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Abstract. This study investigates the magnitude of the noise introduced by the co-registration and interpolation in computing 

Stokes vector elements from observations by the Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI). The 2-D 

polarimetric measurements from the Second-Generation Global Imager (SGLI) are weighted and averaged to produce two 

proxy datasets of the 3MI measurements, with and without considering the effect of the satellite motion along the orbit. By 

comparing these two datasets, we estimate the magnitude of the noise introduced by co-registration and interpolation that are 10 

necessary to offset the satellite’s motion along the orbit. The results show that the noise is not symmetric about zero and not 

negligible when the intensity variability of the observed scene is large. The results are analyzed in four categories of pixels, 

and the most spread distribution of normalized polarized radiance difference is in the cloud-over-water category with the 5th 

to 95th percentile range being [-0.0051:-0.012]. The most spread distribution of degree of linear polarization difference is for 

the coastline category with the same percentile range being [-0.019:0.082]. A model using Monte Carlo simulation confirms 15 

that the magnitude of these errors over clouds are closely related to the spatial correlation in the horizontal cloud structure. For 

the cloud-over-water category, it is shown that the noise model developed in this study can statistically predict the magnitude 

and trends of the 3MI noise estimated from SGLI data. The obtained statistics and the simulation technique can be utilized to 

provide pixel-level quality information for 3MI Level 1B products. In addition, the simulation method can be applied to the 

past, current, and future spaceborne instruments with a similar design. 20 

1. Introduction 

The Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI) is a planned spaceborne sensor on the MetOp Second 

Generation-A (MetOp-SG-A) satellite platform. The sensor consists of two wide field-of-view cameras with narrow-band 

wavelength filters, inheriting the legacy of the Polarisation and Directionality of the Earth’s Reflectance (POLDER) sensor. 

The rotating wheel carries 31 filters that enable polarimetric measurements at 9 wavelengths and non-polarimetric 25 

measurements at 3 wavelengths (Fougnie et al. 2018). The spatial resolution at nadir is 4 km and the instantaneous swath is 

2200 km. The MetOp-SG-A series expects the launch of three identical platforms with seven-year intervals, providing 

continuous and homogeneous monitoring of the Earth’s weather and climate for 21 years. The 3MI sensors on these platforms 
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are anticipated to perform multi-viewing and multi-channel polarimetric observation at unparalleled spatial and temporal 

scales. 30 

As increasingly advanced retrieval techniques are used to extract atmospheric composition parameters from multispectral and 

polarimetric observations (Knobelspiesse et al. 2012; Fu and Hasekamp 2018; Dubovik et al. 2019), the knowledge and 

reduction of uncertainties associated to polarimetric measurements become more and more critical. In particular for all 

techniques relying on optimal estimation, the correct understanding of observational uncertainties, as discussed in details by 

Povey and Grainger (2015), is pivotal to obtain meaningful and successful retrieval. With no onboard calibration, the 3MI 35 

sensor needs to rely on inflight vicarious calibration techniques to monitor and assess the instrument radiometric performances. 

In addition to several existing methods (Fougnie, 2016), new techniques are being developed to improve the 3MI calibration 

(Djellali et al., 2019) and synergies with other sensors of the METOP-SG A platform will also be beneficial (Fougnie et al., 

2018).  

The radiometric performance of the instrument however is not the only factor driving the overall measurement uncertainties 40 

especially for polarimetric observations where the useful quantities (Stokes parameters) are not directly measured but derived, 

for example, from a set of different radiances. Therefore, the polarimetric performance of the 3MI instrument will depend both 

on the radiometric accuracy and the process used to derive the Stokes parameters. This paper investigates in particular the 

uncertainty induced by this derivation process in order to provide instantaneous, realistic, and quantitative estimate of 

polarization noise at pixel level for the 3MI instrument or similar sensors.  45 

The 3MI instrument derives the first three Stokes parameters (𝐼, 𝑄, and 𝑈) by synthesizing three wide-field-of-view images 

that are taken sequentially at 0.25 seconds interval.  Each of three images is acquired with linear polarizer oriented in different 

directions with polarizing axis being -60°, 0° and 60° with respect to the direction of the satellite’s orbital motion (along-track 

direction). However, within the 0.25-second interval, the instantaneous field of view (IFOV) shifts by 1.8 km on the ground 

because of the motion of the satellite. The shifts between the acquired images lead to the need for the interpolation and co-50 

registration to compensate the satellite’s along-track motion before the computation of the Stokes parameters. These non-

simultaneous acquisitions therefore introduce a possible source of noise in the polarimetric observation by the 3MI sensor due 

the co-registration and the interpolation required to match the three images. 

The magnitude of noise due to the interpolation and co-registration is expected to be neither spatially uniform nor symmetric 

about zero, and therefore cannot be removed by spatio-temporal averaging. This is because the intensity in the original images 55 

and the polarized normalized radiance (𝐿%) are not linearly related. We define the normalized radiance (𝐿) and, in analogy, the 

polarized normalized radiance as follows: 

𝐿 = '(
)*

             (1) 

𝐿% =
'
)*
+𝑄,- + 𝑈,-,           (2) 

where 𝐼 is the intensity, 𝑄, and 𝑈, are the second and third elements of Stokes vector in terms of intensity, 𝐸1 is the beam flux 60 

of the extraterrestrial solar radiation. The degree of linear polarization (DOLP) is defined as follows: 
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DOLP = 23
2
.            (3) 

Assuming three ideal polarizers with a perfect alignment, the normalized radiance and the polarized normalized radiance can 

be computed from the original intensity measurements 5𝑋781, 𝑋1, 𝑋%819 as follows: 

𝐿 = -
:
'
)*
5𝑋781 + 𝑋1 + 𝑋%819          (4) 65 

𝐿% =
-√-
:

'
)*
<(𝑋781 − 𝑋1)- + 5𝑋1 − 𝑋%819

-
+ 5𝑋%81 − 𝑋19

-
,       (5) 

where 𝑋781 corresponds to the intensity with the polarizer aligned -60° off from the along-track direction, 𝑋1 to 0° off, and 

𝑋%81 to +60° off. Equation (5) demonstrates that the noise in the original images and the normalized polarized radiance are not 

in linear relation. Rather, the noise tends to suppress the polarization for strongly polarized target and tends to enhance the 

polarization for weakly polarized target. As the quality of the retrieval product hinges on the quality of the radiance product 70 

and ancillary information that delivers the reliability, the quantification of the noise triggered by the interpolation and co-

registration is significantly useful in the quality control of both Level 1B and Level 2 data products. 

Section 2 describes the data and methods used in this study, Section 3 the results, and Section 4 the discussion on the simulation 

of the noise statistics. Conclusions are given in Section 5. 

2. Data and methods 75 

2.1 Data 

In this study, we produce 3MI proxy polarimetric measurements from the actual high-resolution polarimetric measurements 

obtained by the Second-Generation Global Imager (SGLI) aboard the Global Change Observation Mission – Climate (GCOM-

C) satellite (Imaoka et al. 2010). The SGLI sensor provides polarized normalized radiances at 1 km nadir resolution within a 

1150 km-wide swath. As the SGLI is a push-broom sensor, the interpolation noise is expected to be negligible compared to 80 

that introduced by the 3MI’s more complex co-registration and interpolation. We treat the SGLI measurement as truth and 

evaluate the magnitude of noise introduced by the interpolation and co-registration by producing 3MI-proxy data. One week 

of global SGLI Level 1B data near the 2008 September equinox (September 20-26) is used. As the GCOM-C satellite is in the 

sun-synchronous orbit at 800 km altitude with descending-node local time of 10:30, the data from the SGLI is valuable to 

simulate measurements from the 3MI that is anticipated also in the sun-synchronous morning orbit at 830 km altitude. 85 

2.2 Methods 

2.2.1 Estimation of the noise 

As the nominal resolution of the 3MI is 4 km and that of the SGLI is 1 km, 4 × 4 SGLI pixels are aggregated to produce a 

3MI pixel. We repeat the aggregation for every 4 × 4 SGLI pixel blocks in three original (“Lt_P2_m60”, “Lt_P2_0”, and 
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“Lt_P2_p60”) radiance data in the SGLI Level 1B product. These three datasets correspond to the radiance measured at 0.869 90 

µm with polarizers at three different directions at -60°, 0°, and 60° with respect to the along-track axis of the satellite (i.e., 

𝑋781, 𝑋1, 𝑋%81). From the aggregated data, we compute the normalized radiance and polarized normalized radiance by Eqs. 

(4) and (5). The results are referred to as “reference data” hereafter. 

A similar method is applied to produce the 3MI “proxy data” which is compared to the reference data to estimate the magnitude 

of the noise. The proxy data is different from the reference data in that it incorporates the effects of satellite’s motion and 95 

interpolation. To simulate the motion of satellite between the acquisition of each image (1.8 km), we compute the contribution 

of every SGLI pixel to the shifted 4 × 4 grid as in Table 1. The contribution factors are multiplied to the measured radiance in 

every SGLI pixel to perform the weighted average. After computing the weighted average, we obtain the shifted, aggregated 

images of “Lt_P2_p60” and “Lt_P2_m60” from which unshifted (with respect to the “Lt_P2_0” image) aggregated images are 

produced by linear interpolation. The linear interpolation is selected for the simplicity and the locality, but the noise estimation 100 

described in this subsection as well as the noise simulation detailed in Subsection 2.2.3 could be performed with other methods 

of interpolations if deemed necessary for specific applications. The final contribution factors are summarized in Table 2. From 

these unshifted aggregated images, we compute the normalized radiance (𝐿) and the normalized polarized radiance (𝐿%) by 

Eqs. (4) and (5), and call it the “proxy data”. 

The comparison of the proxy and reference data is performed on a pixel-by-pixel basis. In every pixel, the difference of 105 

polarized normalized radiance Δ𝐿% and the difference of degree of linear polarization ΔDOLP are computed. These differences 

are attributed to the noise induced by the pixel co-registration and the interpolation. 

2.2.2 Stratification of data 

To further the analysis of the noise, we classify pixels into four categories: coastlines, clear sky over land, clouds over land, 

and clouds over water. The classification is based on the land-water flag in the SGLI Level 1B dataset and the cloud flag 110 

algorithm developed for this study. The activity diagram (flow-chart) of the cloud flag algorithm is shown in Fig. 1 while 

individual test conditions are listed in Tables 3 (pixels over water) and 4 (pixels over land). To compute cloud flag in the SGLI 

Level 1B POLDK product’s coordinate, other SGLI L1B products (VNRDK, VNRDL, IRSDK, and IRSDL products) are 

projected onto the POLDK grid. Once the cloud flag is derived, both land-water flag and cloud flag are extended into the 

along-track directions by 20 SGLI pixels to cover all SGLI pixels used for the noise estimation and to minimize the pixels on 115 

boundaries. A pixel is classified as “clear-sky over land” when it is flagged as “confidently clear” and “land cover 100%”, 

“cloud over land” when it is flagged as “confidently cloudy” and “land cover 100%”, “cloud over water” when “confidently 

cloudy” and “land cover 0%”, and “coastline” when land cover is between 5% and 95%. Only pixels with glint angle greater 

than 35° are collected for coastlines and cloud-over-water classes to avoid contamination by sun glints. 

In every class of data, the aforementioned differences (Δ𝐿% and Δ𝐷𝑂𝐿𝑃) are stratified by the along-track Laplacian that is 120 

defined as follows: 
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𝐿FG =
'
)*
(2𝑋1 − 𝑋IJ − 𝑋KJ),          (6) 

where 𝑋IJ is the 𝑋1 of the adjacent pixel in the negative along-track direction, and 𝑋KJ is the 𝑋1 of the adjacent pixel in the 

positive along-track direction. The along-track Laplacian is a measure of the non-linearity of the local intensity change in the 

along-track direction. We select this metric because we expect that the major source of the noise is the spatial inhomogeneity 125 

of the total radiance that propagate through the linear interpolation performed in the co-registration. 

2.2.3 Prediction of noise 

Alongside the noise estimation from the SGLI Level 1B data, the statistics of the noise is predicted with a Monte-Carlo model 

for pixels in cloud-over-water class. We generate synthetic 2-D normalized radiance fields by the inverse 2-D Fourier 

transform, assuming the power-low spectrum of the normalized radiance distribution. We then proceed through with the 130 

weighting and aggregation equivalent to the method described in Section 2.1. This process is repeated for 10 million samples 

to realize meaningful statistics. The details of the method are described in the rest of this subsection. 

The first step is to apply inverse 2-D Fourier transform to the assumed power-law spectrum with Gaussian noise as in the 

method described by Iwabuchi and Hayasaka (2002). A number of studies show that the intensity spectrum of the cloud field 

follows the power-law (Cahalan and Snider 1989, Davis et al. 1997, Marshak et al. 1995, 1998, Oreopoulos et al. 2000) and 135 

the slope is known to be a function of horizontal spatial scale. For the scale greater than a few hundred meters and less than a 

few hundred kilometers, the power-law coefficient is between -1.5 and -2.0, and the value increases for the smaller. We select 

−5/3 (1.666⋯) as the power-law coefficient in our simulation. 

Every synthetic 2-D normalized radiance field that is generated in this way are different. They are however statistically centered 

at zero, and their variance depends on the prescribed power-law coefficient. In the second step, to make the simulation 140 

consistent with the SGLI-based estimation, we scale and add offset to each realization as in the following equation: 

𝐿(,,R) = 𝑎𝑥(,,R) + 𝑏,           (7) 

where 𝐿(,,R)  is the final 2-D normalized radiance field, 𝑥(,,R)  the output of the inverse Fourier transform, 𝑎  the scaling 

coefficient and 𝑏 the offset. The scale 𝑎	and offset 𝑏 are determined so that the pixel intensity 𝐿W = ∑ 𝑤,𝐿,,  and weighted 

variance 𝑉 = ∑ 𝑤,(𝐿, − 𝐿W)-,  follow the observed empirical distribution function (EDF) of normalized radiance 𝐹\2(𝑙) and 145 

weighted variance 𝐹\̂ (𝑣; 𝑙). These EDFs are computed from the SGLI data upon performing the noise estimation described in 

Section 2.1. The EDF of variance 𝐹\̂ (𝑣; 𝑙) is computed for each small normalized radiance interval, spanning from 0 to 0.9 

with 0.01 width, from 0.9 to 1 with 0.05 width, and from 1 to 1.5 with 0.5 width. The weight 𝑤, is the arithmetic mean of final 

weights in Table 2 for every line (i.e. for Line 5, it is 1/16 + 9/320 + 11/320 =1/240). 

The third step is to compute 𝑋J(,,R) , 𝑋-(,,R) , and 𝑋:(,,R)  from the 2-D normalized radiance field 𝐿(,,R) , the angle of linear 150 

polarization (AOLP) 𝜒, and the degree of linear polarization (DOLP) 𝛿. The AOLP are sampled so that it follows the EDF of 

AOLP 𝐹\c(𝛼; 𝑙), and the DOLP are sampled so that it follows EDF of DOLP 𝐹\e(𝛿; 𝑙). The AOLP is assumed constant over 

subpixels for each realization, but the DOLP is sampled for each subpixel because of the strong intensity-dependence with 
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weak spatial correlation. Figure 2 shows the strong decreasing trend of the DOLP with intensity. We note here that the statistics 

of the intensity-stratified DOLP and the statistics of AOLP have been found necessary for the reasonable simulation of the 155 

polarimetric noise. This is presumably because the DOLP varies significantly as a function of reflectivity at cloud boundaries 

and over thin clouds, and the AOLP determines the relative contribution of noise in 𝑋J  and 𝑋:  images to the polarized 

normalized radiance (𝐿%). 

Once 𝑋J(,,R), 𝑋-(,,R), and 𝑋:(,,R)  are obtained, the last step is to proceed through with the weighting and aggregation equivalent 

to the method described in Section 2.1. This entire process of 2-D Fourier transform, scaling, and 𝑋J-𝑋--𝑋: derivation is 160 

repeated 10 million times.  

3. Results 

3.1 Evaluation of the noise 

The difference of DOLP between the proxy and reference data is shown in Fig. 3 (a) with corresponding visible composite in 

Fig. 3 (b). The figure covers the western French coast, English Channel, and the southern Great Britain island. Figure 3 (a) 165 

shows that the DOLP difference can reach close to 0.4 along the coastlines, particularly in a part where the coastline runs in 

the cross-track direction. There is little negative DOLP difference near positive values, implying that the distribution of the 

DOLP difference is not symmetric about zero. Along the edges of thin clouds, for example over the Atlantic in the western 

part of the Fig. 3, positive and negative DOLP differences are mixed. The magnitude of the noise is smaller over thick clouds 

covering the eastern end of English Channel than along coastlines. Figure 3 demonstrates that the magnitude of noise 170 

introduced by the interpolation is not negligible over the scene where intensity variation is large. 

It is not only over coastlines that the distribution of noise is asymmetric about zero. In Figs. 4 and 5, we show histograms of 

degree of linear polarization (DOLP) and polarized normalized radiance (𝐿%) differences for four different classes of pixels 

defined in Sect. 2.2.2: coastlines, clear sky over land, clouds over land, and clouds over water. Figures 4 and 5 show that the 

distributions of the proxy-reference differences are not symmetric about zero and rather skewed to the right (having fat tail in 175 

the right end of the histogram) in all classes of data. The tail of DOLP difference histogram is particularly fat for cloud-over-

water and coastlines classes, where sharp reflectance gaps near coastal water or cloud edges induce strong polarization artifact. 

The asymmetry can be confirmed from the 5th to 95th percentile range and 25th to 75th percentile range (interquartile range) 

of the estimated DOLP and 𝐿% noise as presented in Table 5. The coastlines class has the most spread distribution of DOLP 

differences, and the 5th-95th percental range is [−0.019:0.082]. On the other hand, the cloud-over-water class has the most 180 

spread distribution of 𝐿%  differences, and the 5th to 95th percentile range is [−0.0051: 0.012] . The asymmetry of the 

distribution implies that the noise cannot be completely cancelled out by computing the spatial average. 

Figure 6 shows the proxy-reference differences stratified by the along-track Laplacian (𝐿FG). As the 𝐿FG	increases, the median 

of the noise as well as the spread increase. For clouds over land and clouds over water, the spreads of the distributions saturate 
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when 𝐿FG/𝐿 increases, while for coastlines the spread of the distribution does not saturate. In the clear-sky-over-land class, the 185 

spread reaches a peak at 𝐿FG/𝐿 = 0.15. Good stratifications by the along-track Laplacian shown in this study imply that the 

magnitude of the noise is predictable from the image of 𝑋1 (intensity with polarizer at 0° off the along track direction), which 

is used to compute the 𝐿FG  and observationally available. 

The distribution of polarized normalized radiance difference (𝐿% difference) is also stratified well by the along-track Laplacian 

(𝐿FG), and Fig. 7 show the increase of median with increasing 𝐿%. In similar way as for the DOLP difference, the spreads of 190 

distributions for cloudy classes saturate at about 𝐿FG = 0.1, whereas it does not for the coastlines class. The spread for the 

clear-sky pixels over land does not show a maximum as seen in the distribution of the DOLP differences.  

A straightforward implication of the clear stratification is that it is possible to predict the quality of polarization data in every 

pixel. For example, the median bias and the standard deviation can be estimated for every pixel because they are computable 

from the obtained statistics and observed 𝑋1 (and derived 𝐿FG) value. Such information would prove useful for the quality 195 

control of retrieval products as well as data assimilation or any retrieval algorithm requiring pixel level uncertainty estimates. 

3.2 Prediction of noise 

Figure 8 shows the predicted magnitude of noise based on the Monte Carlo simulation for cloudy pixels over water. The 

simulation predicts the median (red curves) that matches well to the estimation based on the SGLI data (dotted curves). As the 

empirical 95th percentile of the 𝐿FG/𝐿 is 0.39 and that of 𝐿FG  is 0.070, the abscissas of Fig. 8 cover the large portion of the 200 

plausible range of the data. A slight overestimation of the DOLP difference occurs in the entire range, but the maximum 

difference is 0.0010 (i.e. 2.2%) in the bin 0.36 < 𝐿FG/𝐿 < 0.365 . The difference between the predicted and estimated 

normalized polarized radiance is less than 10I:  in 𝐿FG < 0.12. The difference reaches 1.5 × 10I:  (i.e. 5.4%) in the bin 

0.16 < 𝐿FG < 0.17. Overall, the simulation can predict the median of the noise estimation at better than 5% accuracy. 

The successful prediction of the noise by the statistical model implies that the noise distribution in the cloud-over-water class 205 

inferred from the SGLI data is a result of the inherent horizontal structure of clouds. The method is likely be applicable to 

other spatial scale to predict the magnitude of noise of the past, current, and future polarimetric instruments sharing similar 

designs. In the application to other satellite data, it is necessary to collect the several statistics that are used in the simulation, 

namely, normalized radiance distribution, normalized-radiance-stratified sub-pixel inhomogeneity (weighted variance), 

normalized-radiance-stratified DOLP, and normalized-radiance-stratified AOLP. However, most of these statistics are readily 210 

available from observations (past and current sensors) or simulations (future sensors). The exception is the sub-pixel 

inhomogeneity that may be a challenging parameter to obtain if a past or current sensor has no collocated high-resolution 

imaging measurements, but one could replace it with an alternative measure of the local inhomogeneity, for example, the 

variance of X_0 in the along-track direction. The modeling technique in this work is therefore particularly helpful for the 

preparation for future missions. 215 
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4. Discussions 

In this study, our simulation of the noise statistics assumes power-law coefficient (−5/3), but it is known that the power-law 

coefficient varies depending on type of clouds and spatial scale. A well-known example is for the scale break that occurs in 

the Landsat radiance data over stratocumulus clouds. When the spatial scale is less than a few hundred meters, the power law 

coefficient becomes significantly smaller (i.e. the spectrum becomes steeper). Smaller power-law coefficient means that low-220 

frequency structures pronounce more than high frequency structures. As a result, when a lower power-law coefficient is 

specified, the simulated 2-D normalized radiance field looks more horizontally homogeneous, introducing smaller noise in 

simulated 3MI polarimetric measurements. 

To test the sensitivity of our prediction to the specified power-law coefficient, we simulate the noise statistics for two other 

extreme cases. Figure 8 shows the stratified magnitude of noise in the DOLP and 𝐿% when no correlation between neighboring 225 

subpixel is assumed, and Fig. 9 when smaller power-law coefficient (−3.0) is assumed. 

When there is no spatial correlation in the cloud intensity, the magnitude of simulated noise is larger than the estimates based 

on the SGLI data. The median of SGLI-based estimate is out of the interquartile range of the simulation (gray shading in Fig. 

8) for a significant range of 𝐿FG/𝐿 and 𝐿FG . On the other hand, Fig. 9 shows that the magnitude of simulated noise is slightly 

lower when smaller power-law coefficient (−3.0) is assumed. In addition, we note that the SGLI noise estimation for the 230 

clouds-over-land category also shows the slope between these two extremes.  

From these results, we propose that the spatial correlation of intensity due to the natural cloud structure should be considered 

when predicting the statistics of noise over clouds. For the 3MI sensor, the higher resolution observations provided by the VII 

sensor (Wallner et al, 2017) aboard the same METOP-SG A platform might be used to further constrain the along track scene 

spatial correlation and therefore useful to improve the pixel-level polarimetric uncertainty estimates. 235 

5. Conclusions 

From the high-resolution global polarimetric observation by the SGLI, we estimate the 3MI’s polarimetric noise induced by 

the co-registration and interpolation that compensates satellite’s along-track motion during the acquisition. The estimates show 

that the magnitude of the noise introduced by interpolation is not negligible or asymmetric about the zero particularly over the 

locations where intensity variation is large. 240 

The asymmetric distribution of the noise is confirmed in all four categories of analyzed pixels: clear-sky over land, clouds over 

land, clouds over water, and coastlines. The coastlines category had the most spread distribution of the degree of linear 

polarization (DOLP) difference, whereas the cloud-over-water class had the most spread distribution of the polarized 

normalized difference (𝐿%) differences. The 9th to 95th percentile range was [−0.019:0.082] for the DOLP differences and 

[−0.0051: 0.012] for the 𝐿% differences. These differences are well stratified by the along-track Laplacian that characterizes 245 

the non-linear change of the normalized radiance (𝐿%  difference), or that divided by the normalized radiance (DOLP 
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difference). As the along-track Laplacian is available from the observation, a pixel-level quality information can be obtained 

based on the statistics presented in this study. In addition, it is possible to perform the statistical estimation of noise when the 

sub-pixel inhomogeneity is available as an input. Either procedures proposed in this study would help ensure the reliability of 

the radiance products and downstream applications including retrieval products as well as data assimilation. 250 

The noise statistics based on the SGLI data and Monte Carlo simulation agree within 5% in terms of median bias, implying 

the predictability of the noise for cloudy pixels at an arbitrary spatial scale. The sensitivity study on the assumed power-law 

coefficient proved the need for the spatial correlation to be included in the noise prediction. The method of prediction is 

applicable to past, current and future missions with a polarimetric instrument based on a similar design, paving a way to better 

predict the performance of the instrument on orbit at the stage of planning. Finally, although simulations presented here are 255 

limited to cloudy scenes, similar diagnosis might be made for land surfaces under clear sky conditions for use in aerosol remote 

sensing applications. 
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Figure 1. The activity diagram (flow-chart) of the cloud-flag algorithm.  315 
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Figure 2. Decreasing trend of the degree of linear polarization for pixels over water with increasing intensity. The solid line is median, 
dashed lines are 25th and 75th percentile (interquartile range). 

 
Figure 3. (a) The DOLP difference between proxy and reference data. (b) The visible composite of the SGLI Level 1B data the same 320 
zone (visualized by authors, original data by JAXA).  
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Figure 4. Histogram of proxy-reference differences in degree of linear polarization (DOLP) for (a) clouds over water, (b) clouds over 
land, (c) coastlines, and (d) clear-sky over land.  
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 325 
Figure 5. Histogram of proxy-reference differences in normalized radiance (𝑳) for (a) clouds over water, (b) clouds over land, (c) 
coastlines, and (d) clear-sky over land.  
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Figure 6. The proxy-reference differences in degree of linear polarization stratified by the along-track Laplacian divided by 
normalized radiance. Four panels are for: (a) clouds over water, (b) clouds over land, (c) coastlines, and (d) clear-sky over land. Red 330 
curves represent the median and gray shading indicate the interquartile range.  
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Figure 7. The proxy-reference differences in polarized normalized radiance stratified by the along-track Laplacian. Four panels are 
for: (a) clouds over water, (b) clouds over land, (c) coastlines, and (d) clear-sky over land. Red curves represent the median and gray 
shading indicate the interquartile range. Gray hatched area corresponds to the part where statistics is unavailable or unreliable 335 
because of limited number of data points.  
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Figure 8. (a) The simulated proxy-reference difference in the degree of linear polarization stratified by the along-track Laplacian 
divided by normalized radiance (b) The simulated proxy-reference difference in the polarized normalized radiance stratified by the 
along-track Laplacian. Red curves represent median and gray shading indicate the interquartile range of the simulation. Black 340 
dotted curves correspond to the medians of the observation (i.e. Red curves in Figs. 6(a) and 7(a)). 

 

 
Figure 9. The same as Fig. 8 but without correlation in the cloud field simulation. 

 345 
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Figure 10. The same as Fig. 8 but with slope of -3.0  
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Table 1. Contribution of SGLI pixels to shifted and unshifted averaging grids for a single 3MI pixel. These weights are intended to 
simulate the along-track motion of the satellite. 

Line 
Weights for the 

unshifted grid 

Weights for the shifted 

grid (+1.8 km) 

Weights for the shifted 

grid (-1.8 km) 

1 0 0 0 

2 0 0 1/20 

3 0 0 1/16 

4 1/16 0 1/16 

5 1/16 1/80 1/16 

6 1/16 1/16 1/80 

7 1/16 1/16 0 

8 0 1/16 0 

9 0 1/20 0 

10 0 0 0 

 350 
Table 2. Contribution of SGLI pixels to shifted and unshifted averaging grids for single 3MI pixel. These weights include the effects 
of satellite’s along-track motion and the interpolation. 

Line 
Weights for the 

unshifted grid 

Weights for the shifted 

grid (+1.8 km) 

Weights for the shifted 

grid (-1.8 km) 

1 0 0 0 

2 0 9/1600 0 

3 0 9/320 11/400 

4 0 9/320 11/320 

5 1/16 9/320 11/320 

6 1/16 47/1600 11/320 

7 1/16 11/320 47/1600 

8 1/16 11/320 9/320 

9 0 11/320 9/320 

10 0 11/400 9/320 

11 0 0 9/1600 

12 0 0 0 
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Table 3. Tests for the cloud detection algorithm over water. 𝑰𝑿𝑿𝑿 indicates the normalized radiance at wavelength 𝑿𝑿𝑿 nm, 𝑩𝑻𝑿𝑿 
the brightness temperature at 𝑿𝑿 µm, 𝝈𝑿𝑿𝑿 the standard deviation of 𝑰𝑿𝑿𝑿 in the concentric box of 𝟑 × 𝟑 pixels. 355 

Test condition Test type Weight 

(𝐼J8:1/𝐼u8u.v 	< 1.2)	 and (𝐵𝑇J1.u < 288K) and (𝐼8z:.v > 0.2) Cloudy 1 

𝐼8z:.v > 0.45 Cloudy 10 

(𝐼8z:.v > 0.35) and (𝜎8z:.v > 0.01) Cloudy 10 

(𝐼8z:.v > 0.15) and (1 < 𝐼8z:.v/𝐼u8u.v 	< 1.1) and (𝐵𝑇J1.u < 295K) Cloudy 10 

(𝐼8z:.v > 0.2) and (𝜎8z:.v > 0.005) and (𝐼8z:.v/𝐼J8:1 	< 1.4) Cloudy 100 

(𝐵𝑇J1.u − 𝐵𝑇J- < −1K)	and (𝐵𝑇J1.u < 300K) Cloudy 1000 

(𝐼J8:1/𝐼u8u.v 	> 1.3) and (𝐵𝑇J1.u > 300K) Clear-sky 1 

(𝐼8z:.v/𝐼u8u.v 	< 0.7) Clear-sky 10 

(𝜎8z:.v < 0.1) and (0.2 < 𝐼8z:.v < 0.5) and (1.5 < 𝐼J8:1/𝐼8z:.v 	< 10) Clear-sky 100 

𝐼J8:1/𝐼8z:.v > 2.2 Clear-sky 100 

(𝐵𝑇J1.u − 𝐵𝑇J-) and (𝐵𝑇J1.u > 300K) Clear-sky 1000 

}
𝐼u8u.v − 𝐼8z:.v
𝐼u8u.v − 𝐼J8:1

} > 2 Clear-sky 1000 

 
Table 4. Tests for the cloud detection algorithm over land. The symbols are the same as in Table 3. 

Test condition Test type Weight 

(𝐼J8:1/𝐼u8u.v 	< 1.2) and (𝐵𝑇J1.u < 288K) and (𝐼8z:.v > 0.2) Cloudy 1 

(𝐼u8u.v > 0.1) or (𝜎u8u.v > 0.005) Cloudy 10 

𝐼J8:1 > 0.1 Cloudy 100 

(𝐵𝑇J1.u − 𝐵𝑇J- < −1K) and (𝐵𝑇J1.u < 300K) Cloudy 1000 

𝐼J:u1 > 0.01 Cloudy 1000 

(𝐼J8:1/𝐼u8u.v > 1.3) and (𝐵𝑇J1.u > 300K) Clear-sky 1 

(𝐼8z:.v/𝐼u8u.v < 0.7) and (𝐼u8u.v < 0.05) Clear-sky 10 

0 < 𝜎u8u.v/𝐼u8u.v < 0.01 and 𝐼u8u.v < 0.1 Clear-sky 100 
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Table 5. The intervals of degree of linear polarization difference (DOLP) and polarized normalized radiance (𝑳𝒑) difference for 
percentiles that covers 90% and 50% of entire data.  360 

Percentile 

range 

Pixel class DOLP difference 𝐿%	difference 

[5th:95th] Clear-sky over land [-0.011:0.016]  [-0.0023:0.0032]  

 Cloud over land [-0.0075:0.014]  [-0.0033:0.0062]  

 Cloud over water [-0.023:0.060]  [-0.0051:0.012]  

 Coastlines [-0.019:0.082]  [-0.0033:0.012]  

[25th:75th] Clear-sky over land [-0.0029:0.0040]  [-0.00069:0.00087]  

 Cloud over land [-0.0016:0.0030]  [-0.00058:0.0012]  

 Cloud over water [-0.0032:0.011]  [-0.00090:0.0027]  

 Coastline [-0.0026:0.015]  [-0.00034:0.0027]  
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