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Abstract. During most volcanic eruptions and many periods of volcanic unrest, detectable quantities of sulfur dioxide (SO2)

are injected into the atmosphere at a wide range of altitudes, from ground level to the lower stratosphere. Because the fine ash

fraction of a volcanic plume is, at times, collocated with SO2 emissions, global tracking of volcanic SO2 is useful in tracking

the hazard long after ash detection becomes dominated by noise. Typically, retrievals of SO2 loading have relied heavily

on hyperspectral ultraviolet measurements. More recently, infrared sounders have provided additional loading measurements5

and estimates of the SO2 layer altitude, adding significant value to real-time monitoring of volcanic emissions as well as

climatological analyses. These methods leverage the relative simplicity of infrared radiative transfer calculations, providing

fast and accurate physics-based retrievals of loading and altitude.

In this study, we detail a probabilistic enhancement of an infrared SO2 retrieval method, based on a modified trace-gas

retrieval, to estimate SO2 loading and altitude probabilistically using the Cross-track Infrared Sounder (CrIS) on the Joint Polar10

Satellite System (JPSS) series of satellites. The methodology requires the characterization of real SO2-free spectra aggregated

seasonally and spatially. The probabilistic approach replaces loading and altitude estimates with non-parametric probability

density functions, fully quantifying the retrieval uncertainty. This framework adds significant value over basic loading and

altitude retrieval because it can be readily incorporated into Monte Carlo forecasting of volcanic emission transport.

We highlight results including successes and challenges from analysis of several recent significant eruptions including the15

22 June, 2019 eruption of Raikoke volcano, Kuril Islands; the mid-December, 2016 eruption of Bogoslof volcano; and the 26

June, 2018 eruption of Sierra Negra volcano, Galapagos Islands. This retrieval method is currently being implemented in the

VOLcanic Cloud Analysis Toolkit (VOLCAT), where it will be used to generate additional cloud object properties for real-time

detection, characterization, and tracking of volcanic clouds in support of aviation safety.

1 Introduction20

During most volcanic eruptions and many periods of volcanic unrest, detectable quantities of sulfur dioxide (SO2) are injected

into the atmosphere at a wide range of altitudes, from ground level to the lower stratosphere. Often early in eruptions the fine ash

fraction of a volcanic plume is collocated with SO2 emissions and so ash tracking can be performed by proxy; however, later ash

and SO2 tend to evolve along different trajectories due to subtly differences in altitude and removal processes (Karagulian et al.,
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2010; Corradini et al., 2010; Sears et al., 2013; Moxnes et al., 2014). Early collocation of SO2 and ash is highly significant25

for informing forward trajectory models (e.g., HYSPLIT) of volcanic clouds as is performed in response to Volcanic Ash

Advisories (VAAs) reported by the global network of Volcanic Ash Advisory Centers (VAACs). Becasue fine ash and SO2

eventually diverge along different trajectories, due in large part to altitude differences, layer height estimates are critical for

ash and SO2 cloud estimates. Although volcanic ash presents a demonstrated threat to aviation (e.g., ICAO, 2012; Casadevall,

1994; Prata and Rose, 2015; Guffanti et al., 2010), SO2 also presents an aviation safety concern, mainly as a human health30

hazard and damage by sulfuric acid, as well as impacts on global climate and air quality (Chin and Jacob, 1996; Prata, 2009;

Carn et al., 2009; Robock, 2000).

Globally, measurements of SO2 loading have previously relied heavily on low-earth orbiting hyperspectral ultraviolet (UV)

instruments including the Ozone Monitoring Instrument (OMI), Ozone Mapping and Profiler Suite (OMPS), and Global Ozone

Monitoring Experiment–2 (GOME-2) (e.g. Krotkov et al., 2010; Carn et al., 2017; Li et al., 2017; Theys et al., 2013). More35

recently, efforts to improve UV methods have focused on high-cadence UV measurements made from the Deep Space Climate

Observatory - Earth Polychromatic Imaging Camera (DSCOVR-EPIC) at the Earth-Sun (L1) Lagrange point (Carn et al.,

2018) as well as high spatial resolution SO2 loading and limited layer height measurements from the Tropospheric Monitoring

Instrument (TROPOMI) (Theys et al., 2019; Hedelt et al., 2019). In the last decade, infrared sounders such as the Infrared

Atmospheric Sounding Interferometer (IASI) have provided additional SO2 loading measurements and estimates of the layer40

altitude, providing significant added value to real-time monitoring of volcanic emissions as well as climatological analyses

(Walker et al., 2011, 2012; Carboni et al., 2012, 2016; Clarisse et al., 2014; Bauduin et al., 2016). These methods leverage the

relative simplicity of infrared radiative transfer calculations, providing fast and accurate physics-based retrievals of loading and

altitude. Furthermore, infrared methods enable global coverage throughout the year as opposed to UV-based methods which

require incident sunlight, limiting effectiveness at high latitudes during the polar night.45

In this study, we detail a probabilistic enhancement of the infrared SO2 retrieval method of Clarisse et al. (2014), based on a

modified trace-gas retrieval (Walker et al., 2011) to estimate SO2 loading and altitude probabilistically utilizing the Cross-track

Infrared Sounder (CrIS) currently aboard the Suomi-NPP (SNPP) and NOAA-20 satellites as part of the Joint Polar Satellite

System (JPSS). The NOAA Unique CrIS/ATMS Processing System (NUCAPS) already includes a retrieval of SO2 from CrIS

data (Gambacorta, 2013); however, it is based on a heritage algorithm designed to estimate many trace gases from cloud cleared50

radiances in one retrieval whereas we focus more specifically on the problem of retrieving SO2 in any background atmosphere

from all available CrIS measurements. The methodology requires the characterization of the background mid-wave infrared

spectrum of the SO2-free atmosphere, which is done by collecting the statistics of more than 360 million SO2-free CrIS spectra

aggregated seasonally and spatially. The probabilistic approach replaces loading and altitude estimates with non-parametric

probability density functions, fully quantifying the retrieval uncertainty. This framework adds significant value because it can55

be readily incorporated into Monte Carlo forecasting of volcanic emission transport.

In this study we highlight results including successes and challenges from analysis of several recent significant eruptions

including the 22 June, 2019 eruption of Raikoke volcano, Kuril Islands; the mid-December, 2016 eruption of Bogoslof volcano;

and the 26 June, 2018 eruption of Sierra Negra volcano, Galapagos Islands. This retrieval method is currently being imple-
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mented in the VOLcanic Cloud Analysis Toolkit (VOLCAT, https://volcano.ssec.wisc.edu/ ; Pavolonis et al., 2013, 2015a, b,60

2018), where it will be used to generate additional cloud object properties for real-time detection, characterization, and tracking

of volcanic clouds in support of aviation safety.

2 Probabilistic SO2 layer retrieval theory

2.1 Classical methods for height retrieval

As a preliminary we discuss several methods which we describe here as “classical". In fact these methods are relatively recent;65

however, they do not make full use of the probability spaces which we will exploit here. Previous analyses of the height

and distribution of volanic SO2 plumes using data from the Infrared Atmospheric Sounding Interferometer (IASI) instrument

by Carboni et al. (2012), Clarisse et al. (2014), and Carboni et al. (2016) utilized the ability to linearize a forward radiative

transfer model around a climatological mean state for the concentration of trace SO2, a method originally outlined by Walker

et al. (2011). Employing the notation of Rodgers (2000), the theory of this retrieval relates a set of parameters governing the70

concentration of a trace gas (SO2 in this case) comprising the true state (x) to a set of measurements y, typically brightness

temperature spectra by a forward radiative transfer model F. As in Pavolonis (2010), all radiative transfer model simulations

used in this study were performed using the LBLDIS tool (Turner, 2005), which utilizes the Line-by-Line Radiative Transfer

Model (LBLRTM; Clough and Iacono, 1995) to compute gaseous absorption and the Discrete Ordinate Radiative Transfer

(DISORT) model to complete the radiative transfer calculation (including multiple scattering).75

The above trace gas methods for infrared sensors rely on the ability to write the data and true state each as a sum of

the climatological average (y,x) and an anomaly (ỹ, x̃) as y = y + ỹ and x = x + x̃ respectively. Linearizing around the

climatological average gives:

y + ỹ = F(x;u) + Kx̃ + εtot (1)

where u is a collection of best estimates of all auxiliary parameters necessary to the forward model including the state of80

the atmosphere, surface and the instrument. K is the Jacobian matrix of F linearized about x and εtot is the total error

associated with the measurement, linearization, and other surface and atmospheric properties (including clouds) that influence

the measured radiances. Because it is inferred that y = F(x;u), the equation for the error can be written simply as

εtot = ỹ−Kx̃. (2)

From this formula, the retrieval of x̃ can proceed either by maximum likelihood estimation, iterative methods such as Levenberg-85

Marquard and gradient descent algorithms, or other methods.

The analysis of Carboni et al. (2012) imposed an a priori Gaussian vertical distribution over pressure coordinates for the

SO2 concentration, retrieving only the total column SO2, the mean pressure and the standard deviation (spread). By contrast,

Clarisse et al. (2014) developed a system in which the SO2 is assumed to exist in a narrow layer and an iterative retrieval is
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performed for the total column concentration. For a very narrow layer, the concentration profile of anomalous SO2 (the true90

state) can be represented with the Dirac delta function of height:

x̃ = xδ(h−h0) (3)

where the gas of mass loading x is concentrated at the altitude h0. In reality, the layer has some thickness and the concentration

is non-uniform. However, this abstraction is made for the benefit of complex probability calculations to follow. Using this form

of the concentration profile, the model spectrum is then a function of the mass loading and the layer height. Because the model95

Jacobian for the trace gas retrieval is calculated at the background state, the Jacobian is the limit

K = K(x̄,h0) := lim
ε→0

F
[
(x̄+ ε)δ(h−h0);u

]
−F

[
x̄δ(h−h0);u

]

ε
. (4)

For SO2, the climatological background state (x̄) is taken to be zero. In practice, calculating the limit is computationally

prohibitive so the limit is dropped and the perturbation (ε) is taken as 5 DU. Below we refer to the height-dependent Jacobian

calculated at the zero-background simply as K(h). Additionally, radiative transfer models do not have an implementation of100

the Dirac delta, and consequently, a layer of finite thickness (1 km) is used which is an approximation to the Dirac delta.

Following Clarisse et al. (2014), this Jacobian can be used to calculate a height-dependent statistical z-score, measuring the

relative confidence in the state estimate:

z(h;y,y) = [Kᵀ(h)S−1K(h)]−
1
2 Kᵀ(h)S−1(y−y) (5)

where the error covariance matrix S is built up from spectral residuals (y−y) on measurements with low or no detectable105

SO2 present. The criteria for this discrimination are detailed in a later section. Note that the factor Kᵀ(h)S−1K(h) is a scalar

at each height h. Here, z(h;y,y) is the statistical z-score (number of standard deviations from the mean) of finding the SO2

anomaly at elevation h given the data y and linearization about the mean spectrum y. Using this z-score function of height,

Clarisse et al. (2014) estimated the layer height (which we refer to as hC) as that which maximizes the z-score function:

hC := argmax
h

z(h;y,y). (6)110

Throughout the remainder of this work we use a functional notation to describe this height retrieval:

hC = g(y,y) = argmax
h

z(h;y,y). (7)

2.2 Probabilistic enhancement

Although the classical methods make use of maximum likelihood estimation and are therefore probabilistic in the sense that

they retrieve the maximum likelihood estimate and the retrieval uncertainty estimate, they make an assumption of normality115

about the input and output variables. Although this is workable for many types of retrieval, it is unsuitable for the height

retrieval in particular as follows. Instead of calculating the mean and covariance of the climatological background, we treat the

background spectrum as a random vector Y, where the channels (each of the sampled wavenumbers) are correlated random
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variables, each characterized by its own marginal probability distribution. In reality, these distributions may belong to a family

of parameterized distributions; however, in this study they are non-parametric, only characterized by a histogram on each120

channel and a covariance structure:

S = E
[
(Y−E[Y])(Y−E[Y])ᵀ

]
(8)

where the expectation operator is approximated by averaging over all samples. In this framework, the z-score function is a

conditional random variable given the layer height h:

Z(h;y,Y) = Z|H=h = [Kᵀ(h)S−1K(h)]−
1
2 Kᵀ(h)S−1(y−Y) (9)125

and the height is a random variable:

H := g(y,Y). (10)

The underlying assumption made by the classical method of Clarisse et al. (2014) is that Y is a multivariate normal random

vector with mean y = E[Y] and covariance S, meaning that Z is a standard normal random variable (Z ∼N (0,1)). This fact

about the z-score is expected to hold in the present case with the full probabilistic characterization of Y which may not be130

Gaussian because the z-score is the sum over all of the channels in bvecY . The principal enhancement over the classical method

comes from the height retrieval. Because the function g is highly nonlinear, due to the argmax function, in general the mean

height is not equal to the height calculated by Clarisse et al. (2014), that is

E[H] = E[g(y,Y)] 6= g(y,E[Y]) = hC . (11)

Furthermore, hC is not generally the maximum likelihood height either (hC 6= mode[H]). Consequently, without a clear un-135

derstanding of what hC is measuring in terms of statistics, its probability distribution is unknown.

This study aims to estimate the probability distribution of H and show the importance of its probability density function

(PDF) in making predictions about the cloud. We enhance the method of Clarisse et al. (2014), by retrieving a probabilistic

SO2 layer, that is, we retrieve the SO2 layer height as a random variable H (Fig. 1).

In practice, we retrieve this PDF in a Bayesian framework. In this framework, we represent the height PDF as the posterior140

distribution due to a prior estimate fpriorH (h) of the distribution and a likelihood function L(h;y) based on the data (evidence).

The likelihood function is constructed by Monte-Carlo (MC) sampling of Y and retrieving the height due to a background

spectrum given by MC random sampling according to the marginal PDFs of Y and its covariance S (Fig. 1). The process for

sampling this non-Gaussian correlated random vector is detailed in Appendix A. In this study we generate 10,000 samples of

Y each denoted ys ∈ ΩY where ΩY is the sample space of Y. Each height sample is generated as:145

hs = g(y,ys), (12)

that is we construct the random variable from elements of the sample space hs ∈ ΩH . The likelihood function is then recon-

structed by kernel density estimation (KDE) of these height samples, that is

L(h;y) = KDE({hs}). (13)
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Figure 1. : Flowchart showing probabilistic framework for Monte Carlo height and loading retrieval, yielding a PDF for the height which

is not generally Gaussian and may even be skewed and a Gaussian distribution of conditional mass loading (X̂|H=h). The height re-

trieval of Clarisse et al. (2014) is shown schematically in red lines, giving a single height estimate which is not in general the mean height

(approximately the black dotted line in the height PDF).

We impose a Gaussian prior with mean and variance given by MC sampling using the model columns that make up the150

Jacobian with noise added. Specifically, we use the Jacobian corresponding to the traditional Clarisse et al. (2014) height

retrieval (hC). The appropriate zero-mean noise is generated by Y−E[Y] and the model spectral anomaly is F
[
εδ(h−hC);u

]
−

F
[
0;u
]

= εK(hC). The mean and variance can therefore be expressed as




µpriorH = E[g(εK(hC),Y−E[Y])]

(σpriorH )2 = Var[g(εK(hC),Y−E[Y])].

(14a)

(14b)

These values are similar to Fig. 2 of Clarisse et al. (2014), although they are calculated for each column to accommodate155

the spatial variation of the background. With the prior Gaussian distribution (fpriorH ) parameterized by µpriorH and σpriorH , our

estimate of the height distribution is

fH(h)∝ L(h;y)fpriorH (h) (15)

where the proportionality is eliminated by normalizing the posterior PDF such that the total probability is unity.

Although slower than retrieving the layer height (hC) due to a mean spectrum alone, this distribution provides significantly160

more information including the full PDF of H . This PDF may be used to calculate the maximum likelihood, expected value,
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or median value of the retrieved height or probabilities of finding the plume in a given altitude interval. Additionally, this PDF

is essential for calculating the mass loading correctly according to probability theory as detailed in the following section.

2.3 Probabilistic Mass Loading

Although this method is used primarily for detection (using z-scores) and height estimation, it is also used to estimate the165

mass loading, which we treat here as a random variable X̂ . Because the total column depends strongly on the layer height, we

calculate the conditional loading random variable after Walker et al. (2011, 2012):

X̂|H=h = cosθ [Kᵀ(h)S−1K(h)]−1Kᵀ(h)S−1(y−Y) (16)

where an air mass factor equal to the cosine of the satellite zenith angle (cosθ) has been applied. This formula is in some

sense a probabilistic enhancement of an optimal unconstrained least-squares mass loading estimate. Similar to the z-scores,170

this function is normally distributed at every height with mean E[X̂ |H=h] and variance Var[X̂ |H=h]. In practice, these

are calculated by the same MC sampling used to generate the height samples. The conditional loading is a random function

of height which generally reflects the principles of the Beer-Lambert Law for any given realization. If the height of the SO2

layer were known exactly, this function could be queried and the loading could be estimated. However, since the height of the

layer is known only probabilistically, that is as measured by the PDF fH(h), additional computation is required to determine175

the loading.

Although we do not know the vertical profile of SO2 concentration, the retrieval assumptions involve the thin layer repre-

sentation of the SO2 as a Dirac delta. The total column is then

X̂ =

∞∫

0

X̂δ(h−H)dh (17)

which does not depend upon the height. More generally, the cumulative mass loading below a certain altitude h is:180

X̂(h) =

h∫

0

X̂δ(η−H)dη (18)

which is zero for h <H and equals X̂ for h >H . Because the concentration profile is linear in the loading and the conditional

loading calculated above is normally distributed, we take the loading to be normally distributed, thus requiring only two

parameters: the mean and variance which can be found using the conditional loading function calculated above. In this study,

integration is performed numerically over a discretely sampled height domain. Sketches of the proofs for the mean, variance,185

and covariance formulae below are detailed in Appendix B.

The mean loading is found by the law of total expectation:

µX̂(h) := E[X̂(h)] =

h∫

0

fH(η) E[X̂ |H=η]dη (19)
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where the expectation of the conditional loading is taken as the mean of the samples.

The variance can also be calculated from the statistics of the conditional loading expectation:190

σ2
X̂

(h) := Var[X̂(h)] =

h∫

0

fH(η)
[
Var[X̂ |H=η] +

(
E[X̂ |H=η]

)2]dη−µ2
X̂

(h) (20)

where Var[X̂ |H=h] and E(X̂ |H=h) were previously estimated by MC sampling.

The covariance between cumulative mass loading up to two altitudes h= a and h= b with b≥ a is

ΣX̂(a,b) := Cov[X̂(a), X̂(b)] = σ2
X̂

(a)−µX̂(a)
(
µX̂(b)−µX̂(a)

)
(21)

which is always less than Var[X̂(a)] unless a= b since the loading is cumulative, yielding larger values at higher altitudes.195

Of particular importance, these formulae may be used to calculate the expectation and variance values of the mass loading

between two altitudes. The expected value is

E[X̂(b)− X̂(a)] = µX̂(b)−µX̂(a). (22)

and the variance for this loading is

Var[X̂(b)− X̂(a)] = σ2
X̂

(b) +σ2
X̂

(a)−ΣX̂(a,b) = σ2
X̂

(b) +µX̂(a)
(
µX̂(b)−µX̂(a)

)
. (23)200

In this system, we retrieve probabilistic SO2 information in two stages. In the first stage we perform an initial detection using

the classical method (Eq. 5) to pre-screen each CrIS field of view (FOV) that likely contains SO2, taken as an initial maximum

z-score greater than 5, that is, z(hC ;y,y)> 5 (Walker et al., 2011, 2012; Clarisse et al., 2014). In the second stage, we retrieve

the height PDF and the mean and variance cumulative loading functions of height for each CrIS FOV that satisfies this initial

z-score threshold. In both stages, the background spectrum and covariance are interpolated spatially at the CrIS FOV center205

location by a bilinear interpolation scheme using the four nearest grid cells (Appendix C).

2.4 Specialized Retrieval for Strong Loading

For strong SO2 columns, which we define here heuristically as z > 200, an alternate retrieval is needed to increase sensitivity

to large loading. This is clear from examination of the chosen formula for approximating the Jacobian (Eqn. 4) in which

the background state (x̂) is zero DU and the perturbation (ε) is 5 DU. For strong loading, the sensitivity of the Jacobians to210

additional SO2 is greatly reduced for most CrIS channels, so linearized Jacobians with only a 5 DU anomaly will drastically

under predict the loading for a given brightness temperature difference (Fig. 2b). In order to construct a Jacobian that is more

sensitive at higher mass loading values, the Jacobian must be dominated by channels with approximately linear responses (Fig.

2b). These channels were determined by constructing Jacobians with various anomaly strengths and choosing those channels

for which the Jacobians are approximately constant over anomaly strength. This channel subset (Appendix D) is used with215

the original 5 DU Jacobian which can be extrapolated successfully to high loading values because of the approximately linear

model. From (Fig. 2) it is clear that the channels with the most linear response are also those which are least sensitive to
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Figure 2. : a) Channel-wise brightness temperature difference response to increasing mass loading. All channels here are used in the original

retrieval. Red channels are used in the high loading retrieval due to their mostly linear response across the full range of reasonable mass

loading. b) Height dependent Jacobians (normalized) showing specialized channel selection in (a).

SO2 loading. However, by applying this new retrieval only when strong loading (z > 200) is detected by the original retrieval,

nontrivial brightness temperature differences are guaranteed. In theory, a sequence of increasingly restricted retrievals could be

implemented to increase the sensitivity to even stronger loading values, such a study is beyond the scope of the present work.220

2.5 Background State Construction

At every stage of the retrieval, the background state of the volcanic SO2-free atmosphere must be accurate in order for this

linearized method to succeed. Consequently, calculating accurate statistics of the background state is paramount. The CrIS

instrument collects almost 3 million spectra per day, allowing for robust characterization of the background spectrum including

variation across seasons and locations.225

In constructing the background spectrum PDFs and covariance matrix, the periods with little or no SO2 must be determined.

We utilize the detailed record of global volcanic SO2 emissions from the IASI SO2 retrieval algorithm (L. Clarisse, pers.

comm.) between 1 November, 2017 and 1 November, 2018, collecting all spectra measured on days with maximum total

columns less than 1 DU SO2 present anywhere in the atmosphere (Fig. 3a).

This omission leaves more than 3.6×108 SO2-free spectra collected by CrIS over the one year period. We classify the spectra230

regionally and seasonally, partitioning the data into four seasons and 5◦× 5◦ latitude and longitude grid cells yielding 10,368

bins (Fig. 4), each of which has a full set of PDFs for each channel and a covariance matrix characterizing the correlation

9
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Figure 3. : a) IASI-derived days with (blue) and without (white) SO2 columns ≥ 1 DU in the one year background construction interval

(1 Nov. 2017 - 1 Nov., 2018). Date intervals across top define seasons. b) Histogram showing the number of S-NPP CrIS spectra in each

latitude, longitude cell totaled over the one year interval.

structure among the channels. This partitioning reduces the the overall variability represented in the mean spectra and thus also

reduces the magnitude of the error covariance matrix entries while still capturing the fundamental variability due to spectral

trends between regions and throughout a year.235

3 Results

3.1 Test Case I: Raikoke, Kuril Islands, 2019

At approximately, 18:00 UTC on June 21, 2019 (4:00 AM local time), Raikoke volcano in the Kuril Islands erupted for the first

time since 1924 (Sennert, 2019; Hedelt et al., 2019). The strongest pulses of the eruption rose to an altitude of approximately

13 km, forming an umbrella cloud which was quickly advected to the east by strong winds. In the first hours of the eruption,240

SO2 columns of > 900 DU (Hedelt et al., 2019, >1000 DU, S. Carn, pers. comm.) were detected. The strongest individual

measurement made by our method (48.52107 N, 167.25615 W, 15:22:25 UTC, 22 June, 2019) had a mean total column of 432

DU with standard deviation total column of 15 DU (Fig. 5); however, because there is significantly greater uncertainty within
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Figure 4. : S-NPP CrIS mean (a) and standard deviation (b) brightness temperature at 1300 cm−1 for each grid cell and each season

interval. The red grid cell corresponds to the data shown in (c). c) Marginal PDF of the background spectrum indicated by the red cell in

(a,b) with mean spectrum (red dashes) and several individual marginal PDFs (right) shown.

the support of the height PDF, the largest value of mean plus uncertainty occurs just below the upper end of the height PDF
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Figure 5. : NOAA-20 CrIS mean total mass loading (a) and median height (b) early in the evolution of the Raikoke eruption cloud. Star

indicates location of (c). c) Probabilistic retrieval of SO2 layer altitude (PDF, green) and cumulative mass loading (mean, blue solid; mean

± standard deviation, blue dotted; PDF, colorbar) for the strongest individual total column measured by CrIS in the Raikoke cloud (48.52107

N, 167.25615 W, 22 June, 2019, 15:22:25 UTC).

support (Fig. 5c). This underestimate early in the Raikoke cloud history was likely due two factors, channel saturation despite245

the specialized strong column retrieval and the fact that the footprint of the CrIS FOVs leaves many gaps where extremal

values could have been present. As described above, more specialized retrievals could be devised to increase the sensitivity

to very strong loading as in the Raikoke case; however, such schemes are beyond the scope of this work, which is principally

concerned with advances in height information. Within about one day, the ash and SO2 were entrained into a large extratropical

cyclone which heavily distorted the dispersion of the cloud, with the SO2 cloud being pushed to the north and dispersing in250

both easterly and westerly directions (Fig. 6). Early in this complex dispersion, SO2 columns remained strong despite a rapid

decline in eruptive output. This is most likely a result of the convergence caused by entrainment into the cyclone. Based on the

probabilistic retrieval and tropopause data from the National Centers for Environmental Prediction (NCEP), it is clear that the

vast majority of the SO2 cloud mass was in the lower stratosphere, with only a small lower layer in the mid-upper troposphere

which had mostly dispersed after the first week (Fig. 6b-l). After one month, the SO2 cloud had spread out over most of the255

northern hemisphere above 30◦ N with most columns < 2 DU; however, some columns remained as strong as 20 DU. After

two months, traces of the SO2 cloud remained over Northern Canada and the Hudson Bay with columns up to 1 DU.
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Figure 6. : Time evolution (top to bottom) of the Raikoke SO2 plume from NOAA-20 CrIS showing the expected value total column loading

(a,e,i), the expected value stratospheric column loading (b,f,j), the probability that the SO2 layer is in the stratosphere (c,g,k) and the median

layer height (d,h,l). The height of the tropopause was calculated from daily NCEP reanalysis data.

3.2 Test Case II: Early Detection of SO2 Emission from Bogoslof Volcano, Aleutian Islands, 2016

In the 2016 - 2017 eruptive period at Bogoslof volcano, 70 explosive events were identified (Coombs et al., 2018, 2019). The

first five explosions were not detected in real time, and could only be identified and characterized after reanalysis of satellite260

and other data sources (Coombs et al., 2019). The first CrIS detection of the SO2 cloud from this sequence of explosions

occurred at UTC 22:48 on 16 December, 2016 (approximately 300 km NE of Bogoslof), which was most likely the Event 4

(UTC 18:39) SO2 plume drifting downwind (Coombs et al., 2018, 2019). As noted in Coombs et al. (2018), the USGS Alaska
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Figure 7. : Upper: Initial (classical) z-score (a), mean total column (b), and median height (c) for an explosion from Bogoslof very early in

the 2016 - 2017 eruption (S-NPP CrIS). Lower: Height PDFs (d) and expected (mean) cloud concentration (e), mean concentration profiles

for the detected SO2 cloud. Retrievals from the high noise S-NPP CrIS FOV 7 (red dotted in lower panel) are not shown in (a,b,c).

Volcano Observatory (AVO) was not able to issue a Volcanic Activity Notice (VAN) for this event and consequently no height

information was generated until the reanalyses of Schneider et al. (2020) in which a cloud height of 6.1 km was determined.265

This small pulse was not observable by the multispectral infrared remote sensing methods nor by automated analysis of multi-

spectral signatures and cloud growth rates (Pavolonis et al., 2013, 2015a, b, 2018; Schneider et al., 2020). The CrIS estimated

heights are mainly clustered between 5 - 8 km with some scatter due to localized cloud edge effects (Fig. 7c,d). This is broadly

consistent with the reanalysis of Schneider et al. (2020).

Of particular importance in this small cloud made up of only a few CrIS FOVs, the midwave IR for FOV 7 on the CrIS270

instrument aboard S-NPP is significantly nosier (above specification) than that of other FOVs (Zavyalov et al., 2013; Han et al.,

2013) and consequently, the FOV 7 retrievals are highly suspect and have been omitted (Fig. 7). Because the probabilistic

framework allows the calculation of a mean cumulative mass loading, we may derive a formula for the mean or expected
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concentration profile by similar means as for Eq. 19:

E[C(h)] = E[
d

dh
X̂(h)] = fH(h) E[X̂ |H=h] (24)275

which is shown for FOVs in the detected Bogoslof cloud (Fig. 7e). This example demonstrates that the CrIS SO2 detection

and characterization scheme is sufficiently sensitive to capture some small emissions which are generally difficult to observe

by other means.

3.3 Test Case III: Resolving Strong Stratification in an SO2 Plume, Sierra Negra, Galapagos Islands, 2018

On 26 June, 2018 after a period of elevated seismicity, the onset of a major eruption at Sierra Negra was signaled by volcanic280

tremor at 19:40 UTC, producing an ash and SO2 plume at 20:09 UTC (Carn et al., 2018; Vasconez et al., 2018; Hedelt et al.,

2019). The first CrIS observation also occurred at 20:09 UTC from S-NPP, detecting SO2 above the Sierra Negra on 3 adjacent

FOVs on the edge of scan with maximum initial z-scores of approximately 9, 16, and 31. Subsequent overpasses show the

plume rising to approximately 14 - 19 km and spreading in a complex manner due to vertical wind shear as evidenced by the

lower plume altitudes spreading towards the west and the upper plume altitudes spreading towards the southeast (Fig. 8). The285

significant shearing of the eruption column enables observations of the cloud at many levels. Consequently, this eruption forms

a good opportunity to highlight the broad sensitivity of this method in detecting and characterizing SO2 at every elevation

from the vent (1.124 masl) up to ∼14 - 19 km and potentially higher. Additionally, this example highlights the strength of

the probabilistic height retrieval, enabling the retrieval of any desired confidence interval on the height. Here we compute the

90% confidence interval (Fig. 8), highlighting the fact that the 95th- and 5th- percentile are not in general symmetric about the290

median nor are the same size at different locations within the plume. Because our method retrieves consistent statistics across

all measurements, we can ensure the stability of the method and derived probabilities in particular, giving good smoothness

even without post-processing. As described above this is not necessarily the case for other height retrievals which compute a

single estimate with constant uncertainty.

4 Discussion295

4.1 Comparison with other data

Although a deep analysis of the differences between the present method and others is beyond the scope of the present work,

here we highlight a brief, representative comparison of our SO2 retrievals with data from TROPOMI, IASI, and CALIOP

during the evolution of the Raikoke eruption cloud.

As mentioned above, our strongest total column loading from the Raikoke cloud was 432 DU. This is significantly lower300

than the maximum detected by TROPOMI (> 900 DU, (Hedelt et al., 2019)), and several other UV-based methods (∼1000

DU, S. Carn, pers. comm.). This suggests that our method, despite the integrated height estimate and the specialized retrieval

for strong loading, currently cannot fully capture extremely high column loading values; however, away from these extreme

values, our retrieval performs well in comparison to TROPOMI and IASI (Fig. 9 a-e). Other than the relatively few columns
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Figure 8. : Time evolution (top to bottom) of the 27 June, 2018 Sierra Negra SO2 plume height represented as the 5th-percentile (a,d,g),

median (b,e,h), and 95th-percentile (c,f,i) heights. Data is merged S-NPP CrIS and NOAA-20 CrIS with S-NPP CrIS FOV 7 excluded.

with unusually large loading, the largest discrepancy between the TROPOMI-retrieved Raikoke cloud and that from CrIS is305

that the CrIS retrieval does not resolve the smaller diffuse cloud to the south of the main cloud, although the CrIS retrieval does

resolve some similar features elsewhere in the cloud. This may be due to the very high spatial resolution of the TROPOMI

data (7× 3.5 km2 pixels at nadir) compared with the coarse CrIS resolution (∼ 154 km2 FOVs at nadir with gaps between

FOVs). An additional contributing factor is that the CrIS retrieval starts with an initial detection of the z-score (Fig. 9 j) and
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Figure 9. : Representative comparison between TROPOMI, IASI, and CrIS SO2 data. Top: TROPOMI total column loading given a 1 km-

thick layer at 1 km (a), 7 km (b), and 15 km (c) altitudes; IASI (METOP-B) total column given a 1 km-thick layer at the IASI height estimate

(f); and CrIS (NOAA-20) mean total column loading (integrated against the height PDF). Bottom: IASI height estimate (f); CrIS 5th(g)-,

50th(median, h)-, and 95th(i)- percentile heights; CrIS initial z-score (j).

only retrieves the height and loading for FOVs with z > 5. Evidence for this smaller diffuse cloud are present in the initial310

z-score field, although it mostly presents with a z-score below this threshold. Lastly, this discrepancy may also be due to

spectral interference from water vapor in the CrIS SO2 infrared band (1300 - 1410 cm−1), although our approach is generally

insensitive to the presence of background levels of water vapor by construction.

The strength of our approach lies in our ability to generate physics-based PDFs for the height. Because our height retrieval is

based on the operational algorithm in use for IASI, our retrieved heights are very similar to those from IASI although there are315

key differences. As mentioned above, the IASI heights represent the height retrieved due to the mean background spectrum;

however, because the retrieval of height is not necessarily linear (due to the argmax function), the retrieved height is not

the expected value height. Inspection of the PDFs generated by this approach show that they are typically non-symmetric,

meaning that IASI heights are also not necessarily the maximum likelihood estimated heights, although exact comparison is

not possible due the orbital separation between the satellites carrying IASI (METOP-A,B) and those carrying CrIS (S-NPP,320

NOAA-20). Because of this mathematical point, the IASI heights also cannot be said to represent a consistent metric or statistic

of the height, meaning that there may be significant inconsistency between measurements. At least for the Raikoke cloud, the

IASI heights are almost entirely bound within the CrIS 90% confidence interval (Fig. 9 f,g,i) and are very similar to the CrIS

median heights (Fig. 9 h). For the snapshot of the Raikoke cloud shown in Fig. 9, the largest differences in height appear at

the southernmost part of the cloud, where the IASI heights are > 19 km altitude over a significant region. Furthermore, the325
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IASI height estimate (Fig. 9 f) varies significantly over nearby, continuous parts of the cloud, whereas the CrIS median height

is more consistent across space with some minor variation due to noise.

Although not shown here, Hedelt et al. (2019) have recently developed a new SO2 height retrieval for TROPOMI using

inverse learning machines. Although computationally expensive to train, such an approach has the advantage of computation

speed of the inversion once deployed, though it has not yet been incorporated into the TROPOMI SO2 data product as of330

this writing, so a direct comparison is not possible. However, it is clear from the data presented in Hedelt et al. (2019) that

their height estimates for the Raikoke cloud span the CrIS 90% confidence interval, though they are significantly nosier than

CrIS SO2 height estimates and display a very prominent negative trend in height versus total column loading, leading to

systematically higher layer heights on the cloud edges than in the cloud centers (Fig. 14 of Hedelt et al., 2019). The CrIS PDFs

do not show this trend.335

Because we retrieve a PDF on each CrIS FOV rather than a single estimate, we can compare the PDFs directly to CALIOP

data as CALIPSO passes over the cloud. Here we show an example comparison from Raikoke; however, a full comparison for

every overpass of the Raikoke cloud is the subject of future work. For the first several days after the eruption, there was still

significant ash suspended in the dispersing cloud, leading to the appearance of several highly attenuating layers in CALIOP

data between 10 - 15 km (Fig. 10 a,b). The comparison we focus on is between CrIS retrievals from 14:18:00 - 14:24:00 UTC340

and CALIOP data from a subsequent overpass between 14:32:06 - 14:36:14 UTC on 25 June, 2019. To make the comparison

as exact as possible, the CrIS FOVs are first interpolated to fill space and then sampled at the points given by the CALIPSO

overpass, creating a profile of the CrIS PDFs. Overall, there is good agreement between the CrIS SO2 PDFs and the altitudes

of the strongly attenuating CALIOP layers; however, the CrIS PDFs have several important characteristics that complicate

comparison. There is some minor noise derived mainly from two CrIS FOVs at the cloud edge (∼ 175◦ W), exactly at the345

CALIPSO track, leading to unrealistically high altitudes there (Fig. 10 e). Most obviously, some regions of the cloud have

bimodal PDFs which may have several interpretations (Fig. 10 b,c). The CrIS retrieval assigns significant probability mass to

the same locations as the strongly attenuating layers, suggesting that they are at least a mix of ash, SO2 and sulfate aerosols.

Where this cloud rises up to 14 - 15 km, the CrIS retrieval also assigns significant probability mass to a lower layer between

11 - 13 km (Fig. 10 b,c). This may indicate the presence of a separate molecular SO2 layer at this altitude. Indeed, this part of350

the CALIOP layer is very strongly attenuating and may completely shadow any evidence of a lower weakly attenuating sulfate

aerosol layer. However, this lower layer may merely be a (true) probability artifact inherited from the background spectrum

probability space. If the background spectrum has multiple modes (for example, one mode representing deep convective cloud

radiances and another for cloud-free radiances), then multiple populations of the Monte-Carlo height samples may accumulate,

leading to a multimodal height PDF.355

4.2 Long-term analysis of the Raikoke SO2 cloud

By retrieving PDFs for height and cumulative mass loading it is possible to enhance time series analysis of SO2 clouds

accordingly, enabling the generation of time series with quantified uncertainty. As an example, we calculate the total and

stratospheric SO2 mass time series probabilistically as sums of many independent retrievals (Fig. 11).
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Figure 10. : Representative example comparison of CALIOP lidar backscatter (a, b), CrIS SO2 height PDFs (b-transparent, c), and CALIOP

vertical feature mask (d) for the Raikoke cloud on 25 June, 2019. e) Nearest neighbor gridded interpolation of CrIS SO2 median heights

with closest CALIPSO overpass shown (black, arrow indicating descending orbit, < 15 minutes after CrIS acquisition).
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Figure 11. : a) Total (blue) and stratospheric (red) mass of SO2 above 30◦ N for two months following the eruption of Raikoke showing

CrIS-derived mean (solid lines)± 1 standard deviation (dotted lines). b) Log-scale copy of (a). “Instantaneous" (daily-aggregated) e-folding

time PDFs for the total (c) and stratospheric (d) SO2 in the Raikoke eruption cloud.

To estimate the mass of an SO2 cloud, the values of the retrieval on the CrIS FOVs must be interpolated onto a continuous360

grid spanning the cloud. In the present study we use an equal-area grid with area element δA and perform nearest neighbor

interpolation of the CrIS FOV retrievals. Consequently we calculate the total cloud mass in units of kilotons (kt) of SO2 as a

Riemann sum:

M ≈ κδA
∑

i

X̂i(h∞) (25)
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where κ= 2.8617× 10−11 kt m−2 DU−1 and the X̂i(h∞) are the gridded cumulative mass loading values at the top of365

the atmosphere h∞. By aggregating enough CrIS FOVs to completely cover the area of a cloud, a total cloud mass can be

approximated. Furthermore, because the loading measurements are independent random variables, the total cloud mass is a

normal random variable and the mean and variance of the cloud mass are:





E(M) = κδA
∑

i

E[X̂i(h∞)]

Var(M) = (κδA)2
∑

i

Var[X̂i(h∞)].

(26a)

(26b)

The mass of SO2 in the stratosphere can be calculated similarly if the height of the tropopause htrop is available from

ancillary data sources. The mass loading in the stratosphere is X̂strat = X̂(h∞)−X̂(htrop) which is a normal random variable370

independent from all other locations. By analogy to the total cloud mass calculation, the mean and variance of the stratospheric

cloud mass are therefore:





E(Mstrat) = κδA
∑

i

E[X̂i(h∞)− X̂i(htrop)]

Var(Mstrat) = (κδA)2
∑

i

Var[X̂i(h∞)− X̂i(htrop)].

(27a)

(27b)

where the mean and variance of X̂strat are calculated as in (Eqns. 22 and 23).

Additionally, we compute from these results the “instantaneous" e-folding time of the SO2 as τ =−M(t)/Ṁ(t) with Ṁ(t)

calculated by finite difference and the PDFs computed by standard results in probability theory (Fieller, 1932; Hinkley, 1969;375

DeGroot and Schervish, 2012, Appendix E).

From Fig. 11 it is clear that the SO2 cloud, as characterized by CrIS, did not immediately show the exponential mass decay

that has been used in similar studies of large eruptions (e.g., Read et al., 1993; Carn et al., 2017; Krotkov et al., 2010). The

observed trend is likely a combination of retrieval limitations and genuine atmospheric chemical properties. As described

above, the CrIS SO2 loading strength underestimate early in the Raikoke cloud history was likely due to channel saturation380

despite the specialized strong column retrieval. The strongest CrIS total columns were only approximately 50% of the strongest

columns reported at the time; 432 DU from CrIS vs. >900 DU (Hedelt et al., 2019) and >1000 DU (S. Carn pers. comm.).

Such strong columns did not persist for many overpasses; however, total SO2 mass did not begin an exponential decay until

approximately 20 days after SO2 injection, suggesting that in the first several weeks, the reaction kinetics, and consequently

the e-folding time, were strongly varying. This could have been the result of limited hydroxyl radical (OH) early in the cloud385

history (e.g., Theys et al., 2013; Sekiya et al., 2016). As the e-folding times shown in Fig. 11c,d are calculated by finite

difference, they are quite noisy; however, they exhibit the same trend of slow decay early in the cloud history, settling into a

constant decay rate later (∼10 day e-folding time). The large uncertainty in the stratospheric e-folding time after approximately

40 days is the result of the mean mass decaying below the order of magnitude of the standard deviation mass and the particular

details of the PDF calculation (Hinkley, 1969).390
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5 Conclusions

i) New probabilistic enhancement of existing hyperspectral IR SO2 retrieval techniques enable the retrieval of PDFs for SO2

height and cumulative mass loading, providing significant statistical power, precision, and consistency to global SO2 de-

tection, tracking, and forecasting efforts. Retrieving these PDFs enables the calculation of many new quantities, including

exceedence probabilities for concentration, layer height constraint probabilities, mean concentration profiles, and mass395

at different layers with uncertainty. Although these capabilities are primarily beneficial for operational SO2 monitoring,

these methods are relevant to climatological studies because of the ability to calculate PDFs for the stratospheric fraction

of total mass of a given SO2 cloud where the tropopause height is available from ancillary sources.

ii) This technique is capable of resolving strong SO2 mass loading based on a specialized retrieval with less sensitive CrIS

channels; however, it is limited in its ability to resolve extreme mass loading values like some of those observed in400

the recent eruption of Raikoke Volcano, Kuril Islands. Because of the improved spatial resolution over IASI and the

technique’s sensitivity, we can resolve small clouds that are undetectable by other means. Additionally, the technique can

adequately resolve height information across a broad range of plume altitudes including the lower stratosphere.

iii) Preliminary comparisons suggest that this method compares well with other measurements of SO2 mass loading and

altitude; however, the probabilistic framework adds significant value over these techniques especially in the retrieval of405

height information. Cross sections through these probability clouds compare very well with cloud heights from CALIOP

lidar backscatter.

iv) This technique enables the probabilistic characterization of SO2 clouds for long-term analysis of cloud evolution and key

time-varying parameters such as total mass, stratospheric mass, and e-folding time.

v) The algorithms presented here are currently being integrated into VOLCAT, where they will be used for operational410

SO2 cloud detection, characterization, and tracking in support of aviation safety. We anticipate future work to include

more comprehensive comparison of height PDFs with CALIOP lidar backscatter data, applyication of these techniques to

similar instruments including IASI and the Atmospheric Infrared Sounder (AIRS), development of volcanic degassing and

aviation-focused products, and analysis of errors in the trace gas technique induced by a warming background atmosphere.

Code and data availability. The Level - 1B CrIS data utilized in this study are available from the Goddard Earth Sciences Data and Informa-415

tion Services Center (GES-DISC, https://disc.gsfc.nasa.gov/). The tropopause data used here to define the lower limit of the stratosphere are

available from the NOAA Earth Science Research Laboratory (ESRL, https://www.esrl.noaa.gov/psd/data/gridded/ data.ncep.reanalysis.html)

The code developed to generate samples of the SO2-free background spectrum by the NORTA process are available in a git repository at

https://gitlab.ssec.wisc.edu/dhyman/trace_gas_background_spectra. This repository also includes a list of the SO2-free days discussed in the

text as well as GES-DISC links for all of the CrIS granules collected during those days.420
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Appendix A: Generating Correlated Random Spectra for Monte Carlo Retrieval: NORTA Sampling

The general problem of sampling a correlated random vector (Yi ∈Y ∈ RN ) with non-normal marginal distributions FYi
and

covariance matrix S is accomplished by a transform sampling technique known as NORTA (NORmal To Anything) (Cario and

Nelson, 1997) in which the desired random vector is written as a component-wise inverse marginal transform of a standard

normal random vector:425

Yi = F−1
Yi

(Φ(Zi)) (A1)

where Φ is the univariate standard normal CDF. In this formulation, the individual marginals can be used to transform the

components of the standard normal vector. The crux of this method lies in generating a standard normal random vector Z with

appropriate correlation structure ρZ which upon component-wise transformation as above, will produce the desired random

vector Y with the desired covariance structure S. That is, a correlated Z must be generated with the correlation matrix430

ρZ = Cov(Z) = E
[
ZZᵀ

]
, (A2)

which, after transformation, results in the correlation matrix ρY = Corr(Y) associated with the the known covariance matrix

S.

This is accomplished by solving

ρY(i, j) = Cij
[
ρZ(i, j)

]
(A3)435

for each of the unique N(N − 1)/2 correlations (ρZ(i, j)) in the lower triangle of ρZ. The correlation transformation function

is

Cij
[
ρZ(i, j)

]
:=

E[Yi(Zi)Yj(Zj)]−E[Yi]E[Y j]√
Var[Yi]Var[Yi]

(A4)

and

E[Yi(Zi)Yj(Zi)] = I
[
ρZ(i, j)

]
:=
∫∫

R2

F−1
Yi

[Φ(zi)]F−1
Yj

[Φ(zj)]ϕ(zi,zj ;ρZ(i, j))dzidzj (A5)440

where ϕ(zi,zj ;ρZ(i, j)) is the bivariate standard normal density function with correlation ρZ(i, j) between the variables Zi

and Zj . These problems may be inverted individually by various methods outlined in the original formulation of Cario and

Nelson (1997).

A1 Application of NORTA to background spectrum

For the purposed of generating the correlated random background spectrum in the present study, we make several modifications445

to the classical method of Cario and Nelson (1997) to make our problem tractable but retain the high fidelity of the CrIS

measurements. In the present study, 177 CrIS channels are used representing the FSR mid-wave band between 1300− 1410

cm−1. This yields 15,576 independent correlation - matching inverse problems which are solved in the present study by

gradient descent iteration.
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A2 Numerical Integration of the Joint Expectation450

Because each of the correlation - matching inverse problems requires multiple rounds of numerical integration of Eqn. A5,

we make several modifications to increase computational efficiency. Because many of the channel correlations are strong, the

bivariate standard normal distribution ϕ(zi,zj ;ρZ(i, j)) for each such pair of channels is very narrow. Consequently, for a

typical rectangular sampling domain, the integrand of Eqn. A5 is approximately zero almost everywhere except for a concen-

trated region in which accurate numerical integration is challenging. To reduce wasted integrand samples, we make a standard455

transformation of the bivariate normal distribution and then cast the domain in polar coordinates and approximate the integral

over a finite radial domain [0,R]:

I[ρ] :=

2π∫

0

R∫

0

Gij(r,θ;ρ)
e−r

2/2

2π
rdrdθ (A6)

where

Gij(r,θ;ρ) = F−1
Yi

[Φ(r cosθ)] F−1
Yj

[Φ(ρr cosθ+
√

1− ρ2 r sinθ)] (A7)460

is the product of the transformed i-th and j-th components of the desired random vector. This approximates the full improper

integral within tolerance ε, with the fixed value ε= 10−6 in the present study. The terminal radius is estimated conservatively

as

R=

√
2ln
(

1
ε

maxYimaxYj
minYiminYj

)
(A8)

where the maximum and minimum values of the components were recorded during the generation of S and the marginal465

distributions from sample data. In the absence of knowledge of these minima and maxima, they could be estimated from the

marginal distributions as fixed percentiles of these distributions.

The estimated radial limit of integration R is derived by requiring that

2π∫

0

∞∫

R

Gij(r,θ;ρ)
e−r

2/2

2π
rdrdθ ≤ ε

2π∫

0

∞∫

0

Gij(r,θ;ρ)
e−r

2/2

2π
rdrdθ. (A9)

This inequality can be solved forR under the conservative estimation that maxGij = maxYimaxYj and minGij = minYiminYj470

which are finite in this case due to the collection of a finite number of spectra for the generation of the channel marginals. This

leads to
∞∫

R

re−r
2/2 dr ≤ ε minYiminYj

maxYimaxYj

∞∫

0

re−r
2/2 dr (A10)

and upon integrating, R may be chosen conservatively to satisfy

e−R
2/2 ≤ ε minYiminYj

maxYimaxYj
. (A11)475
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This transformation to a scaled polar coordinates ensures that the curvature and gradients in the integrand are as small as

possible, ensuring that numerical integration is as accurate as possible for a given domain sampling up to the order of the

method employed. Additionally, the sensible radial limitation of this integral ensures that it can be computed efficiently to

within tolerance without the inclusion of samples which minimally affect the total (approximately Gaussian tails).

A3 Numerical Solution of Inverse Problems480

Although each channel pair inverse problem can be solved separately by Newton’s method or other algorithms, we solve all of

the problems jointly, restating the problem as a gradient - descent minimization of the total square correlation error

ε2(rZ) =
[
C(rZ)− rY

]ᵀ[
C(rZ)− rY

]
, (A12)

where the vectors rZ,rY ∈ R15,576 are comprised of the unique lower triangular elements of ρZ and ρY respectively and

C : R15,576→ R15,576 is the correlation transformation function cast as a vector function. Although this seems intractable485

due to the extreme dimensionality, there is no correlation between these dimensions (no correlation between pairwise inverse

problems), and consequently, the Jacobian is zero everywhere except for its main diagonal. The gradient descent method of

Barzilai and Borwein (1988) produces fast convergence to a global minimum due to the monotonicity and bounding properties

of the correlation functions Cij as described by Cario and Nelson (1997). At each iteration, the NORTA processes is completed

and the error on the synthesized channel marginal distributions and spectral covariance matrix are used as convergence criteria.490

The vectorization of these independent problems allows for standardization in convergence criteria using global (total) error

minimization. Because the error is measured on the final product (the desired random spectra), a minimum number of iterations

is required by comparison with performing each problem separately and then generating the desired random spectra.

Appendix B: Proof of mass loading mean, variance, and covariance formulae

The calculation of the mean and variance make extensive use of Fubini’s Theorem allowing reordering of iterated integration.495

Because these integrals contain the Dirac delta, it is not simple to show that the conditions of Fubini’s theorem are satisfied

due to the Lebesgue non-integrability of the Dirac delta, which in turn stems from the fact that the Dirac delta is not a function,

but a distribution. However, we proceed assuming that the iterated integrals can be interchanged. We remark that a proof using

limits of functions (“nascent delta functions") approaching the Dirac delta could be substituted here at great cost to simplicity

and readability. If a finite thickness layer must be used, then all convolutions with the Dirac delta below are replaced with500

convolution with a nascent delta function and the convolutions will result in filtered or local-averaged quantities. For example,

if a rectangular nascent delta is used, the results of convolution will be smoothed, local-averaged version of the desired function.

The final integral formulas will be expressed in terms of integrals of these filtered functions.
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The mean cumulative mass loading is calculated as the expectation
505

E[X̂(h)] = E
[ h∫

0

X̂δ(η−H)dη
]

=
∫

H

∫

X

( h∫

0

x̂δ(η−h′)dη
)
fX̂,H(x̂,h′)dx̂dh′

=
∫

H

∫

X

( h∫

0

x̂δ(η−h′)dη
)
fX̂ |H(x̂ |h′)fH(h′)dx̂dh′ (B1)

where H and X are the domains of height and loading (both σ-finite measure spaces) and the last equality follows from the

definition of the conditional probability density. Rearranging this iterated integral gives
510

E[X̂(h)] =

h∫

0

∫

H

δ(η−h′)fH(h′)
(∫

X

x̂fX̂ |H(x̂ |h′)dx̂
)

dh′dη

=

h∫

0

∫

H

δ(η−h′)fH(h′) E(X̂ |H = h′)dh′dη. (B2)

Because of the symmetry of the delta function (δ(η−h′) = δ(h′− η)), the integral properties of the delta function yields

E[X̂(h)] =

h∫

0

fH(η) E(X̂ |H = η)dη. (B3)

Because the algebraic form of the variance is Var(X̂(h)) = E[X̂2(h)]− [E(X̂(h))]2, only the second moment of the cumu-515

lative loading E[X̂2(h)] must be calculated to complete the formula. This quantity is

E[X̂2(h)] = E
[( h∫

0

X̂δ(η−H)dη
)2]

=
∫

H

∫

X

( h∫

0

x̂δ(η0−h′)dη0

)( h∫

0

x̂δ(η−h′)dη
)
fX̂ |H(x̂ |h′)fH(h′)dx̂dh′

=

h∫

0

h∫

0

∫

H

δ(η0−h′)δ(η−h′)fH(h′)
(∫

X

x̂2fX̂ |H(x̂ |h′)dx̂
)

dh′dη0 dη520

=

h∫

0

h∫

0

∫

H

δ(h′− η0)δ(h′− η)fH(h′) E(X̂2 |H = h′)dh′dη0 dη

=

h∫

0

h∫

0

δ(η0− η)fH(η0) E(X̂2 |H = η0)dη0 dη

(B4)
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Since the dummy variable η always runs between 0< η < h, the delta function δ(η0− η) is always centered in the interval

0< η0 < h and the integral properties of the delta function can be applied again:525

E[X̂2(h)] =

h∫

0

fH(η) E(X̂2 |H = η)dη. (B5)

Substitution of E(X̂2 |H = η) = Var(X̂ |H = η) + [E(X̂ |H = η)]2 into the formula for E[X̂2(h)] and subsequently into the

formula above for Var(X̂(h)) completes the proof of the variance.

Similarly, for the covariance between cumulative mass loading up to two altitudes h= a and h= b with b≥ a, only the

mixed expectation E[X̂(b)X̂(a)] must be calculated:530

E[X̂(a)X̂(b)] = E
[ a∫

0

X̂δ(ηa−H)dηa

b∫

0

X̂δ(ηb−H)dηb

]

=
∫

H

∫

X

( a∫

0

x̂δ(ηa−h′)dηa

)( b∫

0

x̂δ(ηb−h′)dηb

)
fX̂ |H(x̂ |h′)fH(h′)dx̂dh′

=

a∫

0

b∫

0

∫

H

δ(h′− ηb)δ(h′− ηa)fH(h′) E(X̂2 |H = h′)dh′dηbdηa. (B6)

because the domains (0,a), (0, b), andH have the relationship535

(0,a)⊆ (0, b)⊆H, (B7)

it follows that ηa ∈H, ηb ∈H, and 0< ηa < ηb, so that

E[X̂(a)X̂(b)] =

a∫

0

b∫

0

δ(ηb− ηa)fH(ηb) E(X̂2 |H = ηb)dηbdηa

=

a∫

0

fH(ηa) E(X̂2 |H = ηa)dηa = E[X̂2(a)]. (B8)540

Using the algebraic formula for the variance and covariance, we attain by substitution

Cov[X̂(a), X̂(b)] = Var[X̂(a)]−E[X̂(a)]
(
E[X̂(b)]−E[X̂(a)]

)
(B9)

which is always less than Var[X̂(a)] unless a= b since the loading is cumulative, yielding larger values at higher altitudes.

Remark:

Of particular importance, these formula may be used to calculate the expectation and variance values of the mass loading545

between two altitudes. The expected value is

E[X̂(b)− X̂(a)] = E[X̂(b)]−E[X̂(a)]. (B10)
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and the variance is

Var[X̂(b)− X̂(a)] = Var[X̂(b)] + Var[X̂(a)]−Cov[X̂(a), X̂(b)]550

= Var[X̂(b)] + E[X̂(a)]
(
E[X̂(b)]−E[X̂(a)]

)
. (B11)

Appendix C: Bilinear interpolation of background spectrum

To smooth the changes between retrievals in adjacent background cells, we use a bilinear interpolation of the background

spectra. For a general quantity (Q), the bilinear interpolation is represented as

Q(x,y) = cxcyQ(x0,y0) + (1− cx)cyQ(x1,y0) + cx(1− cy)Q(x0,y1) + (1− cx)(1− cy)Q(x1,y1) (C1)555

between the corner points (x0,y0), (x1,y0), (x0,y1), (x1,y1), using the scalings cx = (x1−x)/(x1−x0) and cy = (y1−
y)/(y1− y0). We interpolate the inverse error covariance matrix S−1 by this formula. However, because our background

spectrum is characterized probabilistically as a set of N = 10,000 samples (ys ∈ ΩY) of a correlated random vector Y in

each seasonal 5◦× 5◦ background grid cell, the samples cannot be interpolated directly by the above formula. Instead we treat

Y = Y(X,Y ) as a function of a random position where (X,Y ) is a discrete random position, taking only the cell corner560

points as possible values. In this case, X and Y represent longitude and latitude. In particular, we characterize (X,Y ) by

the probability mass function p(xi,yj) = (−1)i+j(i− cx)(j− cy) for i, j ∈ {0,1} which is simply the corner point weights

in the bilinear interpolation formula. Consequently, we generate Y(x,y) = E(X,Y )[Y(X,Y )] =
∑
i,jY(xi,yj)p(xi,yj) by

sampling the discrete distribution p(xi,yj) to generate the number of samples taken from each of the corner points n(xi,yj) =

[Np(xi,yj)] where the bracket represents rounding to the nearest integer. Using this sampling, we generate the samples of565

Y(x,y) as the collection of each of the n(xi,yj) samples from the corners Y(xi,yj). This generates a total of N samples for

the interpolated background spectrum.

Appendix D: CrIS Channels used in SO2 retrieval

The following CrIS channels are used in this work and are identified by their wavenumber value (cm−1).

D1 For the regular retrieval:570

1300.0 , 1300.625, 1301.25 , 1301.875, 1302.5 , 1303.125, 1303.75 , 1304.375, 1305. , 1305.625, 1306.25 , 1306.875, 1307.5 ,

1308.125, 1308.75 , 1309.375, 1310. , 1310.625, 1311.25 , 1311.875, 1312.5 , 1313.125, 1313.75 , 1314.375, 1315. , 1315.625,

1316.25 , 1316.875, 1317.5 , 1318.125, 1318.75 , 1319.375, 1320. , 1320.625, 1321.25 , 1321.875, 1322.5 , 1323.125, 1323.75 ,

1324.375, 1325. , 1325.625, 1326.25 , 1326.875, 1327.5 , 1328.125, 1328.75 , 1329.375, 1330. , 1330.625, 1331.25 , 1331.875,

1332.5 , 1333.125, 1333.75 , 1334.375, 1335. , 1335.625, 1336.25 , 1336.875, 1337.5 , 1338.125, 1338.75 , 1339.375, 1340.575

, 1340.625, 1341.25 , 1341.875, 1342.5 , 1343.125, 1343.75 , 1344.375, 1345. , 1345.625, 1346.25 , 1346.875, 1347.5 ,
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1348.125, 1348.75 , 1349.375, 1350. , 1350.625, 1351.25 , 1351.875, 1352.5 , 1353.125, 1353.75 , 1354.375, 1355. , 1355.625,

1356.25 , 1356.875, 1357.5 , 1358.125, 1358.75 , 1359.375, 1360. , 1360.625, 1361.25 , 1361.875, 1362.5 , 1363.125, 1363.75 ,

1364.375, 1365. , 1365.625, 1366.25 , 1366.875, 1367.5 , 1368.125, 1368.75 , 1369.375, 1370. , 1370.625, 1371.25 , 1371.875,

1372.5 , 1373.125, 1373.75 , 1374.375, 1375. , 1375.625, 1376.25 , 1376.875, 1377.5 , 1378.125, 1378.75 , 1379.375, 1380.580

, 1380.625, 1381.25 , 1381.875, 1382.5 , 1383.125, 1383.75 , 1384.375, 1385. , 1385.625, 1386.25 , 1386.875, 1387.5 ,

1388.125, 1388.75 , 1389.375, 1390. , 1390.625, 1391.25 , 1391.875, 1392.5 , 1393.125, 1393.75 , 1394.375, 1395. , 1395.625,

1396.25 , 1396.875, 1397.5 , 1398.125, 1398.75 , 1399.375, 1400. , 1400.625, 1401.25 , 1401.875, 1402.5 , 1403.125, 1403.75

, 1404.375, 1405. , 1405.625, 1406.25 , 1406.875, 1407.5 , 1408.125, 1408.75 , 1409.375, 1410.0

D2 For the specialized, high-loading retrieval:585

1300. , 1300.625, 1301.25 , 1301.875, 1302.5 , 1303.125, 1303.75 , 1304.375, 1305. , 1305.625, 1306.25 , 1306.875, 1307.5 ,

1308.125, 1308.75 , 1309.375, 1310. , 1310.625, 1311.25 , 1311.875, 1312.5 , 1313.125, 1313.75 , 1314.375, 1315. , 1315.625,

1316.25 , 1316.875, 1317.5 , 1318.125, 1318.75 , 1319.375, 1320. , 1320.625, 1321.25 , 1321.875, 1322.5 , 1323.125, 1323.75 ,

1324.375, 1325. , 1325.625, 1326.25 , 1326.875, 1327.5 , 1328.125, 1328.75 , 1329.375, 1330. , 1330.625, 1331.25 , 1331.875,

1332.5 , 1362.5 , 1363.125, 1363.75 , 1387.5 , 1388.125, 1388.75 , 1389.375, 1390. , 1390.625, 1391.25 , 1391.875, 1392.5 ,590

1393.125, 1393.75 , 1394.375, 1395. , 1395.625, 1396.25 , 1396.875, 1397.5 , 1398.125, 1398.75 , 1399.375, 1400. , 1400.625,

1401.25 , 1401.875, 1402.5 , 1403.125, 1403.75 , 1404.375, 1405. , 1405.625, 1406.25 , 1406.875, 1407.5 , 1408.125, 1408.75

, 1409.375, 1410.

Appendix E: Probabilistic time series

E1 Probabilistic mass595

In general, the total cloud mass can be calculated be integrating the total columns X̂(h∞) over the SO2 cloud region Ω:

M =
∫

Ω

X̂(h∞)dA (E1)

Where M has units of DU m2. In practice this is calculated as a Riemann sum:

M ≈ κ
∑

i

δAi X̂i(h∞) (E2)

where M now has units of kilotons (kt) of SO2 and the factor κ= 2.8617× 10−11 kt m−2 DU−1 has been included for600

dimensional consistency with a total column measured in DU. In the present study, we make this calculation after interpolating

the CrIS retrievals onto an equal area grid. Because the individual measurements are independent and normally distributed with

means E[X̂i(h∞)] and variances Var[X̂i(h∞)], their sum is also normally distributed (DeGroot and Schervish, 2012):

M ∼N (E(M),Var(M)) (E3)
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where the mean is605

E(M) = κδA
∑

i

E[X̂i(h∞)] (E4)

and variance is

Var(M) = (κδA)2
∑

i

Var[X̂i(h∞)]. (E5)

This given the total cloud mass as a PDF for any period of data coverage.

E2 Probabilistic decay rate coefficient and e-folding time610

We treat the above time series of PDFs of SO2 mass as a random process Mt. As a continuous process, the conversion of SO2

into sulfur aerosols can be modelled kinetically by the differential equation Ṁt =−ktMt where kt is the instantaneous decay

rate coefficient. Below we generate kt and the e-folding time τt = k−1
t as random processes from Mt.

To make this calculation in practice, a finite difference formula is needed for Ṁt. We write this as a general 2α - order

accuracy central finite difference formula for the first derivative:615

Ṁt ≈
1
δt

α∑

i=−α
δt+iMt+i (E6)

where δt+i are the central difference scheme coefficients. As before, the weighted sum of normal random variables is also

normally distributed. Consequently,

Ṁt ∼N
(
E(Ṁt),Var(Ṁt)

)
(E7)

where the mean is620

E(Ṁt) =
1
δt

α∑

i=−α
δt+iE(Mt+i) (E8)

and variance is

Var(Ṁt) =
1

(δt)2

[ α∑

i=−α
δ2
t+iVar(Mt+i) + 2

∑

i6=j
δt+iδt+jCov(Mt+i,Mt+j)

]
=

1
(δt)2

α∑

i=−α
δ2
t+iVar(Mt+i) (E9)

where each covariance is zero because each measurement is independent. Because each Ṁt is normally distributed, this se-

quence of means and variances fully parameterizes its random process. To calculate kt, we also must calculate Cov(Mt,Ṁt):625

Cov(Mt,Ṁt) =
1
δt

E
[
Mt

α∑

i=−α
δt+iMt+i

]
− 1
δt

E(Mt)
α∑

i=−α
δt+iE(Mt+i)

=
1
δt

α∑

i=−α
δt+iCov(Mt,Mt+i) =

1
δt
δtVar(Mt) = 0 (E10)
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where the last two equalities follow from the independence of each Mt and the fact that the central coefficient (δt) in any

central finite difference for the first derivative is zero. For non-central differences, this is not zero, the last equality does not630

hold, and Cov(Mt,Ṁt) = 1
δtδtVar(Mt).

With random processes for the mass and mass rate of change calculated we can calculate the decay rate coefficient as a

function of these two random processes:

kt =−Ṁt

Mt
(E11)

which is a ratio of two Gaussian random processes which may be correlated depending on the finite differencing scheme. The635

calculation of such a ratio of random variables (Fieller, 1932; Hinkley, 1969) describes the uncertainty of the decay coefficient

at each time as a PDF fkt
(k).

Calculating the PDF for the instantaneous e-folding time τt = k−1
t is performed by applying standard rules for functions of

random variables (from DeGroot and Schervish, 2012):

fτt(τ) =
1
τ2
fkt

(
1
τ

)
. (E12)640

Notably, neither the distributions for decay rate coefficient nor for e-folding time are Gaussian.
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