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Abstract 19 

Aerosol retrieval using ozone lidars in the ultraviolet spectral region is challenging but necessary for correcting aerosol 20 

interference in ozone retrieval and for studying the ozone-aerosol correlations. This study describes the aerosol 21 

retrieval algorithm for a tropospheric ozone lidar, quantifies the retrieval error budget, and intercompares the aerosol 22 

retrieval products at 299 nm with those at 532 nm from a high spectral resolution lidar (HSRL) and with those at 340 23 

nm from an Aerosol Robotic Network radiometer. After the cloud-contaminated data is filtered out, the aerosol 24 

backscatter or extinction coefficients at a 30-m and 10-min resolution retrieved by the ozone lidar are highly correlated 25 

with the HSRL products, with a coefficient of 0.95 suggesting that the ozone lidar can reliably measure aerosol 26 

structures with high spatio-temporal resolution when the signal-to-noise ratio is sufficient. The actual uncertainties of 27 

the aerosol retrieval from the ozone lidar generally agree with our theoretical analysis. The backscatter color ratio 28 

(backscatter-related exponent of wavelength dependence) linking the coincident data measured by the two instruments 29 

at 299 and 532 nm is 1.34±0.11 while the Ångström (extinction-related) exponent is 1.49±0.16 for a mixture of urban 30 

and fire smoke aerosols within the troposphere above Huntsville, AL, USA. 31 

1. Introduction 32 

A tropospheric ozone differential absorption lidar (DIAL) makes measurements of vertical ozone profiles, typically 33 

at two wavelengths chosen between 277 and 300 nm with a separation less than 12 nm, by weighing several parameters 34 

such as the ozone absorption cross sections, solar background, dynamic range of the detection system, and interference 35 

from aerosols and other species (e.g., Alvarez et al., 2011; Browell et al., 1985; De Young et al., 2017; Fukuchi et al., 36 

mailto:kuang@nsstc.uah.edu


 

2 

 

001; Kempfer et al., 1994; McDermid et al., 2002; Proffitt and Langford, 1997; Strawbridge et al., 2018; Sullivan et 37 

al., 2014). Vertical aerosol profiles are of high interest not only because they are needed for aerosol correction in 38 

ozone lidar retrievals (Steinbrecht and Carswell, 1994), but also because simultaneous ozone and aerosol vertical 39 

profile measurements provide unique information on their interactions and on sources of pollutant transport (Browell 40 

et al., 1994; Langford et al., 2020; Newell et al., 1999). However, there is currently no consensus on the reliability of 41 

the aerosol retrievals produced by ozone lidars due to the difficulty of solving the three-component lidar equation and 42 

the large variability in aerosol optical properties associated with the multiplicity of aerosol types and size distributions. 43 

The most widely used solution for the elastic single-wavelength aerosol lidar equation is the analytic method 44 

developed by Klett (1981). The inversion method then inspired Fernald (1984) to publish a computer algorithm scheme 45 

to solve the more general two-component (aerosol and molecular) atmospheric lidar equation. The Klett (1981) 46 

inversion requires a priori for the lidar ratio (i.e., aerosol extinction-to-backscatter ratio, represented by “S” hereafter) 47 

to link the aerosol backscatter with its extinction for solving the lidar equation. Lasers used for aerosol lidars are 48 

preferred in the visible and infrared bands, typically 532 and 1064 nm for Nd:YAG laser or 694 nm for Ruby laser 49 

(Russell et al., 1979), where the ozone absorption is much smaller than molecular and Mie scattering. In the ultraviolet 50 

(UV) band for an ozone lidar, the ozone absorption may not be trivial. Some ozone lidars have an aerosol channel 51 

available, either independently or sharing receiving optics with the ozone channel (e.g., Browell et al., 1994; De Young 52 

et al., 2017; Gronoff et al., 2019; Kovalev and McElroy, 1994; Uchino and Tabata, 1991). For most of the traditional 53 

two-wavelength ozone lidars without an aerosol channel, although there has been some discussion about the aerosol 54 

retrieval algorithm (e.g., Eisele and Trickl, 2005; Langford et al., 2019; Papayannis et al., 1999; Sullivan et al., 2014), 55 

the evaluation of the aerosol retrieval product and its error budget has rarely been addressed. Due to a significant 56 

wavelength difference with aerosol lidars, several aspects of the aerosol retrieval using an ozone lidar are worth noting. 57 

First, the signal-to-noise ratio (SNR) for ozone lidars decays quicker with altitude due to more significant UV 58 

molecular (i.e., Rayleigh) scattering and ozone absorption resulting in a lower retrievable altitude than aerosol lidars. 59 

Second, since the molecular and ozone components become more important at UV wavelengths compared to visible 60 

and infrared wavelengths, the uncertainties in aerosol retrieval propagated from the calculation of these two 61 

components are expected to be larger for ozone lidars than for aerosol lidars. Third, S and the wavelength dependence 62 

used for the ozone lidar wavelengths may be different from those used for the longer aerosol lidar wavelengths 63 

(Ackermann 1998; Eck et al., 1999).  64 

The primary objectives of this article are to investigate the performance of our aerosol retrieval algorithm 65 

and to quantify its error budget for the ozone lidar. The secondary goal is to seek the overall wavelength dependence 66 

between the aerosol optical properties measured by the ozone lidar at 299 nm and by a high spectral resolution lidar 67 

(HSRL) at 532 nm.    68 

2. Instruments and Data Processing 69 

2.1. Ozone Lidar 70 

The Rocket-city Ozone (O3) Quality Evaluation in the Troposphere (RO3QET) lidar is located on the campus of the 71 

University of Alabama in Huntsville (UAH) at 34.725°N and 86.645°W at 206 m asl and is one of the six systems of 72 

the Tropospheric Ozone Lidar Network (TOLNet) (http://www-air.larc.nasa.gov/missions/TOLNet). This system 73 
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measures ozone from 0.1 km up to about 12 km during nighttime and up to about 6 km during daytime with a temporal 74 

resolution of 2 min. The vertical resolution of the lidar retrievals varies from 150 m in the lower troposphere to 750 75 

m in the upper troposphere in order to keep the measurement uncertainty within ±10% (Kuang et al., 2013).  76 

The transmitter comprises two Raman-shifted lasers at 289 and 299 nm. Two 30-Hz, 266-nm Nd:YAG lasers 77 

pump two 1.8-m Raman cells, respectively, with mixtures of active gas and buffer gas to generate 289 and 299-nm 78 

lasers with an average pulse energy of about 5 mJ. The receiving system consists of three receivers with diameters of 79 

2.5 cm, 10 cm, and 40 cm, respectively, and four photomultipliers (PMTs) similar to that described by Kuang et al. 80 

(2013) except that the solar filters have been replaced by 300-nm short-pass filters for all telescopes. Channels-1, 2, 81 

3, 4 represent the 2.5-cm, 10% of the 10-cm, 90% of the 10-cm, and the 40-cm telescope channels, respectively. Since 82 

the modification of Channel–4 through the addition of narrow-band solar filters was not completed before the time 83 

period of this study, data from this channel was not used in this work, with the net result that uncertainties for ozone 84 

retrievals above 6 km during daytime were often too large due to the strong solar background. Lidar signal counting 85 

was accomplished by four Licel transient recorders (Licel company, Germany) with both analog and photoncounting 86 

(PC) modes, with a sampling rate of 40 MHz corresponding to a 3.75-m fundamental resolution. The cloud base height 87 

is determined by the following empirical method. Derivatives of the logarithm of the off-line analog signal are 88 

calculated for a lidar signal profile and the first range bin at which the derivative is greater than a certain threshold is 89 

considered to be the cloud base height. The threshold is chosen empirically based on the lidar SNR and the vertical 90 

resolution. Therefore, lidar data with cloud base lower than 2 km was discarded. The cloud filtering process should 91 

be conducted carefully because an elastic lidar without a polarization channel is not capable of accurately 92 

distinguishing aerosols and clouds solely through their backscatter properties. Five 2-min lidar data intervals were 93 

combined to give a 10-min lidar-signal integration time to improve the SNR. Further, six of the 3.75-m fundamental 94 

bins were integrated for all channels. In addition, dead-time correction (for PC signal only), background correction, 95 

analog-PC signal merging, and signal-induced noise correction were performed.  96 

2.2. Aerosol Retrieval and Uncertainty Estimation 97 

The aerosol profiles were retrieved with an iterative DIAL algorithm. A brief description of this algorithm is provided 98 

in this section, with further details in Appendix A. A first-order Savitzky-Golay differentiation filter with a second-99 

degree polynomial was applied to the logarithm of the signal ratios to compute the first-cut ozone profile. This initial 100 

ozone profile was substituted back into the three-component lidar equation to derive the profile of aerosol backscatter 101 

coefficients at 299 nm by assuming a constant S of 60 sr and boundary value of the aerosol backscatter coefficient at 102 

a far-range reference altitude, about 10 km. During the daytime, the ozone retrieval was limited by the lower SNR of 103 

the 289-nm channel, but the 299-nm channel had much better SNR due to lower atmospheric extinction and was able 104 

to measure aerosol up to higher altitudes. S has large variability as a function of aerosol characteristics, humidity, and 105 

wavelength (Ackermann, 1998; Strawbridge et al., 2018; Mishchenko et al., 1997). The S a priori value assumed for 106 

this study represents a mix of urban and smoke aerosols during the lidar observations (Ackermann, 1998; Burton et 107 

al., 2012; Cattrall et al., 2005; Groß et al., 2013; Müller et al., 2007). The a priori is application dependent. In the 108 

aerosol retrieval uncertainty discussion in Appendix B, we assume a ±20% uncertainty for S based on an average 109 

standard deviation obtained from prior observations (Müller et al., 2007).  110 
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Molecular backscatter and extinction profiles were computed from local radiosonde data. Then, the aerosol 111 

profile was substituted into the lidar equation again to obtain a stable solution, usually within three iterations. This 112 

aerosol profile was further employed to calculate the aerosol correction for ozone retrievals using the first-order Taylor 113 

approximation (Browell et al., 1985) by assuming a power-law wavelength dependence for the aerosol extinction and 114 

choosing an appropriate Ångström exponent. Since this work focuses only on aerosol retrieval, details of the ozone 115 

correction will be described in a future article. Finally, the aerosol profiles derived by the three altitude channels were 116 

merged into a single profile in the overlapping altitude zones, i.e., 0.5–1 km for Channels-1 and 2 and 1.5–2 km for 117 

Channels-2 and 3.  118 

The primary uncertainty sources for the aerosol lidar retrievals are the uncertainties in lidar signal 119 

measurement, boundary value assumption for aerosol backscatter coefficient, air density measurement, S a priori, and 120 

ozone profile input. The relative importance of these sources is altitude dependent. In the planetary boundary layer 121 

(PBL) where the air is typically turbid, the S uncertainty is dominant while other sources are minor (only few percent). 122 

The uncertainty of S influences the uncertainty of the aerosol backscatter through a complicated relationship. However, 123 

the magnitude of the above two uncertainties can be approximately seen to be close. At the far range (higher than 7 124 

km), lidar signal detection noise and inaccurate boundary value assumption are important. Influence from both of the 125 

above sources, especially the boundary value, on the aerosol retrieval quickly decreases towards the ground from the 126 

far range. In the middle range (PBL top – 7 km), both the air density measurement error and lidar signal detection 127 

noise are essential. Uncertainty due to ozone profile input is relatively unimportant and is only few percent at most 128 

altitudes. Figure B1 presents an example of the aerosol backscatter uncertainty calculated from 10-min nighttime 129 

RO3QET lidar data. The error budget estimate generally justifies the choice of using 6 km as the maximum altitude 130 

for RO3QET-HSRL comparison since the total uncertainty for the RO3QET aerosol retrieval could be unacceptably 131 

large (i.e., persistently larger than 100%).  132 

2.3. HSRL 133 

The University of Wisconsin HSRL (Eloranta, 2005) was deployed in Huntsville, AL from 19 June to 4 November 134 

2013 and operated almost 24 hours every day to support the Studies of Emissions and Atmospheric Composition, 135 

Clouds and Climate Coupling by Regional Surveys SEAC4RS campaign (Kuang et al., 2017). The HSRL transmitter 136 

was a diode-pumped Nd:YAG laser at 532 nm with a pulse energy of about 50 μJ and a pulse repetition frequency of 137 

4 kHz. The expanded laser beam was transmitted coaxially with a 40-cm telescope with a tiny field of view (FOV) of 138 

100 μrad to reduce solar background. The HSRL spectral filtering can separate the molecular backscatter from the 139 

aerosol backscatter due to the molecular Doppler broadening effect, while the particulate backscatter remains 140 

spectrally unbroadened. Aerosol backscatter coefficients can then be calculated as the difference between the total 141 

return and the molecular component (Grund and Eloranta, 1991). In principle, aerosol extinction can be computed by 142 

comparing the measured attenuated molecular backscatter to a reference, unattenuated molecular backscatter profile 143 

that is calculated from the radiosonde-measured air density profile or a numerical model (Hair et al., 2008). However, 144 

small and fast signal fluctuations were found in the partial overlap region (between the surface and about 4.5 km) for 145 

the data taken in Huntsville so that aerosol extinction below 4.5 km cannot be derived with satisfying precision. The 146 

signal fluctuations were probably caused by small optical misalignments from temperature changes within the lidar 147 
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system (Reid et al., 2017). The aerosol backscatter calculation is not affected by the lidar signal fluctuations since any 148 

range-dependent instrument effects are canceled out. Therefore, we focus on the aerosol backscatter intercomparison 149 

between the HSRL and RO3QET. If aerosol extinction is needed for the HSRL, we will calculate it from the aerosol 150 

backscatter by assuming a constant lidar ratio. The HSRL provides aerosol products with a 30-m vertical resolution 151 

and 1-min temporal resolution from near the surface to 15 km. To achieve sufficient SNR for both HSRL and ozone 152 

lidar and to reduce the uncertainty arising from the clock bias of the controlling computers, we adopt 10-min temporal 153 

average and 30-m vertical average for both HSRL and ozone lidar in the intercomparison study. The HSRL has a 154 

backscatter measurement precision better than 10-7 (m·sr)-1 for a 1-min signal average (Reid et al., 2017), which 155 

represents an estimated precision for the extinction coefficient of better than 2×10-6 m-1 for a 10-min average. 156 

3. Intercomparison Results 157 

We select four time periods (21–23 June, 14–15 August, 27–28 August, and 5–6 September 2013) to investigate the 158 

ozone lidar capability for measuring aerosol column and range-resolved profiles. All four cases have coincident ozone 159 

lidar and HSRL observation periods longer than 24 hours, fully covering the convective mixing layer development 160 

and collapse processes (Klein et al., 2019) and having significant smoke layers in the free troposphere. Due to the 161 

significant extinction and potential multiple scattering caused by clouds, the ozone lidar is incapable of measuring 162 

either ozone or aerosol accurately above clouds, especially thick clouds. Therefore, data contaminated by clouds is 163 

filtered out. At this time, the narrow-band interference filters had not been incorporated into the receiving system, and 164 

the wide-band filter resulted in substantial solar background during the daytime; hence, we set 6 km asl as the 165 

maximum altitude for intercomparison. The uncertainty of the aerosol retrieval owing to lidar signal measurement 166 

error is dominant at far range and is determined by the lidar SNR, as shown in Appendix B.2. The solar background 167 

is an important noise resulting in the lidar signal measurement error during daytime and is partly responsible for the 168 

high aerosol retrieval uncertainty above 6 km as shown by the example in Figure B1. The 10-min HSRL profiles are 169 

interpolated to the times of the ozone lidar data. 170 

First, we investigate the correlation of the integrated (or column) aerosol backscatter between the ozone lidar 171 

and HSRL to obtain a general relationship between their averages. Figure 1 shows that the RO3QET- and HSRL-172 

derived integrated backscatter coefficients for all four cases are highly correlated, with a Pearson correlation 173 

coefficient of 0.99. The root mean square error (RMSE), the standard deviation of the residuals, is negligibly small at 174 

1x10-3 sr-1, suggesting that the linear regression equation can accurately represent the relationship between the AOD 175 

measured by the two instruments. The 493 sampling profiles cover 82 hours of coincident ozone lidar and HSRL 176 

observations. We define the aerosol backscatter color ratio (å𝛽) as (Burton et al., 2012):  177 

                                                       å𝛽 = −
𝑑(𝑙𝑛𝛽𝐴)

𝑑(𝑙𝑛𝜆)
= −

ln(
𝛽𝐴
299

𝛽𝐴
532)

ln(
299

532
)

 ,                                                                  (1) 178 

where 𝛽𝐴
299 and 𝛽𝐴

532 represent the aerosol backscatter coefficient at 299 and 532 nm, respectively. The subscript “A” 179 

represents the “aerosol” component, to be distinguished from the “molecular” contribution that is represented by 180 

subscript “M” in the Appendix. å𝛽  is an exponent denoting backscatter-related wavelength dependence, to be 181 

distinguished from the commonly-used Ångström exponent (Ångström, 1929) that refers to the wavelength 182 

dependence of optical thickness or extinction coefficient. å𝛽 is also different from another often-used concept, “color 183 
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ratio of the lidar ratios”, which refers to the ratio of S at two different wavelengths. The slope of the regression, equal 184 

to 2.16, results in the best least-squares fit value of 1.34 for å𝛽 at 299 and 532 nm. The uncertainty of the column 𝛽𝐴
299 185 

is expected to be smaller than the uncertainty for 𝛽𝐴
299 at a particular altitude and for a 10-min integration time (in 186 

Figure B1) since the average over longer time and altitude range greatly reduces the random noise as suggested by the 187 

small RMSE in Figure 1. If the uncertainty of the column 𝛽𝐴
299  measurements is estimated to be 20% which is 188 

primarily due to the uncertainty of the S a priori (a systematic error), we can estimate the corresponding uncertainty 189 

for å𝛽=1.34 to be ±0.11 by error propagation from Eq. (1). å𝛽 has important applications in aerosol type classification 190 

from (spectral) aerosol lidar measurements (e.g., Cattrall et al., 2005; Hair et al., 2008; Müller et al., 2007). There is 191 

significant variation in å𝛽 for 532–1064 nm reported in different studies, with numbers ranging from negative values 192 

to 2.3 (Burton et al., 2012; Cattrall et al., 2005; Müller et al., 2007). However, all of these studies show a larger value 193 

of å𝛽 for smoke and urban aerosols than for maritime and dust aerosols. Since most previous studies report å𝛽 for 194 

wavelengths longer than 355 nm, å𝛽 calculated in this study for 299–532 nm could provide valuable data for UV 195 

wavelengths.   196 

In practice, aerosol extinction is a more meaningful parameter and more relevant for several applications than 197 

backscatter. For the HSRL, the extinction coefficients are linearly converted from the backscatter coefficients by 198 

assuming a constant S = 55 sr with 20% uncertainty, in the same manner as Reid et al. (2017). The estimated Ångström 199 

exponent for 299 and 532 nm is 1.49±0.16, using the data in Figure 1 after considering uncertainties in S for both 200 

lidars. The calculated Ångström exponent is different from the backscatter-related wavelength exponent because of 201 

the wavelength dependence of S. The Ångström exponent from this study (1.49±0.16) is within a reasonable range 202 

compared to previous studies. For example, the Ångström exponent was measured by a Raman lidar to be between 203 

1.35±0.2 and 1.56±0.2 at 355 nm for smoke aerosols in Canada (Strawbridge et al., 2018). The Ångström exponent 204 

for urban aerosols was measured to be 1.4±0.5 in Europe and 1.7±0.5 in North America for 355 and 532 nm (Müller 205 

et al., 2007).  206 

The Aerosol Robotic Network (AERONET) (Holben et al., 1998) provides aerosol optical depth (AOD) 207 

measurements in eight spectral bands between 340 and 1020 nm with a temporal resolution of about 15 min. The 208 

measurement uncertainty for AERONET AOD is within 0.02 and is expected to be larger in the UV bands (Eck et al., 209 

1999; Holben et al., 2001). Even though the measurement is at a different wavelength, the AERONET AOD at 340 210 

nm can provide an additional constraint for the choice of S for the RO3QET aerosol retrieval, especially since both 211 

instruments are at the same location. Figure 2 presents the intercomparison of the RO3QET lidar derived AOD at 299 212 

nm and all available AOD data at 340 nm (Smirnov et al., 2000) from the collocated AERONET sun-sky radiometer 213 

(data for 21–23 June is unavailable). The near-surface region is assumed to be homogeneous and assigned the same 214 

aerosol extinction values as the lowest available 30-m layer from the RO3QET retrievals. Then, the aerosol extinction 215 

coefficients are integrated from 0 to 6 km asl to calculate the lidar-derived AOD. The omission of aerosol extinction 216 

above 6 km and the homogeneity assumption for the near-surface region are sources of bias for the comparison since 217 

the AERONET instrument measures the total column AOD. The lidar has more data and higher temporal resolution, 218 

therefore, the lidar-derived AOD is interpolated to the AERONET measurement times. Figure 2 shows that the AOD 219 

retrieved by the two instruments has a correlation coefficient of 0.97 and a small RMSE for a total duration of about 220 
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31 hours. The mean percentage difference between the RO3QET and AERONET AOD is 15±9%. The S a priori 221 

directly affects the AOD calculation. The lidar-derived AOD is on average 15% larger than the AERONET AOD due 222 

to the shorter wavelength of the lidar measurement, suggesting that the choice of S = 60 sr is appropriate. For a rough 223 

estimation, the 1-σ standard deviation (9%) of the differences can be considered as the uncertainty of S if the variability 224 

of these differences are mostly due to the variation in S. Considering that AERONET measures the column average 225 

AOD, with longer temporal integration, has its own uncertainty, and covers only 38% of the total observational period, 226 

our assumption for S = 60±20% sr is appropriate for RO3QET lidar profiling measurements with higher temporal and 227 

vertical resolution and should be good enough to cover various uncertainty sources. The collocated AERONET data 228 

enhances the credibility of our lidar aerosol retrieval and help evaluate the S a priori, with the caveat that the 124 229 

paired data covering 31 hours is not a large sample. We do not show HSRL-AERONET comparison here since Reid 230 

et al. (2017) have done so using more extensive data in a visible band taken at the UAH site in summer 2013.  231 

Figure 3 presents the intercomparison of the aerosol backscatter retrieved by the HSRL and the RO3QET 232 

lidar for the four cases in 2013. The HSRL-derived aerosol backscatter coefficients are scaled to 299 nm (represented 233 

by “HSRL-converted” hereafter) using the best-fit exponent value å𝛽=1.34. Some clouds lower than 2 km show up in 234 

the HSRL curtains but not in the RO3QET curtains (e. g., 1500–2100 on 15 August and 1500–2100 on 28 August). 235 

These low-cloud-contaminated data were discarded in the RO3QET lidar pre-processing program since the ozone lidar 236 

probes the atmosphere with a shorter wavelength than the HSRL, and is, therefore, more affected by cloud interference. 237 

Profiles with clouds higher than 2 km measured by the RO3QET were retained, and the aerosol retrievals below the 238 

clouds were used for the range-resolving intercomparisons.  239 

In terms of the aerosol measurement evaluation, we pay attention to the two capabilities of the RO3QET lidar: 240 

measuring the PBL diurnal evolution and measuring free-tropospheric smoke layers. In Figure 3, the PBL heights 241 

measured by the two lidars, which are identified by large aerosol gradients, are highly consistent for all cases. The 242 

development of the convective mixing layer in the early morning, an important process responsible for surface ozone 243 

increase, can be visually identified in most RO3QET curtains (e.g., 1400–1700 UTC or 0900–1200 local time in Figure 244 

3-h). The aerosol structures and evolution in the free troposphere measured by the RO3QET lidar are highly similar to 245 

those measured by the HSRL. For example, the RO3QET lidar captured an extremely thin aerosol layer at ~5-km 246 

altitude on 27–28 August (Figure 3-g), which probably originated from the Pacific Northwest fire and has been 247 

discussed by Reid et al. (2017). The large aerosol uncertainties for the RO3QET lidar at far ranges are consistent with 248 

expectation. As demonstrated in Appendix B, aerosol retrieval uncertainties due to lidar signal measurement error and 249 

the boundary value chosen at the reference altitude, two of the most important sources of uncertainty, increase with 250 

altitude and may exceed 100% at ~7 km.  251 

To evaluate the range-resolving capability of the ozone lidar for aerosol retrieval, we intercompared the 252 

aerosol backscatter coefficients, for all cases, from the two instruments with a 10-min temporal resolution and a 30-253 

m vertical resolution after filtering out cloud-contaminated data, as shown in Figure 4. The high correlation coefficient 254 

of 0.95 suggests that the RO3QET lidar can capture the aerosol variability with high spatio-temporal resolution. The 255 

correlation coefficient (0.95) between the two high vertical resolution retrievals is slightly lower than that between the 256 

RO3QET and column-averaged HSRL retrievals (0.99, see Figure 1) due to less vertical average. The HSRL-converted 257 
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backscatter is calculated using å𝛽=1.34 and the regression equation in Figure 1. We expect the slope of the data in 258 

Figure 4 to be very close to 1. However, the actual slope is 1.08, reflecting the fact that there are a large fraction of 259 

points with small aerosol backscatter and larger residuals in clean air (low aerosol) regions. This is not surprising since 260 

the HSRL has higher measurement precision than the RO3QET lidar so that their relative differences in clean air 261 

regions can be large.  262 

Figure 5 presents the mean and 1-σ standard deviations of the relative differences between RO3QET and 263 

HSRL retrievals, (RO3QET-HSRL)/HSRL, to be compared with the theoretical 1-σ error calculated as outlined in 264 

Appendix B. The HSRL measurements are considered as the “true” values to be compared with the RO3QET 265 

measurements. Both the theoretical and actual 1-σ values generally increase with altitude. The actual differences 266 

between RO3QET and HSRL measurements are mostly within or of comparable order of magnitude to the theoretical 267 

calculation of the RO3QET measurement uncertainties. The structures of the theoretical uncertainties are consistent 268 

with the actual differences at most altitudes, with few exceptions. For example, the large discrepancies (red lines 269 

compared to blue lines in Figure 5) occurring at ~4.5 km in Figure 5 (c) and ~1.5 km in Figure 5 (d) are primarily 270 

because of small number division effects for the extremely clean atmospheric layers (also see Figure 3). Aerosol 271 

backscatter of clean air can be accurately measured by the HSRL, but may be beyond the measurement sensitivity of 272 

RO3QET.  273 

In Figure 5, the RO3QET-measured aerosols are generally higher than the HSRL-measured aerosols between 274 

5 and 6 km so that the RO3QET-HSRL differences are biased to positive altitude values. These positive biases can be 275 

caused by two reasons. First, the RO3QET derived aerosol extinction above 5 km is obviously larger than that from 276 

HSRL during daytime due to the solar background impact, which is especially strong in the summer. The relative 277 

differences are even worse in clean (compared to turbid) regions during the daytime because of the small number 278 

division effect mentioned earlier. It can be seen from Figure 3 that RO3QET nighttime retrievals above 5 km and 279 

daytime retrievals below 5 km are relatively good due to either lower solar background or larger lidar signal resulting 280 

in better SNR. There were both clean and smoky layers between 5 and 6 km for the four cases; therefore, the positive 281 

differences cannot be explained solely by the lower capability of RO3QET for measuring clean air. We hypothesize 282 

that another reason causing the positive differences between 5 and 6 km is the underestimated backscatter color ratio 283 

for the smoke aerosols. We converted the HSRL backscatter from 532 to 299 nm using a constant backscatter color 284 

ratio, 1.34, which represents an average for the column-integrated backscatter. The most significant contribution to 285 

integrated backscatter comes from PBL aerosols, which are mostly urban aerosols with a lower backscatter color ratio 286 

than either fresh or aged smoke (Burton et al., 2012; Cattrall et al., 2005). The uncertainty of the backscatter color 287 

ratio was not considered in the error budget of the aerosol retrieval. In addition, we ignored the measurement 288 

uncertainty of the HSRL. Therefore, the general agreement of theoretical estimates of aerosol retrieval uncertainties 289 

and the actual errors suggests that our analysis of the uncertainty sources in Appendix B is reasonable.  290 

4. Conclusions 291 

We have evaluated the aerosol retrievals at 299 nm from the RO3QET ozone lidar using both aerosol retrievals at 532 292 

nm from the University of Wisconsin HSRL and AERONET AOD data at 340 nm from coincident observations at 293 

Huntsville, AL in 2013. The integrated backscatter coefficients below 6 km asl from RO3QET and HSRL are highly 294 
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correlated, with a Pearson coefficient of 0.99 after excluding cloud-contaminated data. The aerosol profiles of 295 

backscatter coefficients at 30-m vertical and 10-min temporal resolution retrieved by RO3QET are also highly 296 

correlated with those from the HSRL with a coefficient of 0.95 suggesting that the ozone lidar is capable of providing 297 

reliable aerosol structure information at high spatio-temporal resolution. Intercomparison of the backscatter product 298 

was performed to avoid additional uncertainty caused by the lidar ratio (S) assumption needed for the HSRL aerosol 299 

extinction retrieval. The RO3QET-measured AOD below 6 km asl is also highly correlated with the AERONET-300 

measured AOD, with a correlation coefficient of 0.97. The 340-nm band of the AERONET AOD data is closest to the 301 

ozone lidar wavelength among the available instruments and can, therefore, provide a constraint for the S assumption 302 

for the ozone lidar. Analysis of the intercomparison of AERONET and RO3QET data confirms that our choice of S = 303 

60 sr at 299 nm is appropriate. The aerosol retrieval algorithm and its error budget are shown in the Appendix. 304 

The primary uncertainty sources for the aerosol lidar retrieval are errors in lidar signal measurement, boundary value 305 

assumption, air density calculation, S a priori, and ozone profile input. The uncertainty in S assumption is a dominant 306 

source at near range, while the lidar signal measurement and boundary value errors dominate at far range, as shown 307 

in Figure B1 for a sample scenario. Within the middle range (PBL top – about 7 km), the air density calculation error 308 

is essential and is larger or comparable to the lidar signal measurement error. The total uncertainty generally increases 309 

with altitude from about 15% in the PBL to consistently higher than 100% above 7 km. Theoretical estimates of the 310 

error budget are generally consistent with RO3QET-HSRL measurement differences.  311 

By assuming a constant S of 60 sr at 299 nm, the backscatter coefficients measured by RO3QET and HSRL 312 

are related by a backscatter color ratio (backscatter-related exponent) of 1.34±0.11 for 299 and 532 nm. The extinction-313 

related Ångström exponent, which is more relevant for various applications, is estimated to be 1.49±0.16 by assuming 314 

S = 55 sr for the HSRL at 532 nm. These exponents represent a summertime average for a mixture of urban pollution 315 

and fire smoke. Separation of aerosol types was not done in this work, although we recognize that S and Ångström 316 

exponent vary with the aerosol phase function and size distribution. Aerosol correction for ozone lidar retrievals will 317 

be described in a subsequent paper.  318 

 319 

Appendix A. Aerosol retrieval algorithm 320 

The ozone DIAL solution can be written as follows: 321 

                         𝑛(𝑟) =
−1

2∆𝜎
×

𝑑

𝑑𝑟
[𝑙𝑛

𝑃on(𝑟)

𝑃off(𝑟)
] + [𝐵] + [𝐸],                                                                            (A1) 322 

where n(r) is the ozone number density at range r; Δσ is the differential ozone absorption cross section; Pon(r) and Poff(r) 323 

are the backscattered on-line and off-line lidar returns; and [B] and [E] represent the differential backscatter and 324 

extinction terms (Browell et al., 1985), respectively, including both molecular and aerosol components. The first term 325 

of the right side of Eq. (A1) is often called the signal term. The subscripts “on” and “off” represent 289 and 299 nm 326 

in this study. The aerosol extinction coefficients at 299 nm are calculated using the following procedure.  327 

1) A first-order Savitzky-Golay differentiation filter with a second-degree polynomial and variable fitting 328 

window widths are applied on 𝑙𝑛
𝑃on(𝑟)

𝑃off(𝑟)
 to compute the signal term. This smoothing method can accommodate the 329 
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rapid decay of the lidar signal with altitude to provide sufficient SNR for ozone retrievals by appropriate selection of 330 

smoothing window widths (Leblanc et al., 2016a).  331 

2) By canceling the lidar constant using the two lidar equations at range r and r+Δr for 299 nm, the aerosol 332 

backscatter coefficients at range r can be expressed as (Uchino et al., 1980): 333 

𝛽𝐴(𝑟) = −𝛽𝑀(𝑟) +
𝑍(𝑟)

𝑍(𝑟+∆𝑟)
[𝛽𝐴(𝑟 + ∆𝑟) + 𝛽𝑀(𝑟 + ∆𝑟)]exp {−2∆𝑟[𝛼𝐴 (𝑟 +

∆𝑟

2
) + 𝛼𝑀 (𝑟 +

∆𝑟

2
) + 𝛼𝑂3 (𝑟 +

∆𝑟

2
)]} , 334 

(A2) 335 

where βA(r) and βM(r)  are aerosol and molecular backscatter coefficients at range r , respectively; 𝑍(𝑟) = 𝑃off𝑟
2 is 336 

the range-corrected lidar signal at 299 nm; αA(r+Δr/2), αM(r+Δr/2), and αO3(r+Δr/2) represent the average aerosol, 337 

molecular, and ozone extinction coefficients between range r and r+Δr, respectively. Assuming the 299-nm lidar ratio, 338 

S=αA/βA, is constant with the range at 60 sr for this study and further assuming:  339 

𝛼𝐴(𝑟 +
∆𝑟

2
) ≈ 𝛼𝐴(𝑟 + ∆𝑟) = 𝑆𝛽𝐴(𝑟 + ∆𝑟),                                                                    (A3) 340 

Eq. (A2) contains only two unknown variables: the aerosol backscatter coefficient βA(r+Δr) and ozone extinction 341 

coefficient αO3(r+Δr/2), which requires knowledge of the ozone number density )2/( rrn  . Molecular backscatter and 342 

extinction can be computed from nearby radiosonde data or a model with acceptable accuracy. For the first iteration 343 

step, )2/( rrn   can be computed from the signal term in Eq. (A1). By assuming a start value βA(ref) at a reference 344 

range and a constant S with range, βA(r) can be solved by Equation (A2). Then, the first βA(r) profile is substituted 345 

back into (A2) to compute the second estimate by using a more accurate form for αA(r+Δr/2) as: 346 

𝛼𝐴 (𝑟 +
∆𝑟

2
) = 𝑆[𝛽𝐴(𝑟 + ∆𝑟) + 𝛽𝐴

′ (𝑟)]/2,                                                                      (A4) 347 

where βʹA(r) represents the value from the first estimate. Typically, a stable solution for βA(r), which does not change 348 

significantly from one iteration step to the next, can be obtained with only three iterations of Eq. (A2) and (A4).  349 

3) The correction terms, [B] and [E], in Eq. (A1) are calculated by the Browell et al. (1985) approximation, 350 

assuming a power-law dependence with wavelength for the aerosol extinction and choosing an appropriate Ångström 351 

exponent. Since this paper focuses only on aerosol retrievals, the details of the ozone corrections will be described in 352 

a future article.  353 

4) Aerosol profiles computed for the three altitude channels are finally merged to a single profile in their 354 

overlapping altitude zones, 0.5–1 km for Channels-1 and 2, 1.5–2 km for Channels-2 and 3. 355 

 356 

Appendix B. Error budget of the aerosol retrieval 357 

Now we investigate five primary error sources affecting each term on the right side of Eq. (A2). In the following 358 

section, we use the notation Δ to represent the absolute uncertainty and δ to represent the relative uncertainty. For a 359 

function Y, derived from several measurement variables x1, x2, …, the uncertainty in Y can be estimated by the 360 

following expression using the first-order Taylor expansion approximation when these variables are independent 361 

(Taylor, 1997):  362 

∆𝑌2 = (∆𝑥1
𝜕𝑌

𝜕𝑥1
)2 + (∆𝑥2

𝜕𝑌

𝜕𝑥2
)2 +⋯ .                                                                (B1)  363 

B.1 Lidar signal measurement error 364 
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The error source to determine the normalized lidar signal ratio term 
𝑍(𝑟)

𝑍(𝑟+∆𝑟)
is the lidar signal measurement error, ΔP. 365 

Although ΔP may be due to various processes such as inaccurate dead-time correction, inaccurate background 366 

subtraction, and signal-induced noise, its dominant component is the lidar signal statistical uncertainty (often called 367 

lidar signal detection noise) and is typically assumed to obey a Poisson distribution. Assuming no error in deciding r, 368 

by using Eq. (A2) and (B1) we obtain the uncertainty of the aerosol backscatter owing to lidar signal measurement 369 

error, ∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

, relative to the total backscatter as: 370 

∆𝛽 (𝑟)𝐴
𝑠𝑖𝑔

𝛽𝐴(𝑟)+𝛽𝑀(𝑟)
= √[𝛿𝑃(𝑟)]2 + [𝛿𝑃(𝑟 + ∆𝑟)]2,                                                     (B2) 371 

where P(r) represents lidar signal counts at r after omitting the wavelength subscript (i.e., 299 nm) and δP(r) is just 372 

the inverse of SNR. Eq. (B2) means that the uncertainty of the aerosol backscatter coefficient due to lidar signal 373 

measurement is determined by the lidar SNR similarly to other remote sensing detection techniques. Consequently, 374 

its relative uncertainty can be written as: 375 

𝛿𝛽 (𝑟)𝐴
𝑠𝑖𝑔

= (
1

𝐵(𝑟)
+ 1)√[𝛿𝑃(𝑟)]2 + [𝛿𝑃(𝑟 + ∆𝑟)]2,                                       (B3) 376 

where B(r)= βA(r)/βM(r) is the aerosol-to-molecular backscatter ratio. As expected, 𝛿𝛽 (𝑟)𝐴
𝑠𝑖𝑔

 has a reverse relationship 377 

with βA(r) since it is a relative uncertainty. Figure B1 shows an example of the uncertainty budget for a 10-min lidar 378 

data profile. The aerosol retrieval uncertainty due to the lidar signal measurement error generally increases with 379 

altitude primarily because of the rapidly decaying lidar SNR.    380 

B.2 Boundary value error 381 

According to Eq. (A2), the uncertainty of the aerosol backscatter at r, 𝛽𝐴(𝑟) , can be induced by the uncertainty of the 382 

backscatter at 𝑟 + ∆𝑟 , 𝛽𝐴(𝑟 + ∆𝑟), due to the iterative computation method. The error propagation between the 383 

adjacent altitudes can be determined by their partial differential relationship. Using the traditional far-end solution by 384 

assuming that the air is clean at a reference altitude, the aerosol uncertainty due to the inaccurate boundary value 385 

assumption propagates downward based on the following equation:  386 

                     𝛿𝛽𝐴
𝐵𝑉(𝑟) = 𝛿𝛽𝐴(𝑟 + ∆𝑟) [

1+
1

𝐵(𝑟)

1+
1

𝐵(𝑟+∆𝑟)

] {1 − 2𝑆∆𝑟𝛽𝐴(𝑟 + ∆𝑟)[1 +
1

𝐵(𝑟+∆𝑟)
]}.                                          (B4) 387 

The yellow line in Figure B1 represents the relative uncertainty of backscatter retrieval due to the boundary value 388 

assumption, 𝛿𝛽𝐴
𝐵𝑉(𝑟) , when 𝛿𝛽𝐴(𝑟𝑏) = 1000%  (i.e., 10 times overestimate at rb =10 km). Despite a large 389 

overestimate at the reference altitude, 𝛿𝛽𝐴
𝐵𝑉(𝑟) decreases toward the ground, to less than 10% below 5.5 km and less 390 

than 1% below 3.5 km. Simulations demonstrate that 𝛿𝛽𝐴
𝐵𝑉(𝑟) for an underestimation of 𝛿𝛽𝐴(𝑟𝑏) (not shown) is better 391 

than that for an overestimation, indicating that the boundary value is preferred at a smaller value. As suggested by Eq. 392 

(B4), 𝛿𝛽𝐴
𝐵𝑉(𝑟) is affected by both S and B. Larger S (if it is correct) results in smaller 𝛿𝛽𝐴

𝐵𝑉(𝑟) and, therefore, aerosol 393 

retrieval errors converge to zero faster. In other words, the smaller the value of S is, the more sensitive the aerosol 394 

retrieval is to the boundary value error. 𝛿𝛽𝐴
𝐵𝑉(𝑟) decreases with an increase of B(r). This means that 𝛿𝛽𝐴

𝐵𝑉(𝑟) is less 395 

affected by the assumed value of 𝛽𝐴(𝑟𝑏)when the aerosol backscatter becomes more important relative to molecular 396 

backscatter, which occurs at longer wavelengths or under turbid air conditions. It is to be noted that 𝛿𝛽𝐴(𝑟𝑏) is 397 

between -1 and +∞ so that the distribution of 𝛿𝛽𝐴
𝐵𝑉(𝑟) is asymmetric with the zero axis.   398 
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In terms of the influence of the boundary value error, we have compared our calculation with an analytical 399 

solution proposed by Kovalev and Moosmüller (1994) (not shown); the results are almost identical. Aerosol retrieval 400 

uncertainty due to incorrect boundary value assumption tends to converge to zero towards the lidar. It is negligible at 401 

lower altitudes, especially in the PBL, when the air is turbid.   402 

B.3 Air density error 403 

According to Eq. (A2), the air density profile affects βM(r), βM(r+Δr), and the optical depth (or transmittance). 404 

Similarly, we can derive the relative uncertainty in aerosol backscatter owing to the uncertainty in the air density 405 

profile as: 406 

𝛿𝛽 (𝑟)𝐴
𝐴𝐷407 

=
√
{
𝛿𝛽𝑀(𝑟)

𝐵(𝑟)
[1 + 𝑆𝑚∆𝑟𝛽𝐴(𝑟) + 𝑆𝑚∆𝑟𝛽𝑀(𝑟)]}

2 + {
𝛿𝛽𝑀(𝑟 + ∆𝑟) [

1
𝐵(𝑟)

+ 1]

𝐵(𝑟 + ∆𝑟) + 1
[1 − 𝑆𝑚∆𝑟𝛽𝐴(𝑟 + ∆𝑟) − 𝑆𝑚∆𝑟𝛽𝑀(𝑟 + ∆𝑟)]}2 408 

. (B5) 409 

Sm represents the molecular extinction-to-backscatter ratio, which is a constant (8π/3). The two parts in the square root 410 

are the components due to the uncertainties at r and r+Δr, respectively. Each component includes the influences from 411 

both molecular backscatter and optical depth. When Δr is small, the contribution of the optical depth error is much 412 

smaller than that of the molecular backscatter error so that (B4) can be approximated as: 413 

     𝛿𝛽 (𝑟)𝐴
𝐴𝐷 ≈ √2

𝛿𝛽𝑀(𝑟)

𝐵(𝑟)
.                                                                   (B6) 414 

It is to be noted that ΔβM(r) and ΔβM(r+Δr) are independent errors as assumed in Eq. (B1). If they are correlated, Eq. 415 

(B5) will partly cancel out with their covariance term, which is not shown in (B1). Due to the nature of the iterative 416 

computation method, 𝛿𝛽 (𝑟 + ∆𝑟)𝐴
𝐴𝐷  affects 𝛿𝛽 (𝑟)𝐴

𝐴𝐷  as noted in Eq. (B4), so that the aerosol retrieval uncertainty due 417 

to air density error will propagate downward. However, model simulation suggests that the systematic error of the air 418 

density calculation has little impact on the aerosol retrieval because of the cancelation of the effect at r and r + Δr. Eq. 419 

(B6) means the uncertainty in the calculation of molecular backscatter will mostly linearly propagate to aerosol 420 

backscatter. If the 2-σ precision of a radiosonde is 0.3 K and 0.5 hPa for temperature and pressure measurements 421 

(Hurst et al., 2011), the propagated uncertainty onto molecular backscatter is only about 0.1%. However, the real 422 

disturbance of an atmosphere deviating from the actual air density profile may be more significant since there are 423 

usually only a few radiosonde profiles available every day. Hence, we assume δβM(r) to be 1%, and the resulting 424 

aerosol retrieval uncertainty is represented by the green line in Figure B1. 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  can be tens of percent in the free 425 

troposphere and is an important error source for aerosol retrievals (Russell et al., 1979). 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is less than 10% in 426 

the PBL because of more turbid air in that region. Since δβM(r) is assumed to be a constant in this example, the 427 

variation of 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is mostly a result of varying B(r), the aerosol-to-molecular backscatter ratio. Since B(r) generally 428 

increases with an increase in wavelength, 𝛿𝛽 (𝑟)𝐴
𝐴𝐷  is expected to be smaller at longer wavelengths. Therefore, the 429 

aerosol retrieval is less sensitive to the air density error at longer wavelengths.  430 

B.4 Lidar ratio error 431 

By using Eqn. (A2) and (B1), the relative uncertainty in aerosol backscatter due to incorrect lidar ratio (S) assumption 432 

can be calculated as follows: 433 
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                                                      𝛿𝛽 (𝑟)𝐴
𝑆 = 2 [

1

𝐵(𝑟)
+ 1]∆𝑆𝛽𝐴(𝑟)∆𝑟.                                                                       (B7) 434 

𝛿𝛽 (𝑟)𝐴
𝑆  due to ΔS at only range r appears to be small, about 1%, when Δr is specified at 22.5 m. However, ΔS varying 435 

with altitude is mostly systematic and, therefore, 𝛿𝛽 (𝑟)𝐴
𝑆  at every altitude will propagate downward, and these effects 436 

will accumulate. The error accumulation is not straightforward to compute as an analytical solution. However, these 437 

effects can be simulated numerically. S is highly variable, and it is difficult to estimate its actual uncertainty range. In 438 

this study, we assume that 𝛿𝑆 = 20% (or ΔS =12 sr) according to both previous study (Müller et al., 2007) and the 439 

analysis using the collocated AERONET AOD data at 340 nm. The light-blue line in Figure B1 shows that the 440 

accumulative uncertainties in the aerosol backscatter due to ΔS using Eq. (B7) and (B4) are close to the assumed 20% 441 

uncertainty for 𝛿𝑆. 𝛿𝛽 (𝑟)𝐴
𝑆  is the largest error source in the PBL which is the near range of the lidar measurement. 442 

𝛿𝛽 (𝑟)𝐴
𝑆  decreases with an increase in wavelength because of increasing B(r). In other words, 𝛿𝛽 (𝑟)𝐴

𝑆  is less sensitive 443 

to ΔS at longer wavelengths.   444 

B.5 Ozone error 445 

Similar to S, the ozone uncertainty affects only the transmittance term in Eqn. (A2) and its error propagation on aerosol 446 

backscatter retrieval can be expressed as: 447 

                                                            𝛿𝛽 (𝑟)𝐴
𝑂3 = 2 [

1

𝐵(𝑟)
+ 1]∆𝛼𝑂3(𝑟)∆𝑟.                                                               (B8) 448 

𝛿𝛽 (𝑟)𝐴
𝑂3  is proportional to the [

1

𝐵(𝑟)
+ 1] factor and ozone absorption uncertainty, meaning that 𝛿𝛽 (𝑟)𝐴

𝑂3  is smaller at 449 

longer wavelengths due to larger aerosol scattering ratio and smaller ozone absorption. When Δr is specified at 22.5 450 

m,  𝛿𝛽 (𝑟)𝐴
𝑂3  is less than 0.3%. We still simulate the vertical accumulation of 𝛿𝛽 (𝑟)𝐴

𝑂3  using Eq. (B4). As noted earlier, 451 

the systematic errors of the DIAL ozone measurement tend to accumulate while the random errors tend to cancel out. 452 

The dominant error source for lidar measurements at the far range is typically the lidar signal detection noise, a type 453 

of random error. Therefore, for purposes of estimation, we assume a 5% constant DIAL retrieval uncertainty primarily 454 

covering the uncertainties due to ozone absorption cross section, non-ozone gas interference, and signal saturation 455 

effect (Leblanc et al., 2018; Wang et al., 2017). As shown in Figure B1, the simulated aerosol retrieval uncertainty 456 

due to ozone is relatively minor and is less than 5% at most altitudes.  457 

In summary, the uncertainties in aerosol backscatter retrieval for the ozone lidar are controlled by ΔS at near 458 

ranges (i. e., in the PBL) where the air is most turbid and are determined by both the lidar signal detection error and 459 

inaccurate boundary value assumption at far ranges (higher than 7 km) where the air is typically clear. In the middle 460 

range of the lidar measurement (PBL top – 7 km), the air density calculation error may become a significant error 461 

source for aerosol retrieval and may have a comparable influence on the aerosol retrieval as the lidar signal 462 

measurement error. Relative to the above four uncertainty sources, ozone DIAL retrieval error is relatively 463 

unimportant, especially in the lower altitudes where lidar SNR is large enough. All the uncertainty terms are affected 464 

by the aerosol-to-molecular backscatter ratio, B(r), which represents the relative importance of the aerosol component 465 

in both extinction and backscatter processes. Based on the above uncertainty budget analysis, we conclude that the 466 

RO3QET lidar is capable of measuring aerosol profile reliably below 6 km with the current laser output power.  467 
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 615 

Figure 1. Regression of ozone DIAL and HSRL derived integrated aerosol backscatter between 0.4 and 6 km asl using 616 

the best least-squares fit, resulting in a backscatter color ratio of 1.34 for 299–532-nm for four cases in 2013. All the 617 

data was taken at Huntsville, AL, USA, during summer 2013. 618 
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 619 

Figure 2. RO3QET DIAL derived AOD between 0 and 6 km at 299 nm using S=60 sr compared to collocated 620 

AERONET AOD at 340 nm for (a) 14–15 August, (b) 27–28 August, and (c) 5–6 September 2013. (d) Regression of 621 

the paired data after the DIAL AOD is interpolated to the times of AERONET AOD measurements.   622 
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 623 

Figure 3. HSRL-converted aerosol backscatter coefficients (a, b, c, d) compared to RO3QET lidar-derived aerosol 624 

backscatter coefficients at 299 nm (e, f, g, h), with 10-min temporal resolution and 30-m vertical resolution. The data 625 

was taken from 21–23 June (a, e), 14–15 August (b, f), 27–28 August (c, g), and 5–6 September (d, h) 2013. The 626 

HSRL-converted aerosol backscatter coefficients are scaled from the original retrievals at 532 nm to 299 nm using 627 

Eq. (1) and å𝛽=1.34. 628 
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 630 

Figure 4. Regression of ozone lidar measured and HSRL-converted aerosol backscatter coefficients (interpolated to 631 

299 nm with å𝛽=1.34) with 30-m vertical resolution and 10-min temporal resolution. The regression line is a little 632 

curved in the logarithmic scale because the intercept is not exactly zero. 633 

  634 



 

22 

 

 635 

Figure 5. Relative differences between RO3QET and HSRL-converted aerosol backscatter measurements, (RO3QET-636 

HSRL)/HSRL, made from (a) 21–23 June, (b) 14–15 August, (c) 27–28 August, and (d) 5–6 September 2013. The 637 

gray and black lines represent the differences for the10-min individual aerosol backscatter profiles and their mean, 638 

respectively. The blue lines represent the actual 1 σ of the differences compared to the theoretical 1 σ (red lines) of 639 

the RO3QET lidar aerosol measurement.   640 
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 642 

 643 

Figure B1. An example of (a) aerosol backscatter profile retrieved from 10-min ozone lidar data at about 8:30 UTC 644 

on 22 June 2013 and (b) the retrieval error budget for different uncertainty sources. The lidar data was from the 645 

Channel-3 receiving system, which covered most of the measurement altitude range, and was arbitrarily chosen for a 646 

cloud-free scenario.   647 
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