
Response to Reviewer #3 Comments 

 

R3: Major Comment: What is exactly, is given in the input of the main neural network? Is it 

radiances, or reflectances and brightness temperature? For each radiances, is it the differences 

with climatology (or simulations) and the observation, or raw radiances?  

 

My concern is that the neural network description lack about the physic that is behind such the 

nature of the input. Also that important information are dispatch in all the study to explain fairly 

some results, but they are still necessary to be mentioned in the neural network description. 

 

AR: In total, there are 20 different inputs to the cloud masking neural network. The first 16 inputs 

are from the moderate resolution channels of VIIRS (reflectances for the visible channels and 

brightness temperatures for the infrared channels). The last four inputs are a binary land/water 

mask, absolute value of latitude, solar zenith angle, and sun glint zenith angle. We state this in 

section 2.2, but we think a table would perhaps be more useful here and would facilitate the reader 

referencing it later on in the paper.  

 

Only the raw observations are used, but we believe some confusion on this point might be coming 

from statements we make on lines 202-203 where we state that the inputs are standardized by 

subtracting the mean and dividing by the standard deviation. Scaling inputs is common practice 

for neural networks, and other approaches are often used such as making the minimum and 

maximum values 0 and 1, or -1 and 1. If this standardization is not done before training a neural 

network, then gradients of larger parameters may tend to have larger influence during the training 

process. In other words, we are rescaling the inputs to the neural network so that each variable has 

zero mean and unit variance. Otherwise, updates to the neural network may tend to favor the use 

of inputs with larger values or variance. This is particularly a concern for us since our inputs have 

very disparate scales: typically between 0 and 1 for reflectances, and between 180 K and 340 K 

for brightness temperatures.  

 

From one perspective, this might be seen as a framing the inputs as differences from climatology. 

However, we make no effort to ensure even representation from different seasons or times of day. 

Similarly, we don’t perform this separately for different locations. As a result, we don’t believe 

calling these inputs differences from climatology would be appropriate. Rather, we would simply 

call them observations rescaled with zero mean and unit variance.  

R3: This is more a thought for the conclusion: How does neural network methods will react in the 

context of global warming and the fast modification of some surfaces? Does it mean that despite 

the benefits of the accuracy that provide neural network, they are countered by the fact they will 

need regular updates? 

 

This is an interesting, but difficult to answer question! We can think of a few ways in which climate 

change could affect the performance of this approach. One obvious scenario, which we somewhat 

touch on in this paper, is the declining presence of arctic sea ice. Evidenced by Figure 10, the cloud 

masks in this paper can have large TPR differences over different geographical regions, time of 

day, and surface type. Based on Figure 2,  Figure 10, and previous evidence (Liu et al., 2010), we 

suspect the MVCM underestimates cloud cover over sea ice. As a result, we expect that the 

decrease in Arctic sea ice, and corresponding increase in ice-free ocean would result in a change 



in cloud cover estimated by the MVCM even if it did not result in a real change in cloud cover. 

This is obviously undesirable, and lends us to believe that cloud detection ability should be 

invariant as possible to changes in surface type. We believe that Figure 10 illustrates that the neural 

network may be the least susceptible to this, although the ECM and MVCM are certainly 

competitive with it in certain regions/conditions.  

 

We suspect that another way in which cloud masks could be impacted by climate change would 

be a change in the global or regional cloud fraction. The neural network cloud mask is ultimately 

a statistical model. Under uncertain conditions, it will tend to predict the majority class (usually 

cloudy) since this is what gives it the best results during training (as measured by binary cross-

entropy in our case). We have tried to ensure our approach does not depend too heavily on the use 

of the background mean cloud fraction by using class-balanced metrics like BACC in our 

evaluation. Along this same line of thinking we have limited to the amount of geographical 

information to the absolute value of latitude and a land/water mask. Not including longitude, or 

more specific surface types was an intentional choice in an effort to reduce on the model’s reliance 

on how the mean cloud fraction varies with this information. 

 

Regular updates would certainly be beneficial, but are not necessarily a specific requirement of 

our approach. If climate change were to change something fundamental about the decision 

boundary between clear-sky and cloudy scenes, then all statistical cloud detection models would 

be impacted. We hypothesize that drifts in sensor calibration or changes in noise levels would be 

the largest factor in whether a cloud detection model would need regular updates if used in climate 

data records.  

 

However, it might be interesting to investigate whether machine learning models trained during 

periods that are dominated by a particular phase of a climate oscillation generalize well to years of 

the opposite phase. For example, we could imagine issues stemming from approaches trained only 

during a strong positive ENSO year that utilize longitude and SST as predictors. Assessing how 

much of an impact this would have would require a very careful experimental setup, and is perhaps 

specific to what a model uses as predictors and what exactly it is tasked with predicting.  

 

This is certainly something we will be thinking about if we go forward with this approach for 

future cloud amount analyses. We will plan to add some of this information in our discussion. 

 

R3: Minor modifications 

 

It would help to provide a table of the VIIRS band. 

 

Agreed. We will plan to add a table like this to our paper. 

 

R3: Page 4, section 2.2: You mentioned in the discussion section (page 16, line 505) that you use 

ancillary data. But it is poorly described in this section 2.2 (linked to my major comment). 

 

Yes. We could certainly do a better job of describing the inputs to the neural network. We think 

some confusion might be come from our use of the word “ancillary” which we intended to mean 

an input that is not solely dependent on the VIIRS observations. Using this definition, the land-



water mask would be our only ancillary data in the final neural network model since it is a derived 

product. We will try to clarify this in the text, and add context to our usage of “ancillary,” or 

remove it entirely since its meaning could be ambiguous in the manuscript’s current form.  

 

Section 2.2. is another section that we think could benefit from a table. We will plan to include 

one here that lists which inputs are used for the three neural networks: (1) The main neural network 

which we are proposing and evaluating the performance of, (2) the pseudolabeling model which 

only uses infrared channels without solar contributions and provides labels to the main neural 

network in sun glint scenes, and (3), a neural network that is not trained with pseudolabels and is 

only used in Figure 12.c to demonstrate the usefulness of pseudolabeling in this context.  

 

R3: Page 6, lines 171-181: The second part of the section “3.1 Pseudo-Labelling Procedure” is 

hard to understand at some points. In this section, it is about the neural network that help to 

account for sun glint. What information is provided by this neural network to detect sun glint? Is 

this information provided to the main neural network to not perform a cloud mask, or does it 

simulate input that are supposed to appear in sun glint condition for the main neural network? 

Where comes from the information of true sun glint conditions, to be reproduced? Why the 15th 

day of every month in 2018? 

 

AR: We agree that this text needs to be revised and rewritten, particularly lines 171-181. We think 

it could benefit from the table in the above response. We could also add a separate table of 

VIIRS/CrIS fusion channels rather than listing them in the text. 

 

The reason we need the pseudolabeling model, is that we do not have any labels in regions with 

sun glint where the visible VIIRS channels may give the false impression of cloudiness. To fix this 

we train a pseudolabeling model that only uses VIIRS IR channels, VIIRS/CrIS fusion channels 

without solar contributions, latitude, and the land/water mask. The VIIRS/CrIS Fusion channels 

are used in the pseudolabeling model in an attempt to make up for some of the information lost by 

removing the visible channels. We removed solar zenith angle and the glint zenith angle since they 

would not provide useful information for the pseudolabeling model. Aside from these differences, 

the pseudolabeling model is trained using the same collocations as the main neural network model.  

 

The pseudolabeling model is then used to make predictions in scenes with substantial sun glint. 

Our determination of substantial sun glint is somewhat subjective, and consists of images with sun 

glint zenith angles less than 40 degrees. Below 40 degrees, is roughly were we identified visible 

reflectances starting to increase due to specular reflection and thus, where we would need 

pseudolabels. The predicted probabilities from the pseudolabeling model are then treated as true 

labels (as if they were obtained from CALIOP). Essentially, the pseudolabeling model creates 

cloudy/cloud-free labels that incentivize the main neural network model to not misconstrue high 

visible reflectance for cloud cover in sun glint scenes.  

 

Scenes from 2018 are selected since that is a year that is included in our training dataset. If 2017 

or 2019 were used, our training dataset for the final neural network model would not be 

independent of the validation and testing datasets. The choice of using the 15th day of each month 

from 2018 is also somewhat arbitrary. We needed to capture the annual variability of sun angle 

with respect to latitude, so selecting one day from each month was preferable to selecting 12 



consecutive days, for example. We could use more or fewer days, but even after substantial 

subsampling of these scenes, we found we had more than enough pseudolabels to work with. 

 

R3: Page 7, line 202: what is the meaning of “binary cross-entropy”? 

 

AR: Training a neural network requires a loss function (usually called cost or error function in 

meteorology and other disciplines) that is differentiable and that one is typically aiming to 

minimize throughout training. In binary classification problems we usually select binary cross-

entropy as our cost function. We will add the equation for the binary cross entropy function to 

clarify this. 

 

J(y, ŷ) = −( y log(ŷ) + (1 − y) log(1 − ŷ)) 

 

Here, J is the binary cross-entropy loss,  y is the binary label from CALIOP, and �̂� is the predicted 

cloud probability from the model. 

 

R3: Page 10, lines 279- 284: Seeing the Figure 4, the difference between TPR of MVCM and the 

one for neural network is really small. It is most likely that their performances for low broken 

clouds are similar. 

 

AR: Agreed. Our phrasing here was partially motivated by the fact that the VIIRS/CALIOP 

collocations often do not characterize these clouds well since they can often be smaller than the 

resolution of the 1 km CALIOP Cloud products. Even though the differences in TPR  according 

to the unfiltered VIIRS/CALIOP collocations in Fig 4 are very slight, they may be indicative of a 

larger overall difference making this result more significant. We do mention this already in the 

discussion, so we will amend the text here to say the performance here for the collocations is 

similar, but clarify this expectation later in the discussion. 

 

R3: Page 10, line 314-322: In Figure 6, the cloud mask with neural network is less sensitive to 

variation of latitudes. 

 

AR: Indeed. This is a good point that we will plan to add here.  

 

 R3: Page 11, line 323: “All the of the previous” A word is missing! 

 

AR: This should read “All of the previous analyses [...].” We will fix this in the final version. 

 

R3: Page 12, lines352-354: “This is surprising … a land or water surface.” This is really 

important information it should be mentioned in the description of the neural network input 

section. (major comment) 

 

AR: We do mention this in section 2.2, but again, it could be more clear and would certainly benefit 

from a table describing inputs.   

 

R3: Page 14, line 428: “is subject to a large” 

 



AR: Thanks! Yes, this is how that line should read (the word “to” was missing in the original 

manuscript).   

 

R3: Page 14, line 447-page 15, line 459: I suggest you put this section and Figure 12, with the 

section “3.1Pseudo-Labelling Procedure”, as it makes the understanding of the pseudo-labelling 

more clear. Also, because this section is quiet independent of all the analysis of the neural network 

performances. 

 

AR: Agreed. In the current manuscript, there are 8 pages of text separating the description of 

pseudolabeling and seeing the actual impact of pseudolabeling. This is obviously not ideal. We 

will make this change in the final version and move Figure 12 and its accompanying text to the 

end of section 3.1. 

 

R3: Page 23, Figure 1: This paper would benefits of a better scheme that describe the neural 

network. Better description of the input vector with geo-localisation information.  

 

AR: Absolutely. We will plan to give a more detailed description of the neural network and its 

input. Figure 1 might also be more effective as a simple table describing the input size, output size, 

and type of each layer.  

 

R3: In relation with section 3.2 page 6 and 7, can you say more about the meaning of dropout X% 

between each layer? 

 

AR: Yes. Dropout is a very simple regularization method used in neural networks that helps 

prevent overfitting. In short, dropout sets a specified number of intermediate activations to a value 

of zero. Our first layer is a fully-connected layer with 200 units. Dropout(2.5%) indicates that 5 of 

these 200 units are randomly selected at each training step and set to a value of zero. This helps 

prevent the model from relying too heavily on any one connection. In our case, we suspect that if 

we set the dropout rate too high (5% or above) the model had trouble learning relevant features 

since it was performing worse on our validation dataset during hyperparameter tuning. When we 

completely removed dropout (by setting it to 0%), the model also performed worse. A dropout rate 

of 2.5% turned out to be ideal in preventing some amount of overfitting, while still allowing the 

model to learn relevant features. We will add a sentence or two in the text summarizing this. 

 

R3: Page 34, Figure 12: There are obvious difference in the behave of the cloud mask from neural 

network without pseudo-label and the one with pseudo-label. The second cloud mask is more 

“binary” (i.e. values equal to 0 or 1) than the first one. Can you comment this result? Which neural 

network of figure 12, have you compared during your paper? 

 

AR: Yes. The model that we are analyzing the performance of in the results section is Figure 12.d 

(the neural network with pseudo-labels). Figure 12.c is shown simply to illustrate how poorly a 

machine learning model can perform if we don’t account for obvious deficiencies in the training 

dataset (such as a dataset without any sun glint examples). 

 

On the question of the differences between the two models – that is tough to answer for a couple 

of reasons. First, neural networks are notoriously difficult to interpret the predictions of, and 



secondly, sun glint scenes are out-of-domain predictions for the neural network without 

pseudolabels. Said differently, it is undefined behavior for this model so attempting to interpret its 

predictions here is even more difficult than usual. 

 

Of course, as we mention in the paper, the neural network without pseudolabels makes erroneously 

cloudy predictions throughout the entire scene. This is likely because the model without 

pseudolabels has likely learned to associate high visible reflectivity over water with cloudy pixels 

since it has never seen sun glint. 

 

All that being said, we can speculate on some of the reasons why Fig 12.d might be more “decisive” 

than the model in Fig. 12.c. For Fig 12.c there are likely two competing factors: a high visible 

reflectivity which usually indicates cloudy pixels, and warm infrared brightness temperatures 

which usually indicates clear pixels. These two factors could result in uncertain conditions since 

these pieces of information are somewhat contradictory. Fig 12.c is likely decisive because it is 

making predictions in a sun glint scene where it is exclusively trained with pseudolabels. Rather, 

than the probabilities being accurate assessments of uncertainty with respect to the CALIOP label, 

the probabilities in Fig 12.d likely portray the model’s ability to accurately reproduce predictions 

made from a model that exploits solely IR information. To that end, the cloud 

probability/uncertainty estimates in sun glint regions are not especially useful (which we mention 

in lines 531-535), but we can verify the actual predicted labels from Fig 12.d appear reasonable 

compared to the other operation models. 

 

Below we have created drafts of three tables that we will plan to include in the revised 

version of this manuscript. These tables are aimed at addressing many of reviewers #3 concerns 

on the nature of the inputs to the neural network. In addition to Table 3, we will include clarifying 

text that details the purpose of each model, and specifically where each model is used in this work. 

 

Band Spectral Range (µm) Units 

M1 0.400 – 0.421 Refl. 

M2 0.436 – 0.451 Refl. 

M3 0.477 – 0.496 Refl. 

M4 0.541 – 0.561 Refl. 

M5 0.662 – 0.680 Refl. 

M6 0.738 – 0.752 Refl. 

M7 0.843 – 0.881 Refl. 

M8 1.225 – 1.252 Refl. 

M9 1.368 – 1.383 Refl. 

M10 1.571 – 1.631 Refl. 

M11 2.234 – 2.280 Refl. 

M12 3.598 – 3.791 BT [K] 

M13 3.987 – 4.145 BT [K] 

M14 8.407 – 8.748 BT [K] 

M15 10.234 – 11.248 BT [K] 

M16 11.405 – 12.322 BT [K] 

 



Table 1: Shown are the names, and spectral ranges of each moderate resolution VIIRS channel. 

Also shown are the units and whether the channels are expressed in reflectance (Refl.) or 

Brightness Temperature (BT). 

 

VIIRS/CrIS 

Fusion Channel 

Spectral Range of MODIS 

Equivalent Channel (µm) 

MODIS 27 6.535 – 6.895 

MODIS 28 7.175 – 7.475 

MODIS 29 8.400 – 8.700 

MODIS 30 9.580 – 9.880 

MODIS 31 10.780 – 11.280 

MODIS 32 11.770 – 12.270 

MODIS 33 13.185 – 13.485 

MODIS 34 13.485 – 13.785 

MODIS 35 13.785 – 14.085 

MODIS 36 14.085 – 14.385 

 

Table 2: Shown are the names of each infrared VIIRS/CrIS Fusion channel that is used in the 

pseudo-labeling model. The stated spectral ranges are those of the MODIS equivalent channels. 

All channels are expressed as brightness temperatures [K].  

 

 

Inputs Neural Network 

with Pseudo-labels 

Neural Network 

without Pseudo-labels 

Pseudo-labeling 

Model 

M1-M11 X X  

M12-M13 X X  

M14-M16 X X X 

MODIS27-MODIS36   X 

| Latitude | X X X 

Solar Zenith Angle X X  

Sun Glint Zenith Angle X   

Land/Water Mask X X X 

 

Table 3: Summary of the information used by each neural network model in this work. 

 

Once again, we would like to express our thanks to the reviewer for volunteering their time to give 

us feedback on our manuscript. They have very helpfully identified several areas in which we can 

improve the quality, presentation, and clarity of this work. 


