

New Observations of Upper Tropospheric NO₂ from TROPOMI

Eloise A. Marais^{1,2}, John F. Roberts³, Robert G. Ryan^{4,5}, Henk Eskes⁶, K. Folkert Boersma^{6,7}, Sungyeon Choi^{8,9}, Joanna Joiner⁸, Nader Abuhassan^{8,10}, Alberto Redondas¹¹, Michel Grutter¹², Alexander Cede¹³, Laura Gomez^{14,15}, Monica Navarro-Comas¹⁴

5 ¹Department of Geography, University College London, London, UK

²School of Physics and Astronomy, University of Leicester, Leicester, UK

³Centre for Landscape and Climate Research, University of Leicester, Leicester, UK

⁴School of Earth Sciences, The University of Melbourne, Melbourne, Australia

⁵ARC Centre of Excellence for Climate System Science, Sydney, Australia

10 ⁶Satellite Observations Department, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

⁷Meteorology and Air Quality Group, Wageningen University (WUR), Wageningen, the Netherlands

⁸NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁹Science Systems and Applications, Inc., Lanham, MD, USA

¹⁰Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA

15 ¹¹Izaña Atmospheric Research Center, AEMET, Tenerife, Canary Islands, Spain

¹²Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

¹³LuftBlick, Fritz-Konzert-Straße 4, Innsbruck, Austria

¹⁴Instituto Nacional de Técnica Aeroespacial (INTA), Área de Investigación e Instrumentación Atmosférica, Ctra Ajalvir km4, 28850, Torrejón de Ardoz, Madrid, Spain

20 ¹⁵Groupe de Spectrométrie Moléculaire et Atmosphérique, URM CNRS 7331, UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims CEDEX 2, France

Correspondence to: Eloise A. Marais (e.marais@ucl.ac.uk)

Abstract. Nitrogen oxides (NO_x ≡ NO + NO₂) in the NO_x-limited upper troposphere (UT) are long-lived and so have a large influence on the oxidizing capacity of the troposphere and formation of the greenhouse gas ozone. Models misrepresent NO_x in the UT and observations to address deficiencies in models are sparse. Here we obtain a year of near-global seasonal mean mixing ratios of NO₂ in the UT (450–180 hPa) at 1° × 1° by applying cloud-slicing to partial columns of NO₂ from TROPOMI. This follows refinement of the cloud-slicing algorithm with synthetic partial columns from the GEOS-Chem chemical transport model. We find that synthetic cloud-sliced UT NO₂ are spatially consistent ($R = 0.64$) with UT NO₂ calculated across the same cloud pressure range and scenes as are cloud-sliced (“true” UT NO₂), but the cloud-sliced UT NO₂ is 11–22% more than the 30 “true” all-sky seasonal mean. The largest contributors to differences between synthetic cloud-sliced and “true” UT NO₂ are target resolution of the cloud-sliced product and uniformity of overlying stratospheric NO₂. TROPOMI, prior to cloud-slicing, is corrected for a 13% underestimate in stratospheric NO₂ variance and a 50% overestimate in free tropospheric NO₂ determined by comparison to Pandora total columns at high-altitude sites in Mauna Loa, Izaña and Altzomoni, and MAX-DOAS and Pandora tropospheric columns at Izaña. Two cloud-sliced seasonal mean UT NO₂ products for June 2019 to May 35 2020 are retrieved from corrected TROPOMI total columns using distinct TROPOMI cloud products that assume clouds are reflective boundaries (FRESCO-S) or water droplet layers (ROCINN-CAL). TROPOMI UT NO₂ typically ranges from 20–30 pptv over remote oceans to >80 pptv over locations with intense seasonal lightning. Spatial coverage is mostly in the tropics

and subtropics with FRESCO-S and extends to the midlatitudes and polar regions with ROCINN-CAL, due to its greater abundance of optically thick clouds and wider cloud top altitude range. TROPOMI UT NO₂ seasonal means are spatially 40 consistent ($R = 0.6\text{--}0.8$) with an existing coarser spatial resolution (5° latitude $\times 8^\circ$ longitude) UT NO₂ product from the Ozone Monitoring Instrument (OMI). UT NO₂ from TROPOMI is 12–26 pptv more than that from OMI due to increase in NO₂ with altitude from the OMI pressure ceiling (280 hPa) to that for TROPOMI (180 hPa), but possibly also systematic altitude differences between the TROPOMI and OMI cloud products. The TROPOMI UT NO₂ product offers potential to evaluate and improve representation of UT NO_x in models and supplement aircraft observations that are sporadic and susceptible to large 45 biases in the UT.

1 Introduction

Nitrogen oxides (NO_x \equiv NO+NO₂) in the upper troposphere (UT; \sim 8–12 km) influence the oxidizing capacity of the atmosphere and global climate, as the formation and radiative forcing of tropospheric ozone are most efficient in the NO_x-limited UT (Mickley et al., 1999; Bradshaw et al., 2000; Dahlmann et al., 2011; Worden et al., 2011). Sources of NO_x to the UT include 50 local emissions from lightning and cruising altitude aircraft, deep convective uplift of surface pollution, downwelling from the stratosphere, long-range transport, and chemical recycling of NO_x from stable reservoir compounds (Ehhalt et al., 1992; Lamarque et al., 1996; Schumann, 1997; Jaeglé et al., 1998; Bradshaw et al., 2000; Bertram et al., 2007). The lifetime of NO_x in the UT varies from a few hours to a few days depending on availability of hydrogen oxides (HO_x \equiv OH + HO₂) and peroxy radicals (RO₂) to convert NO_x to reservoir compounds (Jaeglé et al., 1998; Bradshaw et al., 2000; Nault et al., 2016).

55

Current understanding of UT NO_x is erroneous, as demonstrated by misrepresentation in chemical transport models (CTMs) of the vertical distribution, relative abundance (ratios of NO-to-NO₂), and absolute magnitude of UT NO_x when compared to in situ measurements from research aircraft (Boersma et al., 2011; Travis et al., 2016; Silvern et al., 2018). Models are used to determine the contribution of ozone to anthropogenic climate change in the absence of reliable historical measurements 60 (Pavelin et al., 1999). Models also provide prior information about the vertical distribution of NO₂ for retrieval of vertical column densities of NO₂ from space-based UV-visible instruments. Errors in these retrievals are particularly vulnerable to biases in modelled UT NO₂, due to greater sensitivity of space-based observations to the UT than the middle and lower troposphere (Travis et al., 2016; Silvern et al., 2019). This impedes accurate top-down inference of air quality variability, surface concentrations and precursor emissions (Stavrakou et al., 2013; Silvern et al., 2019). Models include heavily 65 parameterized representation of lighting (Tost et al., 2007; Allen et al., 2010; Ott et al., 2010; Murray et al., 2012; Murray et al., 2013), the largest global influencer of NO_x in the UT (Bradshaw et al., 2000; Marais et al., 2018), and may misrepresent the reaction kinetics and physical processing of NO_x for the cold, low-pressure conditions of the UT (Chang et al., 2011; Henderson et al., 2011; 2012; Stavrakou et al., 2013; Amedro et al., 2019).

70 Observations that have been used to better understand UT NO_x are mostly limited to research and commercial aircraft campaigns. For research aircraft, the record of observations in the UT since the early 1990s have been sustained almost exclusively by the NASA DC8 plane, with recent contributions from the German High Altitude and Long Range Research Aircraft (HALO) (Wendisch et al., 2016). There are also commercial aircraft campaigns, but these are prevalent over heavily trafficked flight corridors and are often in the stratosphere at cruising altitude (Thomas et al., 2015; Stratmann et al., 2016). In
75 situ measurements of NO₂ in the UT can also be biased by interference from NO_x reservoir compounds that thermally decompose to NO₂ in the instrument inlet (Browne et al., 2011; Reed et al., 2016). Standard remote sensing products of NO₂ from space-based nadir- and limb-viewing instruments provide global coverage, but either as a single piece of vertical information in the troposphere in the nadir as tropospheric column densities (Levelt et al., 2018) or as vertically resolved NO₂ in the limb limited to NO₂ abundances above the tropopause (Newchurch et al., 1996; Sioris et al., 2004; Brohede et al., 2007;
80 Jones et al., 2012).

Near-global research products of seasonal mean vertically resolved tropospheric NO₂ have been retrieved by applying the cloud-slicing technique to partial columns of NO₂ from the space-based Ozone Monitoring Instrument (OMI) (Choi et al., 2014; Belmonte-Rivas et al., 2015). Cloud-slicing involves regressing clusters of partial NO₂ columns above optically thick
85 clouds against corresponding cloud top pressures. The resultant regression slopes are converted to NO₂ mixing ratios that represent average NO₂ across the cloud top altitude range (Ziemke et al., 2001). The advantages of cloud-slicing include enhanced signal over bright optically thick clouds (van der A et al., 2020) and removal of the dry stratosphere due to lack of clouds there. Near-global multiyear (2005-2007) seasonal means of UT NO₂ from cloud-sliced OMI partial columns have been shown to reproduce the spatial variability of UT NO₂ measured with bias-corrected NASA DC8 aircraft measurements of NO₂
90 over North America, though at very coarse scales (seasonal, 32° × 20°) (Marais et al., 2018). Even so, the OMI product confirms the dominant global influence of lightning on UT NO_x and provides global constraints on lightning NO_x production rates (280 ± 80 moles NO_x per lightning flash) and annual lightning NO_x emissions (5.9 ± 1.7 Tg N) (Marais et al., 2018). OMI pixels are at relatively coarse resolution (13 km × 24 km at nadir) and there is substantial data loss after 2007 due to the so-called row anomaly (Schenkeveld et al., 2017; Torres et al., 2018). The recently launched (October 2017) TROPOMI
95 instrument on the Sentinel-5P satellite has the same spatial coverage as pre-row-anomaly OMI (swath width of 2600 km), but with a finer nadir pixel resolution of 7.2 km × 3.5 km (along track × across track) until 5 August 2019, further refined thereafter to 5.6 km × 3.5 km (Argyrouli et al., 2019). This offers better cloud-resolving capability and greater data pixel density than OMI with potential to retrieve finer resolution NO₂ in the UT.

100 Here we refine and test the cloud-slicing retrieval using synthetic partial NO₂ columns from the GEOS-Chem CTM before retrieving UT NO₂ from TROPOMI partial NO₂ columns with cloud information from two distinct TROPOMI cloud products. Application of cloud-slicing to TROPOMI follows evaluation of TROPOMI total, stratospheric and tropospheric columns with

ground-based measurements of NO₂ from Pandora and Multi-axis differential optical absorption spectroscopy (MAX-DOAS) at free tropospheric monitoring sites. We also evaluate TROPOMI UT NO₂ with the OMI UT NO₂ product.

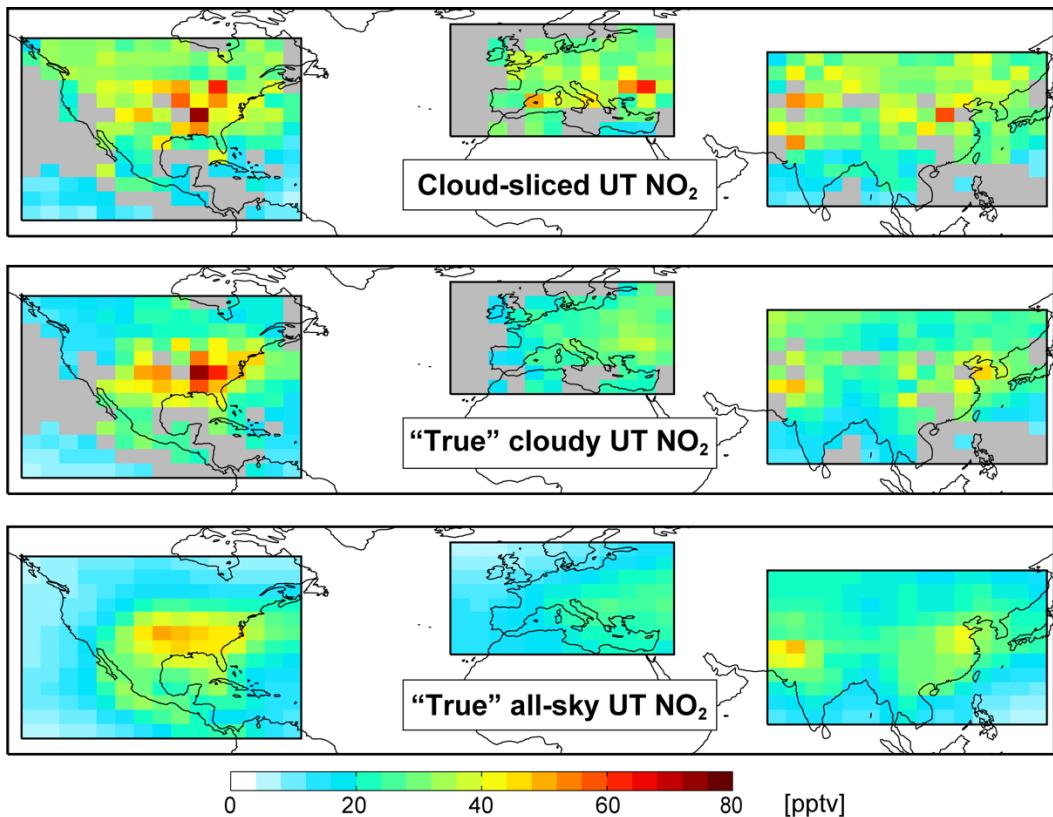
105 **2 Cloud-slicing of GEOS-Chem synthetic partial columns**

Targeting cloudy scenes could yield representation errors in NO₂ mixing ratios in the UT, due to the influence of clouds on NO_x photochemistry (Holmes et al., 2019), large enhancements in NO_x from lightning and convective uplift of surface pollution that accompany cloud formation (Price and Rind, 1992; Bertram et al., 2007), and low sampling frequency due to strict data filtering (Choi et al., 2014). We test the ability of the cloud-slicing technique to return accurate, representative mixing ratios of NO₂ in the UT by applying this technique to synthetic partial columns from GEOS-Chem. The “true” NO₂ used to evaluate cloud-sliced NO₂ is obtained by averaging NO₂ across the same vertical range as the cloud-sliced NO₂ for the same cloudy model grid squares as are cloud-sliced (“true” cloudy UT NO₂) and for all clear and cloudy model grid squares (“true” all-sky UT NO₂).

115 Synthetic NO₂ are from GEOS-Chem version 12.1.0 (<https://doi.org/10.5281/zenodo.1553349>; last accessed 10 August 2019) simulated at a horizontal resolution of $0.25^\circ \times 0.3125^\circ$ (latitude \times longitude) extending over 47 vertical layers from the surface to 0.01 hPa for the nested domains available in version 12.1.0. These include North America ($9.75\text{--}60^\circ\text{N}$, $130\text{--}60^\circ\text{W}$), western Europe ($30\text{--}70^\circ\text{N}$, $15^\circ\text{W}\text{--}61.25^\circ\text{E}$), and Southeast Asia ($15\text{--}55^\circ\text{N}$, $70\text{--}140^\circ\text{E}$). Dynamic (3-hourly) boundary conditions are from a coarse resolution ($4^\circ \times 5^\circ$) global GEOS-Chem simulation. The model is driven with NASA GEOS-FP assimilated 120 meteorology and includes comprehensive emission inventories from anthropogenic and natural sources. These include local emissions of NO_x in the UT from lightning as described by Murray et al. (2012) and from aircraft using the Aviation Emissions Inventory Code (AEIC) inventory detailed in Stettler et al. (2011). The model is simulated in boreal summer (June-August) when variability in UT NO_x in all nested domains is dominated by lightning (Marais et al., 2018). The model is sampled daily at 12h00-15h00 local time (LT) to be consistent with the TROPOMI overpass time (13h30 LT). Two years (2016 and 2017) 125 are simulated to increase data density. The model years predate TROPOMI, but this has no bearing on assessment of the cloud-slicing technique.

The cloud-slicing approach we apply to synthetic partial columns above synthetic clouds to estimate seasonal means of UT NO₂ is the same as will be applied to TROPOMI, so model variables are only used if these are also available in or can be 130 derived from publicly available TROPOMI data products. GEOS-Chem daily partial NO₂ column densities (stratosphere + partial troposphere) and the corresponding GEOS-FP cloud top pressures at 450-180 hPa and $0.25^\circ \times 0.3125^\circ$ are gathered into grid squares of the target resolution of $4^\circ \times 5^\circ$. These are then screened to remove clusters with non-uniform GEOS-Chem stratospheric NO₂ (stratospheric column NO₂ relative standard deviation > 0.02) using GEOS-FP thermal tropopause heights to determine the vertical extent of the stratosphere in the model. For a target resolution of $4^\circ \times 5^\circ$ clusters of as many as 256

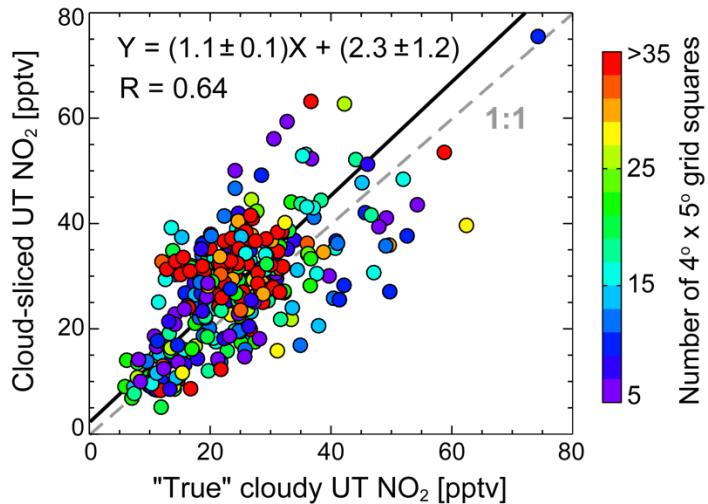
135 $0.25^\circ \times 0.3125^\circ$ partial columns are likely, so we increase the number of possible cloud-sliced NO₂ retrievals by subdividing clusters of at least 100 partial NO₂ columns into scenes of at least 40. This doubles the number of cloud-sliced NO₂ data used to obtain multiyear seasonal means. Additional filtering is applied to clusters to remove extreme NO₂ partial columns (partial columns falling outside the 10th to 90th percentile range) that have a large influence on regression of NO₂ partial columns against cloud top pressures, clusters with fewer than 10 partial columns after screening for extreme values, and clusters that
140 do not extend across a sufficiently wide altitude range (cloud top pressure range ≤ 140 hPa and standard deviation ≤ 30 hPa). GEOS-Chem cloud top heights are diagnosed in the model as the pressure at the top edge of the highest model layer of GEOS-FP upward moist convective mass flux.


145 The slope of the relationship between cloud top heights and partial columns for each cluster is estimated with reduced major axis (RMA) regression and the error on the slope with bootstrap resampling. Additional filtering is applied to retain slopes that have low relative error (relative error on the slope ≤ 1.0). Large local enhancements in NO₂ at high altitudes that lead to negative slopes and negative cloud-sliced UT NO₂ are diagnosed as slopes significantly less than zero (sum of slope and slope error < 0) and removed. The retained slopes and errors (in molecules cm⁻² hPa⁻¹) are converted to mixing ratios (in pptv) and outliers caused by steep slopes (UT NO₂ > 200 pptv) removed. A threshold of 200 pptv is used, as this far exceeds the maximum
150 seasonal mean UT NO₂ of 145 pptv in the OMI cloud-sliced UT NO₂ product (Marais et al., 2018). We find though that only 3 cloud-sliced retrievals exceed 200 pptv. Seasonal means are obtained by Gaussian weighting individual estimates of cloud-sliced UT NO₂ to the pressure centre (315 hPa).

155 The cloud-slicing retrieval adopted here is mostly similar to that applied to OMI to estimate mid-tropospheric NO₂ at 900-650 hPa (Choi et al., 2014) and UT NO₂ at 450-280 hPa (Marais et al., 2018). We extend the ceiling of the retrieval to 180 hPa (~12.5 km) to better capture the vertical extent of the upper troposphere. Another notable distinction is that the method applied to OMI used vertical gradients of NO₂ from the NASA Global Modeling Initiative (GMI) CTM to diagnose scenes with non-uniform NO₂ using a threshold of 0.33 pptv hPa⁻¹. We dispense with this step, as its application to TROPOMI requires a model at a similar fine spatial resolution to TROPOMI and CTMs may underestimate vertical NO₂ gradients in the UT (Boersma et al., 2011; Travis et al., 2016; Silvern et al., 2018). Anyway, we find that the strict filtering applied to GEOS-Chem partial columns removes most (88%) scenes with NO₂ vertical gradients ≥ 0.33 pptv hPa⁻¹.

160 Figure 1 shows GEOS-Chem seasonal mean cloud-sliced and “true” cloudy UT NO₂ at $4^\circ \times 5^\circ$. The latter is also Gaussian weighted to 315 hPa. The uncertainty in individual cloud-sliced values, estimated as the RMA regression slope error, range from 6% to the imposed error limit, 99%. This is reduced to $<2\%$ for the multiyear seasonal means in Figure 1 due to temporal averaging. Agreement between the cloud-sliced and “true” cloudy UT NO₂ is shown in the scatterplot in Figure 2. Successful cloud-sliced retrievals can exceed 35 for many grid squares, though these do not exhibit better agreement with the “truth” than

the grid squares with fewer (<10) retrievals. The two datasets are spatially consistent ($R = 0.64$) and exhibit similar variance (slope = 1.1 ± 0.1). The cloud-sliced UT NO₂ has a small positive offset in background UT NO₂ (intercept = 2.3 ± 1.2 pptv).


170 On average, cloud-sliced UT NO₂ is 17% more than the “true” cloudy UT NO₂, but this depends on the spatial resolution of the retrieved cloud-sliced product. Regression slopes increase from 0.87 ± 0.03 for cloud-sliced UT NO₂ obtained at $2^\circ \times 2.5^\circ$ to 1.4 ± 0.2 at $8^\circ \times 10^\circ$ and the cloud-sliced UT NO₂ is 4.1% less than the “true” cloudy UT NO₂ at $2^\circ \times 2.5^\circ$ and 37% more at $8^\circ \times 10^\circ$. Maps of synthetic cloud-sliced UT NO₂ at $2^\circ \times 2.5^\circ$ and $8^\circ \times 10^\circ$ are in Figure S1. Strict data filtering in the cloud-slicing steps removes 90% of the clusters of GEOS-Chem partial columns for the $4^\circ \times 5^\circ$ product. Most (33%) data loss is due 175 to the strict relative standard deviation threshold applied to stratospheric NO₂. Cloud-slicing is very sensitive to this threshold. Relaxing it from a relative standard deviation of 0.02 to 0.03 increases data retention from 10% of the clusters of GEOS-Chem partial columns to 17%, but increases the positive bias in cloud-sliced UT NO₂ from 17% to 45%. This is due to an increase in the contribution of variability in the stratosphere to the cloud-slicing regression slopes.

180 **Figure 1: Comparison of synthetic cloud-sliced and “true” NO₂ in the upper troposphere (UT) for June-August 2016-2017.** Maps show UT NO₂ at $4^\circ \times 5^\circ$ from cloud-slicing GEOS-Chem partial columns above all clouds with cloud top pressures at 450-180 hPa (top), as grid-average mixing ratios from GEOS-Chem for the same scenes as are cloud-sliced (middle) and for all-sky (clear and cloudy) scenes (bottom). Data are Gaussian weighted to the pressure centre (315 hPa). Grey grids have <5 data points.

185 Also shown in Figure 1 is the “true” all-sky UT NO₂ obtained for all (cloudy and clear) scenes across 450-180 hPa. Model grids with stratospheric influence are identified and removed using GEOS-FP tropopause heights that are updated hourly in the model. The “true” cloudy UT NO₂ is 17% more than all-sky UT NO₂. Spatial resolution influences the size of this difference, increasing from 11% at 2° × 2.5° to 22% at 8° × 10°. This suggests that isolating cloudy scenes induces a 11-22% bias in seasonal mean NO₂ that could be due to a combination of poor data retention (low sampling frequency of cloudy scenes), the influence of clouds on NO_x photochemistry (Pour-Biazar et al., 2007; Holmes et al., 2019), and local enhancements in NO_x from events like lightning and deep convective uplift of surface pollution that accompany clouds (Crawford et al., 2000; Ridley et al., 2004; Bertram et al., 2007).

190

195 **Figure 2: Scatter plot of synthetic cloud-sliced versus “true” cloudy NO₂ in the upper troposphere (UT). Points are 4° × 5° seasonal means from Figure 1 (top and middle panels) coloured by the number of successful cloud-sliced retrievals. Values inset are the RMA regression statistics and Pearson’s correlation coefficient (R). Slope and intercept errors are from bootstrap resampling.**

Cloud-slicing applied to GEOS-Chem considers all cloudy scenes, whereas cloud-slicing of satellite observations is applied to partial columns above optically thick clouds to minimise contamination of NO₂ from below the cloud. If we only consider 200 synthetic partial columns above clouds with a physical (geometric) cloud fraction across 450-180 hPa of at least 0.7, the cloud-sliced UT NO₂ positive difference is similar (18%) to that obtained for all cloudy scenes, but half the amount of data is retained. The cloud fraction retrieved from TROPOMI is an effective or radiometric cloud fraction that is systematically less than the physical cloud fraction from the model. Our results suggest that representation error is not sensitive to the cloud fraction threshold. Another distinction in GEOS-Chem and TROPOMI cloud variables is that the model provides the physical cloud 205 top height, whereas TROPOMI cloud retrievals that use models that assume clouds are uniform reflective boundaries retrieve cloud top heights that can be ~1 km lower than the physical cloud top (Joiner et al., 2012; Choi et al., 2014; Loyola et al., 2018a). We again apply the cloud-slicing algorithm to the simulated partial columns, but with the cloud top heights artificially reduced by 1 km. This approach assumes that the difference in altitudes of effective (radiometric) clouds and physical clouds

is systematic and vertically and horizontally uniform. The difference between the resultant cloud-sliced UT NO₂ and the “true”
210 cloudy UT NO₂ shown in the middle panel of Figure 1 increases from 17% to 24%. This is because the decrease in cloud top
altitude leads to a larger increase in the vertical extent of partial columns above high-altitude clouds than those above low-
altitude clouds leading to steeper regression slopes and larger UT NO₂.

3 Evaluation of TROPOMI with ground-based instruments at high-altitude sites

Pandora spectrometer systems provide observations of total and tropospheric columns of NO₂ using direct sun, direct moon
215 and sky radiance observations (Herman et al., 2009; Cede et al., 2019). Those at high-altitude sites have limited influence from
the planetary boundary layer and so are used here to evaluate free tropospheric and stratospheric NO₂ from TROPOMI. These
220 include long-term Pandora instruments at Mauna Loa, Hawaii (19.48°N, 155.60°W, 4.2 km above sea level or a.s.l, ~600 hPa),
Izaña, Tenerife, Canary Islands (28.31°N, 16.50°W, 2.4 km a.s.l, ~760 hPa), and Altzomoni, Mexico (19.12°N, 98.66°W, 4.0
km a.s.l, ~620 hPa). Mauna Loa and Izaña are remote and have limited anthropogenic influence (Toledano et al., 2018),
225 whereas Altzomoni is ~70 km southeast of Mexico City and is often within the mixed layer of the city in the afternoon
(Baumgardner et al., 2009) after the TROPOMI overpass. On average, multiyear mean tropospheric NO₂ columns from OMI
are $\sim 10 \times 10^{15}$ molecules cm⁻² lower over Altzomoni ($< 5 \times 10^{15}$ molecules cm⁻²) than the city ($> 15 \times 10^{15}$ molecules cm⁻²)
(Rivera et al., 2013). At Izaña, there is also a MAX-DOAS instrument that we use to retrieve tropospheric columns of NO₂ to
assess Pandora and TROPOMI. MAX-DOAS offers vertical sensitivity in the troposphere and has been used extensively to
230 determine free tropospheric concentrations of NO₂ at high-altitude sites (Gomez et al., 2014; Gil-Ojeda et al., 2015; Schreier
et al., 2016).

Pandora level 2 total and tropospheric columns are from the Pandonia Global Network (PGN) (<http://data.pandonia-global-network.org/>; last accessed 1 June 2020). We use version 1.7 “nvh1” retrieval of total columns and “nvs1” retrieval of
230 tropospheric columns (described below). Observations are for a full year (1 June 2019 to 31 May 2020) at Izaña. The data
record is shorter at Mauna Loa (ends 29 March 2020) and Altzomoni (ends 9 March 2020). Total slant columns (NO₂
abundances along the instrument viewing path) are retrieved by fitting a fourth order polynomial to spectra at 400-440 nm
using an NO₂ effective temperature of 254.4 K. These are then converted to total vertical column densities by accounting for
the geometry of the viewing path (Cede et al., 2019). The Pandora tropospheric NO₂ columns have not yet been validated
235 against other observations. Retrieval of these involves simultaneous retrieval of slant columns of NO₂ and the O₂-O₂ dimer at
multiple elevation angles (typically 0°, 60°, 75°, 88°, and 89°). The O₂-O₂ dimer slant columns are used to calculate a
representative air mass factor (AMF) that is applied to the difference in NO₂ slant columns at multiple pointing elevation
angles to calculate a tropospheric vertical column. The data also include estimates of the uncertainty on the total and
240 tropospheric columns due to instrument noise and atmospheric variability (Cede et al., 2019). The NO₂ effective temperature
used in the total NO₂ column retrieval is greater than the column average ambient temperature at high-altitude sites. This

induces a positive bias in the total columns estimated by Verhoelst et al. (2020) to be $\sim 10\%$ that we address by downscaling the Pandora total columns and associated errors by 10%. No correction is applied to the tropospheric columns, due to variable contribution of the troposphere to the total column.

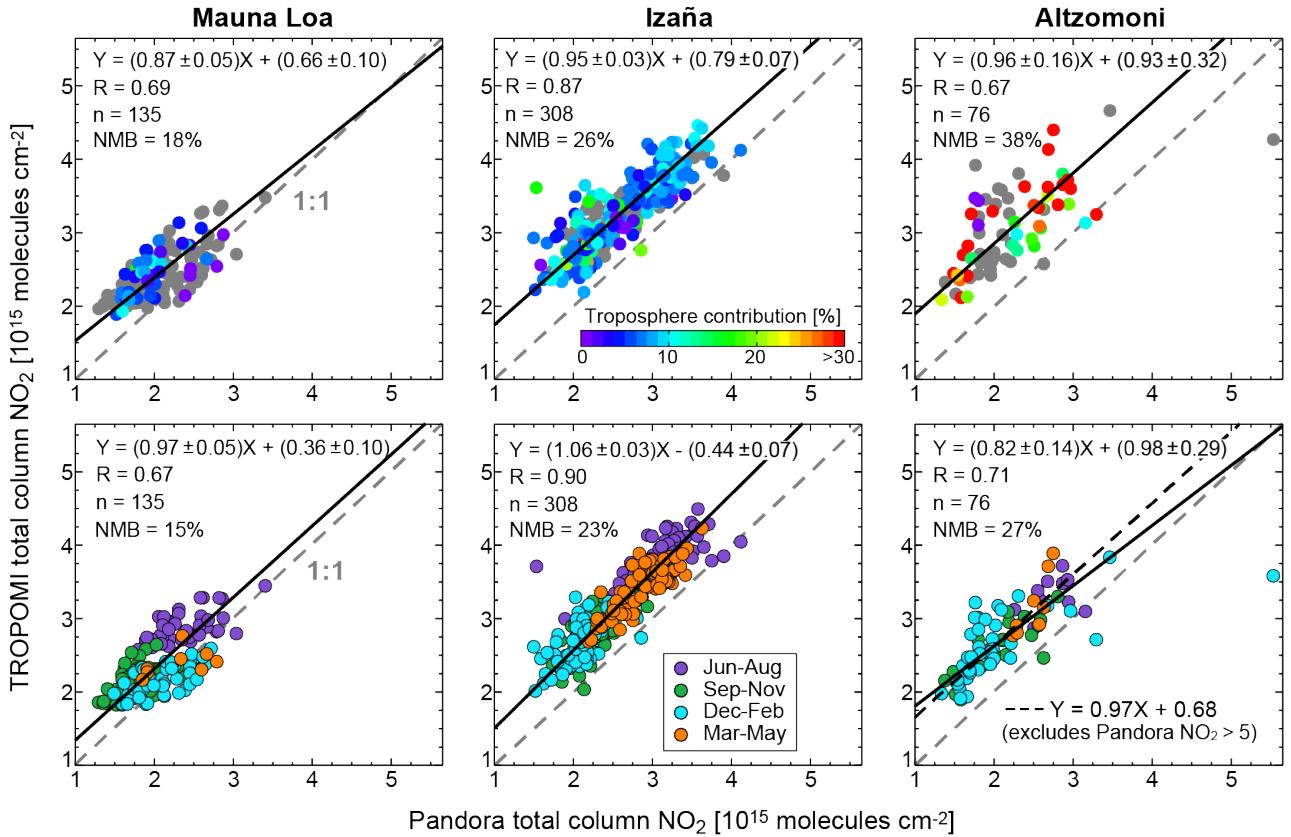
245 MAX-DOAS vertical tropospheric columns of NO₂ at Izaña are from RASAS-II sky radiance spectra for June 2019 to February 2020. The spectra are fitted for NO₂ and O₂-O₂ in the wavelength range 425-490 nm and slant columns are calculated as the difference between these spectra at high-sun (90° instrument elevation angle) and multiple elevation angles (1°, 2°, 3°, 5°, 10°, 30°, and 70°) (Hönninger et al., 2004; Gil et al., 2008; Puentedura et al., 2012; Gomez et al., 2014; Gil-Ojeda et al., 2015). Vertical columns are estimated using optimal estimation that solves an ill-constrained problem by introducing prior 250 information (Rogers, 2000). Prior information for Izaña includes fixed (with altitude) aerosol extinction of 0.01 km⁻¹ and NO₂ of 20 pptv from the surface to the tropopause. Aerosol abundances at Izaña are sometimes influenced by windblown dust from the Sahara Desert, but are typically low (aerosol optical depth or AOD < 0.05) (Gomez et al., 2014; Gil-Ojeda et al., 2015). The prior NO₂ profile is within the range of background NO₂ in the UT (10-20 pptv) (Marais et al., 2018) and MAX-DOAS 255 NO₂ concentrations previously retrieved at Izaña (20-40 pptv) (Gomez et al., 2014). Filtering is applied to remove vertical column retrievals with limited independent information (degrees of freedom for signal < 1), and significant light path attenuation by aerosols (AOD > 0.1) and clouds (effective cloud fraction > 0.5). AOD is derived with MAX-DOAS O₂-O₂ dimer differential slant columns retrieved over the same wavelength range as NO₂ (Frieß et al., 2006) and cloud fraction is from the Fast Retrieval Scheme for Clouds from the Oxygen A band version S (FRESCO-S) product provided with the TROPOMI NO₂ product. Filtering removes 40% of the retrieved vertical tropospheric NO₂ columns at Izaña.

260 TROPOMI data is from the Sentinel-5P Pre-Operations Data Hub (<https://s5phub.copernicus.eu/dhus/>; last accessed 15 June 2020). We use a year of NO₂ data (1 June 2019 to 31 May 2020) from the level 2 offline (OFFL) product version 01-03-02. The data product includes NO₂ abundances along the optical path from the sun to the instrument (the total slant column or SCD_{tot}), NO₂ vertical column densities in the stratosphere (VCD_{strat}), and the stratospheric air mass factor (AMF_{strat}). A detailed 265 description of retrieval of SCD_{tot} and VCD_{strat} is described in the product Algorithm Theoretical Basis Document (van Geffen et al., 2019) and by van Geffen et al. (2020). In brief, SCD_{tot} are obtained by spectral fitting of TROPOMI top-of-atmosphere radiances at 405-465 nm by accounting for light absorption by NO₂ and other relevant gases. VCD_{strat} are from assimilation of TROPOMI and modelled total slant columns over locations diagnosed by the model to have limited tropospheric influence (predominantly remote oceans) (Boersma et al., 2004; Dirksen et al., 2011; van Geffen et al., 2019). The modelled slant 270 columns are the product of vertical columns from the TM5-MP CTM (Williams et al., 2017) and AMFs calculated using TROPOMI viewing geometries and surface reflectivities. The CTM is simulated at 1° × 1° and driven with ECMWF meteorology updated every 3 hours. SCD_{tot} are separated into a stratospheric (SCD_{strat}) and tropospheric (SCD_{trop}) component and a tropospheric AMF (AMF_{trop}) is applied to SCD_{trop} to obtain tropospheric vertical columns (VCD_{trop}). AMF_{trop} accounts for viewing geometry, surface reflectivity, atmospheric absorption and scattering of light by trace gases and aerosols, and

275 sensitivity to the vertical distribution of NO₂. A vertically resolved correction is also applied to the AMF_{trop} to correct for the fixed NO₂ effective temperature (220 K) used to retrieve SCD_{tot}. The light path in the UT is relatively unobstructed by aerosols and, for cloud-slicing, would mostly be impacted by treatment of the reflectivity of optically thick clouds. We choose to use an AMF that only accounts for viewing geometry (AMF_{trop,geo}) due to uncertainties in the modelled vertical distribution of NO₂ in the UT (Stavrakou et al., 2013; Travis et al., 2016) and representation errors from a model at coarser resolution (~100 km) 280 than TROPOMI (< 10 km at nadir). Choi et al. (2014) found that OMI partial NO₂ columns calculated with AMF_{trop,geo} above optically thick clouds in the mid-troposphere (650 hPa) were at most 14% more than those calculated with a detailed AMF that assumed clouds are near-Lambertian surfaces with albedo of 0.8 and NO₂ is constant with altitude. The effect of not including a temperature correction will be small in the UT where temperatures are ~220 K anyway. To confirm this, we find that GEOS-Chem cloud-sliced UT NO₂ calculated with the TROPOMI AMF temperature correction expression in van Geffen 285 et al. (2019) are only 6% less than those in Figures 1-2.

We calculate VCD_{trop} by first obtaining SCD_{trop} as the difference between SCD_{tot} from the data product and SCD_{strat} calculated as the product of the reported VCD_{strat} and AMF_{strat}:

$$\text{SCD}_{\text{trop}} = \text{SCD}_{\text{tot}} - (\text{VCD}_{\text{strat}} \times \text{AMF}_{\text{strat}}) \quad (1).$$


290 This we use to estimate the above-cloud VCD_{trop} using AMF_{trop,geo} calculated with the reported solar zenith angles (SZA) and viewing zenith angles (VZA):

$$\text{VCD}_{\text{trop}} = \frac{\text{SCD}_{\text{trop}}}{\text{AMF}_{\text{trop,geo}}} = \frac{\text{SCD}_{\text{trop}}}{(\sec(\text{SZA}) + \sec(\text{VZA}))} \quad (2).$$

The TROPOMI VCD_{tot} we compare to Pandora are calculated as the sum of reported VCD_{strat} and our calculated VCD_{trop} (Equation (2)). Only data with quality flags (“qa_value” in the data product) of at least 0.45 are used. This removes data 295 affected by sun glint, poor precision in the retrieval and radiances, and SZA > 84.5° (van Geffen et al., 2019). Similarly, good quality Pandora retrievals of total and tropospheric columns are identified as those with data quality flags of 0, 1, 10, or 11 (Cede et al., 2019), consistent with Ialongo et al. (2020). Coincident satellite and ground-based data are identified as TROPOMI pixels within a 0.2° radius (~20 km) of the station and ground-based data ±30 min around the TROPOMI overpass.

300 The upper panel of Figure 3 compares collocated daily mean Pandora and TROPOMI total columns. Errors on the daily means, obtained by adding in quadrature reported uncertainties of individual columns, are small at all sites. These vary from 0.1% to 19% for Pandora and 1.5% to 16% for TROPOMI. TROPOMI and Pandora total columns are temporally consistent ($R = 0.69$ at Mauna Loa, $R = 0.87$ at Izaña, $R = 0.67$ at Altzomoni), but there is a systematic positive offset in TROPOMI ranging from 6.6×10^{14} molecules cm⁻² at Mauna Loa to 9.3×10^{14} molecules cm⁻² at Altzomoni and TROPOMI is on average 18% higher 305 than Pandora at Mauna Loa, 26% at Izaña, and 38% at Altzomoni. Verhoelst et al. (2020) also report a positive bias in TROPOMI total columns at the same Pandora sites of 6% at Mauna Loa, 19% at Izaña, and 28% at Altzomoni for April 2018

to February 2020. Our higher values compared to Verhoelst et al. (2020) is because of the 10% downscaling we apply to Pandora total columns. The difference in sampling footprints of space- and ground-based instruments can influence agreement between the two (Pinardi et al., 2020). We find though that the difference between TROPOMI and Pandora at Mauna Loa and Izaña is relatively unchanged by the choice of sampling coincidence. The difference is 17-20% at Mauna Loa and 25-26% at Izaña for a TROPOMI sampling radius of 0.05-0.3° and for a Pandora sampling time window of ± 15 -60 min. The comparison at Altzomoni though is very sensitive to the sampling radius due to proximity to Mexico City. There the difference increases from 22% at 0.05° for 45 coincident points to 48% at 0.3° for 76 coincident points.

315 **Figure 3: Comparison of TROPOMI and Pandora total NO₂ columns at high-altitude sites.** Points are daily means with at least 5 coincident observations at Mauna Loa (left), Izaña (centre), and Altzomoni (right) before (upper) and after (lower) applying correction factors to TROPOMI stratospheric and tropospheric columns (see text for details). Upper panel colours are the relative contribution of the troposphere to the total column according to Pandora where available, grey otherwise. Data in the lower panel are coloured by season. Lines are the 1:1 relationship (grey dashed) and RMA regression (black solid). Values inset are Pearson's correlation coefficients, RMA regression statistics, number of data points (n), and the TROPOMI normalized mean bias (NMB). Also shown for Altzomoni (bottom right panel) is the RMA regression without the Pandora $> 5 \times 10^{15}$ molecules cm⁻² (black dashed line). Axes do not start at the origin.

320 At Mauna Loa, the tropospheric column contribution to the total averages 5.1% (range of 0.2-16%), according to Pandora, compared to 8.3% (0.2-38%) at Izaña and 31% (8-91%) at Altzomoni. We thus use Mauna Loa total columns to identify that

TROPOMI underestimates stratospheric NO₂ variance by 13% (slope = 0.87 ± 0.05). This is likely because the variability in stratospheric NO₂ is smoothed by the coarser spatial resolution of the TM5-TMP model ($1^\circ \times 1^\circ$) and time resolution of the meteorology (3-hourly). The underestimate in stratospheric NO₂ variance would lead to an overestimate in the relative contribution of the stratosphere to the total column for small column densities and vice versa. The impact on the cloud-sliced

330 UT NO₂ is steep regression slopes and an overestimate in cloud-sliced UT NO₂, as the upper troposphere column density will be overestimated for high-altitude clouds and underestimated for low-altitude clouds. The 18% higher TROPOMI than Pandora total columns at Mauna Loa is larger than and opposite in sign to the $<10\%$ (-2×10^{14} molecules cm⁻²) meridional difference in TROPOMI stratospheric columns from the near-real time (NRTI) NO₂ product and those obtained with twilight measurements from the near-global Système d'Analyse par Observation Zénitale (SAOZ) network of Zenith Scattered Light 335 Differential Optical Absorption Spectroscopy (ZSL-DOAS) instruments (Lambert et al., 2019). The implied difference between SAOZ and Pandora stratospheric columns coincident with TROPOMI (Pandora < SAOZ) may be due to the need to account for time differences between the SAOZ measurements (twilight) and TROPOMI (midday) (Verhoelst et al., 2020). This difference warrants further investigation, as these ground-based measurements are crucial for validating space-based sensors that measure NO₂.

340 The underestimate in TROPOMI stratospheric column variance may contribute to the general pattern in validation studies comparing TROPOMI and Pandora total columns that find TROPOMI is less than Pandora when NO₂ is large and more than Pandora when NO₂ is small for the global Pandora network (Pinardi et al., 2020; Verhoelst et al., 2020) and at individual Pandora sites. TROPOMI is less than Pandora (-24 to -28%) at a relatively polluted Greater Toronto Area site, but more than 345 Pandora (8-11%) at a cleaner rural site north of the city (X. Zhao et al., 2020). Similarly, at a site in Helsinki, Finland, TROPOMI is less than Pandora (-28%) for Pandora $> 10 \times 10^{15}$ molecules cm⁻² and more than Pandora (17%) for Pandora $< 10 \times 10^{15}$ molecules cm⁻² (Ialongo et al., 2020).

After applying the stratospheric NO₂ variance correction, the intercepts in the top panel of Figure 3 decrease to 4.4×10^{14} 350 molecules cm⁻² for Mauna Loa, 7.9×10^{14} molecules cm⁻² for Izaña, and 7.3×10^{14} molecules cm⁻² for Altzomoni (not shown). Likely causes for the remaining discrepancy between TROPOMI and Pandora include a positive offset in the TROPOMI 355 radiance intensity that is 5% of the total column or $0.1-1 \times 10^{15}$ molecules cm⁻² (van Geffen et al., 2020), challenges obtaining a Pandora reference measurement (atmospheric column without NO₂) (Herman et al., 2009), and an overestimate in TROPOMI free tropospheric NO₂. The radiance intensity offset has been shown to mostly affect retrievals over open oceans (van Geffen et al., 2020), and an overestimate in free tropospheric NO₂ would have a larger effect on the total column comparison at Izaña and Altzomoni than at Mauna Loa.

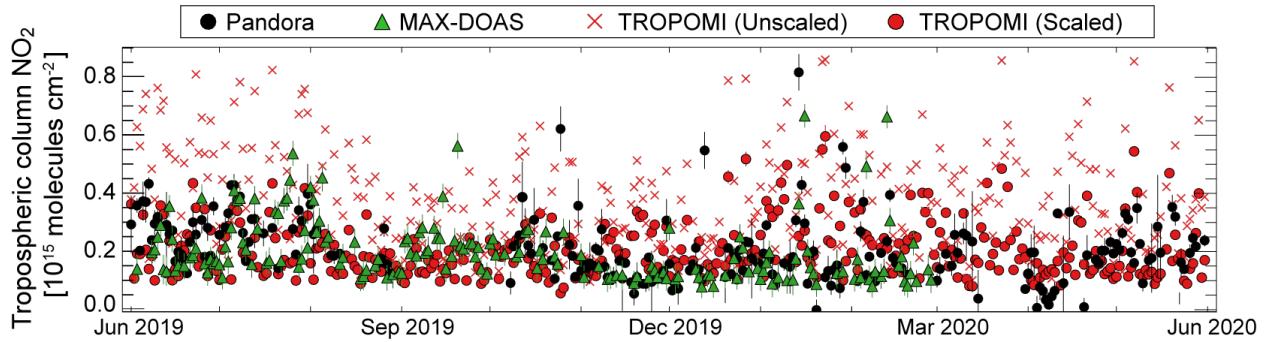
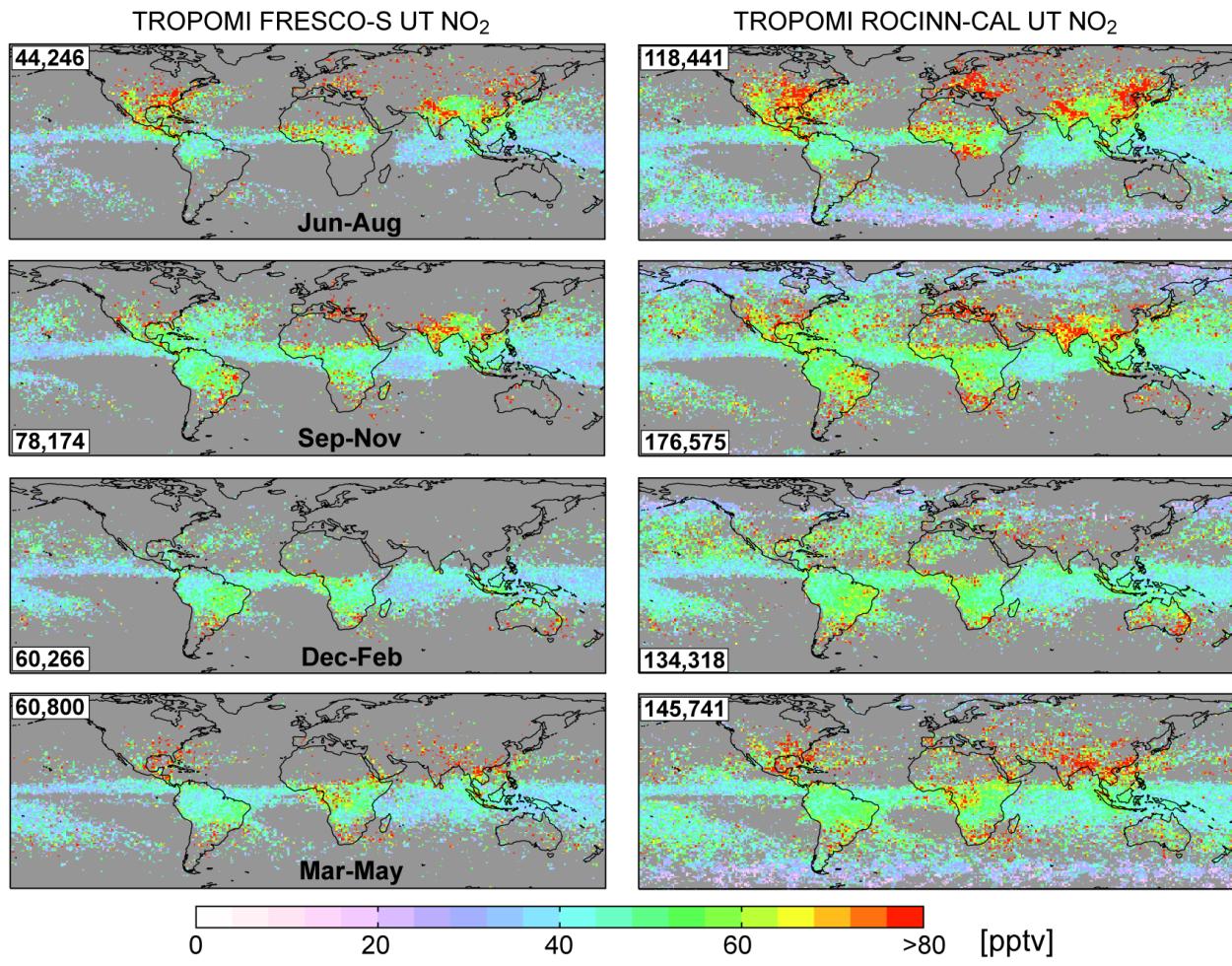


Figure 4: Time series of free tropospheric column NO_2 at Izaña. Points are daily midday means from Pandora (black circles), MAX-DOAS (green triangles), and TROPOMI (red) before (crosses) and after (circles) applying scaling factors to the stratospheric and tropospheric columns (see text for details). Error bars are individual retrieval uncertainties added in quadrature.


Figure 4 compares time series of free tropospheric NO_2 at Izaña from Pandora, MAX-DOAS and TROPOMI. As with the total columns, Pandora and MAX-DOAS are sampled 30 min around the satellite overpass and TROPOMI 0.2° around the site. We impose a modest threshold to sample TROPOMI tropospheric columns $>4 \times 10^{13} \text{ molecules cm}^{-2}$ to mimic the detection limits of the instruments (Gomez et al., 2014) and mitigate the influence of TROPOMI data that would be susceptible to errors in distinguishing the stratosphere from the troposphere. This brings the lower-end TROPOMI values into better agreement with the ground-based values and has no effect on TROPOMI columns $>2 \times 10^{14} \text{ molecules cm}^{-2}$. On average, Pandora is 14% more than MAX-DOAS and the temporal correlation is modest ($R = 0.4$). Temporal inconsistencies between Pandora and MAX-DOAS are due to challenges retrieving tropospheric columns routinely close to instrument detection limits (Gomez et al., 2014), lack of dynamic variability in the retrieved columns, and differences in the sampling extent of the two instruments. The MAX-DOAS sampling footprint, for example, shifts by at least 2° in latitude between winter and summer solstices (Robles-Gonzalez et al., 2016). Most MAX-DOAS and Pandora data are at $1-4 \times 10^{14} \text{ molecules cm}^{-2}$, whereas the range for TROPOMI calculated using Eq. (1) and (2) extends to $\sim 8 \times 10^{14} \text{ molecules cm}^{-2}$. P. Wang et al. (2020a) obtained the same range in tropospheric column densities from comparison of TROPOMI to shipborne MAX-DOAS measurements. They found that TROPOMI was on average $4 \times 10^{14} \text{ molecules cm}^{-2}$ more than MAX-DOAS. In our comparison, TROPOMI free tropospheric columns (red crosses in Figure 4) are 77% more than Pandora and 84% more than MAX-DOAS. A similar overestimate is obtained if the reported detailed tropospheric AMF is used instead of $\text{AMF}_{\text{trop,geo}}$ (Eq. (2)) to calculate TROPOMI tropospheric columns. The stratospheric variance correction reduces the difference between TROPOMI and the ground-based measurements to 40% compared to Pandora and 47% compared to MAX-DOAS due to an increase in the relative contribution of the stratosphere to total columns $>2 \times 10^{15} \text{ molecules cm}^{-2}$. To address the remaining difference between TROPOMI tropospheric columns and the ground-based observations, we downscale TROPOMI tropospheric columns by 50% (red circles in Figure 4) leading to a difference of -4% with Pandora and 1% with MAX-DOAS. There is no temporal correlation between daily coincident observations of TROPOMI and the ground-based measurements ($R < 0.1$), consistent with the comparison of TROPOMI to shipborne MAX-DOAS by P. Wang et al. (2020a).

The lower panel in Figure 3 compares Pandora to TROPOMI total columns after increasing TROPOMI stratospheric column variance by 13% and reducing TROPOMI tropospheric columns by 50%. This correction reduces the difference between TROPOMI and Pandora by just 3 percentage points at Mauna Loa and Izaña and 11 percentage points at Altzomoni. The variance at Altzomoni degrades from 0.96 ± 0.16 to 0.82 ± 0.14 , but this is because the relatively few coincident points (76 compared to 308 at Izaña) are influenced by the single Pandora observation $>5.5 \times 10^{15}$ molecules cm^{-2} (coincident corrected TROPOMI is $< 4 \times 10^{15}$ molecules cm^{-2}) that may be detecting NO_2 from fires typical of December–February in the National Park where the instrument is located (Bravo et al., 2002; Baumgardner et al., 2009). The TROPOMI tropospheric column contribution at Mauna Loa and Izaña is more consistent with that from Pandora after applying the stratospheric and tropospheric column corrections, decreasing from 8% to 6% at Mauna Loa and 12% to 7% at Izaña. This is not the case for Altzomoni (decrease from 14% to 9%), due to anthropogenic influence from Mexico City. Points in Figure 3 are coloured by season to show that all sites experience a modest decline in NO_2 from summer (purple) to winter (cyan) due to the influence of solar variability on photochemical production of NO_x in the stratosphere (Gil et al., 2008; Robles-Gonzalez et al., 2016) and seasonality in long-range transport and subsidence in the free troposphere (Gil-Ojeda et al., 2015). The distinct distribution of points in December–February compared to June–August and September–November at Mauna Loa suggest there may be seasonality in the size of the discrepancy between TROPOMI and Pandora stratospheric columns. The remaining TROPOMI positive offset of $\sim 4 \times 10^{14}$ molecules cm^{-2} is consistent with the $2-4 \times 10^{14}$ molecules cm^{-2} positive offset in TROPOMI stratospheric columns reported by P. Wang et al. (2020a) from comparison to shipborne MAX-DOAS measurements. If the remaining offset is exclusively due to the stratospheric column, this would cancel in the cloud-slicing retrieval for clusters of partial columns with uniform stratospheric NO_2 .

405 4 Retrieval of TROPOMI NO_2 in the upper troposphere

The same cloud-slicing retrieval steps applied to synthetic spectra from GEOS-Chem (Section 2) are applied to corrected TROPOMI total columns to obtain seasonal mean UT NO_2 for a year (June 2019 to May 2020) at $1^\circ \times 1^\circ$. This resolution degrades TROPOMI nadir pixels by 400-fold compared to 250-fold for the synthetic experiment in Section 2 and a much greater (1300-fold) degradation in OMI nadir pixel resolution ($13 \text{ km} \times 24 \text{ km}$) for the $5^\circ \times 8^\circ$ product (Marais et al., 2018). The finer relative resolution we choose for TROPOMI cloud-sliced UT NO_2 compared to OMI is informed by the synthetic experiment applied to GEOS-Chem and the superior cloud-resolving capability of TROPOMI than OMI. Cloud-slicing is applied to partial columns above optically thick clouds (diagnosed with an effective cloud fraction ≥ 0.7 , as in Marais et al. (2018)) to limit contamination from light transmitted through clouds. Though the cloud-slicing retrieval steps applied to GEOS-Chem and TROPOMI are the same, there are differences in the modelled and retrieved cloud parameters that we discuss below.

Two TROPOMI cloud-sliced UT NO₂ products are derived using cloud top heights and cloud fractions from distinct cloud products. These are FRESCO-S from the same data file as TROPOMI NO₂ and the standalone offline (OFFL) cloud product. FRESCO-S cloud fractions and cloud top pressures are determined by minimizing the difference between measured and simulated spectra in the O₂ A-band (758-766 nm) using lookup tables of relevant physical parameters and assuming clouds are single layer Lambertian reflectors with albedo of 0.8 (P. Wang et al., 2008; van Geffen et al., 2019). The standalone product version number changes from 01-01-07 to 01-01-08 on 7 March 2020, but with no change to the data product (Argyrouli et al., 2019). Cloud fractions are from the Optical Cloud Recognition Algorithm (OCRA). In OCRA, cloud fractions are retrieved by determining the difference, in colour space, between cloudy and clear reflectances in blue (405-495 nm) and green (350-395 nm) broad spectral bands (Loyola et al., 2007; 2018a; 2018b). Cloud top heights (in km) are from the Retrieval of Cloud Information using Neural Networks (ROCINN). This involves minimizing the difference between measured O₂ A-band radiances and neural network trained radiances modelled using OCRA cloud fractions as input (Loyola et al., 2007; 2018b) and assuming clouds are multiple optically uniform layers of light-scattering water droplets (the clouds-as-layers or CAL model). We convert ROCINN-CAL cloud top heights to pressures for cloud-slicing and comparison to FRESCO-S. FRESCO-S data are quality screened using the same qa_value threshold (0.45) as the NO₂ data. A qa_value threshold of 0.5 is used for OCRA cloud fractions and ROCINN-CAL cloud heights. This removes data affected by sun glint, spectral saturation that is particularly problematic over bright high-altitude clouds and not properly flagged in the level 1 radiances used to retrieve NO₂ slant columns (Gorkavyi et al., 2020), poor quality radiances and retrievals, SZA > 75°, and issues arising from spatial misalignment of ground pixels of different spectral bands (Loyola et al., 2018a; 2018b). Snow/ice scenes that could be misidentified as clouds in the FRESCO-S product are identified as scenes with differences in reported scene and surface pressures > 2% (as in van der A et al. (2020)), snow cover > 80% or permanent ice cover. Snow and ice cover and classification are from the Near-real-time Ice and Snow Extent (NISE) product provided with the NO₂ product (van Geffen et al., 2019). For OCRA and ROCINN-CAL, we use the reported snow/ice flag that combines information from NISE and a surface albedo climatology (Loyola et al., 2018b). In what follows, we distinguish the two cloud-sliced TROPOMI UT NO₂ products as FRESCO-S UT NO₂ and ROCINN-CAL UT NO₂.

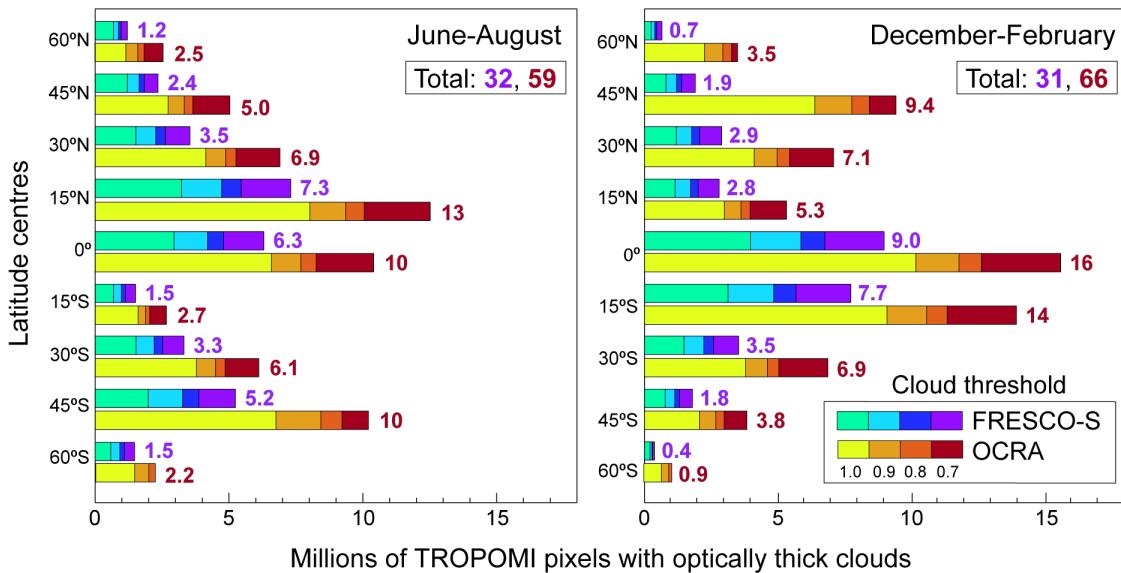
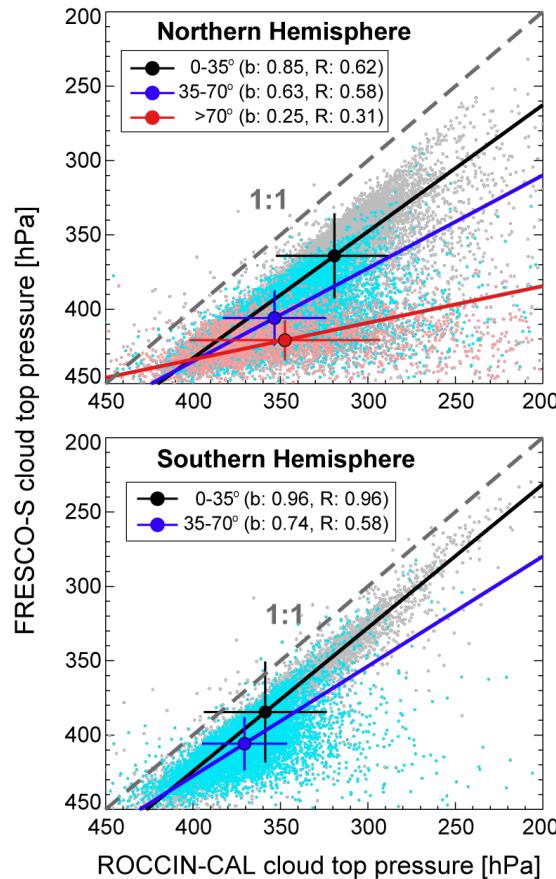

Figure 5: Seasonal mean upper tropospheric (UT) NO₂ from TROPOMI. Maps are UT NO₂ at 1° × 1° in June-August 2019 (first row), September-November 2019 (second), December 2019 to February 2020 (third), and March-May 2020 (fourth) using FRESCO-S (left) or ROCINN-CAL (right) cloud information and with corrections applied to TROPOMI stratospheric and tropospheric columns (see text for details). Inset numbers give total successful cloud-sliced retrievals. Grey grid squares have fewer than 5 cloud-sliced retrievals.

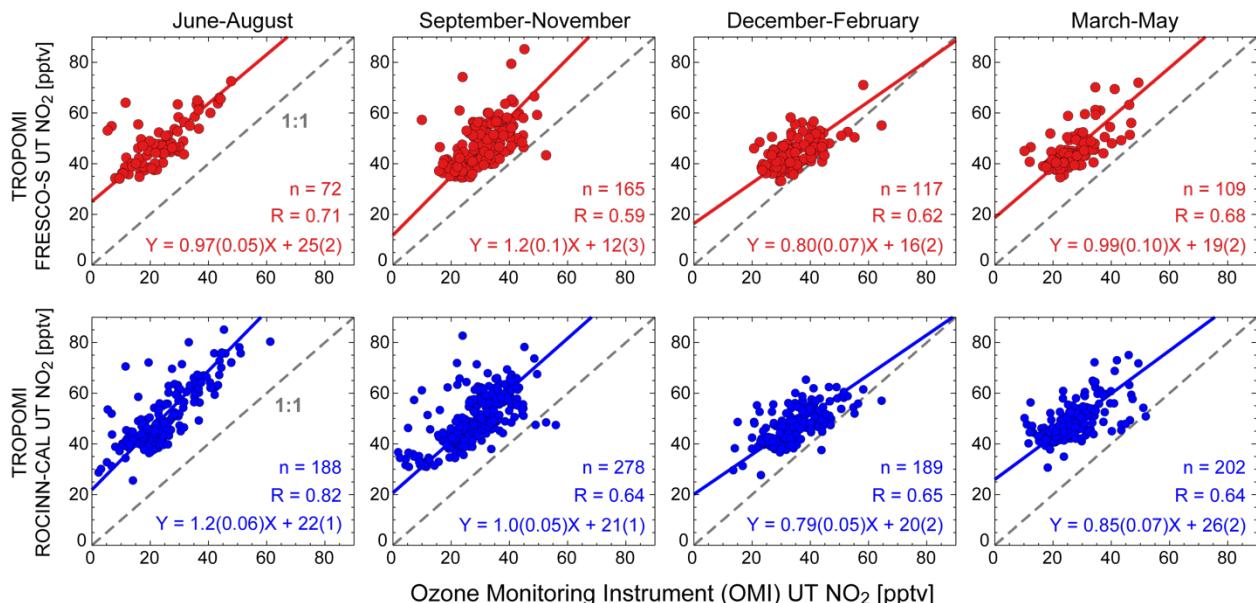
Figure 5 shows maps of seasonal mean FRESCO-S and ROCINN-CAL UT NO₂ at 1° × 1°. The spatial features are consistent with a combination of the density of lightning flashes (Cecil et al., 2014) and lightning properties such as flash footprint, duration, and energy (Beirle et al., 2014). These include elevated concentrations (> 80 pptv) over northern hemisphere land masses in June-August, the year-round 40-60 pptv band over tropical landmasses that shifts meridionally with the Intertropical Convergence Zone (ITCZ), and relatively low concentrations (< 30 pptv) over the remote Pacific Ocean. In the cold polar regions UT NO₂, limited to ROCINN-CAL, are near-background (<30 pptv; Marais et al. (2018)) as NO₂ is preferentially present as NO_x reservoir compounds such as peroxyacetyl nitrates (PANs) (Bottenheim et al., 1986). Large enhancements (NO₂ > 80 pptv) over northern China and the northeast US in June-August, and Australia in December-February most prevalent in the ROCINN-CAL product likely reflect contamination from surface pollution below clouds. These would result from

intense anthropogenic activity in North China and the northeast US (B. Zhao et al., 2013; Jiang et al., 2018; Z. Wang et al., 2020b) and routine pyrocumulonimbus injection of fire plumes into the free troposphere and lower stratosphere during the intense 2019-2020 fire season in Australia (Kablick III et al., 2020). Coincident gridsquares of the two data sets are spatially
460 consistent (R of 0.82 to 0.88), though ROCINN-CAL UT NO₂ are 4.2-9.1 pptv more than FRESCO-S UT NO₂. As with the synthetic experiment, UT NO₂ increases with degradation in resolution. Depending on the season, cloud-sliced UT NO₂ are 2-4% more at 2° × 2.5° and 3-9% more at 4° × 5° than at 1° × 1°. Good quality retrievals and optically thick clouds with cloud top pressures at 450-180 hPa account for ~2% of TROPOMI pixels using FRESCO-S and ~3% using ROCINN-CAL. Of these, 44,000-78,000 cloud-slicing retrievals are retained in each season for FRESCO-S, and 118,000-177,000 for ROCINN-CAL
465 (Figure 5). Most data loss in the cloud-slicing retrieval is because of too few points (clusters < 10) or cloud top pressure range < 140 hPa. Discarded extreme values of cloud-sliced NO₂ > 200 pptv are only 0.1-0.5% of retained data. More cloud-sliced retrievals with ROCCIN-CAL is due to greater abundance of optically thick clouds and clusters with greater cloud height range.

470 Figure 6 compares the meridional abundance of optically thick clouds in the UT from the two cloud products for June-August and December-February. The same information for the other two seasons is in Figure S2. Both products retrieve effective (radiometric) cloud fractions. These are systematically less than the physical (geometric) cloud fractions from GEOS-Chem, though the two converge for optically thick clouds with physical cloud fractions approaching 1 (Stammes et al., 2008). The number of OCRA optically thick clouds is always more (often double) than that of FRESCO-S in all seasons and across all
475 latitudes. The greatest difference in the number of optically thick clouds tracks the ITCZ and is also typically at 45°N/S. The majority (61-62%) of OCRA cloud fractions exceed 0.975 compared to 42-45% for FRESCO-S. Loyola et al. (2018a) determined that OCRA cloud fractions retrieved over oceans are 0.1 unit more than those from retrievals like FRESCO-S that assume fixed cloud albedo. Differences over land are not as systematic and vary from negligible in the tropics and subtropics to > 0.1 unit more in the Arctic (Loyola et al., 2018a). The OCRA algorithm ordinarily includes red band reflectances, but
480 TROPOMI OCRA relies on initial cloud-free reflectances from OMI that excludes the red part of the visible spectrum, though its absence only induces a small negative cloud fraction bias of ~0.03 (Loyola et al., 2018a). ROCINN-CAL retrieves cloud optical thicknesses alongside cloud heights. These exceed 20 for most (84-93%) 1° × 1° gridsquares used to cloud-slice TROPOMI, confirming that a cloud fraction threshold of 0.7 is sufficient to isolate optically thick clouds. The number of pixels in each cloud fraction threshold in Figure 6 suggests that a stricter cloud fraction threshold of 1.0 applied to the ROCINN-
485 CAL product might lead to a more consistent spatial distribution of UT NO₂ to that from FRESCO-S in Figure 5. The resultant ROCINN-CAL UT NO₂ using a cloud fraction threshold of 1.0 are in Figure S3. Half the number of cloud-sliced retrievals are obtained, as expected, and there are fewer retrievals over northern hemisphere high latitudes than in Figure 5. Those over the southern ocean in austral autumn and winter persist and may reflect enhanced occurrence of high-altitude clouds in these seasons over Antarctica (Verlinden et al., 2011). The average difference between ROCINN-CAL and FRESCO-S decreases


490 from 5-8% for the same cloud fraction threshold of 0.7 to 0.2-1.6% using a cloud fraction threshold of 1.0 for ROCINN-CAL and 0.7 for FRESCO-S.

495 **Figure 6: Meridional distribution of FRESCO-S and OCRA optically thick clouds in the upper troposphere. Bars count the occurrence of native TROPOMI pixels with cloud fractions $\geq 1.0, 0.9, 0.8$, and 0.7 binned into 15° latitude bands in June-August (left) and December-February (right) for FRESCO-S (cool colours) where FRESCO-S cloud top pressures are at 450-180 hPa, and OCRA (warm colours) where ROCINN-CAL cloud top pressures are at 450-180 hPa. Values inset are latitude band and global total number of TROPOMI pixels with cloud fraction ≥ 0.7 .**


Figure 7 compares gridded cloud product cloud top pressures for June-August sampled where FRESCO-S cloud top pressures 500 are at 450-180 hPa and cloud fractions are at least 0.7. Cloud top pressures are spatially consistent in the tropics ($R = 0.62$ at $0-35^\circ\text{N}$, $R = 0.85$ at $0-35^\circ\text{N}$) and midlatitudes ($R = 0.58$ at $35-70^\circ\text{N}$, $R = 0.63$ at $35-70^\circ\text{S}$), but degrade north of 70°N ($R = 0.31$). Variability in cloud top pressures is similar for the two products in the tropics (regional mean standard deviation of 28-33 hPa at $0-35^\circ\text{N}$ and 30-31 hPa at $0-35^\circ\text{S}$), but deviates in the subtropics and midlatitudes (18 hPa for FRESCO-S, 24-30 hPa for ROCINN-CAL) and more so in the Arctic (13 hPa for FRESCO-S, 54 hPa for ROCINN-CAL). There is no coincident data 505 south of 70°S in June-August. In December-February south of 70°S (Figure S4) there is a similarly weak correlation ($R < 0.1$) and large difference in variability (19 hPa for FRESCO-S, 80 hPa for ROCINN-CAL). FRESCO-S does not account for scattering within and below clouds and so estimates the height as the optical centroid of the cloud (Joiner et al., 2012). The optical centroid is systematically lower in altitude (higher in pressure) than the physical cloud top, though FRESCO-S appears 510 to be more consistent with ground-based observations than ROCINN-CAL for high-altitude cloud top heights (Compernolle et al., 2020). Loyola et al. (2018a) determined that cloud top altitudes from ROCINN-CAL were ~ 1 km (range: 0.6 km to >2 km) higher than those from a FRESCO-S type approach that assumes clouds are single layers with fixed albedo. Our test of the effect of an artificial decrease in cloud top altitude of 1 km for cloud-slicing synthetic GEOS-Chem partial columns (Section

2) suggests that 1 km lower altitude cloud tops in FRESCO-S should lead to larger UT NO₂ than those from ROCINN-CAL, but the opposite is observed (Figure 5). This suggests that the effect of other differences between the cloud products on the 515 cloud-sliced UT NO₂ must dominate. Regression slopes in Figure 7 are less than unity, indicating that the difference in cloud top pressures between the two products decreases with pressure (increases with altitude). The implication for cloud-sliced UT NO₂ is greater global coverage with ROCINN-CAL, as clusters of TROPOMI pixels in the midlatitudes and polar regions overcome the 140 hPa cloud top pressure range threshold imposed in the cloud-slicing algorithm. In the tropics and subtropics, ROCINN-CAL has less cloud top pressure range than FRESCO-S for the same scenes. This leads to steeper cloud-slicing 520 regression slopes for ROCINN-CAL and explains the 4-9 pptv greater UT NO₂ than FRESCO-S in Figure 5.

525 **Figure 7: Comparison of FRESCO-S and ROCINN-CAL cloud top pressures from optically thick clouds in the upper troposphere for June-August 2019. Data are gridded to $1^\circ \times 1^\circ$ for TROPOMI pixels with FRESCO-S cloud fractions ≥ 0.7 and cloud top pressures at 450-180 hPa. Small points are gridded seasonal means and lines are RMA regressions for the tropics (grey points, black regression line), subtropics and midlatitudes (cyan, blue), and the Arctic (pink, red). Large points are latitude band means and error bars are corresponding standard deviations. Grey dashed lines show the 1:1 relationship. Values in the legend are RMA regression slopes (b) and Pearson's correlation coefficients (R).**

We evaluate TROPOMI UT NO₂ with multiyear (2005-2007) seasonal mean cloud-sliced UT NO₂ from OMI at 5° × 8° (Marais et al., 2018). The OMI product is retrieved in a similar manner to TROPOMI, except that the GMI CTM is used to diagnose and remove steep gradients in NO₂ (≥ 0.33 pptv hPa⁻¹) and the OMI retrieval ceiling is lower (280 hPa, ~10 km) than TROPOMI (180 hPa, ~12.5 km). In regions where lightning is prevalent, the vertical distribution of NO₂ increases with altitude 535 by 10-50 pptv across 280-180 hPa, as is observed with vertical profiles of NO₂ from spring-summer research aircraft campaign measurements over the US (Boersma et al., 2011; Silvern et al., 2018). Strict filtering applied to cloud-slicing removes most scenes where the increase in NO₂ with altitude exceeds 33 pptv across 280-180 hPa, based on the synthetic experiment with GEOS-Chem. The influence of more than a 10-year gap between the OMI and TROPOMI UT NO₂ datasets on the comparison 540 is challenging to quantify, due to paucity of routine measurements of NO₂ in the UT. The contribution of changes in lightning activity should be small, as interannual variability is small (<5%) and there is no discernible trend in the long-term record of satellite observations of lightning flashes (Schumann and Huntrieser, 2007).

545 **Figure 8: Comparison of TROPOMI and OMI cloud-sliced UT NO₂. Points are seasonal means in June 2019 to May 2020 for TROPOMI and January 2005 to December 2007 for OMI gridded to the same 5° × 8° (latitude × longitude) grid for FRESCO-S vs ROCINN-CAL vs OMI (lower panel, blue). Values give the number of points, Pearson's correlation coefficients (R), RMA regression coefficients, and, in parentheses, bootstrap resampling slope and intercept errors.**

Figure 8 evaluates spatial consistency between TROPOMI and OMI seasonal mean UT NO₂ on the OMI grid (5° × 8°) for 550 TROPOMI cloud-sliced UT NO₂ 1° × 1° gridsquares with at least 10 cloud-sliced retrievals. TROPOMI is spatially consistent with OMI in all seasons for both products ($R = 0.6-0.8$). The TROPOMI background is 12-25 pptv more than OMI for FRESCO-S and 20-26 pptv more than OMI for ROCINN-CAL, based on the intercepts in Figure 8. This may be due to the

observed increase in NO₂ with altitude across the sampling pressure ceilings of the two products (280 hPa for OMI, 180 hPa for TROPOMI). The OMI UT NO₂ product uses cloud information derived from OMI O₂-O₂ slant columns. The signal from the O₂-O₂ dimer declines with altitude, increasing uncertainty in the retrieval with altitude (Veefkind et al., 2016). High-altitude clouds from OMI would have to be higher in altitude than TROPOMI to contribute to the positive offset in TROPOMI UT NO₂ in Figure 8, based on results from the synthetic test of lowering GEOS-Chem cloud top heights by 1 km. But the direction of the bias in OMI high-altitude cloud top heights compared to lidar-radar measurements does not appear to be systematic (Veefkind et al., 2016). The regression slopes in Figure 8 are closest to unity for June-August and March-May for FRESCO-S and September-November for ROCINN-CAL. The underestimate in variance in December-February in both products could reflect the need to account for seasonality in the stratospheric variance correction. UT NO₂ obtained without applying correction factors to TROPOMI stratospheric and tropospheric columns (Figure S5) results in greater data density due to less variance in TROPOMI stratospheric columns, but the discrepancy with OMI is much greater. TROPOMI UT NO₂ background concentrations are 16-35 pptv more than OMI for FRESCO-S and 27-36 pptv more for ROCINN-CAL and slopes exceed unity in all seasons (1.3-1.7 for FRESCO-S, 1.2-1.5 for ROCINN-CAL).

565 6 Conclusions

We have developed new products of NO₂ in the upper troposphere (UT; ~8-12 km) by cloud-slicing partial columns of NO₂ from the space-based TROPOMI instrument. This involves regressing partial NO₂ columns against cloud top pressures and converting regression slopes to UT NO₂ mixing ratios.

570 We first refined and tested representativeness of cloud-sliced UT NO₂ by applying cloud-slicing to synthetic partial columns from the GEOS-Chem model. Synthetic cloud-sliced UT NO₂ are spatially consistent ($R = 0.64$) with the synthetic truth, but preferentially sampling cloudy scenes and substantial data loss lead to a resolution-dependent positive bias in cloud-sliced UT NO₂ of 11-22%.

575 Before applying cloud-slicing to TROPOMI, we evaluated TROPOMI with Pandora total columns at high-altitude sites (Mauna Loa, Izaña, Altzomoni) and Pandora and MAX-DOAS free tropospheric columns at Izaña. We identified discrepancies between TROPOMI and ground-based NO₂ measurements that include a 13% underestimate in TROPOMI stratospheric NO₂ variance and 50% overestimate in TROPOMI tropospheric columns.

580 We retrieved UT NO₂ from TROPOMI by applying the refined cloud-slicing algorithm to corrected TROPOMI partial columns above optically thick clouds with cloud top heights at 450-180 hPa using two alternate cloud products, FRESCO-S and ROCINN-CAL. ROCINN-CAL UT NO₂ has more extensive coverage (0°-70° N/S) than FRESCO-S (0°-45° N/S) due to its greater abundance of optically thick clouds. Coincident UT NO₂ from the two products exhibit similar spatial distribution, but

background UT NO₂ from ROCINN-CAL is 4-9 pptv more than FRESCO-S. This is due to steeper cloud-slicing regression
585 slopes for ROCINN-CAL, as cloud top heights between the two products deviate with increasing cloud top pressure. Ongoing validation studies are needed to resolve these differences.

Both products are spatially correlated with the existing coarse resolution (5° latitude × 8° longitude) Ozone Monitoring Instrument (OMI) product, except that TROPOMI is 16-36 pptv more than OMI that we reason is due to the widely documented
590 increase in NO₂ with altitude from the OMI pressure ceiling (280 hPa) to that for TROPOMI (180 hPa), but signal saturation of TROPOMI pixels leading to blooming over bright high-altitude clouds could also contribute.

TROPOMI UT NO₂ products presented here have the potential to provide routine, extensive and consistent measurements of NO_x in the UT and, as TROPOMI observations accumulate, aid in characterising interannual and long-term variability in NO_x
595 in the under sampled UT.

Code Availability

Python code used to process TROPOMI data is available at <https://doi.org/10.5281/zenodo.4058442>.

Data Availability

Data can be requested from EAM for TROPOMI UT NO₂, SC for OMI UT NO₂, MN-C for MAX-DOAS slant columns, and
600 RR for MAX-DOAS vertical columns. Python code used to process TROPOMI data is available at <https://doi.org/10.5281/zenodo.4058442>.

Author Contributions

EAM led the analysis and writing, simulated GEOS-Chem, and cloud-sliced TROPOMI UT NO₂ and GEOS-Chem. JFR refined and documented python processing code. RGR retrieved MAX-DOAS vertical tropospheric columns. HE and FB
605 provided guidance on best use and evaluation of TROPOMI NO₂. SC and JJ retrieved OMI UT NO₂ and provided guidance on cloud-slicing. NA and AR are Pandora site PIs, and AC is PI of PGN. MNC maintains the RASAS-II instrument and retrieved the MAX-DOAS slant columns at Izaña. LG conducted MAX-DOAS geospatial sampling sensitivity tests for Izaña.

Competing Interests

The authors declare that they have no conflict of interest.

610 Acknowledgements

The project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (through a Starting Grant awarded to EAM, grant number 851854_UPTROP). The authors are grateful to Piet Stammes and colleagues for retrieval of the FRESCO-S cloud product and Diego Loyola and colleagues for retrieval of the OCRA and ROCINN-CAL cloud product. The PGN is a bilateral project supported with funding from NASA and ESA.
615 The Pandora measurements in Altzomoni were possible thanks to financial support of Conacyt-AEM (Grant No. 275239) and technical assistance from Alejandro Bezanilla. RR acknowledges funding from the Australian Research Council Centre of Excellence for Climate Extremes and the Dr Albert Shimmins Memorial Fund through the University of Melbourne.

References

Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, *J. Geophys. Res.-Atmos.*, 115, 1-24, doi:10.1029/2010jd014062, 2010.

Amedro, D., Bunkan, A. J. C., Berasategui, M., and Crowley, J. N.: Kinetics of the OH + NO₂ reaction: rate coefficients (217-333 K, 16-1200 mbar) and fall-off parameters for N₂ and O₂ bath gases, *Atmos. Chem. Phys.*, 19, 10643-10657, doi:10.5194/acp-19-10643-2019, 2019.

625 Argyrouli, A., Sneep, M., and Lambert, J.-C.: S5P Mission Performance Centre CLOUD [L2_CLOUD_] Readme, <https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Cloud-Level-2-Product-Readme-File> (Last accessed: 20 January 2020), 2019.

Baumgardner, D., Grutter, M., Allan, J., Ochoa, C., Rappenglueck, B., Russell, L. M., and Arnott, P.: Physical and chemical properties of the regional mixed layer of Mexico's Megapolis, *Atmos. Chem. Phys.*, 9, 5711-5727, doi:10.5194/acp-9-5711-630 2009, 2009.

Beirle, S., Koshak, W., Blakeslee, R., and Wagner, T.: Global patterns of lightning properties derived by OTD and LIS, *Nat. Hazard Earth Sys.*, 14, 2715-2726, doi:10.5194/nhess-14-2715-2014, 2014.

Belmonte-Rivas, M. B., Veefkind, P., Eskes, H., and Levelt, P.: OMI tropospheric NO₂ profiles from cloud slicing: constraints on surface emissions, convective transport and lightning NO_x, *Atmos. Chem. Phys.*, 15, 13519-13553, doi:10.5194/acp-15-635 13519-2015, 2015.

Bertram, T. H., Perring, A. E., Wooldridge, P. J., Crounse, J. D., Kwan, A. J., Wennberg, P. O., Scheuer, E., Dibb, J., Avery, M., Sachse, G., Vay, S. A., Crawford, J. H., McNaughton, C. S., Clarke, A., Pickering, K. E., Fuelberg, H., Huey, G., Blake, D. R., Singh, H. B., Hall, S. R., Shetter, R. E., Fried, A., Heikes, B. G., and Cohen, R. C.: Direct measurements of the convective recycling of the upper troposphere, *Science*, 315, 816-820, doi:10.1126/science.1134548, 2007.

640 Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO₂ retrieval from space, *J. Geophys. Res.-Atmos.*, 109, 1-26, doi:10.1029/2003jd003962, 2004.

Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitao, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring Instrument, *Atmos. Meas. Tech.*, 4, 1905-1928, doi:10.5194/amt-4-1905-2011, 2011.

645 Bottenheim, J. W., Gallant, A. G., and Brice, K. A.: Measurements of NO_y species and O₃ at 82°N latitude, *Geophys. Res. Lett.*, 13, 113-116, doi:10.1029/GL013i002p00113, 1986.

Bradshaw, J., Davis, D., Grodzinsky, G., Smyth, S., Newell, R., Sandholm, S., and Liu, S.: Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs, *Rev. Geophys.*, 38, 61-116, doi:10.1029/1999rg900015, 2000.

650 Bravo, A. H., Sosa, E. R., Sánchez, A. P., Jaimes, P. M., and Saavedra, R. M. I.: Impact of wildfires on the air quality of Mexico City, 1992–1999, *Environ. Pollut.*, 117, 243-253, doi:10.1016/S0269-7491(01)00277-9, 2002.

Brohede, S. M., Haley, C. S., McLinden, C. A., Sioris, C. E., Murtagh, D. P., Petelina, S. V., Llewellyn, E. J., Basureau, A., Goutail, F., Randall, C. E., Lumpe, J. D., Taha, G., Thomasson, L. W., and Gordley, L. L.: Validation of Odin/OSIRIS stratospheric NO₂ profiles, *J. Geophys. Res.-Atmos.*, 112, 1-22, doi:10.1029/2006JD007586, 2007.

655 Browne, E. C., Perring, A. E., Wooldridge, P. J., Apel, E., Hall, S. R., Huey, L. G., Mao, J., Spencer, K. M., St Clair, J. M., Weinheimer, A. J., Wisthaler, A., and Cohen, R. C.: Global and regional effects of the photochemistry of CH₃O₂NO₂: evidence from ARCTAS, *Atmos. Chem. Phys.*, 11, 4209-4219, doi:10.5194/acp-11-4209-2011, 2011.

Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, *Atmos. Res.*, 135, 404-414, doi:10.1016/j.atmosres.2012.06.028, 2014.

660 Cede, A., Tiefengraber, M., Gebetsberger, M., and Kreuter, A.: Fiducial reference measurements for air quality: TN on PGN products "correct use" guidelines, version 1, LuftBlick, Innsbruck, Austria, https://www.pandonia-global-network.org/wp-content/uploads/2020/01/LuftBlick_FRM4AQ_PGNUserGuidelines_RP_2019009_v1.pdf (Last accessed: 4 February 2020), 2019.

Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous atmospheric chemistry, 665 ambient measurements, and model calculations of N₂O₅: A review, *Aerosol Sci. Tech.*, 45, 665-695, doi:10.1080/02786826.2010.551672, 2011.

Choi, S., Joiner, J., Choi, Y., Duncan, B. N., Vasilkov, A., Krotkov, N., and Bucsela, E.: First estimates of global free-tropospheric NO₂ abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), *Atmos. Chem. Phys.*, 14, 10565-10588, doi:10.5194/acp-14-10565-2014, 2014.

670 Compernolle, S., Argyrouli, A., Lutz, R., Sneep, M., Lambert, J. C., Fjæraa, A. M., Hubert, D., Keppens, A., Loyola, D., O'Connor, E., Romahn, F., Stammes, P., Verhoelst, T., and Wang, P.: Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O₂-O₂, MODIS and Suomi-NPP VIIRS, *Atmos. Meas. Tech. Discuss.*, 2020, 1-33, doi:10.5194/amt-2020-122, 2020.

Crawford, J., Davis, D., Olson, J., Chen, G., Liu, S., Fuelberg, H., Hannan, J., Kondo, Y., Anderson, B., Gregory, G., Sachse, 675 G., Talbot, R., Viggiano, A., Heikes, B., Snow, J., Singh, H., and Blake, D.: Evolution and chemical consequences of lightning-

produced NO_x observed in the North Atlantic upper troposphere, *J. Geophys. Res.-Atmos.*, 105, 19795-19809, doi:10.1029/2000JD900183, 2000.

Dahlmann, K., Grawe, V., Ponater, M., and Matthes, S.: Quantifying the contributions of individual NO_x sources to the trend in ozone radiative forcing, *Atmos. Environ.*, 45, 2860-2868, doi:10.1016/j.atmosenv.2011.02.071, 2011.

680 Dirksen, R. J., Boersma, K. F., Eskes, H. J., Ionov, D. V., Bucsela, E. J., Levelt, P. F., and Kelder, H. M.: Evaluation of stratospheric NO₂ retrieved from the Ozone Monitoring Instrument: Intercomparison, diurnal cycle, and trending, *J. Geophys. Res.-Atmos.*, 116, 1-22, doi:10.1029/2010JD014943, 2011.

Ehhalt, D. H., Rohrer, F., and Wahner, A.: Sources and distribution of NO_x in the upper troposphere at northern midlatitudes, *J. Geophys. Res.-Atmos.*, 97, 3725-3738, doi:10.1029/91JD03081, 1992.

685 Frieß, U., Monks, P. S., Remedios, J. J., Rozanov, A., Sinreich, R., Wagner, T., and Platt, U.: MAX-DOAS O₄ measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies, *J. Geophys. Res.-Atmos.*, 111, 1-20, doi:10.1029/2005JD006618, 2006.

Gil, M., Yela, M., Gunn, L. N., Richter, A., Alonso, I., Chipperfield, M. P., Cuevas, E., Iglesias, J., Navarro, M., Puentedura, O., and Rodriguez, S.: NO₂ climatology in the northern subtropical region: diurnal, seasonal and interannual variability, *Atmos. Chem. Phys.*, 8, 1635-1648, doi:10.5194/acp-8-1635-2008, 2008.

690 Gil-Ojeda, M., Navarro-Comas, M., Gomez-Martin, L., Adame, J. A., Saiz-Lopez, A., Cuevas, C. A., Gonzalez, Y., Puentedura, O., Cuevas, E., Lamarque, J. F., Kinnison, D., and Tilmes, S.: NO₂ seasonal evolution in the north subtropical free troposphere, *Atmos. Chem. Phys.*, 15, 10567-10579, doi:10.5194/acp-15-10567-2015, 2015.

Gomez, L., Navarro-Comas, M., Puentedura, O., Gonzalez, Y., Cuevas, E., and Gil-Ojeda, M.: Long-path averaged mixing 695 ratios of O₃ and NO₂ in the free troposphere from mountain MAX-DOAS, *Atmos. Meas. Tech.*, 7, 3373-3386, doi:10.5194/amt-7-3373-2014, 2014.

Gorkavyi, N., Fasnacht, Z., Haffner, D., Marchenko, S., Joiner, J., and Vasilkov, A.: Detection of non-linear effects in satellite UV/Vis reflectance spectra: Application to the Ozone Monitoring Instrument, *Atmos. Meas. Tech. Discuss.*, 2020, 1-24, doi:10.5194/amt-2020-327, 2020.

700 Henderson, B. H., Pinder, R. W., Crooks, J., Cohen, R. C., Carlton, A. G., Pye, H. O. T., and Vizuete, W.: Combining Bayesian methods and aircraft observations to constrain the HO[·] + NO₂ reaction rate, *Atmos. Chem. Phys.*, 12, 653-667, doi:10.5194/acp-12-653-2012, 2012.

Henderson, B. H., Pinder, R. W., Crooks, J., Cohen, R. C., Hutzell, W. T., Sarwar, G., Goliff, W. S., Stockwell, W. R., Fahr, A., Mathur, R., Carlton, A. G., and Vizuete, W.: Evaluation of simulated photochemical partitioning of oxidized nitrogen in 705 the upper troposphere, *Atmos. Chem. Phys.*, 11, 275-291, doi:10.5194/acp-11-275-2011, 2011.

Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abu Hassan, N.: NO₂ column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation, *J. Geophys. Res.-Atmos.*, 114, 1-20, doi:10.1029/2009jd011848, 2009.

Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C., Wirks, C. K., and Shah, V.: The role of clouds in
710 the tropospheric NO_x cycle: A new modeling approach for cloud chemistry and its global implications, *Geophys. Res. Lett.*, 46, 4980-4990, doi:10.1029/2019GL081990, 2019.

Hönninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy (MAX-DOAS), *Atmos. Chem. Phys.*, 4, 231-254, doi:10.5194/acp-4-231-2004, 2004.

Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO₂ observations
715 with ground-based measurements in Helsinki, *Atmos. Meas. Tech.*, 13, 205-218, doi:10.5194/amt-13-205-2020, 2020.

Jaeglé, L., Jacob, D. J., Wang, Y., Weinheimer, A. J., Ridley, B. A., Campos, T. L., Sachse, G. W., and Hagen, D. E.: Sources
and chemistry of NO_x in the upper troposphere over the United States, *Geophys. Res. Lett.*, 25, 1705-1708,
doi:10.1029/97gl03591, 1998.

Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., Henze, D. K., Jones, D. B. A., Arellano, A. F.,
720 Fischer, E. V., Zhu, L., and Boersma, K. F.: Unexpected slowdown of US pollutant emission reduction in the past decade,
PNAS, 115, 5099, doi:10.1073/pnas.1801191115, 2018.

Joiner, J., Vasilkov, A. P., Gupta, P., Bhartia, P. K., Veefkind, P., Sneep, M., de Haan, J., Polonsky, I., and Spurr, R.: Fast
simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals, *Atmos. Meas. Tech.*, 5,
529-545, doi:10.5194/amt-5-529-2012, 2012.

725 Jones, A., Walker, K. A., Jin, J. J., Taylor, J. R., Boone, C. D., Bernath, P. F., Brohede, S., Manney, G. L., McLeod, S., Hughes,
R., and Daffer, W. H.: Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier
Transform Spectrometer (ACE-FTS) data set, *Atmos. Chem. Phys.*, 12, 5207-5220, doi:10.5194/acp-12-5207-2012, 2012.

Kablick III, G. P., Allen, D. R., Fromm, M. D., and Nedoluha, G. E.: Australian PyroCb smoke generates synoptic-scale
stratospheric anticyclones, *Geophys. Res. Lett.*, 47, 1-9, doi:10.1029/2020GL088101, 2020.

730 Lamarque, J. F., Brasseur, G. P., Hess, P. G., and Müller, J. F.: Three-dimensional study of the relative contributions of the
different nitrogen sources in the troposphere, *J. Geophys. Res.-Atmos.*, 101, 22955-22968, doi:10.1029/96JD02160, 1996.

Lambert, J.-C., Keppens, A., Hubert, D., Langerock, B., K.-U. Eichmann, Kleipool, Q., Sneep, M., Verhoelst, T., Wagner, T.,
Weber, M., Ahn, C., A. Argyrouli, Balis, D., Chan, K. L., Compernolle, S., Smedt, I. D., Eskes, H., Fjæraa, A. M., Garane,
K., Gleason, J. F., Goutail, F., Granville, J., Hedelt, P., K.-P. Heue, Jaross, G., Koukouli, M., Landgraf, J., Lutz, R., Niemeijer,
735 S., A. Pazmiño, Pinardi, G., Pommereau, J.-P., Richter, A., Rozemeijer, N., Sha, M. K., Zweers, D. S., Theys, N., Tilstra, G.,
Torres, O., Valks, P., Vigouroux, C., and Wang, P.: S5P Mission Performance Centre Routine Operations Consolidated
Validation Report series, Issue #02, Version 02.0.2, http://www.tropomi.eu/sites/default/files/files/publicS5P-MPC-IASB-ROCVR-02.0.2-20190411_FINAL.pdf (Last accessed: 3 February 2020), 2019.

Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes,
740 H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu,
D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf,
M., Hakkainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C.,

Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: Overview of 14 years in space, *Atmos. Chem. Phys.*, 18, 5699-5745, doi:10.5194/acp-18-5699-2018, 2018.

745 Loyola, D. G., Garcia, S. G., Lutz, R., Argyrouli, A., Romahn, F., Spurr, R. J. D., Pedergnana, M., Doicu, A., Garcia, V. M., and Schussler, O.: The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor, *Atmos. Meas. Tech.*, 11, 409-427, doi:10.5194/amt-11-409-2018, 2018a.

Loyola, D. G., Lutz, R., Argyrouli, A., and Spurr, R.: S5P/TROPOMI ATBD Cloud Products, <https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Clouds> (Last accessed: 20 January 2020),
750 2018b.

Loyola, D. G., Thomas, W., Livschitz, Y., Ruppert, T., Albert, P., and Hollmann, R.: Cloud properties derived from GOME/ERS-2 backscatter data for trace gas retrieval, *IEEE T. Geosci. Remote Sens.*, 45, 2747-2758, doi:10.1109/TGRS.2007.901043, 2007.

755 Marais, E. A., Jacob, D. J., Choi, S., Joiner, J., Belmonte-Rivas, M., Cohen, R. C., Beirle, S., Murray, L. T., Schiferl, L. D., Shah, V., and Jaegle, L.: Nitrogen oxides in the global upper troposphere: Interpreting cloud-sliced NO₂ observations from the OMI satellite instrument, *Atmos. Chem. Phys.*, 18, 17017-17027, doi:10.5194/acp-18-17017-2018, 2018.

Mickley, L. J., Murti, P. P., Jacob, D. J., Logan, J. A., Koch, D. M., and Rind, D.: Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model, *J. Geophys. Res.-Atmos.*, 104, 30153-30172, doi:10.1029/1999JD900439, 1999.

760 Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, *J. Geophys. Res.-Atmos.*, 117, D20307, doi:10.1029/2012jd017934, 2012.

Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in tropical tropospheric ozone and OH: The role of lightning, *J. Geophys. Res.-Atmos.*, 118, 11468-11480, doi:10.1002/jgrd.50857, 2013.

765 Nault, B. A., Garland, C., Wooldridge, P. J., Brune, W. H., Campuzano-Jost, P., Crounse, J. D., Day, D. A., Dibb, J., Hall, S. R., Huey, L. G., Jimenez, J. L., Liu, X. X., Mao, J. Q., Mikoviny, T., Peischl, J., Pollack, I. B., Ren, X. R., Ryerson, T. B., Scheuer, E., Ullmann, K., Wennberg, P. O., Wisthaler, A., Zhang, L., and Cohen, R. C.: Observational constraints on the oxidation of NO_x in the upper troposphere, *J. Phys. Chem. A*, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824, 2016.

Newchurch, M. J., Allen, M., Gunson, M. R., Salawitch, R. J., Collins, G. B., Huston, K. H., Abbas, M. M., Abrams, M. C.,
770 Chang, A. Y., Fahey, D. W., Gao, R. S., Irion, F. W., Loewenstein, M., Manney, G. L., Michelsen, H. A., Podolske, J. R., Rinsland, C. P., and Zander, R.: Stratospheric NO and NO₂ abundances from ATMOS solar-occultation measurements, *Geophys. Res. Lett.*, 23, 2373-2376, doi:10.1029/96GL01196, 1996.

Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, B., Lin, R. F., Lang, S., and Tao, W. K.: Production of lightning NO_x and its vertical distribution calculated from three-dimensional cloud-scale chemical transport
775 model simulations, *J. Geophys. Res.-Atmos.*, 11510.1029/2009jd011880, 2010.

Pavelin, E. G., Johnson, C. E., Rughooputh, S., and Toumi, R.: Evaluation of pre-industrial surface ozone measurements made using Schönbein's method, *Atmos. Environ.*, 33, 919-929, doi:10.1016/S1352-2310(98)00257-X, 1999.

Pinardi, G., Rozendaal, M. V., Hendrick, F., Theys, N., Abuhaman, N., Bais, A., Boersma, K. F., Cede, A., Chong, J., Donner, S., Drosoglou, T., Frieß, U., Granville, J., Herman, J. R., Eskes, H., Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kouremetis, N., Lambert, J.-C., Ma, J., Peters, E., Piters, A., Postylyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengraber, M., Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO₂ column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations, *Atmos. Chem. Phys. Discuss.*, 2020, 1-55, doi:10.5194/amt-2020-76, 2020.

Pour-Bazar, A., McNider, R. T., Roselle, S. J., Suggs, R., Jedlovec, G., Byun, D. W., Kim, S., Lin, C. J., Ho, T. C., Haines, S., Dornblaser, B., and Cameron, R.: Correcting photolysis rates on the basis of satellite observed clouds, *J. Geophys. Res.-Atmos.*, 112, 1-17, doi:10.1029/2006JD007422, 2007.

Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, *J. Geophys. Res.-Atmos.*, 97, 9919-9933, doi:10.1029/92JD00719, 1992.

Puente, O., Gil, M., Saiz-Lopez, A., Hay, T., Navarro-Comas, M., Gómez-Pelaez, A., Cuevas, E., Iglesias, J., and Gomez, L.: Iodine monoxide in the north subtropical free troposphere, *Atmos. Chem. Phys.*, 12, 4909-4921, doi:10.5194/acp-12-4909-2012, 2012.

Reed, C., Evans, M. J., Di Carlo, P., Lee, J. D., and Carpenter, L. J.: Interferences in photolytic NO₂ measurements: explanation for an apparent missing oxidant?, *Atmos. Chem. Phys.*, 16, 4707-4724, doi:10.5194/acp-16-4707-2016, 2016.

Ridley, B., Ott, L., Pickering, K., Emmons, L., Montzka, D., Weinheimer, A., Knapp, D., Grahek, F., Li, L., Heymsfield, G., McGill, M., Kucera, P., Mahoney, M. J., Baumgardner, D., Schultz, M., and Brasseur, G.: Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, *J. Geophys. Res.-Atmos.*, 109, 1-19, doi:10.1029/2004JD004769, 2004.

Rivera, C., Stremme, W., and Grutter, M.: Nitrogen dioxide DOAS measurements from ground and space: Comparison of zenith scattered sunlight ground-based measurements and OMI data in Central Mexico, *Atmósfera*, 26, 401-414, doi:10.1016/S0187-6236(13)71085-3, 2013.

Robles-Gonzalez, C., Navarro-Comas, M., Puente, O., Schneider, M., Hase, F., Garcia, O., Blumenstock, T., and Gil-Ojeda, M.: Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izaña station, *Atmos. Meas. Tech.*, 9, 4471-4485, doi:10.5194/amt-9-4471-2016, 2016.

Schenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. C., Veefkind, J. P., and Levelt, P. F.: In-flight performance of the Ozone Monitoring Instrument, *Atmos. Meas. Tech.*, 10, 1957-1986, doi:10.5194/amt-10-1957-2017, 2017.

Schreier, S. F., Richter, A., Wittrock, F., and Burrows, J. P.: Estimates of free-tropospheric NO₂ and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics, *Atmos. Chem. Phys.*, 16, 2803-2817, doi:10.5194/acp-16-2803-2016, 2016.

810 Schumann, U.: The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the AERONOX project, *Atmos. Environ.*, 31, 1723-1733, doi:10.1016/S1352-2310(96)00326-3, 1997.

Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, *Atmos. Chem. Phys.*, 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007.

Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen, R. C., Laughner, J. L., Choi, 815 S., Joiner, J., and Lamsal, L. N.: Using satellite observations of tropospheric NO₂ columns to infer long-term trends in US NO_x emissions: The importance of accounting for the free tropospheric NO₂ background, *Atmos. Chem. Phys.*, 19, 8863-8878, doi:10.5194/acp-19-8863-2019, 2019.

Silvern, R. F., Jacob, D. J., Travis, K. R., Sherwen, T., Evans, M. J., Cohen, R. C., Laughner, J. L., Hall, S. R., Ullmann, K., Crounse, J. D., Wennberg, P. O., Peischl, J., and Pollack, I. B.: Observed NO/NO₂ ratios in the upper troposphere imply errors 820 in NO-NO₂-O₃ cycling kinetics or an unaccounted NO_x reservoir, *Geophys. Res. Lett.*, 45, 4466-4474, doi:10.1029/2018GL077728, 2018.

Sioris, C. E., Kurosu, T. P., Martin, R. V., and Chance, K.: Stratospheric and tropospheric NO₂ observed by SCIAMACHY: First results, *Adv. Spac Res.*, 34, 780-785, doi:10.1016/j.asr.2003.08.066, 2004.

Stammes, P., Sneep, M., de Haan, J. F., Veefkind, J. P., Wang, P., and Levelt, P. F.: Effective cloud fractions from the Ozone 825 Monitoring Instrument: Theoretical framework and validation, *J. Geophys. Res.-Atmos.*, 113, 1-12, doi:10.1029/2007JD008820, 2008.

Stavrakou, T., Muller, J. F., Boersma, K. F., van der A, R. J., Kurokawa, J., Ohara, T., and Zhang, Q.: Key chemical NO_x sink uncertainties and how they influence top-down emissions of nitrogen oxides, *Atmos. Chem. Phys.*, 13, 9057-9082, doi:10.5194/acp-13-9057-2013, 2013.

830 Stettler, M. E. J., Eastham, S., and Barrett, S. R. H.: Air quality and public health impacts of UK airports. Part I: Emissions, *Atmos. Environ.*, 45, 5415-5424, doi:10.1016/j.atmosenv.2011.07.012, 2011.

Stratmann, G., Ziereis, H., Stock, P., Brenninkmeijer, C. A. M., Zahn, A., Rauthe-Schoch, A., Velthoven, P. V., Schlager, H., and Volz-Thomas, A.: NO and NO_y in the upper troposphere: Nine years of CARIBIC measurements onboard a passenger aircraft, *Atmos. Environ.*, 133, 93-111, doi:10.1016/j.atmosenv.2016.02.035, 2016.

835 Thomas, K., Berg, M., Boulanger, D., Houben, N., Gressent, A., Nedelev, P., Patz, H. W., Thouret, V., and Volz-Thomas, A.: Climatology of NO_y in the troposphere and UT/LS from measurements made in MOZAIC, *Tellus B*, 67, 1-16, doi:10.3402/tellusb.v67.28793, 2015.

Toledano, C., Gonzalez, R., Fuertes, D., Cuevas, E., Eck, T. F., Kazadzis, S., Kouremeti, N., Grobner, J., Goloub, P., Blarel, L., Roman, R., Barreto, A., Berjon, A., Holben, B. N., and Cachorro, V. E.: Assessment of Sun photometer Langley calibration 840 at the high-elevation sites Mauna Loa and Izaña, *Atmos. Chem. Phys.*, 18, 14555-14567, doi:10.5194/acp-18-14555-2018, 2018.

Torres, O., Bhartia, P. K., Jethva, H., and Ahn, C.: Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products, *Atmos. Meas. Tech.*, 11, 2701-2715, doi:10.5194/amt-11-2701-2018, 2018.

Tost, H., Jockel, P. J., and Lelieveld, J.: Lightning and convection parameterisations - uncertainties in global modelling, *Atmos. Chem. Phys.*, 7, 4553-4568, doi:10.5194/acp-7-4553-2007, 2007.

Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St Clair, J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X. L.: Why do models overestimate surface ozone in the Southeast United States?, *Atmos. Chem. Phys.*, 16, 13561-13577, doi:10.5194/acp-16-13561-2016, 2016.

van der A, R. J., de Laat, A. T. J., Ding, J., and Eskes, H. J.: Connecting the dots: NO_x emissions along a West Siberian natural gas pipeline, *NPJ Clim. Atmos. Sci.*, 3, 16, doi:10.1038/s41612-020-0119-z, 2020.

van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO₂ slant column retrieval: Method, stability, uncertainties and comparisons with OMI, *Atmos. Meas. Tech.*, 13, 1315-1335, doi:10.5194/amt-13-1315-2020, 2020.

van Geffen, J., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., and Veefkind, J. P.: TROPOMI ATBD of the total and tropospheric NO₂ data products, <https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products> (Last accessed: 20 January 2020), 2019.

Veefkind, J. P., de Haan, J. F., Sneep, M., and Levelt, P. F.: Improvements to the OMI O₂–O₂ operational cloud algorithm and comparisons with ground-based radar–lidar observations, *Atmos. Meas. Tech.*, 9, 6035-6049, doi:10.5194/amt-9-6035-2016, 2016.

Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J. C., Eskes, H. J., Eichmann, K. U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengrab, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro, Comas, M., Piters, A. J. M., Pommereau, J. P., Portafaix, T., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO₂ measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, *Atmos. Meas. Tech. Discuss.*, 2020, 1-40, doi:10.5194/amt-2020-119, 2020.

Verlinden, K. L., Thompson, D. W. J., and Stephens, G. L.: The three-dimensional distribution of clouds over the southern hemisphere high latitudes, *J. Climate*, 24, 5799-5811, doi:10.1175/2011JCLI3922.1, 2011.

Wang, P., Piters, A., van Geffen, J., Tuinder, O., Stammes, P., and Kinne, S.: Shipborne MAX-DOAS measurements for validation of TROPOMI NO₂ products, *Atmos. Meas. Tech.*, 13, 1413-1426, doi:10.5194/amt-13-1413-2020, 2020a.

Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.: FRESCO+: An improved O₂ A-band cloud retrieval algorithm for tropospheric trace gas retrievals, *Atmos. Chem. Phys.*, 8, 6565-6576, doi:10.5194/acp-8-6565-2008, 2008.

Wang, Z., Zhang, X., Liu, L., Cheng, M., and Xu, J.: Spatial and seasonal patterns of atmospheric nitrogen deposition in North China, *Atmos. Ocean. Sci. Lett.*, 13, 188-194, doi:10.1080/16742834.2019.1701385, 2020b.

Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T.,
880 Abdelmonem, A., Afchine, A., Araújo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrman, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B.,
885 Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO, *BAMS*, 97, 1885-1908, doi:10.1175/BAMS-D-14-00255.1, 2016.

890 Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation, *Geosci. Model Dev.*, 10, 721-750, doi:10.5194/gmd-10-721-2017, 2017.

Worden, H. M., Bowman, K. W., Kulawik, S. S., and Aghedo, A. M.: Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES, *J. Geophys. Res.-Atmos.*, 116, 1-15, doi:10.1029/2010jd015101, 2011.

895 Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., and Amann, M.: NO_x emissions in China: historical trends and future perspectives, *Atmos. Chem. Phys.*, 13, 9869-9897, doi:10.5194/acp-13-9869-2013, 2013.

Zhao, X., Griffin, D., Fioletov, V., McLinden, C., Cede, A., Tiefengraber, M., Müller, M., Bognar, K., Strong, K., Boersma, F., Eskes, H., Davies, J., Ogyu, A., and Lee, S. C.: Assessment of the quality of TROPOMI high-spatial-resolution NO₂ data products in the Greater Toronto Area, *Atmos. Meas. Tech.*, 13, 2131-2159, doi:10.5194/amt-13-2131-2020, 2020.

900 Ziemke, J. R., Chandra, S., and Bhartia, P. K.: "Cloud slicing": A new technique to derive upper tropospheric ozone from satellite measurements, *J. Geophys. Res.-Atmos.*, 106, 9853-9867, doi:10.1029/2000jd900768, 2001.