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Author Responses to Referees 

We would like to thank both reviewers for their significant time spent reading the manuscript and for their 
constructive comments for improving it. We have made very careful revisions to address all these 
comments. In the following paragraphs, the bolded words represent the reviewers’ original comments 
and the unbolded text represents our answers. 

Referee 1: 

In the paper titled “EVALUATION OF UV AEROSOL RETRIEVALS FROM AN OZONE LIDAR”, the authors 
described a new approach for retrieving aerosol properties using an ozonelidar (DIAL). The use of an 
ozone lidar for aerosol retrievals is rather interesting yet I have some issues with the paper, listed below, 
that I hope the authors can address. 

Several of the parameters, including the lidar ratio and aerosol backscatter color ratio, are a strong 
function of aerosol type. A lidar ratio of 60 is assumed with a 20% uncertainty. The aerosol backscatter 
color ratio is assumed to be 1.34 with an uncertainty of ±0.11. Note that for different aerosol types, 
both parameters could change significantly (beyond their mentioned uncertainties). It is unsure if 
aerosol type could be derived from the proposed method. Without a valid method for retrieving aerosol 
types, generalized applications of the proposed method may be problematic. The authors should at 
least clearly illustrate the limitations. 

AERONET data are also available from the Huntsville AERONET site. I wonder if the authors could inter-
compare AERONET AODs with HSRL/ RO3QET lidar derived AODs. At least the authors should compare 
HSRL and AERONET AODs. The retrieved aerosol profiles are used to further refine ozone retrievals. I 
was wondering if the refined ozone retrievals can be further used for refining aerosol retrievals. 

We have accepted the reviewer’s suggestion and added a paragraph on RO3QET data evaluation using 
collocated AERONET data at 340 nm (Lines 213-237 in the change-tracked version). The AOD from RO3QET 
and AERONET are highly correlated, with r = 0.97. The RO3QET AOD is on average 15% larger than the 
AERONET AOD due to the shorter wavelength of the lidar measurement, suggesting that the choice of S = 
60 sr is very reasonable. For a rough estimation, the one-sigma standard deviation (9%) of the differences 
can be considered as the uncertainty for S if the variability of these differences are mostly due to the 
variation in S. (If S has uncertainty > 9%, we expect the one-sigma value of the differences to be larger 
than 9% since AERONET measures extinction and RO3QET directly measures backscatter.) Considering that 
AERONET measures the column average AOD, with longer temporal integration, has its own uncertainty, 
and covers only 38% of the total observational period, the ±20% uncertainty of S for a higher vertical 
resolution measurement should be large enough to cover various uncertainty sources. Therefore, the 
additional AERONET data not only convinces us that the data quality of both instruments is good, but also 
confirms that the assumed S a priori and uncertainty are appropriate. 

We agree with the reviewer that the lidar ratio changes with aerosol type and that it is hard to derive the 
aerosol type from elastic lidar measurements. We have provided caveats and limitations of this work in 
multiple places in the text. For example, in Lines 111-113, we say: “The S a priori value assumed for this 
study represents a mix of urban and smoke aerosols during the lidar observations (Ackermann, 1998; 
Burton et al., 2012; Cattrall et al., 2005; Groß et al., 2013; Müller et al., 2007). The a priori is application 
dependent.” Further, in Lines 326-329 in the Conclusions section, we say: “These exponents represent a 
summertime average for a mixture of urban pollution and fire smoke. Speciation of aerosol types was not 
done in this work, although we recognize that S and Ångström exponent vary with the aerosol phase 
function and size distribution.” 

1. Other comments Line 121, “as you go towards the” -who is ”you”? 
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To address this issue, we have changed “decreases as you go towards the ground from the far range” to 
“decreases towards the ground from the far range”. 

2. Line 141, “10-min temporal average and 30-m spatial average for both HSRL”. -Should be “30-m 
vertical average”? 

We have replaced “spatial” with “vertical” as per suggestion. 

3. Lines 151-152, “Therefore, data contaminated by clouds is filtered out. ”-What are the cloud 
screening steps? Those steps need to be included. 

The cloud screening process is described at Line 89-95 in Section 2.1. We have added additional 
description to clarify our cloud treatment: “The cloud base height is determined by the following empirical 
method. Derivatives of the logarithm of the off-line analog signal are calculated for a lidar signal profile 
and the first range bin at which the derivative is greater than a certain threshold is considered to be the 
cloud base height. The threshold is chosen empirically based on the lidar SNR and the vertical resolution. 
Lidar data with cloud base lower than 2 km was discarded.” 

4. Lines 170-171, “The slope of the regression (2.16) results in the best” -what is “(2.16)” referring to? 

To clarify, we change this sentence to “the slope of the regression, equal to 2.16, results in …”. 

5. Line 278, equation A2, need a reference for this equation. 

We have added (Uchino et al., 1980) as the reference for Equation (A2). 

6. Line 306, equation B1, need a reference for this equation. Equations B3 and B4. Define βsigA(r) 
and δβsigA(r). 

We have added (Taylor, 1997) as the reference for Equation (B1) a Line 374. 

At Line 374, we made a change to reflect the definition of ∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

 as: “…we obtain the uncertainty of 

the aerosol backscatter owing to lidar signal measurement error, ∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

, relative to the total 
backscatter as…”. 

The definition of 𝛿𝛽 (𝑟)𝐴
𝑠𝑖𝑔

 is already stated at Line 387 ahead of Equation (B3), so there is no change for 

that. 

 

Referee 2: 

1 General Remarks 

The authors give a comprehensive description of their approach for retrieving aerosol backscatter 
profiles from the return signals of an atmospheric lidar operating in the UV near 290 nm. Their aerosol 
results in the UV are compared with HSRL lidar measurements of aerosol at 532 nm. Generally good 
agreement is found. Uncertainties of the retrieved aerosol properties in the UV are also estimated. They 
usually exceed 50% over a wide range of altitudes. 

I agree with reviewer 1 that comparison to Aeronet optical depth data would be a good addition to the 
paper. I also agree with reviewer 1 that a few more cautionary remarks on the variation of extinction 
to backscatter ratio and aerosol wavelength dependences between aerosol types should be added. 
However, in many cases the stated large uncertainties probably cover a good fraction of these changes 
between aerosol types. 
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Overall I think this is a solid paper, well suited to the scope of AMT. I recommend publication with only 
a few minor revisions. 

We thank the reviewer for the positive comments and good suggestions. We have added a paragraph on 
RO3QET data evaluation using collocated AERONET data at 340 nm (Lines 213-237) to address both 
reviewers’ suggestion. The AERONET data provide a very nice evaluation of the ozone lidar data and the 
assumed lidar ratio. (Please refer to the answers to Reviewer 1 for more details.) The references for 
AERONET have been also added. 

2 Suggestions 

1. line 33: "weighing" or "weighting"? 

We meant “weighing”, so we keep it unchanged. 

2. lines 35/36: I suggest to add the Browell et al. 1985 reference here as well. Ed Browell really 
pioneered operational airborne UV-lidar measurements of tropospheric ozone in the 1980s. 

We agree and we have added Browell et al. 1985 in the citation list here. 

3. lines 32 to 42: Here, and in several other places of the paper (e.g. lines 256 to 262), I suggest to add 
more cautionary sentences on the general problem of aerosol interference on DIAL ozone 
measurements (Browell et al. 1985, but also Steinbrecht and Carswell, JGR, 1994). Especially the 
differential backscatter term can cause large problems for narrow aerosol layers (errors exceeding 
10s of percents). Investigations of aerosol effects on ozone, of the order of a few percent, are very 
desirable, but substantial caution is required. 

We have cited Steinbrecht and Carswell (1994) in the 1st paragraph. 

4. lines 48/49: there is ozone absorption at 532 nm, which is not necessarily negligible. Add statement. 

We have replaced “negligible” with “much smaller than”. 

5. lines 55 to 62: Maybe the authors should move this to the beginning of the paragraph, and even 
extend it? Important lidar facts are: Because of the strong wavelength dependence of molecular 
Rayleigh scattering (λ-4), and the weaker wavelength dependence of aerosol scattering ~λ-1.5, 
aerosol is measured best by lidars at 532 and 1064 nm (NdYAG) or 694 nm (Ruby). Nevertheless, 
the authors’ UV lidar also measures aerosol, and aerosol interference on the ozone measurement 
needs to be looked at. Fortunately, because of the large increase of ozone extinction from 320 nm 
to 250 nm (2 orders of magnitude), aerosol interference at your wavelengths (around 290 nm) is a 
factor of 5 to 20 smaller than, e.g., for a stratospheric ozone DIAL (around 310 nm) for the same 
amount of aerosol. 

We have made change to say: “Lasers used for aerosol lidars are preferred in the visible and infrared 
bands, typically 532 and 1064 nm for Nd:YAG laser or 694 nm for Ruby laser (Russell et al., 1979),…”. 

We agree with the reviewer on the aerosol interference in the ozone DIAL retrieval approximately 
proportional to Δλ/(λΔαO3). The aerosol interference in DIAL is pretty complicated and is worth another 
paper to discuss. Since the major purpose of this article is to discuss aerosol retrieval and its uncertainty, 
we decide not to add more discussion on the aerosol interference in DIAL retrieval. But, this is certainly 
an important motivation to do aerosol retrieval. So, in the Introduction, we say “Vertical aerosol profiles 
are of high interest not only because they are needed for aerosol correction in ozone lidar retrievals 
(Steinbrecht and Carswell, 1994), …”. In the Conclusions, we write “Aerosol correction for ozone lidar 
retrievals will be described in a subsequent paper.” 

6. line 154: "owning" -> "owing"? 
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We have made the correction as per the suggestion. 

7. line 186: Why is the extinction wavelength exponent (1.49) different from the backscatter 
wavelength exponent (1.34). Is that because the constant lidar ratio (S = 55) is only used for the UV 
lidar, whereas the HSRL actually measures extinction? The authors might want to clarify that. I also 
wonder how meaningful this entire extinction comparison then is, because the UV lidar really only 
measures backscatter, and extinction is largely assumed. 

Yes. The extinction wavelength exponent is different from the backscatter exponent because the lidar 
ratio (S) is wavelength dependent. After an extensive literature review, we assumed S=60 sr at 299 nm 
and the resulting extinction retrievals agree well with the AERONET observations at 340 nm (we have 
added this description in the AERONET-DIAL comparison). The S=55 sr assumption for the HSRL at 532 nm 
is taken from Reid et al. 2017, who derived this value by comparing HSRL data (532 nm) with collocated 
AERONET observations at 500 nm. To clarify this, we have added “the calculated Ångström exponent is 
different from the backscatter-related wavelength exponent because of the wavelength dependence of 
S.” 

Yes, as the reviewer pointed out, the elastic lidar directly measures backscatter so that the extinction 
retrieval has larger uncertainty than backscatter retrieval. However, we still believe the extinction 
retrieval is meaningful because “In practice, aerosol extinction is a more meaningful parameter and more 
relevant for several applications than backscatter” (Lines 203), such as AOD calculations to compare with 
satellite data.  

8. lines 225 to 236: In Fig. 2, the UV lidar measured backscatter above 6 km during daytime clearly is 
too high (lighter blue colors). The authors state that they are not looking at these altitudes. However, 
I am wondering if the systematic high bias above 5 km in Fig. 4, has something to with the daytime 
high bias above 6 km in Fig. 2? Have the authors considered that? A few additional sentences might 
be good. 

We agree that the large positive differences above 5 km can be due to strong solar background during 
daytime. We have added the following explanation: 

“These positive biases can be caused by two reasons. First, the RO3QET derived aerosol extinction above 
5 km is obviously larger than that from HSRL during daytime due to the solar background impact, which is 
especially strong in the summer. The relative differences are even worse in clean (compared to turbid) 
regiosn during the daytime because of the small number division effect mentioned earlier. It can be seen 
from Figure 3 that RO3QET nighttime retrievals above 5 km and daytime retrievals below 5 km are 
relatively good due to either lower solar background or larger lidar signal resulting in better SNR.” 

9. Figure 3: Maybe a logarithmic plot (both axes) would be better here? A lot of the data points are 
close to the lower left corner (0,0). 

We have accepted the reviewer’s suggestion and changed the linear scale to log scale for Figure 3 
(currently Figure 4). There are about 80,000 points in that figure, with a large number being very small 
values. So, the log scale is better to show how the points are scattered relative to the regression line. 
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Abstract 19 

Aerosol retrieval using ozone lidars in the ultraviolet (UV) bandspectral region is challenging but necessary for 20 

correcting aerosol interference in ozone retrieval and for studying the ozone-aerosol correlations. This study describes 21 

the aerosol retrieval algorithm for a tropospheric ozone lidar, quantifies the retrieval error budget, and intercompares 22 

the aerosol retrieval products at 299 nm with those at 532 nm from a high spectral resolution lidar (HSRL) and with 23 

those at 340 nm from an Aerosol Robotic Network radiometer. After the cloud-contaminated data is filtered out, the 24 

aerosol backscatter or extinction coefficients at a 30-m and 10-min resolution retrieved by the ozone lidar are highly 25 

correlated with the HSRL products, with a coefficient of 0.95 suggesting that the ozone lidar can reliably measure 26 

aerosol structures with high spatio-temporal resolution when the signal-to-noise ratio is sufficient. The actual 27 

uncertainties of the aerosol retrieval from the ozone lidar generally agree with our theoretical analysis. The backscatter 28 

color ratio (backscatter-related exponent of wavelength dependence) linking the coincident data measured by the two 29 

instruments at 299 and 532 nm is 1.34±0.11 while the Ångström (extinction-related) exponent is 1.49±0.16 for a 30 

mixture of urban and fire smoke aerosols within the troposphere above Huntsville, AL, USA.  31 

1. Introduction 32 

A tropospheric ozone differential absorption lidar (DIAL) makes measurements of vertical ozone profiles, typically 33 

at two wavelengths chosen between 277 and 300 nm with a separation less than 12 nm, by weighing several parameters 34 

such as the ozone absorption cross sections, solar background, dynamic range of the detection system, and interference 35 

from aerosols and other species (e.g., Alvarez et al., 2011; Browell et al., 1985; De Young et al., 2017; Fukuchi et al., 36 
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2001; Kempfer et al., 1994; McDermid et al., 2002; Proffitt and Langford, 1997; Strawbridge et al., 2018; Sullivan et 37 

al., 2014). Vertical aerosol profiles are of high interest not only because they are needed for aerosol correction in 38 

ozone lidar retrievals (Steinbrecht and Carswell, 1994), but also because simultaneous ozone and aerosol vertical 39 

profile measurements provide unique information on their interactions and on sources of pollutant transport (Browell 40 

et al., 1994; Langford et al., 2020; Newell et al., 1999). However, there is currently no consensus on the reliability of 41 

the aerosol retrievals produced by ozone lidars due to the difficulty of solving the three-component lidar equation and 42 

the large variability in aerosol optical properties associated with the multiplicity of aerosol types and size distributions.  43 

The most widely used solution for the elastic single-wavelength aerosol lidar equation is the analytic method 44 

developed by Klett (1981). The inversion method then inspired Fernald (1984) to publish a computer algorithm scheme 45 

to solve the more general two-component (aerosol and molecular) atmospheric lidar equation. The Klett (1981) 46 

inversion requires a priori for the lidar ratio (i.e., aerosol extinction-to-backscatter ratio, represented by “S” thereafter) 47 

to link the aerosol backscatter with its extinction for solving the lidar equation. Lasers used for aerosol lidars are 48 

preferred in the visible and infrared bands, typically 532 or and 1064 nm for Nd:YAG laser or 694 nm for Ruby laser 49 

(Russell et al., 1979), where the ozone absorption is negligible compared tomuch smaller than molecular and Mie 50 

scattering. In the ultraviolet (UV) band for an ozone lidar, the ozone absorption may not be trivial.  Some ozone lidars 51 

have an aerosol channel available, either independently or sharing receiving optics with the ozone channel (e.g., 52 

Browell et al., 1994; De Young et al., 2017; Gronoff et al., 2019; Kovalev and McElroy, 1994; Uchino and Tabata, 53 

1991). For most of the traditional two-wavelength ozone lidars without an aerosol channel, although there has been 54 

some discussion about the aerosol retrieval algorithm has been discussed in a few literatures (e.g., Eisele and Trickl, 55 

2005; Langford et al., 2019; Papayannis et al., 1999; Sullivan et al., 2014), the evaluation of the aerosol retrieval 56 

product and its error budget have rarely been addressed. Due to a significant wavelength difference with aerosol lidars, 57 

several aspects of the aerosol retrieval using an ozone lidar are worth noting. Firstly, the signal-to-noise ratio (SNR) 58 

for ozone lidars decays quicker with altitude due to more significant UV molecular (i.e., Rayleigh) scattering and 59 

ozone absorption resulting in a lower retrievable altitude than aerosol lidars. Secondly, because since the molecular 60 

and ozone components become more important for aat UV wavelengths compared to visible and infrared wavelengths, 61 

the uncertainties in aerosol retrieval propagated from the calculation of these two components are expected to be larger 62 

for an ozone lidars than for aerosol lidars. Thirdly, S and the wavelength dependence used for the ozone lidar 63 

wavelengths may be different from those used for the longer aerosol lidar wavelengths (Ackermann 1998; Eck et al., 64 

1999).  65 

The primary objectives of this article are to investigate the performance of our aerosol retrieval algorithm 66 

and to quantify its error budget for the ozone lidar. The secondary goal is to seek the overall wavelength dependence 67 

between the aerosol optical properties measured by the ozone lidar at 299 nm and by a high spectral resolution lidar 68 

(HSRL) at 532 nm.    69 

2. Instruments and Data Processing   70 

2.1. Ozone Lidar 71 

The Rocket-city Ozone (O3) Quality Evaluation in the Troposphere (RO3QET) lidar is located on the campus of the 72 

University of Alabama in Huntsville (UAH) at 34.725°N and 86.645°W at 206 m asl and is one of the six systems of 73 
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the Tropospheric Ozone Lidar Network (TOLNet) (http://www-air.larc.nasa.gov/missions/TOLNet). This system 74 

measures ozone from 0.1 km up to about 12 km during nighttime and up to about 6 km during daytime with a temporal 75 

resolution of 2 min. The vertical resolution of the lidar retrievals varies from 150 m in the lower troposphere to 750 76 

m in the upper troposphere in order to keep the measurement uncertainty within ±10% (Kuang et al., 2013).  77 

The transmitter comprises two Raman-shifted lasers at 289 and 299 nm. Two 30-Hz, 266-nm Nd:YAG lasers 78 

pump two 1.8-m Raman cells, respectively, with mixtures of active gas and buffer gas to generate 289 and 299-nm 79 

lasers with an average pulse energy of about 5 mJ. The receiving system consists of three receivers with diameters of 80 

2.5 cm, 10 cm, and 40 cm, respectively, and four photomultipliers (PMTs) similar to that described by Kuang et al. 81 

(2013) except that the solar filters have been replaced by 300-nm short-pass filters for all telescopes. Channels -1, 2, 82 

3, 4 represent the 2.5-cm, 10% of the 10-cm, 90% of the 10-cm, and the 40-cm telescope channels, respectively. Since 83 

the modification of Channel–-4 through the addition of narrow-band solar filters was not completed before the time 84 

period of this study, data from this channel was not used in this work, resulting inwith the net result that the 85 

uncertainties for ozone retrievals above 6 km during daytime were often too large due to the strong solar background. 86 

Lidar signal counting was accomplished by four Licel transient recorders (Licel company, Germany) with both analog 87 

and photoncounting (PC) modes, with a sampling rate of 40 MHz corresponding to a 3.75-m fundamental resolution. 88 

The cloud base height is determined by the following empirical method. Derivatives of the logarithm of the off-line 89 

analog signal are calculated for a lidar signal profile and the first range bin at which the derivative is greater than a 90 

certain threshold is considered to be the cloud base height. The threshold is chosen empirically based on the lidar SNR 91 

and the vertical resolution. serve to label clouds by setting an appropriate threshold. The cloud filtering process should 92 

be conducted carefully because an elastic lidar without a polarization channel is not capable of accurately 93 

distinguishing aerosols and clouds solely by their backscatter properties. Therefore, the lidar data with clouds base 94 

lower than 2 km was discarded. The cloud filtering process should be conducted carefully because an elastic lidar 95 

without a polarization channel is not capable of accurately distinguishing aerosols and clouds solely bythrough their 96 

backscatter properties. Five 2-min lidar data intervals were combined to give a 10-min lidar-signal integration time to 97 

improve the SNR. Further, six of the 3.75-m fundamental bins were integrated for all channels. In addition, dead-time 98 

correction (for PC signal only), background correction, analog-PC signal merging, and signal-induced noise correction 99 

were performed.  100 

2.2. Introduction of the Aerosol Retrieval Algorithm and Uncertainty Estimation 101 

The aerosol profiles were retrieved with an iterative DIAL algorithm. A brief description of this algorithm is 102 

provided in this section, with further details in Appendix A. A first-order Savitzky-Golay differentiation filter with a 103 

second-degree polynomial was applied to the logarithm of the signal ratios to compute the first-cut ozone profile. This 104 

initial ozone profile was substituted back into the three-component lidar equation to derive the profile of aerosol 105 

backscatter coefficients at 299 nm by assuming a constant S of 60 sr and boundary value of the aerosol backscatter 106 

coefficient at a far-range reference altitude, about 10 km. During the daytime, the ozone retrieval was limited by the 107 

lower SNR of the 289-nm channel, but the 299-nm channel had much better SNR due to lower atmospheric extinction 108 

and was able to measure aerosol up to higher altitudes. S has large variability as a function ofis highly variable with 109 

aerosol characteristics, humidity, and wavelength (Ackermann, 1998; Strawbridge et al., 2018; Mishchenko et al., 110 



 

4 

 

1997). The S a priori value assumed for this study represents a mix of urban and smoke aerosols during the lidar 111 

observations (Ackermann, 1998; Burton et al., 2012; Cattrall et al., 2005; Groß et al., 2013; Müller et al., 2007). The 112 

a priori is application dependent. In the aerosol retrieval uncertainty discussion in Appendix B, we assume a ±20% 113 

uncertainty for S based on an average standard deviation obtained from prior observations (Müller et al., 2007).  114 

Molecular backscatter and extinction profiles were computed from local radiosonde data. Then, the aerosol 115 

profile was substituted into the lidar equation again to obtain a stable solution, usually within three iterations. This 116 

aerosol profile was further employed to calculate the aerosol correction for ozone retrievals using the first-order Taylor 117 

approximation (Browell et al., 1985) by assuming a power law wavelength dependence for the aerosol extinction and 118 

choosing an appropriate Ångström exponent. Since this paper work focuses only on aerosol retrieval, details of the 119 

ozone correction will be described in a future article. Finally, the aerosol profiles derived by the three altitude channels 120 

were merged into a single profile in the overlapping altitude zones, i.e., 0.5–1 km for Channels- 1 and 2 and 1.5–2 km 121 

for Channels- 2 and 3.  122 

The primary uncertainty sources for the aerosol lidar retrievals are the uncertainties in lidar signal 123 

measurement, boundary value assumption for aerosol backscatter coefficient, air density measurement, S a priori, and 124 

ozone profile input. The relative importance of these sources are is altitude dependent. In the planetary boundary layer 125 

(PBL) where the air is typically turbid, the S uncertainty is dominant while other sources are minor (only few percent). 126 

The uncertainty of S influences the uncertainty of the aerosol backscatter through a complicated relationship. However, 127 

the magnitude of the above two uncertainties can be approximately seen to be close. At the far range (higher than 7 128 

km), lidar signal detection noise and inaccurate boundary value assumption are important. Influence from both of the 129 

above sources, especially the boundary value, on the aerosol retrieval quickly decreases as you go towards the ground 130 

from the far range. In the middle range (PBL top – 7 km), both the air density measurement error and lidar signal 131 

detection noise are essential. Uncertainty due to ozone profile input is relatively unimportant and is only few percent 132 

at most altitudes. Figure B1 presents an example of the aerosol backscatter uncertainty calculated from 10-min 133 

nighttime RO3QET lidar data. The error budget estimate generally justifies the choice of using 6 km as the maximum 134 

altitude for RO3QET-HSRL comparison since the total uncertainty for the RO3QET aerosol retrieval could be 135 

unacceptably large (i.e., persistently larger than 100%).  136 

2.3. HSRL 137 

The University of Wisconsin HSRL (Eloranta, 2005) was deployed in Huntsville, AL from 19 June to 4 November 138 

2013 and operated almost 24 hours every day to support the Studies of Emissions and Atmospheric Composition, 139 

Clouds and Climate Coupling by Regional Surveys SEAC4RS campaign (Kuang et al., 2017). The HSRL transmitter 140 

was a diode-pumped Nd:YAG laser at 532 nm with a pulse energy of about 50 μJ and a pulse repetition frequency of 141 

4 kHz. The expanded laser beam was transmitted coaxially with a 40-cm telescope with a tiny field of view (FOV) of 142 

100 μrad to reduce solar background. The HSRL spectral filtering can separate the molecular backscatter from the 143 

aerosol backscatter due to the molecular Doppler broadening effect while the particulate backscatter remains spectrally 144 

unbroadened. Aerosol backscatter coefficients can then be calculated as the difference between the total return and 145 

the molecular component (Grund and Eloranta, 1991). In principle, aerosol extinction can also be computed by 146 

comparing the measured attenuated molecular backscatter to a reference, unattenuated molecular backscatter profile 147 
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that is calculated from radiosonde-measured air density profile or a numerical model (Hair et al., 2008). However, 148 

small and fast signal fluctuations were found in the partial overlap region (between the surface and about 4.5 km) for 149 

the data taken in Huntsville so that aerosol extinction below 4.5 km cannot be derived with a satisfying precision. The 150 

signal fluctuations were probably caused by small optical misalignments from temperature changes within the lidar 151 

system (Reid, et al., 2017). The aerosol backscatter calculation is not affected by the lidar signal fluctuations since 152 

any range-dependent instrument effects are canceled out. Therefore, we focus on the aerosol backscatter 153 

intercomparison between the HSRL and RO3QET. If aerosol extinction is needed for the HSRL, we will calculate it 154 

from the aerosol backscatter by assuming a constant lidar ratio.We intercompare the backscatter coefficients measured 155 

by the two instruments to avoid the extra uncertainty due to the S assumption for the HSRL. The HSRL provides 156 

aerosol products with a 30-m vertical resolution and 1-min temporal resolution from near the surface to 15 km. To 157 

achieve sufficient SNR for both HSRL and ozone lidar and to reduce the uncertainty arising from the clock bias of the 158 

controlling computers, we adopt 10-min temporal average and 30-m spatial vertical average for both HSRL and ozone 159 

lidar in the intercomparison study. The HSRL has a backscatter measurement precision better than 10-7 (m·sr)-1 for a 160 

1-min signal average (Reid et al., 2017), which represents an estimated precision for the extinction coefficient of better 161 

than 2×10-6 m-1 for a 10-min average. 162 

3. Intercomparison Results 163 

We select four time periods (21–23 June, 14–15 August, 27–28 August, and 5–6 September, 2013) to investigate the 164 

ozone lidar capability for measuring aerosol column and range-resolved profiles. All four cases have coincident ozone 165 

lidar and HSRL observation periods longer than 24 hours, fully covering the convective mixing layer development 166 

and collapse processes (Klein et al., 2019) and having significant smoke layers in the free troposphere. Due to the 167 

significant extinction and potential multiple scattering caused by clouds, the ozone lidar is incapable of measuring 168 

either ozone or aerosol accurately above clouds, especially thick clouds. Therefore, data contaminated by clouds is 169 

filtered out. At this time, the narrow-band interference filters had not been incorporated into the receiving system and 170 

the wide-band filter resulted in substantial solar background during the daytime; hence, we set 6 km asl as the 171 

maximum altitude for intercomparison. The uncertainty of the aerosol retrieval owning to lidar signal measurement 172 

error is dominant at far range and is determined by the lidar SNR, as shown in Appendix B.2. The solar background 173 

is an important noise resulting in the lidar signal measurement error during daytime and is partly responsible for the 174 

high aerosol retrieval uncertainty above 6 km as shown by the example in Figure B1. The 10-min HSRL profiles are 175 

interpolated to the times of the ozone lidar data. 176 

First, we investigate the correlation of the integrated (or column) aerosol backscatter between the ozone lidar 177 

and HSRL to obtain a general relationship between their averages. Figure 1 shows that the RO3QET- and HSRL-178 

derived integrated backscatter coefficients for all four cases are highly correlated, with a Pearson correlation 179 

coefficient of 0.99. The root mean square error (RMSE), the standard deviation of the residuals, is negligibly small at 180 

1x10-3 sr-1, suggesting that the linear regression equation can accurately represent the relationship between the AOD 181 

measured by the two instruments. The 493 sampling profiles cover 82 hours of coincident ozone lidar and HSRL 182 

observations. We define the aerosol backscatter color ratio (å𝛽) as (Burton et al., 2012):  183 
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                                                       å𝛽 = −
𝑑(𝑙𝑛𝛽𝐴)

𝑑(𝑙𝑛𝜆)
= −

ln⁡(
𝛽𝐴
299

𝛽𝐴
532)

ln⁡(
299

532
)

 ,                                                                  (1) 184 

where 𝛽𝐴
299 and 𝛽𝐴

532 represent the aerosol backscatter coefficient at 299 and 532 nm, respectively. The subscript “A” 185 

represents the “aerosol” component, to be distinguished with from the “molecular” contribution which that is 186 

represented by subscript “M” in the Appendix.  å𝛽  is an exponent denoting backscatter-related wavelength 187 

dependence, to be distinguished from the commonly-used Ångström exponent (Ångström, 1929) that refers to the 188 

wavelength dependence of optical thickness or extinction coefficient. å𝛽 is also different from another often-used 189 

concept, “color ratio of the lidar ratios”, which refers to the ratio of S at two different wavelengths. The slope of the 190 

regression, (equal to 2.16,) results in the best least-squares fit value of 1.34 for å𝛽 at 299 and 532 nm. The uncertainty 191 

of the column 𝛽𝐴
299 is expected to be smaller than the uncertainty for 𝛽𝐴

299 at a particular altitude and for a 10-min 192 

integration time (in Figure B1) since the average over longer time and altitude range greatly reduces the random noise 193 

as suggested by the small RMSE in Figure 1. If the uncertainty of the column 𝛽𝐴
299 measurements is estimated to be 194 

20% which is primarily due to the uncertainty of the S a priori (a systematic error), we can estimate the corresponding 195 

uncertainty for å𝛽=1.34 to be ±0.11 by error propagation from Eq. (1). å𝛽  has important applications in aerosol type 196 

classification from (spectral) aerosol lidar measurements (e.g., Cattrall et al., 2005; Hair et al., 2008; Müller et al., 197 

2007). There is significant variation in å𝛽 for 532–1064 nm reported in different studies, with numbers ranging from 198 

negative values to 2.3 (Burton et al., 2012; Cattrall et al., 2005; Müller et al., 2007). However, all of these studies 199 

show a larger value of å𝛽  for smoke and urban aerosols was larger than for maritime and dust aerosols. Since most 200 

previous studies report å𝛽  for wavelengths longer than 355 nm, å𝛽 calculated in this study for 299–532 nm could 201 

provide valuable data for UV wavelengths.   202 

In practice, aerosol extinction is a more meaningful parameter and more relevant for several applications than 203 

backscatter. For the HSRL, the extinction coefficients are linearly converted from the backscatter coefficients by 204 

assuming a constant S = 55 sr with 20% uncertainty, in the same manner as Reid et al. (2017). The estimated Ångström 205 

exponent for 299 and 532 nm is 1.49±0.16, using the data in Figure 1 after considering uncertainties in S for both 206 

lidars. The calculated Ångström exponent is different from the backscatter-related wavelength exponent because of 207 

the wavelength dependence of S. The Ångström exponent from this study (1.49±0.16) is within a reasonable range 208 

compared to previous studies. For example, the Ångström exponent was measured by a Raman lidar to be between 209 

1.35±0.2 and 1.56±0.2 at 355 nm for smoke aerosols in Canada (Strawbridge et al., 2018). The Ångström exponent 210 

for urban aerosols was measured to be 1.4±0.5 in Europe and 1.7±0.5 in North America for 355 and 532 -nm 211 

wavelengths (Müller et al., 2007).  212 

The Aerosol Robotic Network (AERONET) (Holben et al., 1998) provides aerosol optical depth (AOD) 213 

measurements in eight spectral bands between 340 and 1020 nm with a temporal resolution of about 15 min. The 214 

measurement uncertainty for AERONET AOD is within 0.02 and is expected to be larger in the UV bands (Eck et al., 215 

1999; Holben et al., 2001). Even though the measurement is at a different wavelength, the AERONET AOD at 340 216 

nm can provide an additional constraint for the choice of S for the RO3QET aerosol retrieval, especially since both 217 

instruments are at the same location. Figure 2 presents the intercomparison of the RO3QET lidar derived AOD at 299 218 
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nm and all available AOD data at 340 nm (Smirnov et al., 2000) from the collocated AERONET sun-sky radiometer 219 

(data for 21–23 June is unavailable). The near surface region is assumed to be homogeneous and assigned the same 220 

aerosol extinction values as the lowest available 30-m layer from the RO3QET retrievals. Then, the aerosol extinction 221 

coefficients are integrated from 0 to 6 km asl to calculate the lidar-derived AOD. The omission of aerosol extinction 222 

above 6 km and the homogeneity assumption for the near surface region are sources of bias for the comparison since 223 

the AERONET instrument measures the total column AOD. The lidar has more data and higher temporal resolution, 224 

therefore, the lidar-derived AOD is interpolated to the AERONET measurement times. Figure 2 shows that the AOD 225 

retrieved by the two instruments has a correlation coefficient of 0.97 and a small RMSE for a total duration of about 226 

31 hours. The mean percentage difference between the RO3QET and AERONET AOD is 15±9%. The S a priori 227 

directly affects the AOD calculation. The lidar-derived AOD is on average 15% larger than the AERONET AOD due 228 

to the shorter wavelength of the lidar measurement suggesting that the choice of S = 60 sr is appropriate. For a rough 229 

estimation, the 1-σ standard deviation (9%) of the differences can be considered as the uncertainty of S if the variability 230 

of these differences are mostly due to the variation in S. Considering that AERONET measures the column average 231 

AOD, with longer temporal integration, has its own uncertainty, and covers only 38% of the total observational period, 232 

our assumption for S = 60±20% sr is appropriate for RO3QET lidar profiling measurements with higher temporal and 233 

vertical resolution and should be good enough to cover various uncertainty sources. The collocated AERONET data 234 

enhances the credibility of our lidar aerosol retrieval and help evaluate the S a priori, with the caveat that the 124 235 

paired data covering 31 hours is not a large sample. We do not show HSRL-AERONET comparison here since Reid 236 

et al. (2017) has done so using more extensive data in a visible band taken at the UAH site in summer 2013.  237 

Figure 32 presents the intercomparison of the aerosol backscatter retrieved by the HSRL and the RO3QET 238 

lidar for the four cases in 2013. The HSRL-derived aerosol backscatter coefficients are scaled to 299 nm (represented 239 

by “HSRL-converted” thereafter) using the best-fit exponent value å𝛽=1.34. Some clouds lower than 2 km show up 240 

in the HSRL curtains but not in the RO3QET curtains (e. g., 1500–2100 on 15 August and 1500–2100 on 28 August). 241 

These low-cloud-contaminated data were discarded in the RO3QET lidar pre-processing program since the ozone lidar 242 

probes the atmosphere with a shorter wavelength than the HSRL, and is therefore more affected by cloud 243 

interferencebecause the retrievable range was not long enough. The pProfiles with clouds higher than 2 km measured 244 

by the RO3QET were retained and the aerosol retrievals below the clouds were used for the range-resolving 245 

intercomparisons.  246 

In terms of the aerosol measurement evaluation, we pay attention to the two capabilities of the RO3QET 247 

lidar’s two capabilities: measuring the PBL diurnal evolution and measuring free-tropospheric smoke layers. In Figure 248 

32, the PBL heights measured by the two lidars, which are identified by large aerosol gradients, are highly consistent 249 

for all cases. The development of the convective mixing layer in the early morning, an important process responsible 250 

for surface ozone increase, can be visually identified in most RO3QET curtains (e.g., 1400–1700 UTC or 0900–1200 251 

local time in Figure 32-h). The aerosol structures and evolutions in the free troposphere measured by the RO3QET 252 

lidar are highly similar to those measured by the HSRL. For example, the RO3QET lidar captured an extremely thin 253 

aerosol layer at ~5- km altitude on 27–28 August (Figure 32-g), which probably originated from the Pacific Northwest 254 

fire and has been discussed by Reid et al. (2017). The large aerosol uncertainties for the RO3QET lidar at far ranges 255 
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are consistent with expectation. As demonstrated in Appendix B, aerosol retrieval uncertainties due to lidar signal 256 

measurement error and the boundary value chosen at the reference altitude, two of the most important sources of 257 

uncertainty, increase with altitude and may exceed 100% at ~7 km.  258 

To evaluate the ozone lidar’s range-resolving capability of the ozone lidar for aerosol retrieval, we 259 

intercompared the aerosol backscatter coefficients, for all cases, from the two instruments with a 10-min temporal 260 

resolution and a 30-m vertical resolution after filtering out cloud-contaminated data, as shown in Figure 43. The high 261 

correlation coefficient of 0.95 suggests that the RO3QET lidar can capture the aerosol variability with high spatio-262 

temporal resolutions. The correlation coefficient (0.95) for between the two high vertical resolution retrievals is 263 

slightly lowerless than that between the RO3QET and for the column- averaged HSRL retrievals (0.99, see in Figure 264 

1) due to less vertical average with respect to range. The HSRL-converted backscatter is calculated using å𝛽=1.34 and 265 

the regression equation in Figure 1. We expect the slope of the data in Figure 4 to be very close to 1. However, the 266 

actual slope is 1.08, reflecting the fact that there is a large fraction of points with small aerosol backscatter and larger 267 

residuals in clean air (low aerosol) regions. This is not surprising since the HSRL has higher measurement precision 268 

than the RO3QET lidar so that their relative differences in clean air regions can be large.  269 

Figure 54 presents the mean and 1-σ standard deviations of the relative differences between RO3QET and 270 

HSRL retrievals, (RO3QET-HSRL)/HSRL, to be compared with the theoretical 1-σ error calculated as outlined in 271 

Appendix B. The HSRL measurements are considered as the “true” values to be compared with the RO3QET 272 

measurements. Both the theoretical and actual 1-σ values generally increase with altitude. The actual differences 273 

between RO3QET and HSRL measurements are mostly within or of comparable order of magnitude to the theoretical 274 

calculation of the RO3QET measurement uncertainties. The structures of the theoretical uncertainties are consistent 275 

with the actual differences at most altitudes, with few exceptions. For example, the large discrepancies (red lines 276 

compared to blue lines in Figure 54) occurring at ~4.5 km in Figure 54 (c) and ~1.5 km in Figure 54 (d) are primarily 277 

because of small number division effects for the extremely clean atmospheric layers (also see Figure 32). Aerosol 278 

backscatter of clean air probably can be accurately measured by the HSRL, but, may be beyond the measurement 279 

sensitivity of RO3QET.  280 

In Figure 54, the RO3QET-measured aerosols are generally higher than the HSRL-measured aerosols 281 

between 5 and 6 km so that the RO3QET-HSRL differences deflect are biased to the right side with altitudepositive 282 

altitude values. These positive biases can be caused by two reasons. First, the RO3QET derived aerosol extinction 283 

above 5 km is obviously larger than that from HSRL during daytime due to the solar background impact, which is 284 

especially strong in the summer. The relative differences are even worse in clean (compared to turbid) regions during 285 

the daytime because of the small number division effect mentioned earlier. It can be seen from Figure 3 that RO3QET 286 

nighttime retrievals above 5 km and daytime retrievals below 5 km are relatively good due to either lower solar 287 

background or larger lidar signal resulting in better SNR. There were both clean air and smokye layers between 5 and 288 

6 km for the four cases; therefore, the positive differences cannot be explained solely by the lower capability of 289 

RO3QET for measuring clean air. We hypothesize that another reason causing these the positive differences between 290 

5 and 6 km is the underestimated backscatter color ratio for the smoke aerosols. We converted the HSRL backscatter 291 

from 532 to 299 nm using a constant backscatter color ratio, 1.34, which represents an average for the column-292 
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integrated backscatter. The most considerable significant contribution to integrated backscatter comes from PBL 293 

aerosols, which are mostly urban aerosols with a lower backscatter color ratio than either fresh or aged smoke (Burton 294 

et al., 2012; Cattrall et al., 2005). The uncertainty of the backscatter color ratio was not considered in the error budget 295 

of the aerosol retrieval. In addition, we ignored the measurement uncertainty of the HSRL. Therefore, the general 296 

agreement of the theoretical estimates of the aerosol retrieval uncertainties and the actual errors suggests that our 297 

analysis of the uncertainty sources in Appendix B is reasonable.  298 

4. Conclusions 299 

We have evaluated the aerosol retrievals at 299 nm from the RO3QET ozone lidar using both aerosol retrievals at 532 300 

nm from the highly precise University of Wisconsin HSRL and AERONET AOD data at 340 nm from the coincident 301 

observations at Huntsville, AL in 2013. The integrated backscatter coefficients between 0.4 andbelow 6 km asl (0.2 302 

and 5.8 km agl) from the two instrumentsRO3QET and HSRL are highly correlated, with a Pearson coefficient of 0.99 303 

after excluding cloud-contaminated data. Since the ozone lidar is not able to accurately measure either ozone or aerosol 304 

above clouds, cloud-contaminated data can significantly distort the relationship between the products from the two 305 

instruments. The aerosol profiles of backscatter coefficients at 30-m vertical and 10-min temporal resolution retrieved 306 

by the RO3QET are also highly correlated with those from the HSRL with a coefficient of 0.95 suggesting that the 307 

ozone lidar is capable of producing providing reliable aerosol structure information at high spatio-temporal resolution. 308 

Intercomparison of the backscatter product was chosen performed to avoid additional uncertainty caused by the lidar 309 

ratio (S) assumption needed for the HSRL aerosol extinction retrieval. The RO3QET-measured AOD below 6 km asl 310 

is also highly correlated with the AERONET-measured AOD, with a correlation coefficient of 0.97. The 340-nm band 311 

of the AERONET AOD data is closest to the ozone lidar wavelength among the available instruments and can 312 

therefore provide a constraint for the S assumption for the ozone lidar. Analysis of the intercomparison of AERONET 313 

and RO3QET data confirms that our choice of S = 60 sr at 299 nm is appropriate. 314 

 The aerosol retrieval algorithm and its error budget are shown in the Appendix. The primary uncertainty 315 

sources for the aerosol lidar retrieval are errors in lidar signal measurement, boundary value assumption, air density 316 

calculation, S a priori, and ozone profile input. The uncertainty in S assumption is a dominant source at near range 317 

while the lidar signal measurement and boundary value errors dominate at far range, as shown in Figure B1 for an 318 

examplesample scenario. Within the middle range (PBL top – about 7 km), the air density calculation error is essential 319 

and is larger or comparable to the lidar signal measurement error. The total uncertainty generally increases with 320 

altitude from about 15% in the PBL to consistently higher than 100% above 7 km. Theoretical estimates of the error 321 

budget are generally consistent with the RO3QET-HSRL measurement differences.  322 

By assuming a constant S of 60 sr for the ozone lidarat 299 nm, the backscatter coefficients measured by the 323 

two instrumentsRO3QET and HSRL are related by a backscatter color ratio (backscatter-related exponent) of 324 

1.34±0.11 for 299 and 532 nm. The extinction-related Ångström exponent, that is more relevant for various 325 

applications, is estimated to be 1.49±0.16 by assuming S = 55 sr for the HSRL at 532 nm. These exponents represent 326 

a summertime average for a mixture of urban pollution and fire smoke. We did not separateSeparation of the aerosol 327 

types was not done in this work, although we understand recognize that S and Ångström exponent vary with the aerosol 328 
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phase function and size distribution. The aAerosol correction in thefor ozone lidar retrievals will be described in a 329 

subsequent paper.  330 

 331 

Appendix A. Aerosol retrieval algorithm 332 

The ozone DIAL solution can be written as follows: 333 

                         𝑛(𝑟) =
−1

2∆𝜎
×

𝑑

𝑑𝑟
[𝑙𝑛

𝑃on(𝑟)

𝑃off(𝑟)
] + [𝐵] + [𝐸] ,                                                                            (A1) 334 

where n(r) is the ozone number density at range r, Δσ is the differential ozone absorption cross section, Pon(r) and Poff(r) 335 

are the backscattered on-line and off-line lidar returns, and [B] and [E] represent the differential backscatter and 336 

extinction terms (Browell et al., 1985), respectively, including both molecular and aerosol components. The first term 337 

of the right side of Eq. (A1) is often called the signal term. The subscripts “on” and “off” represent 289 and 299 nm 338 

infor this study. The aerosol extinction coefficients at 299 nm are calculated using the following procedure.  339 

1) A first-order Savitzky-Golay differentiation filter with a second-degree polynomial and variable fitting 340 

window widths are applied on 𝑙𝑛
𝑃on(𝑟)

𝑃off(𝑟)
 to compute the signal term. This smoothing method can accommodate the 341 

rapid decay of the lidar signal with altitude to provide sufficient SNR for ozone retrievals by appropriate selection of 342 

smoothing window widths (Leblanc et al., 2016a).  343 

2) By canceling the lidar constant using the two lidar equations at range r and r+Δr for 299 nm, the aerosol 344 

backscatter coefficients at range r can be expressed as (Uchino et al., 1980): 345 

𝛽𝐴(𝑟) = −𝛽𝑀(𝑟) +
𝑍(𝑟)

𝑍(𝑟+∆𝑟)
[𝛽𝐴(𝑟 + ∆𝑟) + 𝛽𝑀(𝑟 + ∆𝑟)]exp {−2∆𝑟[𝛼𝐴 (𝑟 +

∆𝑟

2
) + 𝛼𝑀 (𝑟 +

∆𝑟

2
) + 𝛼𝑂3 (𝑟 +

∆𝑟

2
)]} ,                                                                                                                                      346 

(A2) 347 

where βA(r) and βM(r)  are aerosol and molecular backscatter coefficients at range r , respectively; 𝑍(𝑟) = 𝑃off𝑟
2 is 348 

the range-corrected lidar signal at 299 nm; αA(r+Δr/2), αM(r+Δr/2), and αO3(r+Δr/2) represent the average aerosol, 349 

molecular, and ozone extinction coefficients between range r and r+Δr, respectively. Assuming the 299-nm lidar ratio, 350 

S=αA/βA, is constant with the range at 60 sr for this study and further assuming:  351 

𝛼𝐴(𝑟 +
∆𝑟

2
) ≈ 𝛼𝐴(𝑟 + ∆𝑟) = 𝑆𝛽𝐴(𝑟 + ∆𝑟),                                                                    (A3) 352 

Eq. (A2) contains only two unknown variables: the aerosol backscatter coefficient βA(r+Δr) and ozone extinction 353 

coefficient αO3(r+Δr/2), which requires knowledge of the ozone number density )2/( rrn  . Molecular backscatter and 354 

extinction can be computed from nearby radiosonde data or a model with acceptable accuracy. For the first iteration 355 

step, )2/( rrn   can be computed from the signal term in Eq. (A1). By assuming a start value βA(ref) at a reference 356 

range and a constant S with range, βA(r) can be solved by Equation (A2). Then, the first βA(r) profile is substituted 357 

back into (A2) to compute the second estimate by using a more accurate form for αA(r+Δr/2) as: 358 

𝛼𝐴 (𝑟 +
∆𝑟

2
) = 𝑆[𝛽𝐴(𝑟 + ∆𝑟) + 𝛽𝐴

′ (𝑟)]/2,                                                                      (A4) 359 

where βʹA(r) represents the value from the first estimate. Typically, a stable solution for βA(r), which does not change 360 

significantly from one iteration step to the next, can be obtained with only three iterations of Eq. (A2) and (A4.  361 
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3) The correction terms, [B] and [E], in Eq. (A1) are calculated by the Browell et al. (1985) approximation, 362 

assuming a power law dependence with wavelength for the aerosol extinction and choosing an appropriate Ångström 363 

exponent. Since this paper focuses only on aerosol retrievals, the details of the ozone corrections will be described in 364 

a future article.  365 

4) Aerosol profiles computed for the three altitude channels are finally merged to a single profile in their 366 

overlapping altitude zones, 0.5–1 km for Channels- 1 and 2, 1.5–2 km for Channels- 2 and 3. 367 

 368 

Appendix B. Error budget of the aerosol retrieval 369 

Now we investigate five primary error sources affecting each term on the right side of Eq. (A2). In the following 370 

section, we use the notation Δ to represent the absolute uncertainty and δ to represent the relative uncertainty. For a 371 

function Y, derived from several measurement variables x1, x2, …, the uncertainty in Y can be estimated by the 372 

following expression using the first-order Taylor expansion approximation when these variables are independent 373 

(Taylor, 1997):  374 

∆𝑌2 = (∆𝑥1
𝜕𝑌

𝜕𝑥1
)2 + (∆𝑥2

𝜕𝑌

𝜕𝑥2
)2 +⋯ .                                                                (B1)  375 

B.1 Lidar signal measurement error 376 

The error source to determine the normalized lidar signal ratio term 
𝑍(𝑟)

𝑍(𝑟+∆𝑟)
⁡is the lidar signal measurement error, ΔP. 377 

Although ΔP may be due to various processes such as inaccurate dead-time correction, inaccurate background 378 

subtraction, and signal-induced noise, its dominant component is the lidar signal statistical uncertainty (often called 379 

lidar signal detection noise) and is typically assumed to obey a Poisson distribution. Assuming no error in deciding r, 380 

by using Eq. (A2) and (B1) we obtain the uncertainty of the aerosol backscatter owing to lidar signal measurement 381 

error, ∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

 , relative to the total backscatter as: 382 

∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

𝛽𝐴(𝑟)+𝛽𝑀(𝑟)
= √[𝛿𝑃(𝑟)]2 + [𝛿𝑃(𝑟 + ∆𝑟)]2,                                                     (B2) 383 

where P(r) represents lidar signal counts at r after omitting the wavelength subscript (i.e., 299 nm) and δP(r) is just 384 

the inverse of SNR. This means that the uncertainty of the aerosol backscatter coefficient due to lidar signal 385 

measurement is determined by the lidar SNR similarly to other remote sensing detection techniques. Consequently, 386 

its relative uncertainty can be written as: 387 

𝛿𝛽 (𝑟)𝐴
𝑠𝑖𝑔

= (
1

𝐵(𝑟)
+ 1)√[𝛿𝑃(𝑟)]2 + [𝛿𝑃(𝑟 + ∆𝑟)]2,                                       (B3) 388 

where B(r)= βA(r)/βM(r) is the aerosol-to-molecular backscatter ratio. As expected, 𝛿𝛽 (𝑟)𝐴
𝑠𝑖𝑔

 has a reverse relationship 389 

with βA(r) since it is a relative uncertainty. Figure B1 shows an example of the uncertainty budget for a 10-min lidar 390 

data profile. The aerosol retrieval uncertainty due to the lidar signal measurement error generally increases with 391 

altitude primarily because of the rapidly decaying lidar SNR.    392 

B.2 Boundary value error 393 

According to Eq. (A2), the uncertainty of the aerosol backscatter at r, 𝛽𝐴(𝑟) , can be induced by the uncertainty of the 394 

backscatter at 𝑟 + ∆𝑟 , 𝛽𝐴(𝑟 + ∆𝑟), due to the iterative computation method. The error propagation between the 395 

adjacent altitudes can be determined by their partial differential relationship. Using the traditional far-end solution by 396 
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assuming that the air is clean at a reference altitude, the aerosol uncertainty due to the inaccurate boundary value 397 

assumption propagates downward based on the following equation:  398 

                     𝛿𝛽𝐴
𝐵𝑉(𝑟) = 𝛿𝛽𝐴(𝑟 + ∆𝑟) [

1+
1

𝐵(𝑟)

1+
1

𝐵(𝑟+∆𝑟)

] {1 − 2𝑆∆𝑟𝛽𝐴(𝑟 + ∆𝑟)[1 +
1

𝐵(𝑟+∆𝑟)
]}.                                          (B4) 399 

The yellow line in Figure B1 represents the relative uncertainty of backscatter retrieval due to the boundary value 400 

assumption, 𝛿𝛽𝐴
𝐵𝑉(𝑟) , when 𝛿𝛽𝐴(𝑟𝑏) = 1000%  (i.e., 10 times overestimate at rb =10 km). Despite a large 401 

overestimate at the reference altitude, 𝛿𝛽𝐴
𝐵𝑉(𝑟) decreases toward the ground, to less than 10% below 5.5 km and less 402 

than 1% below 3.5 km. Simulations demonstrate that 𝛿𝛽𝐴
𝐵𝑉(𝑟) for an underestimation of 𝛿𝛽𝐴(𝑟𝑏) (not shown) is better 403 

than that for an overestimation, indicating that the boundary value is preferred at a smaller value. As suggested by Eq. 404 

(B4), 𝛿𝛽𝐴
𝐵𝑉(𝑟) is affected by both S and B. Larger S (if it is correct) results in smaller 𝛿𝛽𝐴

𝐵𝑉(𝑟) and, therefore, aerosol 405 

retrieval errors converge to zero faster. In other words, the smaller the value of S is, the more sensitive the aerosol 406 

retrieval is to the boundary value error. 𝛿𝛽𝐴
𝐵𝑉(𝑟) decreases with an increase of B(r). This means that 𝛿𝛽𝐴

𝐵𝑉(𝑟) is less 407 

affected by the assumed value of 𝛽𝐴(𝑟𝑏)⁡when the aerosol backscatter becomes more important relative to molecular 408 

backscatter, which occurs at longer wavelengths or under turbid air conditions. It is to be noted that ⁡𝛿𝛽𝐴(𝑟𝑏) is 409 

between -1 and +∞ so that the distribution of 𝛿𝛽𝐴
𝐵𝑉(𝑟) is asymmetric with the zero axis.   410 

In terms of the influence of the boundary value error, we have compared our calculation with an analytical 411 

solution proposed by Kovalev and Moosmüller (1994) (not shown); the results are almost identical. Aerosol retrieval 412 

uncertainty due to incorrect boundary value assumption tends to converge to zero towards the lidar. It is negligible at 413 

lower altitudes, especially in the PBL, when the air is turbid.   414 

B.3 Air density error 415 

According to Eq. (A2), the air density profile affects βM(r), βM(r+Δr), and the optical depth (or transmittance). 416 

Similarly, we can derive the relative uncertainty in aerosol backscatter owing to the uncertainty in the air density 417 

profile as: 418 

𝛿𝛽 (𝑟)𝐴
𝐴𝐷419 

=
√
{
𝛿𝛽𝑀(𝑟)

𝐵(𝑟)
⁡[1 + 𝑆𝑚∆𝑟𝛽𝐴(𝑟) + 𝑆𝑚∆𝑟𝛽𝑀(𝑟)]}

2 + {
𝛿𝛽𝑀(𝑟 + ∆𝑟) [

1
𝐵(𝑟)

+ 1]

𝐵(𝑟 + ∆𝑟) + 1
[1 − 𝑆𝑚∆𝑟𝛽𝐴(𝑟 + ∆𝑟) − 𝑆𝑚∆𝑟𝛽𝑀(𝑟 + ∆𝑟)]}2 420 

. (B5) 421 

Sm represents the molecular extinction-to-backscatter ratio, which is a constant (8π/3). The two parts in the square root 422 

are the components due to the uncertainties at r and r+Δr, respectively. Each component includes the influences from 423 

both molecular backscatter and optical depth. When Δr is small, the contribution of the optical depth error is much 424 

smaller than that of the molecular backscatter error so that (B4) can be approximated as: 425 

     𝛿𝛽 (𝑟)𝐴
𝐴𝐷 ≈ √2

𝛿𝛽𝑀(𝑟)

𝐵(𝑟)
.                                                                   (B6) 426 

It is to be noted that ΔβM(r) and ΔβM(r+Δr) are independent errors as assumed in Eq. (B1). If they are correlated, Eq. 427 

(B5) will partly cancel out with their covariance term, which is not shown in (B1). Due to the nature of the iterative 428 

computation method, 𝛿𝛽 (𝑟 + ∆𝑟)𝐴
𝐴𝐷  affects 𝛿𝛽 (𝑟)𝐴

𝐴𝐷  as noted in Eq. (B4), so that the aerosol retrieval uncertainty due 429 

to air density error will propagate downward. However, model simulation suggests that the systematic error of the air 430 
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density calculation has little impact on the aerosol retrieval because of the cancelation of the effect at r and r + Δr. Eq. 431 

(B6) means the uncertainty in the calculation of molecular backscatter will mostly linearly propagate to aerosol 432 

backscatter. If the 2-σ precision of a radiosonde is 0.3 K and 0.5 hPa for temperature and pressure measurements 433 

(Hurst et al., 2011), the propagated uncertainty onto molecular backscatter is only about 0.1%. However, the real 434 

disturbance of an atmosphere deviating from the actual air density profile may be more significant since there are 435 

usually only a few radiosonde profiles available every day. Hence, we assume δβM(r) to be 1% and the resulting 436 

aerosol retrieval uncertainty is represented by the green line in Figure B1. 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  can be tens of percent in the free 437 

troposphere and is an important error source for aerosol retrievals (Russell et al., 1979). 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is less than 10% in 438 

the PBL because of more turbid air in that region. Since δβM(r) is assumed to be a constant in this example, the 439 

variation of 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is mostly a result of varying B(r), the aerosol-to-molecular backscatter ratio. Since B(r) generally 440 

increases with an increase in wavelength, 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is expected to be smaller at longer wavelengths. Therefore, the 441 

aerosol retrieval is less sensitive to the air density error at longer wavelengths.  442 

B.4 Lidar ratio error 443 

By using Eqn. (A2) and (B1), the relative uncertainty in aerosol backscatter due to incorrect lidar ratio (S) assumption 444 

can be calculated as follows: 445 

 446 

                                                      𝛿𝛽 (𝑟)𝐴
𝑆 = 2 [

1

𝐵(𝑟)
+ 1] ∆𝑆𝛽𝐴(𝑟)∆𝑟.                                                                       (B7) 447 

𝛿𝛽 (𝑟)𝐴
𝑆  due to ΔS at only range r appears to be small, about 1%, when Δr is specified at 22.5 m. However, ΔS varying 448 

with altitude is mostly systematic and, therefore, 𝛿𝛽 (𝑟)𝐴
𝑆  at every altitude will propagate downward and these effects 449 

will accumulate. The error accumulation is not straightforward to compute as an analytical solution. However, these 450 

effects  can be simulated numerically. S is highly variable and it is difficult to estimate its actual uncertainty range. In 451 

this study, we assume that 𝛿𝑆 = 20% (or ΔS =12 sr) according to a both previous study (Müller et al., 2007) and the 452 

analysis using the collocated AERONET AOD data at 340 nm. The light-blue line in Figure B1 shows that the 453 

accumulative uncertainties in the aerosol backscatter due to ΔS using Eq. (B7) and (B4) are close to the assumed 20% 454 

uncertainty for 𝛿𝑆. 𝛿𝛽 (𝑟)𝐴
𝑆  is the largest error source in the PBL which is the near range of the lidar. 𝛿𝛽 (𝑟)𝐴

𝑆  decreases 455 

with an increase in wavelength because of increasing B(r). In other words, 𝛿𝛽 (𝑟)𝐴
𝑆  is less sensitive to ΔS at longer 456 

wavelengths.   457 

B.5 Ozone error 458 

Similar to S, the ozone uncertainty affects only the transmittance term in Eqn. (A2) and its error propagation on aerosol 459 

backscatter retrieval can be expressed as: 460 

                                                            𝛿𝛽 (𝑟)𝐴
𝑂3 = 2 [

1

𝐵(𝑟)
+ 1] ∆𝛼𝑂3(𝑟)∆𝑟.                                                               (B8) 461 

𝛿𝛽 (𝑟)𝐴
𝑂3  is proportional to the [

1

𝐵(𝑟)
+ 1] factor and ozone absorption uncertainty, meaning that 𝛿𝛽 (𝑟)𝐴

𝑂3  is smaller at 462 

longer wavelengths due to larger aerosol scattering ratio and smaller ozone absorption. When Δr is specified at 22.5 463 

m,  𝛿𝛽 (𝑟)𝐴
𝑂3  is less than 0.3%. We still simulate the vertical accumulation of 𝛿𝛽 (𝑟)𝐴

𝑂3  using Eq. (B4). As noted earlier, 464 

the systematic errors of the DIAL ozone measurement tend to accumulate while the random errors tend to cancel out. 465 

The dominant error source for lidar measurements at the far range is typically the lidar signal detection noise, a type 466 
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of random error. Therefore, for purposes of estimation, we assume a 5% constant DIAL retrieval uncertainty primarily 467 

covering the uncertainties due to ozone absorption cross section, non-ozone gas interference, and signal saturation 468 

effect (Leblanc et al., 2018; Wang et al., 2017). As shown in Figure B1, the simulated aerosol retrieval uncertainty 469 

due to ozone is relatively minor and is less than 5% at most altitudes.  470 

In summary, the uncertainties in aerosol backscatter retrieval for the ozone lidar are controlled by ΔS at near 471 

ranges (i. e., in the PBL) where the air is most turbid and are determined by both the lidar signal detection error and 472 

inaccurate boundary value assumption at far ranges (higher than 7 km) where the air is typically clear. In the middle 473 

range of the lidar measurement (PBL top – 7 km), the air density calculation error may become a significant error 474 

source for aerosol retrieval and may have a comparable influence on the aerosol retrieval as the lidar signal 475 

measurement error. Relative to the above four uncertainty sources, ozone DIAL retrieval error is relatively 476 

unimportant especially in the lower altitudes where lidar SNR is large enough. All the uncertainty terms are affected 477 

by the aerosol-to-molecular backscatter ratio, B(r), which represents the relative importance of the aerosol component 478 

in both extinction and backscatter processes. Based on the above uncertainty budget analysis, we conclude that the 479 

RO3QET lidar is capable of measuring aerosol profile reliably below 6 km with the current laser output power.  480 
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 625 

Figure 1. Regression of the ozone DIALlidar and HSRL derived integrated aerosol backscatter between 0.4 and 6 km 626 

asl using the best least-squares fit, resulting in a backscatter color ratio of 1.34 for 299–532-nm for four cases in 2013. 627 

All the data was taken at Huntsville, AL, USA, during the summertime 2013. 628 
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 629 

Figure 2. RO3QET DIAL derived AOD between 0 and 6 km at 299 nm using S=60 sr compared to collocated 630 

AERONET AOD at 340 nm for (a) 14–15 August, (b) 27–28 August, and (c) 5–6 September, 2013. (d) Regression of 631 

the paired data after the DIAL AOD is interpolated to the times of AERONET AOD measurements.   632 
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 633 

Figure 32. HSRL-converted aerosol backscatter coefficients (a, b, c, d) compared to the RO3QET lidar- derived aerosol 634 

backscatter coefficients at 299 nm (e, f, g, h), with 10-min temporal resolution and 30-m vertical resolution. The data 635 

was taken from 21–23 June (a, e), 14–15 August (b, f), 27–28 August (c, g), and 5–6 September (d, h) 2013. The 636 

HSRL-converted aerosol backscatter coefficients are scaled from the original retrievals at 532 nm to 299 nm using 637 

Eq. (1) and å𝛽=1.34. 638 
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 640 

Figure 43. Regression of the ozone lidar measured and HSRL-converted aerosol backscatter coefficients (interpolated 641 

toat 299 nm with å𝛽=1.34) with 30-m vertical resolution and 10-min temporal resolution. The regression line is a little 642 

curved in log scale because the intercept is not exactly zero. 643 
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 645 

Figure 54. Relative differences between the RO3QET and HSRL-converted aerosol backscatter measurements, 646 

(RO3QET-HSRL)/HSRL, made from (a) 21-–23 June, (b) 14-–15 August, (c) 27–28 August, and (d) 5–6 September, 647 

2013. The gray and black lines represent the differences for the10-min individual aerosol backscatter profiles and their 648 

mean, respectively. The blue lines represent the actual 1 σ of the differences compared to the theoretical 1 σ (red lines) 649 

of the RO3QET lidar aerosol measurement.   650 

  651 



 

24 

 

  652 

                            (a)                                                                                                     (b) 653 

Figure B1. An example of (a) aerosol backscatter profile retrieved from a 10-min ozone lidar data at about 8:30 UTC 654 

on 22 June 2013 and (b) its the retrieval error budget for different uncertainty sources. The lidar data was from the 655 

Channel-3 receiving system which covers most of the measurement altitude range and was arbitrarily chosen for a 656 

cloud-free conditionscenario.   657 
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