colle et al., 2005) aimed at hydrology, agriculture, transportation, and recreation applications (WMO, 2018;

Estévez et al., 2011; Campbell and Langevin, 1995; Brun et al., 1992). The ability of an automated weather station to detect

the presence of even very light precipitation can be crucial for weather forecasting in remote locations where a human observer15

is not available to verify the presence of rainfall (Horel et al., 2002; Miller and Barth, 2003). Light rain or drizzle can severely

impede road safety (Andrey and Yagar, 1993; Andrey and Mills, 2003; Bergel-Hayat et al., 2013; Theofilatos and Yannis,

2014).

Disdrometers measure particle drop size distributions and provide calculated precipitation rate from the integrated mass

flux. Among available disdrometers are the mechanical Joss Waldvogel (JW) disdrometer (Joss and Waldvogel, 1967), laser or20

optical sensors such as the OTT Parsivel2 (Tokay et al., 2013; Bartholomew, 2014), and video disdrometers such as the 2DVD

(Kruger and Krajewski, 2002; Thurai et al., 2011; Brandes et al., 2007).

Among other instrument-specific considerations, disdrometer accuracy depends on sampling area and time interval (Gultepe,

2008). Joss and Waldvogel (1969) defined a sample size as the product of an area and a sample time. Under the assumption

that raindrop size follows a negative exponential distribution, to measure a precipitation rate of R = 1 mm h−1 to a precision25
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of 10% within 95% confidence bounds, the required sample size is 1.5 m2 s, corresponding to a cross-sectional sampling area

of A = 250 cm2 for a nominal 60 s collection interval.

The World Meteorological Organization (WMO) recommends that a disdrometer measure precipitation intensities between

0.02 and 2,000 mm h−1 with an output averaging time of one-minute (WMO, 2018). Measurement uncertainty is defined as

“the uncertainty of the reported value with respect to the true value and indicates the interval in which the true value lies within30

a stated probability” specified to be 95%. For liquid precipitation intensity, the uncertainty requirements for rates of 0.2 to

2 mm h−1 are ± 0.1 mm h−1, and for precipitation rates > 2 mm h−1 they are 5% (see Table 2). For < 0.2 mm h−1, the

requirement is only detection.

Most commercial instruments do not reach such strict standards. Table 1 provides the reported uncertainties for several

precipitation instruments. The instrumentation used by ASOS weather stations located at major airports utilizes a Heated35

Tipping Bucket (HTB) for precipitation accumulation and a Light Emitting Diode Weather Identifier (LEDWI) for precipitation

type and intensity. The LEDWI uses signal power return to determine the drop size distribution of rain or snow, then classifies

the precipitation intensity based on the size distribution (Nadolski, 1998). A significant limitation of the ASOS system is that

it cannot discriminate drizzle from light rain, and it qualitatively expresses small amounts as a trace (Wade, 2003; Nadolski,

1998).40

Vaisala manufactures a range of optical precipitation sensors that detect and categorize precipitation from the forward scat-

tering of a light beam, including the PWD12, PWD22, PWD52, and FD71P. The PWD12 detects rain, snow, unknown precip-

itation, drizzle, fog, and haze. The PWD22 has the same resolution and accuracy as the PWD12, but it also detects freezing

drizzle, freezing rain, and ice pellets (Vaisala, 2019b). The PWD52 has an increased observation range of 50 km, compared to

20 km for the PWD 22 (Vaisala, 2018a). All three PWD instruments have a precipitation intensity resolution of 0.05 mm h−145

for a 10-minute sampling interval at 10% uncertainty (Vaisala, 2019b). The PWD22 is included with tactical weather instru-

mentation intended for U.S. military and aviation operations (TACMET) and reports precipitation type in WMO METAR code

format (Vaisala, 2018b). The FD71P has a higher stated sampling frequency and resolution than the PWD instruments of 0.01

mm h−1 with 2.2% uncertainty in a 5-second measurement cycle (Vaisala, 2019a), although there has yet to be independent

scientific evaluation of the device.50

Hotplate disdrometers offer an alternative with the advantage of requiring fewer assumptions as mass is inferred from the

energy required for evaporation. The Yankee Environmental Systems TPS-3100 determines liquid water precipitation rate

of rain or snow by taking the power difference between an upward and a downward-facing hot plate as a measure of the

latent heat energy required to evaporate precipitation (Rasmussen et al., 2010). The technology is currently marketed as the

Pond Engineering Laboratories K63 Hotplate Total Precipitation Gauge (Pond Engineering, 2020). The hotplate is 5 inches55

in diameter, or 126.7 cm2, which is equivalent to a square with a width of 11.26 cm. It measures precipitation rate with a

resolution of 0.10±0.5 mm h−1 and can detect the onset of light snow within one minute (Yankee Environmental Systems,

2011; Pond Engineering, 2020).

A newer hotplate disdrometer, yet to be commercialized, is the Differential Emissivity Imaging Disdrometer (DEID) de-

veloped at the University of Utah. By assuming conservation of energy during heat transfer from a square plate to a melting60
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Table 1. Precipitation measurement instrument specifications

Model Type Resolution Uncertainty Time Meets WMO

[mm h−1] [s] Requirement

Vaisala PWD12/22/52 Optical 0.05 10% 600 N

Vaisala FD71P Optical 0.01 2.2% 5 Y

ASOS HTB Tipping Bucket 0.25 0.5 mm or 4%* 60 N

ASOS LEDWI Optical 0.25 > 4 mm h−1 60 N

YES TPS-3100 / Pond K63 Hotplate 0.10 0.5 mm h−1 60 N

WMO 0.10 0.1 mm h−1 or 5%* 60

*Whichever is greater

hydrometeor, the mass of individual precipitation particles is obtained. To determine particle size during evaporation, a thermal

camera is directed at a heated aluminum sheet. Since aluminum is a thermal reflector (thermal emissivity ε≈ 0.03), whereas

water is not (ε≈ 0.96), particles are seen as white regions on a black background. From the measured cross-sectional surface

area, temperature, and evaporation time of each hydrometeor, the effective diameter and volume, and mass of each particle can

be calculated with high precision (Singh et al., Pending).65

The work here was originally motivated by a desire to minimize DEID power and maximize measurement precision, al-

though the calculations are applicable more generally to other disdrometers such as those described. We employ a Monte Carlo

approach (Liu et al., 2012, 2018; Jameson and Kostinski, 1999, 2001a, 2002) to stochastically generate raindrops based on

canonical size distributions aimed at determining the minimum required disdrometer collection area and sampling frequency

for precise measurement of precipitation rates between 0.01 and 10 mm h−1. We consider the precipitation rate uncertainty70

relative to WMO standards. Inherent precipitation measurement uncertainties associated with the instrument mechanism are

not addressed here. Where (Joss and Waldvogel, 1969) approached the problem analytically by assuming the interarrival times

of droplets up to 6 mm in diameter are distributed according to a Poisson distribution, here we approach the problem numeri-

cally by employing a Monte Carlo approach. In principle, the results should converge, although the Monte Carlo approach also

facilitates the calculation here of the time required to measure the “first drop" in a precipitation event.75

2 DEID principle

A piece of polyimide tape with ε≈ 0.95 is placed on the side of the sampling area as a reference for the differential emissivity

calculation and determination of the camera’s pixel resolution. For the study described here, the DEID’s aluminum plate had

an area of 15.24 cm × 15.24 cm. Polyimide tape applied to the surface restricted the collection area to A ≈ 7 cm × 5 cm,

equivalent to a square width ofW = 5.8 cm. Thermal camera imagery with a sampling frequency between 2 and 60 Hz was used80

to determine the cross-sectional surface area, temperature, and evaporation time of each hydrometeor (Singh et al., Pending).
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From these parameters, individual hydrometeor mass is calculated from conservation of energy, whereby the heat gained by

the hydrometeor is equal to the heat lost by the hotplate when evaporating water through

cp∆T
∫
dm+Leqv

∫
dm=

t∫

0

K

H
A(t)(Tp−Tw(t))dt (1)

where cp is the specific heat capacity of water at constant pressure, ∆T is the difference in temperature between 0 and time,85

t, m is the mass of the hydrometeor, and Leqv is the equivalent latent heat required for the conversion of the hydrometeor to

gas. For liquid precipitation Leqv = Lv where Lv is the latent heat of vaporization of water. K is the thermal conductivity of

the plate, H is hotplate thickness, A(t) is the area of the water droplet at time t, Tp is the temperature of the hotplate, and

Tw(t) is the temperature of the water at time t.

Equation (1) simplifies to90

∫
dm=Kd

t∫

0

A(t)(Tp−Tw(t))dt

where the constant Kd is determined experimentally.

The precipitation rate RDEID is calculated from the total mass of hydrometeors evaporated on the hotplate during a given

sample time interval. For each frame of the hotplate captured by the thermal camera,

RDEID =
βfsKdAevapImean

ρwAhot
(2)95

where β = 3.6×106 mm s mm−1 h−1, fs is the camera resolution in frames per second, Aevap is the total area of water

on the sampling area, Imean is the pixel intensity related to the temperature difference between the plate and water through

Tp−Tw(t)≈ (255− Imean)/256×Tp, ρw is the density of water (1000 kg m−3), and Ahot is the hotplate area in units of

meters squared.

3 Monte Carlo simulations100

3.1 Size distribution generation

For a range of collection areas A and time intervals ∆t, a rain drop distribution is generated stochastically and compared with

the assumed rate R. Initially, we adopt a Marshall-Palmer (Marshall and Palmer, 1948) drop size distribution

n(D) = n0e
−ΛD (3)
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where n0 = 8000 m−3 mm−1 and Λ = 4.1R−0.21 mm−1. D ranges between 0 and Dmax in linear bins evenly spaced by105

∆D. We establish Dmax = 6 mm to account for the expected breakup of large raindrops (Villermaux and Bossa, 2009) and

∆D = 0.25 mm for 50 bins. The value of ∆D is arbitrary but was chosen to approximate the spatial measurement resolution

of the prototype DEID. For an assumed value of R, the array of drops is stochastically generated according to Eq. (3) where

NMP =
∑
n(D)∆D is the total number of drops generated from each bin. Each drop in the bin is assigned a diameter of

Dmean =D+ ∆D/2. For each value of Dmean, the fall speed is110

v = aDb
mean (4)

where the coefficient a and the exponent b are determined for the Stokes regime for Dmean ≤ 0.08 mm, the intermediate

regime for 0.08 mm ≤Dmean < 1.2 mm. and the turbulent regime for Dmean ≥ 1.2 mm following Lamb and Verlinde (2011).

The maximum value of v is used to determine the sample volume of the generated Marshall-Palmer distribution of drops

vmaxA∆t m3.115

The calculated size distribution of drops incident on the collection area during sampling time ∆t is then

N(D)coll = n(D)Av∆t (5)

with units of inverse millimeter. The total calculated number of drops Ncoll incident on the collection area is a summation

of Eq. (5) over the range 0 to Dmax.

Note that the size distribution for N(D)coll does not converge to N(D)MP for long sampling times because smaller drops120

fall slowly. Rather, as will be discussed, the distribution more closely resembles a gamma distribution (Ulbrich and Atlas,

1984). Nevertheless, the contribution of small drops to ground-based measurements of precipitation tends to be small as they

are comparatively less massive. Also, precipitation particles form primarily from droplet collisions in the updrafts within

clouds, and so must attain the size that they fall sufficiently fast to leave cloud base and fall to the ground where they can be

sampled by ground-based instruments (Garrett, 2019).125

3.2 Calculated precipitation rate

Ncoll drops are randomly sampled assuming a Marshall-Palmer distribution. From the drops that impact the collection area,

the calculated precipitation rate Rcalc is (cf. Lane et al., 2009)

Rcalc = α
π

6

50∑
i=1

NiD
3
i

A∆t
(6)

where α = 3.6/1000 m2 s mm−1 h−1 and Ni is the number of drops with diameter Di with i corresponding to bin number.130

100 simulations of Rcalc are performed for each value of equivalent sampling area width W =
√
A, each evenly spaced by
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1 cm. The 95th and 5th percentile bounds of Rcalc are specified as the upper and lower bounds of sampling uncertainty

(Rcalc/R− 1).

3.3 First and Hundredth Drop

To determine the sampling time required to detect the onset of precipitation, 100 simulations were performed for R = 0.01,135

0.1, and 1 mm h−1 and for 100 evenly spaced width bins W between 1 cm and 20 cm. For each width bin, the number size

distribution (Fig. 3a) was calculated from n(D) for a 1 m3 volume directly above the collection area with height h= 1/A.

A sample of drops is generated from Eq. (5), where ∆t= h/v is maximized for the value of v corresponds with the smallest

droplet diameter. Small drops may contribute negligibly to the precipitation rate but be the first detected, so the value of n(D)

is taken from a gamma distribution rather than the exponential in Eq. (3).140

n(D) = n0D
µe−ΛD (7)

So that small particles with D < 1 mm are not over-represented (Ulbrich and Atlas, 1984), the drop size distribution is

modified by the shape parameter µ. The drop distribution is generated according to Eq. (5) and each drop is assigned a random

height ∆z above the collection area within a distance h above the plate. The time elapsed for the plate to detect a drop is

tp = ∆z/v. The shortest of these times is the first drop detection time t1 (Fig. 3).145

Following the collection approach taken by Marshall et al. (1947), reproduction of a Marshall-Palmer size distribution is

assumed to require collection of 100 drops. The time elapsed for the calculated incidence of 100 drops is t100 (Fig. 3). If fewer

than 100 drops were obtained in Ncoll, a new sample of drops is obtained from Eq. (5) with an increased value of ∆t.

4 Results

4.1 Monte Carlo simulations150

The sampling uncertainty in the precipitation rate is illustrated in Fig. 1. Precipitation rates of R = 0.02, 0.20, and 2.00 mm

h−1 were analyzed for a standard sampling time of 60 seconds. Collection areas smaller than approximately 6 cm× 6 cm meet

WMO standards for R ≤ 0.50 mm h−1, but a collection area of over 10 cm × 10 cm is required for R> 1 mm h−1.

To illustrate the relationship between accuracy and sampling time, Fig. 2 compares R = 0.10, 1.00, and 10.00 mm h−1

with sampling times of 10 seconds, 5 minutes, and 10 minutes. For heavy rain rates of 10 mm h−1, for a time interval of 5155

minutes, a disdrometer width of 4 cm yields measured rain rates with a precision of ±5% error for 95% of the measurements.

The intersection between 95th and 5th percentile bounds and WMO accuracy criteria occurs at larger collection areas as R

increases.

First drop simulation results are shown in Fig. 3. Three simulations were performed using three values of µ, where µ= 0

represents the Marshall-Palmer exponential distribution and closely represents the distributions generated by the uncertainty160

simulations. Following (Ulbrich and Atlas, 1984), DEID measurements show values of µ between 1 and 2 best represent the
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Figure 1. Precipitation rate Rcalc calculated 1000 times for each W with a uniformly distributed random selection of particle sizes from

a Marshall-Palmer distribution with diameters up to 6 mm for ∆t = 60 s. Vertical curves represent a PDF of calculated Rcalc with the

widths scaled according to the widest curve. 95th and 5th percentile bounds are smoothed and shown in red, dotted lines. WMO standards

(±5% (dashed) and ±0.1 mm h−1 (dot-dashed)) are shown as horizontal lines. The intersection of these lines indicates the required square

disdrometer sampling width to determine R according to WMO standards.

distribution of drops that arrive on the hotplate (Fig. 4b and 5b). Monte Carlo calculations of the size distribution Ncoll are

shown in Fig. 3. For µ = 2, few of the smallest drops with D < 1 mm are incident on the collection area. A square collection

width of 2 cm × 2 cm is sufficient to detect the onset of light precipitation with a rate of R = 0.01 mm h−1 within one minute.

Table 2. Minimum collection area required to meet WMO precision criteria for various precipitation rates and time intervals evaluated within

one centimeter intervals

∆ t = 10 s ∆ t = 60 s ∆ t = 300 s ∆ t = 600 s

Rate (mm h−1) WMO Precision Width (cm)

0.01 First Drop (µ=2) 5 2 < 1 < 1

0.10 First Drop (µ=2) <1 1 <1 <1

0.20 ±0.1 mm h−1 6 1 1 <1

0.50 ±0.1 mm h−1 14 6 3 3

1.00 ±0.1 mm h−1 25 13 5 4

2.00 ±0.1 mm h−1 & ±5% 40 29 8 5

10.00 ±5% 30 15 6 4
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Figure 2. Comparison of R = 0.10, 1.00, and 10.00 mm h−1 for ∆t = 10 s, 5 minutes, and 10 minutes.
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Figure 3. Generated size distributions (left) First Drop Simulation (middle), and 100th Drop Simulation (right) for µ = 0, 1, and 2 (top,

middle, and bottom).
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4.2 Application to DEID measurements165

During a field campaign that took place at the University of Utah between April 2019 and March 2020, the DEID recorded the

mass and density of individual hydrometeors, along with the one-minute-averaged precipitation rate RDEID. DEID particle

mass distributions for two contrasting one-minute samples of moderate (RDEID = 4.2 mm h−1) and light (RDEID = 0.1 mm

h−1) rain are shown in Fig. 4 and 5. These disdrometer data are used here in place of an assumed size distribution to calculate

Rcalc (Eq. 6) in 100 iterations, each taken from data randomly sampled over time interval segments of ∆t = 10, 20, 30, 40, and170

50 s (Fig. 4c and 5c) and plate area segments of W = 1, 2, 3, 4, and 5 cm (Fig. 4d and 5d). Segments of ∆t include all particles

within the DEID collection area and segments inW encompass the entire 60 second time interval. In a three dimensional space

of plate cross-sectional area and sampling time, the associated number concentration of drops for each case is shown in Fig.

4a-b and Fig. 5a-b.

The version of the DEID used in this study had a maximum collection area width of W = 5.8 cm. For light rain, the175

statistical uncertainty bounds at 95% confidence converge to within ±0.1 mm h−1 of the DEID 1-minute measured rate for a

plate collection area width ofW ∼ 3 cm. This value is larger than that suggested by the Monte Carlo calculation shown in Table

2, although for reasons that are unclear. One possibility is that the raindrop interarrival time and spacing were non-Poissonian

(Jameson and Kostinski, 2001b) as implicitly supposed using a Monte Carlo approach. For the moderate rain case, the WMO

precision requirement is ±5% (dashed lines). The derived minimum required hotplate width to meet WMO requirements is180

larger than 10 cm, larger than the plate used. That is, the size of plate used was insufficient for the measurement of rain this

intense.
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(a) (b)

(c) (d)

Figure 4. Recalculation of Rcalc (Eq. 6) from 1000 uniformly distributed, randomly sampled iterations of a 1-minute DEID data set from

March 8, 2020 at 1443 MST with rain rate RDEID = 4.2 mm h−1 (a). Rcalc was recalculated using uniformly distributed random segments

of time (c) and hotplate width (d). As t→ 60 and W →WDEID , Rcalc approaches RDEID .

11

https://doi.org/10.5194/amt-2020-393
Preprint. Discussion started: 17 October 2020
c© Author(s) 2020. CC BY 4.0 License.



(a) (b)

(c) (d)

Figure 5. Recalculation of Rcalc from 1000 iterations of a 1-minute DEID data set from March 8, 2020 at 1514 MST with rain rate RDEID

= 0.1 mm h−1 (a). Rcalc was calculated using uniformly distributed random segments of time (c) and hotplate width (d). As t→ 60 and

W →WDEID , Rcalc approaches RDEID .
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5 Conclusions

A Monte Carlo approach was used to determine the minimum required cross-sectional collection area for a disdrometer to

measure a given precipitation rate with a WMO target precision at 95% probability for a one-minute collection period. Intrinsic185

instrument uncertainties were not considered, only those associated with statistical sampling errors associated with the raindrop

size distribution. Following these criteria, a square collection area of 6 cm × 6 cm is sufficient to detect the onset of light rain

with R ≤ 0.50 mm h−1.

For R > 1 mm h−1, a sample area of over 10 cm × 10 cm is required, although a smaller collection area may achieve the

required accuracy by increasing the sampling time. For example, in five minutes, a 4 cm × 4 cm collection area can measure190

10 mm h−1 precipitation rates to within the WMO required precision 95% of the time. A collection area as small as 2 cm × 2

cm may detect the onset of light drizzle with R = 0.01 mm h−1 within one minute, even in instances where small particles in

the drop size distribution fall too slowly to intercept the collection area.

Theoretical results obtained from Monte Carlo simulations were compared with observed field measurements from a new

precipitation sensor, the Differential Emissivity Imaging Disdrometer, for both light and moderate rain. Randomly selected195

segments of decreasing sampling time and area from the DEID were used to recalculate the precipitation rate. The results

suggest a larger plate may be required than those indicated by the Monte Carlo simulations, although it is not yet known why.
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