
Author Response to Referee Comments 
 

In the three author comments, we have responded (sometimes at length) to all points in the referees’ feedback 
individually. Below, we have collated all referee comments. For each instance we either quote from our original author 
comment or otherwise summarize how the comment was addressed in our revised manuscript.  

After our responses to each referee comment, we include a log of the changes we have made to the manuscript. We 
have put a significant amount of effort to ensure this list is accurate, but many small changes (regarding phrasing, typos, 
and grammer) may have been missed. 

At the end of this document we have included the tracked changes that includes the diffs between the original and 
revised manuscript (created using the latexdiff package). Please note that since tables and figures have been added and 
reordered, the diffs are not accurate for tables and figures. In that case, please compare the figures included here with those 
of the original submission. Section 2 has also been renamed to “Instruments and Data”, which seems to have thrown off the 
numbering in the latexdiff document. 
 

Referee #2 Comments 

R2: The introduction is missing an important reference. The ESA cloud CCI algorithm also uses a neural network trained 
with CALIOP data for the cloud mask but with a different network structure, training, imager etc.  

AR: We have added the following reference: Sus, O., Jerg, M., Poulsen, C., Thomas, G., Stapelberg, S., McGarragh, G., 
Povey, A., Schlundt, C., Stengel, M., and Hollmann, R.: The Community Cloud retrieval for CLimate (CC4CL). Part I: A 
framework applied to multiple satellite imaging sensors, submitted to Atmospheric Measurement Techniques Discussions, 
pp. , 2017 
 
R2: 2. Line 61-65: Our approach aims to improve upon existing literature in several ways. Rather than relying on 
precomputed spectral, or textural features, we allow a neural network to learn relevant features from a local 3 pixel by 3 
pixel image patch from all 16 moderate resolution VIIRS channels. The section is missing a motivation as to why it might 
be good to let the network learn the relevant feature itself. If the relevant features can be precomputed then the network can 
be made smaller and faster (fewer variables, fewer layers). 

AR: We have added details to motivate this choice of our approach. 

R2: 3. Line 70-75: Include short descriptions of the MVCM and ECM cloud mask methods. (Does not have to be here.)  
 
AR: Descriptions of each mask have been added as well as details about the VIIRS sensor. 

R2: 4. Line 185-210: Did you use any available software for training the network?  

AR: We have added references to the software used. 

R2: 5. Line 234: Could the slightly overestimated cloud fraction in day time for MVCM be due to thin clouds not detected 
by 1km CALIOP data, but detected in the 5km CALIOP data and the MCVM? The chance of detecting these very thin clouds 
should be larger during day time.  

AR: Quoting from our author comment: “The 1km CALIOP Cloud products are less sensitive to optically thin cloud cover 
than the 5 km product, and it’s not unreasonable to expect that one of the operational masks might detect clouds missed by 
the 1km product, but correctly identified by the 5 km product.” A brief comment on this has been added to the discussion 
section. 

R2: 6. Table 1: Add also at least TPR, TPN and CALIOP cloud fraction to a table. It is the 2019 data that is used for the 
table, right? Add info in the caption. Include also a table with results for the unfiltered data.  

AR: We have replaced this table with two tables (one for the filtered dataset, and one for the unfiltered dataset). Each has 
BACC, TPR and TNR for all three masks and the CALIOP cloud fraction for each surface type and time of day. 



R2: 7. Line 265: I find this surprising, I would have expected the 2D feature to be most useful for fractional clouds. 
 
AR: Quoting from our author comment: “We agree that this result is a bit counter-intuitive. We believe this is a limitation 
of using CALIOP as our source of labeled data. It is likely that small broken clouds are not well represented in our 
collocation database due to the size of these clouds and the time difference between when the two instruments observe them. 
Small horizontal displacements of these clouds between times that both VIIRS and CALIOP observe the same ground 
location could be mean that some of our labels for these types of clouds are more prone to error, and result in poor 
characterization of them from our neural network approach.” 

R2: 8. Line 306: You mention that Bayesian algorithms might be affected by climatological means. Considering that your 
method includes latitude could it not be that it too uses the latitude mean cloudiness from the two years of training data? 
Have you tested how much the network depends on latitude?  

AR: Quoting a portion of our author comment:  
 

“Overall, the model seems to mostly worsen in nighttime water scenes when removing latitude and information 
related to latitude. Considering these results, I think it is likely that our model depends on latitudinal mean 
cloudiness in some capacity over these areas. However, it is difficult to quantify whether it is serving a purpose 
similar to that of a climatological mean, or if it is changing the usage of other observations features (like we have 
previously observed in our other models).” 

 
We have added some details in the discussion about the neural network’s dependence on latitude.  
 
R2: 9. Line 357: Can the latitude combined with sun zenith angle give a rough estimate of surface temperatures? Very 
impressive results for temperatures close to surface temperature. 
 
AR: In our original author comment we provide a short analysis that suggest that some information in our model could give 
an extremely rough estimate of surface temperature. Using four predictors (solar zenith angle, the land/water mask, sun 
glint angle, and the absolute value of latitude) we are only able to predict GFS surface temperature with a mean absolute 
error of 6.7 K. and mean squared error of 86.3 K. To add an additional answer to this question we retrain our approach 
without the above four inputs. There are only small differences observed in our thermal contrast figure (Figure 8 of the 
original manuscript). As a result, we don’t expect that this information plays a large role in the neural network’s ability to 
predict cloud cover in scenes with low thermal contrast with the surface. 

R2: 10. Line 390: I agree it is not bad with a consistent TPR dependent only on the cloud. But optimizing TPR differences 
might mean making the TPR lower in easy conditions to match the performance in more difficult conditions. Is it not equally 
important to keep TPN as constant as possible? I think this is what is more traditionally aimed at.  

AR: Quoting from our original author comment: 

“I think the usefulness of this metric perhaps depends on the application. There is indeed a tradeoff between 
performance with respect to CALIOP and cloud detection consistency. For operational nowcasting, we expect that 
users might not be especially concerned with detection consistency over different surface types or times of day. For 
climate applications, this might be a more important consideration. For example, a globally uniform increase in the 
amount of clouds with optical depth of about 0.1 might only be detected as a much larger increase over certain 
surface types with higher TPR for these specific clouds. This might result depictions of cloud cover change that 
don’t align with reality. Minimizing TNR differences between different conditions could achieve a similar result, 
we think. TPR differences might be more useful since one could weigh the differences with respect to optical depth. 
For example, a large TPR difference at a high cloud optical depth is likely more problematic than one at a very low 
optical depth.” 

We agree with referee #2’s comment and have revised the text and removed the suggestion to optimize for low TPR 
differences. Instead, we suggest that TPR differences be used simply to identify issues related detection consistency. 



R2: 11. Line 425: For the validation data do you have sea ice cover to the north west of Greenland? Can the shrinking sea 
ice cover in the arctic be part of the explanation. If MVCM is trained on older data and assumes it to be sea ice, and the 
new NN approach trained on more recent data expects more water?  

AR: We respond to this point in the individual author comment. Related to this question, we add some text mentioning how 
mischaracterization of surface type/temperature could be a source of error in these cloud detection models. 

R2: 12. Line 433: The averages across space are weighted by the cosine of latitude expressed in radians. I do not understand 
what you mean here.  

AR: We have revised this sentence to more clearly state what is meant. 

R2: 13. Line 457: The pseudo-labeling model likely has low skill in such conditions due to the low contrast between a low-
level fractionally cloudy pixel and the background. Did you consider using the ECM for the pseudo-labeling?  

AR: Related to this comment, we add text about potentially using the MVCM and ECM predictions as pseudolabels to 
address deficiencies in the neural network. 

R2: 14. Line 537: Additionally, we have not evaluated how the neural network performs specifically in cloud-free 
scenes with high aerosol loading. We expect that this could depend largely on the ability for CALIOP to 
distinguish cloud from aerosol layers. Even if it does depend on CALIOP’s ability should it not depend mostly on 
the VIIRS capabilities? 

AR: Agreed. We wanted to mention the point that CALIOP’s ability to distinguish cloud from aerosol would be an 
additional complicating factor. We have revised this statement.  

R2: 15. Figure 6: Consider adding figures also for the BACC. 

AR: We have added this figure to main text. 

R2: 16. Figure 8: Is this filtered or unfiltered data?  

AR: We have remade this figure with both datasets (although it was originally filtered data). 

R2: 17. Have you tested to applid the NN on older data (2013) and was there a difference in performance? 

AR: Quoting from our original author comment:  

“Not yet, but we plan to examine something similar to this in future work. Whether or not ML-based approaches 
generalize to data collected long after (or before, in this case) their training period is an interesting question. This 
perhaps partially depends on whether our approach learned variability that is specific to our training period (2016 
and 2018) which seems clearly undesirable. Of course, consistent sensor calibration is also a significant concern 
with this.” 

R2: 18. Is execution time comparable with the operational cloud masks? Is it feasible to use for nowcasting?  
 
AR: Quoting from our original author comment: 
 

“I wasn’t particularly comfortable commenting on execution time in the manuscript since it might vary greatly 
across implementations or systems. Using a fairly recent GPU processing an entire 6-minute VIIRS scene with our 
neural network implementation took roughly 7 seconds and only hit roughly 50% utilization of the GPU. To 
contrast, using 2 threads of a very old (8-10 years?) CPU it took 90 seconds for the full scene and roughly 25 
seconds using 12 threads. Nowcasting is certainly a possibility if the machine has access to a GPU or a modern 



CPU. If running on older hardware, the processing time might be unfortunately prohibitive. That being said, we are 
definitely not expert software engineers, so others may have more luck in writing fast processing code.  
 
I am not familiar with the MVCM processing code. Based only on the method itself, I suspect the MVCM is the 
fastest, and that the neural network is by far the slowest if run on similar hardware.” 

R2: 19. A name of the method would be useful.  

AR: Agreed. To help make the text more concise, we abbreviate the neural network cloud mask as NNCM. 

R2: 20. From my experience with NN cloud masks results often look less realistic close to the swath edges when comparing 
results to the RGB. In Figure 12 results look realistic also closer to the edges. Is this normally the behavior?  
 
AR: Quoting from our original author comment:  
 

“Figure 12, specifically, is a cropped image close to the nadir track of VIIRS to focus on the area of sun glint.  
 
Early experiments we performed with  MODIS/CALIOP data showed issues with viewing angle, but this is expected 
due to MODIS only making near-nadir collocations with CALIOP. Håkansson et al. 2018 discuss this as well with 
cloud-top pressure/altitude.  
 
VIIRS makes collocations with CALIOP at a larger variety of viewing angles (0 to 50 degrees in our dataset). Early 
on in the development of our model we included sensor zenith angle as a predictor. However, we noticed that 
performance with respect to CALIOP increased when it was removed so we left it out. Aside from the regional 
analysis over Greenland, we have not extensively analyzed full scenes to the swath edges aside from a set of 20-30 
scenes that we run as a “sanity check”. In these scenes we have not noticed particularly unrealistic behavior at swath 
edges.” 

R2: 3 Technical corrections • Line 53: Häkansson should be Håkansson (several places)  

AR: This has been corrected.  

Referee #3 Comments 
 
R3: Major Comment: What is exactly, is given in the input of the main neural network? Is it radiances, or reflectances and 
brightness temperature? For each radiances, is it the differences with climatology (or simulations) and the observation, or 
raw radiances? My concern is that the neural network description lack about the physic that is behind such the nature of 
the input. Also that important information are dispatch in all the study to explain fairly some results, but they are still 
necessary to be mentioned in the neural network description.  

AR: We agree that this is important information, and have added more detail in the text about the inputs into the neural 
network to hopefully make this more clear. 

R3: This is more a thought for the conclusion: How does neural network methods will react in the context of global warming 
and the fast modification of some surfaces? Does it mean that despite the benefits of the accuracy that provide neural 
network, they are countered by the fact they will need regular updates?  

AR: Quoting from our original author comment:  
 

“[...] One obvious scenario, which we somewhat touch on in this paper, is the declining presence of arctic sea ice. 
Evidenced by Figure 10, the cloud masks in this paper can have large TPR differences over different geographical 
regions, time of day, and surface type. Based on Figure 2,  Figure 10, and previous evidence (Liu et al., 2010), we 
suspect the MVCM underestimates cloud cover over sea ice. As a result, we expect that the decrease in Arctic sea 
ice, and corresponding increase in ice-free ocean would result in a change in cloud cover estimated by the MVCM 
even if it did not result in a real change in cloud cover. This is obviously undesirable, and lends us to believe that 



cloud detection ability should be invariant as possible to changes in surface type. We believe that Figure 10 illustrates 
that the neural network may be the least susceptible to this, although the ECM and MVCM are certainly competitive 
with it in certain regions/conditions.  
 
We suspect that another way in which cloud masks could be impacted by climate change would be a change in the 
global or regional cloud fraction. The neural network cloud mask is ultimately a statistical model. Under uncertain 
conditions, it will tend to predict the majority class (usually cloudy) since this is what gives it the best results during 
training (as measured by binary cross-entropy in our case). We have tried to ensure our approach does not depend 
too heavily on the use of the background mean cloud fraction by using class-balanced metrics like BACC in our 
evaluation. Along this same line of thinking we have limited to the amount of geographical information to the absolute 
value of latitude and a land/water mask. Not including longitude, or more specific surface types was an intentional 
choice in an effort to reduce on the model’s reliance on how the mean cloud fraction varies with this information. 
 
Regular updates would certainly be beneficial, but are not necessarily a specific requirement of our approach. If 
climate change were to change something fundamental about the decision boundary between clear-sky and cloudy 
scenes, then all statistical cloud detection models would be impacted. We hypothesize that drifts in sensor calibration 
or changes in noise levels would be the largest factor in whether a cloud detection model would need regular updates 
if used in climate data records. [...]” 

We have included some discussion about how changes in surface types could impact these methods. 

R3: It would help to provide a table of the VIIRS band.  

AR: We have added this table. 

R3: Page 4, section 2.2: You mentioned in the discussion section (page 16, line 505) that you use ancillary data. But it is 
poorly described in this section 2.2 (linked to my major comment).  
R3: Page 12, lines352-354: “This is surprising ... a land or water surface.” This is really important information it should 
be mentioned in the description of the neural network input section. (major comment)  
R3: Page 23, Figure 1: This paper would benefits of a better scheme that describe the neural network. Better description 
of the input vector with geo-localisation information.  
 
AR: We have revised some of the text describing the inputs to hopefully make this information more clearly communicated. 
We have also added tables detailing the VIIRS/CrIS Fusion channels and one detailing which inputs are used in each neural 
network model.  

R3: Page 6, lines 171-181: The second part of the section “3.1 Pseudo-Labelling Procedure” is hard to understand at some 
points. In this section, it is about the neural network that help to account for sun glint. What information is provided by this 
neural network to detect sun glint? Is this information provided to the main neural network to not perform a cloud mask, or 
does it simulate input that are supposed to appear in sun glint condition for the main neural network? Where comes from 
the information of true sun glint conditions, to be reproduced? Why the 15th day of every month in 2018? 

AR: We answer the referee’s questions in our original author comment. We have revised section 3.1 in an effort address 
many of these questions and to make the overall presentation of these ideas more clear. 

R3: Page 7, line 202: what is the meaning of “binary cross-entropy”?  

AR: We have added the binary cross-entropy equation to the text and some additional detail about its use. 

R3: Page 10, lines 279- 284: Seeing the Figure 4, the difference between TPR of MVCM and the one for neural network is 
really small. It is most likely that their performances for low broken clouds are similar.  

AR: We have revised the text here and in the discussion to clarify our point about the differences between the cloud masks 
for broken clouds and the reliability of VIIRS/CALIOP collocations for these clouds. 



R3: Page 10, line 314-322: In Figure 6, the cloud mask with neural network is less sensitive to variation of latitudes. 
 
AR: We have added a comment on this to the text. 

R3: Page 11, line 323: “All the of the previous” A word is missing!  
R3: Page 14, line 428: “is subject to a large”  
 
AR: Thanks! We have fixed these errors.  

R3: Page 14, line 447-page 15, line 459: I suggest you put this section and Figure 12, with the section “3.1Pseudo-Labelling 
Procedure”, as it makes the understanding of the pseudo-labelling more clear. Also, because this section is quiet 
independent of all the analysis of the neural network performances.  

AR: This figure has been moved to the section 3.1. 

R3: In relation with section 3.2 page 6 and 7, can you say more about the meaning of dropout X% between each layer?  

AR: We have added a short description of dropout to the text.  

R3: Page 34, Figure 12: There are obvious difference in the behave of the cloud mask from neural network without pseudo-
label and the one with pseudo-label. The second cloud mask is more “binary” (i.e. values equal to 0 or 1) than the first one. 
Can you comment this result? Which neural network of figure 12, have you compared during your paper?  

AR: Quoting from our original author comment: 
 

“The model that we are analyzing the performance of in the results section is Figure 12.d (the neural network with 
pseudo-labels). Figure 12.c is shown simply to illustrate how poorly a machine learning model can perform if we 
don’t account for obvious deficiencies in the training dataset (such as a dataset without any sun glint examples). 
 
On the question of the differences between the two models – that is tough to answer for a couple of reasons. First, 
neural networks are notoriously difficult to interpret the predictions of, and secondly, sun glint scenes are out-of-
domain predictions for the neural network without pseudolabels. Said differently, it is undefined behavior for this 
model so attempting to interpret its predictions here is even more difficult than usual. 
 
Of course, as we mention in the paper, the neural network without pseudolabels makes erroneously cloudy 
predictions throughout the entire scene. This is likely because the model without pseudolabels has likely learned to 
associate high visible reflectivity over water with cloudy pixels since it has never seen sun glint. 
 
All that being said, we can speculate on some of the reasons why Fig 12.d might be more “decisive” than the model 
in Fig. 12.c. For Fig 12.c there are likely two competing factors: a high visible reflectivity which usually indicates 
cloudy pixels, and warm infrared brightness temperatures which usually indicates clear pixels. These two factors 
could result in uncertain conditions since these pieces of information are somewhat contradictory. Fig 12.c is likely 
decisive because it is making predictions in a sun glint scene where it is exclusively trained with pseudolabels. 
Rather, than the probabilities being accurate assessments of uncertainty with respect to the CALIOP label, the 
probabilities in Fig 12.d likely portray the model’s ability to accurately reproduce predictions made from a model 
that exploits solely IR information. To that end, the cloud probability/uncertainty estimates in sun glint regions are 
not especially useful (which we mention in lines 531-535), but we can verify the actual predicted labels from Fig 
12.d appear reasonable compared to the other operation models.” 

In summary, it is difficult to interpret differences in predictions between these models, particularly since these are out-of-
domain predictions for one of them. Thus, our guesses at why their predictions differ are mostly speculative. We have added 
some text to the pseudolabeling section emphasizing that these are out-of-domain predictions for the neural network without 
pseudo-labels. 

Referee #4 Comments 



R4: Minor comments/questions: Line 85: Before going straight to the Collocation Methodology I would recommend to add 
a small subsection on the VIIRS instrument/observations as well as for the two operational cloud mask swith which a lot of 
comparisons are done. 
 
AR: Agreed. We have added more details about the VIIRS instrument, and explained the general approaches of the two 
operational cloud masks.  

R4: Line 86: Also some more information on the CALIOP data could be provided, like what is the width of one cloud layer, 
time of overpass etc.?  

AR: Some more details about the CALIOP data have been added. 

R4: Line 105: Would be nice to see a global map of sampling frequency of valid collocations for the training dataset, maybe 
even per season, like is presented for the testing dataset (Fig. 6 b).  

AR: We have added a figure showing the sampling frequency and the cloud fraction from CALIOP for the training, 
validation, and testing dataset. 

R4: Line 108: Observations in form of radiances/brightness temperatures? Please provide more detail on the input for the 
neural network. 
 
AR: We have clarified this, added a table of VIIRS channels, and a table indicating the differences in inputs for the neural 
networks used in this work.  

R4: Line 109: How are the eight categories combined?  

AR: Quoting from the original author comment: 
 “The categories are 0=shallow ocean, 1= land, 2=coastline, 3=shallow inland water, 4= ephemeral water, 5 = deep 
inland water, 6 = continental/moderate ocean,  7=deep ocean. 

We combine these categories to more generally describe land/water classification. In our binary land/water mask 
(land=1, water=0) the land category is made up of “land” and “coastline” categories of the original mask. All other 
water/ocean categories of the original mask are combined into a simply a water category.” 

We have added text detailing how these categories are combined. 

R4: Line 175: It is not clear to me how the sun glint scenes are labeled, on a pixel-basis? There is a reference, but some 
more information would be nice.  

AR: Quoting from the original author comment:  

“Yes. The pseudolabeling model, which is invariant to sun glint, is used to make predictions where sun glint is 
present. The only differences between our main cloud detection model and the pseudolabeling model are that we 
include the infrared VIIRS/CrIS fusion channels in the pseudolabeling model, and remove all channels with solar 
contributions. It similarly accepts a a 3x3 pixel patch from each channel as input, and makes a cloudy/cloud-free 
prediction for the center pixel. After running this model for every pixel in several scenes with sun glint, we 
subsample these predictions (since we had more than enough data to work with).” 

We have revised this section and have tried to make it more clear how these scenes are labeled. 

R4: Line 202: All inputs are standardized.. meaning for the 3 x 3 pixels?  

AR: We have clarified what we meant by this in the text. 



R4: Line 217: Already refer to corresponding equation numbers. 

AR: This has been fixed. 

R4: Line 314: Why not continue with BACC? 
 
AR: Quoting from our original author comment:  

“We initially did not include a figure with BACC since there were grid cells where the mean CALIOP cloud 
fraction was particularly high, and the BACC was mostly dependent on a relatively small amount of cloud-free 
CALIOP collocations (the Southern Ocean, for example.) Below is the same figure with BACC, and panel (b) is 
replaced with the CALIOP mean cloud fraction. Similar to the ACC figure in the manuscript, these maps are 
calculated using the filtered dataset.”  

We have added a second figure with BACC and have added to the text to describe why BACC results differ significantly in 
some areas with ACC. 

R4: Line 351: How are the surface temperature from the model matched, spatially and temporally, with the measurements? 
Some more detail should be provided.  

AR: We have added detail about this in the text. 

R4: Line 354: are smaller than  

AR: We have reworded this sentence 

R4: Line 360/Fig 6.: The large negative difference for the grid cell in front of the coast of Namibia, could that be related 
to biomass burning aerosol layers? 
 
AR: Quoting from the original author comment: 

“This was what we originally suspected but didn’t look into it much further. 
 
We tracked down the poor performance in this grid cell to an individual nighttime scene over the where the neural 
network achieved an accuracy only a 25% over a stretch of roughly 550 CALIOP collocations over the ocean near 
the coastline that were 97% cloud-free. To compare, the ECM had 81.5% accuracy and the MVCM has 97.8% 
accuracy over this same stretch.  
 
The very poor performance of this specific scene appears to be from a number of factors. One was a processing 
error where the land/water mask was not reduced from the 8 categories to the binary mask (we suspect a job on our 
cluster was preempted or terminated early).  
 
We checked the closest daytime overpass and adjacent regions had aerosol optical depth of roughly 0.15 to 0.3 
estimated by a VIIRS data. Moderate aerosol loading was somewhat apparent in the true color images.  
 
We think the most influential factor was what appeared to be particularly cold SSTs along the coastline indicative 
of upwelling. Without the visible channels in this nighttime scene, the neural network misconstrued these cold 
surface temperatures as cloud cover. We suspect this to be a scenario where a rough estimate of surface temperature, 
or some indication of coastal waters could improve the accuracy of our approach. After fixing the error in the 
land/water mask the accuracy over this small stretch of CALIOP collocations improves from 25% to 63% -- still 
trailing behind the ECM and MVCM significantly.” 
 

R4: R4: Line 472: Could some (pseudo) labeling technique be useful here? Or using a larger pixel matrix than 3 x 3? 
Maybe combined with taking information from not only 1 CALIOP profile but from adjacent profiles as well? 
 
AR: Quoting from the original author comment: 



 “Sure! As another reviewer suggested we might be able to pseudolabel using the MVCM or ECM to address 
specific deficiencies in the neural network. For the purposes of this paper we wanted to demonstrate how the neural 
network could be implemented in a stand-alone capacity (assuming that neither of the operational masks were 
available). 
 
We briefly experimented with a convolutional neural network that used 5x5 and 7x7 patches. These models actually 
performed slightly worse for broken clouds and only improved performance in more homogenous scenes 
(represented by the filtered dataset).  
 
Using adjacent CALIOP profiles could be interesting, but we would have to think carefully about how this might 
work. We noticed in previous experiments when we trained to the 5 km CALIOP product that resulting cloud mask 
was extremely “smooth” and did not at all capture the fine-scale variability of scenes with broken clouds. We worry 
that using information from adjacent profiles might lead to a similar effect.  
 
This might be a situation where manual labeling could be a good option. One way to do this efficiently could be to 
find regions of broken clouds in VIIRS images, draw a bounding box around such regions, and choose a threshold 
on the 11µm channel that reliably separates cloud-free from cloudy pixels (using a threshold specific to each 
manually selected region). This is, of course, very subjective.” 

R4: Technical corrections Line 29: ..large amounts of training data.. Line 47: ..how a very simple.. Line 298: .. compared 
to the MVCM.. Line 323: All of the previous.. Line 325: ..depend on the particular.. Line 363: the distribution of the.. Line 
423: .. may be a result of sea ice cover. Line 428:.. is subject to a large amount..  

AR: These errors have been fixed. 

  



List of changes 
 

• Added reference to ESA cloud CCI algorithm (Sus et al. 2017) 
• Added details about why spectral features are not precomputed 
• Added descriptions of MVCM and ECM approaches 
• Replaced Frey 2019 reference with updated Frey 2020 reference for MVCM 
• Added references to software used 
• Added comment on relative sensitivity of 1 km and 5 km CALIOP cloud products and that MVCM may be 

correctly identifying clouds observed in the 5 km dataset 
• Replaced the BACC table with a more comprehensive table including BACC, TPR, TNR, and CALIOP cloud 

fraction 
o Specified in table caption the source of data (filtered) 
o Added second table with unfiltered dataset 
o Added to text discussing unfiltered results 

• Replaced Figure 1 with a table describing neural network architecture 
• Added some text describing the neural network’s dependence on latitude 
• Removed suggestion that TPR differences be minimized during training, and added comment that it could be 

used to identify detection inconsistency when needed 
• Added comment on how mischaracterization of surface type/temperature could be a source of error in the 

discussion 
• Rephrased how we weight the mean cloud fraction computation (Line 433 in original manuscript) 
• Added comment on the potential for using MVCM and ECM for pseudolabels where appropriate 
• Added new figure for map of BACC for each mask 

o Discussed in text 
• Replaced Figure 8 (thermal contrast analysis) with one that contains both filtered and unfiltered data 
• Added abbreviation for the neural network as NNCM 

o Remade all figures replacing “neural network” with “NNCM” where appropriate 
• Added figure of spatial and seasonal distribution of collocations 
• Added text describing spatial and seasonal distribution of collocations and reasoning for selecting specific 

years in each dataset 
• Fixed several text mentions of number of collocations to correct amount (previously was counting 

collocations with larger than stated time difference). 
• Rephrase how we refer to MVCM to be consistent with Frey et al. 2020 – In Frey et al. 2020 it is the 

Continuity MODIS/VIIRS Cloud Mask not MODIS/VIIRS Continuity Cloud Mask 
• Corrected multiple references to Håkansson et al. 2018 paper 
• Added more detail about the inputs into the neural network (including source, units, and scaling) 
• Added discussion of how changes in surface types could impact these methods. 
• Added a table of VIIRS bands 

o Added reference in text to it 
• Added a table of the VIIRS/CrIS Fusion Channels 

o  Removed list of channels in text 
o Added references in text to it 

• Many significant revisions to the text in section of 3.1 
• Added equation for the binary cross-entropy cost function, and text describing its use 
• Clarified expectation about difference in TPR for low broken cumulus between MVCM and NNCM 
• Added comment on how the neural network is less sensitive to latitude 
• Moved pseudo-labeling sun glint comparison figure to section 3.1 
• Added short description of dropout 
• Fixed or removed broken URLs contained in the references 
• Emphasized how sun glint regions are out-of-domain for the model without pseudo-labels 
• Added some details of the VIIRS instrument 
• Added text explaining the approaches of the ECM and MVCM 
• Added more details on the CALIOP instrument 
• Added a figure of the sampling frequency for the training, validation and testing datasets 



• Revised text explaining the standardization of the inputs 
• Fixed equation reference to TPR 
• Added text explaining how GFS surface temperatures are matched with VIIRS M15 
• Rephrased analysis of thermal contrast figure to improve clarity 
• Added text explaining how land/water categories are combined for binary land/water mask 
• Reorganized text at the beginning of discussion to accommodate the additions suggested by reviewers 
• Fixed various typos and grammatical errors, including (but not limited to): 

o Line 29: “large amounts of training data” 
o Line 47: “how a very simple” 
o Line 298: “compared to the MVCM” 
o Line 323: “All of the previous” 
o Line 325: “depend on the particular” 
o Line 363: ‘the distribution of the” 
o Line 423: ‘may be a result of sea ice cover” 
o Line 428: “is subject to a large” 

• Revisions to many sentences to make them more concise and improve clarity 
• Added reference to A-train exit to explain differences between spatial distribution of collocations between 

2019 and other years 
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Abstract.

Cloud properties are critical to our understanding of weather and climate variability, but their estimation from satellite

imagers is a nontrivial task. In this work, we aim to improve cloud detection which is the most fundamental cloud property. We

use a neural network applied to Visible Infrared Imaging Radiometer Suite (VIIRS) measurements to determine whether an

imager pixel is cloudy or cloud-free. The neural network is trained and evaluated using four years (2016-2019) of coincident5

measurements between VIIRS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). We successfully address

the lack of sun glint in the collocation dataset with a simple semi-supervised learning approach. The results of the neural

network are then compared with two operational cloud masks: the MODIS-VIIRS Continuity
:::::::::
Continuity

::::::::::::
MODIS-VIIRS

:
Cloud

Mask (MVCM) and the NOAA Enterprise Cloud Mask (ECM).

We find that the neural network outperforms both operational cloud masks in most conditions examined with a few excep-10

tions. The largest improvements we observe occur during the night over snow or ice covered surfaces in the high latitudes.

In our analysis, we show that this improvement is not solely due to differences in optical depth-based definitions of a cloud

between each mask. We also analyze the differences in true positive rate between day/night and land/water scenes as a function

of optical depth. Such differences are a contributor to spatial artifacts in cloud masking and we find that the neural network is

the most consistent in cloud detection with respect to optical depth across these conditions. A regional analysis over Greenland15

illustrates the impact of such differences and shows that they can result in mean cloud fractions with very different spatial and

temporal characteristics.

1 Introduction

Clouds serve many critical roles in the earth’s weather and climate system, and are one of the largest sources of uncertainty

in future climate scenarios (Stocker et al., 2013). Determining their presence in current observational records is a fundamental20

first step in understanding their variability and impact. Polar-orbiting satellite imagers such as the Visible Infrared Imaging

Radiometer Suite (VIIRS; Cao et al., 2013) offer frequent views of global cloud cover at high spatial resolution. However,

cloud detection from passive visible and infrared observations is a nontrivial problem. This is particularly true for clouds with

low optical depths, and clouds above cold and visibly reflective surfaces (Ackerman et al., 2008; Holz et al., 2008). These

1



qualifications on imager cloud detection make it difficult to construct confident observational analyses of cloud variability25

from passive satellite instruments especially in the polar regions. As a result, many differences exist between cloud climate

records made with different algorithms, or sensors with different capabilities (Stubenrauch et al., 2013).

Machine learning (ML) has become a popular tool for statistical modeling in earth sciences including the use of both super-

vised and unsupervised methods. Supervised ML methods in the earth sciences can require large amounts
::
of training data often

created from physically-based models, obtained from manual labeling, or observed from other instrument platforms. These ap-30

proaches have been extensively used in characterizing the surface and atmosphere from remote sensing instruments. A sample

of popular ML approaches (and their applications) used in satellite meteorology include naïve bayesian classifiers (Uddstrom

et al., 1999; Heidinger et al., 2012; Cintineo et al., 2014; Bulgin et al., 2018), random forests (Kühnlein et al., 2014; Thampi

et al., 2017; Wang et al., 2020), and neural networks (Minnis et al., 2016; Håkansson et al., 2018; Wimmers et al., 2019; Marais et al., 2020)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Minnis et al., 2016; Håkansson et al., 2018; Sus et al., 2018; Wimmers et al., 2019; Marais et al., 2020).35

In this analysis, we develop a neural network cloud mask
:::::::
(NNCM) that uses the moderate resolution channels from VIIRS

to determine whether a given imager pixel contains a cloud or is cloud-free. We train the neural network using observations

from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et al., 2009). Observations from CALIOP are

often used to validate cloud masks and cloud property estimates due to the instrument’s ability to retrieve vertical profiles of

the atmosphere and characterize clouds with low optical depth. Additionally, its placement in the A-train constellation makes40

it a convenient reference for Moderate Resolution Imaging Spectroradiometer (MODIS) cloud property validation (Holz et al.,

2008). The Suomi National Polar-orbiting Partnership (SNPP) VIIRS instrument, despite not being in the A-train constellation,

makes spatially and temporally coincident observations with CALIOP roughly every two days. Thus, there is opportunity for

matching observations between these two sensors with some limitations. One such limitation is that the range of atmospheric

and surface conditions sampled by CALIOP do not necessarily match that of SNPP-VIIRS. Conditions where collocations45

between these two sensors occur are even less representative, and do not contain instances of significant sun glint. In our

training of a neural network cloud mask,
:::
this

:::::
work we demonstrate how very a

:
a
::::
very simple semi-supervised learning approach

can ameliorate this specific limitation.

There are several recent applications of machine learning
:::
ML

:
in characterizing clouds from imager observations that use

CALIOP as a source of labeled data. Perhaps most relevant is Wang et al. (2020) in which several random forest (RF) models50

are trained to identify the presence and phase of clouds from VIIRS observations under somewhat idealized conditions (spa-

tially homogeneous and low aerosol optical depths). In such conditions the, RF models demonstrated improvements in cloud

masking and cloud phase determination over current algorithms. Håkansson et al. (2018) uses CALIOP as a training source

for estimating MODIS cloud-top heights with precomputed spatial features, MODIS brightness temperatures, and numerical

weather prediction (NWP) temperature profiles using a neural network. They additionally demonstrate the ability to accurately55

estimate cloud-top heights with channels only available on sensors such as the Advanced Very High Resolution Radiometer

(AVHRR) , and VIIRS. Similarly, Kox et al. (2014) trained a neural network with CALIOP to determine the presence of cir-

rus clouds and estimate their optical depth and cloud-top height from SEVIRI observations.
:::
The

::::::::::
Community

::::::
Cloud

:::::::
retrieval

::
for

::::::::
CLimate

::::::::
(CC4CL;

::::::::
Sus et al.,

:::::
2018

:
)
::::
also

::::
uses

:::::
neural

::::::::
network

:::::
based

:::::::::
approaches

:::
for

:::::::
imager

:::::
cloud

::::::::
detection.

::::
The

:::::::
CC4CL
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:::::
neural

:::::::
network

::::::
models

:::
are

::::::
trained

:::::
with

::::::::::
collocations

:::::::
between

:::
the

:::::::::
Advanced

:::::::::
Very-High

:::::::::
Resolution

::::::::::
Radiometer

::::::::
(AVHRR)

::::
and60

::::::::
CALIOP.

:::::::::::
Adjustments

:::
are

:::::::
applied

::
to

::::::
shared

:::::::
MODIS

::::
and

:::::::::
Advanced

:::::::::::
Along-Track

::::::::
Scanning

::::::::::
Radiometer

::::::::
(AATSR)

::::::::
channels

:::::::::
(accounting

::::
for

:::::::::
differences

:::
in

:::::::
spectral

::::::::
response

::::::::
functions)

:::
to

::::::
ensure

:::
the

::::::::::
approaches

:::::::::
generalize

:::::::
beyond

:::::::
AVHRR

:::
to

:::::
those

::::::
imagers

:::
as

::::
well.

:
While the majority of these applications for cloud property estimates are relatively recent, there were suc-

cessful implementations
::
of

:::
ML

::::::::::
approaches

:
well before the launch of CALIOP using manually labeled scenes (Welch et al.,

1992).65

Our approach aims to improve upon existing literature in several ways.
:::::::::
Significant

:::::
effort

:::
has

::::
gone

::::
into

::::::::::
determining

::::::
useful

::::::
spectral

::::::::::::
characteristics

::
in
::::

the
::::::::::
development

:::
of

::::
past

::::::
imager

:::::
cloud

::::::
masks.

:::::
Still,

:
it
::
is
:::::::
possible

::::
that

:::
not

:::
all

:::::::
relevant

:::::::::
variability

::
is

::::
being

:::::::::
exploited

::::::::::
particularly

:::
that

::::::
which

:::::::
involves

:::::
three

::
or

:::::
more

:::::::::
channels. Rather than relying on precomputed spectral , or

textural features, we allow a neural network to learn relevant features from a local 3 pixel by 3 pixel image patch from all

16 moderate resolution VIIRS channels. This necessitates a relatively large neural network architecture in order to exploit the70

variability of these observations to discriminate cloudy from cloud-free scenes. We train the model without filtering CALIOP

collocations to encourage more reliable predictions under non-ideal conditions. Additionally, we specifically address issues

caused by the lack of sun glint scenes in collocations between SNPP VIIRS and CALIOP. This specific implementation does

not require surface temperatures
::::::::::
temperature, surface emissivity, the use of clear-sky radiative transfer modeling, snow cover

:
,

or ice cover information. The only ancillary data used is a VIIRS-derived land/water mask in the level-1 geolocation product.75

This approach
:::
The

:::::::
NNCM uses a single model for all surface types and solar illumination conditions and in some respects,

greatly simplifies the processing pipeline for imager cloud masking.

::
In

:::
this

::::::::
analysis,

:::
we

::::::::::
demonstrate

:::
that

::
a
:::::
neural

:::::::
network

::::::
cloud

::::
mask

::::::::
(NNCM)

::::
can

:::::::::
outperform

::::
two

:::::::::
operational

::::::
VIIRS

::::::
clouds

:::::
masks

::
in

::::::::
detecting

::::::
clouds

::::::::
identified

:::
by

::::::::
CALIOP.

::
In

:::::::::
particular,

:::
we

::::
note

:::::
large

::::::::::::
improvements

::
at

:::::
night

::
in

:::
the

::::::
middle

::::
and

::::
high

:::::::
latitudes.

:::::
Since

:::::
cloud

::::::
masks

::::
may

::::
have

:::::::
differing

:::::::::
definitions

::
of

:::::
what

::::::::::
substantiates

::
a

:::::
cloud,

:::
we

:::::::
evaluate

:::
the

::::::::::
performance

:::
of

::::
each80

:::::::
approach

::::
after

::::::::
removing

::::::
clouds

:::::
above

:::
an

::::::::
increasing

:::::
lower

::::::
optical

:::::
depth

::::::::
threshold.

::::
The

::::::::
usefulness

:::
of

::
the

::::::::
predicted

:::::::::::
probabilities

::
as

:
a
:::::
proxy

:::
for

:::::::::::
uncertainties

:::
are

::::::::
assessed.

:::
We

::::
also

::::
show

:::
an

:::::::
example

::
of

::::
how

::::::::::
differences

::
in

:::::
cloud

::::::::
detection

:::::
ability

::::
can

:::::
result

::
in

:::::
vastly

:::::::
different

::::::
spatial

:::
and

::::::::
temporal

::::::::::::
characteristics

::
of

:::::::
regional

:::::
mean

:::::
cloud

:::::
cover

::::::::::
assessments

::
in

:::
the

::::
polar

:::::::
regions.

:

2
::::::::::
Instruments

::::
and

:::::
Data

2.1
:::::

VIIRS85

:::::
VIIRS

::
is

::
a

:::::::::::
polar-orbiting

:::::::
visible,

:::::::::::
near-infrared,

::::
and

::::::
infrared

:::::::
imager

::
on

:::::
board

:::
the

::::::
S-NPP

::::
and

:::::::::
NOAA-20

::::::::
satellites.

::::
The

:::::
swath

:::::
width

::
of

::::::
VIIRS

::
is

::::::
roughly

:::::
3060

:
km

:::::::
allowing

:::
for

::
at

::::
least

:::::
twice

:::::
daily

:::::
views

::
of

::::
any

:::::
given

::::::
ground

:::::::
location

::::
and

::::
more

::::::::
frequent

:::::
views

::
at

:::::
higher

::::::::
latitudes.

::::::
VIIRS

::::::::
altogether

::::::::
measures

:::::::::::::::
top-of-atmosphere

::::::::
radiation

:::
for

::
22

:::::::
different

::::::::
channels.

::::
This

::
is
:::::
made

:::
up

::
of

:::
five

:::::::
imaging

::::::::
channels

::::::::
(I-bands)

::::
with

:
a
:::::
nadir

:::::::::
resolution

::
of

::::
375 m,

::::
and

::::::
sixteen

::::::::
moderate

:::::::::
resolution

:::::::
channels

::::::::::
(M-bands)

::::
with

:
a
:::::
nadir

::::::::
resolution

::
of
::::

750
:
m

:::::
(Table

:::
1).

::::::
VIIRS

:::
has

::
an

:::::::::
additional

:::::::::
Day/Night

:::::
Band

::::::
(DNB)

:::
for

::::::::
nocturnal

::::::::
low-light

:::::::::::
applications.90

::::
This

::::
work

::
is

:::::::
focused

::::::
entirely

:::
on

:::
the

::::::
sixteen

::::::::
moderate

::::::::
resolution

::::::::
channels

:::
and

::::
does

:::
not

:::::::
include

::
the

::::
use

::
of

:::
the

:::::
higher

:::::::::
resolution

3



::::::
I-bands

::
or

:::
the

::::::
DNB.

:::::::::::
Furthermore,

:::
we

::::
only

:::::::
consider

::::::
VIIRS

::::
data

:::::
from

::::::
S-NPP

:::::
which

::::
has

::
an

:::::::::
equatorial

:::::::
crossing

::::
time

:::
of

::::
1:30

:::
pm.

:

2.2
:::::::
CALIOP

:::::::
CALIOP

::
is
::::::::::::

polar-orbiting
:::::

lidar
::::::
taking

:::::::::
near-nadir

::::::::::
observations

:::
on

::::::
board

:::
the

:::::::::::::
Cloud-Aerosol

:::::
Lidar

:::
and

::::::::
Infrared

:::::::::
Pathfinder95

:::::::
Satellite

:::::::::::
Observations

::::::::::
(CALIPSO)

::::::
satellite

::::::
which

:::
also

::::
has

::
an

::::::::
equatorial

::::::::
crossing

::::
time

::
of

:::::::
roughly

::::
1:30

:::
pm.

::::::::
CALIOP

::::::::
measures

:
at
:::::::::::
wavelengths

::
of

:::::
1064 nm

::
and

::::
532

:
nm

:::
with

::
a
:::::::::
horizontal

::::::::
resolution

::
of

::::
333 m

:
.
:::
The

:::::::::
individual

::::
lidar

::::::::
footprints

:::
are

::::::::::
aggregated

::
in

:::
the

:::::::
creation

::
of

::::
both

:::
the

::
1 km

:::
and

:
5
:
km

:::::::
CALIOP

::::::
Cloud

::::::
Layers

::::::::
products.

:::::::::
CALIOP’s

::::::
ability

::
to

::::::::::
characterize

::::::::
optically

::::
thin

::::
cloud

::::::
layers

:::::
make

::
it

:
a
:::::::
suitable

:::::::::
validation

::::::
source

:::
for

::::::
imager

:::::
cloud

::::::::
masking.

::::::
While

::::::::
CALIOP,

::
in

:::::
many

::::::::
respects,

::
is

:::
the

:::::
more

:::::::::
appropriate

:::::::::
instrument

:::
for

:::::::::
accurately

::::::::
estimating

:::::
cloud

:::::::::
properties

:::::::::
(including

:::::
cloud

:::::::::
detection),

::
its

::::::
spatial

:::::::
sampling

::
is
:::::::::
extremely100

:::::
sparse

::::::
relative

:::
to

:::::
VIIRS

::::
and

::::
other

::::::::
imagers.

::::
This

::::::::
motivates

:::
our

::::
goal

::
of

:::::::::
extending

:::::::::
CALIOP’s

:::::
cloud

::::::::
detection

:::::
ability

::
to
:::::::
passive

::::::
imager

::::::::::::
measurements.

2.3
::::::

MVCM
::::
and

:::::
ECM

Current operational cloud masks for VIIRS include the NOAA Enterprise Cloud Mask (ECM; Heidinger et al., 2012; Heidinger

et al., 2016), and the MODIS-VIIRS Continuity
::::::::
Continuity

:::::::::::::
MODIS-VIIRS

:
Cloud Mask (MVCM; ? ?

:::::::::
Frey et al.

::::
2020). The105

ECM algorithm was originally designed for AVHRR climate applications , and has since been extended to a wide range of

geostationary and polar-orbiting imagers including VIIRS.
::::
This

:::::::
approach

::
is
:::::
based

:::
on

::::::
several

:::::
naive

:::::::
bayesian

::::::::
classifiers

::::
that

:::
are

::::
each

::::::
trained

:::::::::
specifically

:::
for

:::::::
different

:::::::
surface

:::::
types.

::::
This

::::::::
approach

::
is

:::::::
similarly

::::::
trained

:::::
using

::::::::
CALIOP

::::::::::
collocations

::::
with

::::::
VIIRS

:::
and

::::::
makes

::::::::::
probabilistic

:::::::::
predictions

:::
of

::::::
cloudy

::
or

:::::::::
cloud-free

:::::
pixels.

::
A
::::
key

::::::::
advantage

:::
of

::
the

:::::::
ECM’s

::::
naive

::::::::
bayesian

::::::::
approach

::
is

:::
that

::::::
certain

::::::::
predictors

::::
can

::
be

::::::::
removed

::
or

::::::
turned

::
off

:::::
(such

::
as

::::::
visible

::::::::
channels

::::::
during

::
the

::::::
night).

::::
Due

::
to

:::
the

:::::::::
simplicity

::
of

:::::
naive110

:::::::
bayesian

:::::::::
classifiers,

:::
the

:::::
ECM

:
is
::::::
overall

:::::
more

:::::::::::
interpretable

::::
than

:::
our

::::::::
proposed

:::::
neural

::::::::
network.

The MVCM has heritage with the MODIS cloud mask (Ackerman et al., 2010), and has been adjusted to only use channels

available on both VIIRS and MODIS. Obtaining continuity in cloud detection between the two imagers is a specific goal of the

MVCM.

In this analysis, we demonstrate that a neural network cloud mask outperforms both operational methods in detecting115

clouds identified by CALIOP. In particular, we note large improvements at night in the middle and high latitudes. Since cloud

masks may have differing definitions of what substantiates a cloud , we evaluate the balanced accuracy of each approach after

removing clouds above an increasing lower optical depth threshold. The usefulness of the predicted probabilities as a proxy for

uncertainties are assessed. We also show an example of how differences in cloud detection ability can result in vastly different

spatial and temporal characteristics of regional mean cloud cover assessments in the polar regions
:::
The

:::::::
MVCM

:::
has

:
a
:::::::::
collection120

::
of

:::::
cloud

::::
tests

::::
each

::::
with

::::::::
specified

::::::::::::
low-confidence

::::
and

:::::::::::::
high-confidence

:::::::::
thresholds

::::
used

::
in

::
a

:::::::::
fuzzy-logic

::::::::
approach.

:::
The

:::::::
specific

::::
tests

:::
that

:::
are

:::::::
applied

:::
are

:::::::::
determined

:::
by

::::
solar

:::::::::::
illumination

:::
and

:::
the

::::::
surface

:::::
type.

::::
The

::::::::
clear-sky

:::::::::
confidence

:::::
values

::::::::
imparted

:::
by

::::
each

::::::
applied

::::
test

:::
are

::::::::
combined

:::
to

:::::::
produce

:
a
::::::::::
preliminary

::::::
overall

::::::::
clear-sky

::::::::::
confidence

:::::
value

:::::
which

::::
can

::::
then

::
be

::::::::
modified

:::
by
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:::::::
clear-sky

:::::::
restoral

::::
tests.

::::
The

::::::::
MVCM’s

:::::::
reliance

:::
on

:::::::::::::
physically-based

:::::::::
reasoning

:::
also

:::::
make

:::
its

:::::::::
predictions

::::::::
relatively

:::::::::::
interpretable

::::::::
compared

::
to

:::
our

::::::
neural

:::::::
network

::::::::
approach.125

3 Data

2.1 Collocation Methodology

The labeled data that is used to train and evaluate the performance of the neural network comes from version 4.2 of the 1

km CALIOP Cloud Layers product (Vaughan et al., 2009). A vertical profile is determined to be cloudy when the number of

cloud layers is equal to or exceeds one. Otherwise the profile is assumed to be cloud-free. The CALIOP labels are set to zero130

for cloud-free observations, and one for cloudy observations. Other CALIOP information such as the cloud-top pressure and

cloud feature type are used in the validation of the cloud masks. Cloud optical depth is obtained from the 5 km CALIOP Cloud

Layers product since it is unavailable at the 1 km resolution. There are difficulties in matching satellite imager measurements

with CALIOP. Many of these issues are discussed at length in Holz et al. (2008), and include differences in spatial footprint,

viewing angle, the observation time between the two instruments, and the horizontal averaging applied within the CALIOP135

products to increase their signal to noise ratio.

Collocations between SNPP VIIRS and CALIOP are obtained by performing a nearest neighbors search between the 1 km

CALIOP Cloud Layers product, and the 750 m (at nadir) VIIRS observations. A parallax correction is then applied to account

for pixels with high altitude clouds that are observed at oblique viewing angles by VIIRS. The details of the parallax correction

are identical to that of Holz et al. (2008). Collocations with times that differ by more than 2.5 minutes are removed. This is140

a particularly strict requirement relative to Heidinger et al. (2016) which uses a limit of 10 minutes and severely limits both

the number of possible collocations between these instruments and the range of viewing conditions sampled. We make this

choice because the time difference between observations is a critical factor in the representativeness of a CALIOP profile for

a given imager pixel. This is particularly true for small clouds that occupy a horizontal area similar to or smaller than a single

VIIRS pixel in environments with high wind speeds. Collocations are found for these instruments from January 2016 through145

December 2019. Some gaps in the collocation dataset exist and are primarily due to the availability of CALIOP data products.

Following the recommendations from the CALIPSO team, we remove all CALIOP profiles that contain low-energy laser shots

with 532 nm laser energies less than 80 mJ. This results in a relative sparsity of collocations over central South America after

mid-2017. In total, roughly 29.5
::::
27.1 million collocations were collected for this study with the above requirements.

2.2 Neural Network Inputs150

The observations used as input into the neural network come from the moderate resolution channels (M1-M16;
:::::
Table

::
1)

obtained from the NASA processing of SNPP VIIRS. An
:::
All

::::::::
channels

:::
are

:::::
either

:::::::::
expressed

::
as

::
a
:::::::::
reflectance

:::
or

:::::::::
brightness

::::::::::
temperature.

::
In

:::::::
addition

:::
to

:::
the

:::::
VIIRS

::::::::
channels

:::
we

::::
also

::::::
include

:
a
::::::

binary
:::::::::
land/water

:::::
mask,

:::::
solar

:::::
zenith

::::::
angle,

:::
sun

::::
glint

::::::
zenith

:::::
angle,

::::
and

:::
the

:::::::
absolute

:::::
value

:::
of

:::::::
latitude.

::::
The

::::::
binary

:::::::::
land/water

:::::
mask

::
is
:::::::

created
::::
from

:::
an

:
eight-category land/water mask
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included
:::
the in the VNP03MOD geolocation product , which we reduce to a binary land/water mask is also used. Other inputs155

include the absolute value of latitude, solar zenith angle, and sun glint zenith angle
:::::
which

:::::::
includes

:::::
land,

::::::::
coastline,

:::
and

:::::::
various

::::
types

:::
of

:::::
water

:::::::
surfaces.

::::
Our

::::::
binary

:::::
mask

::
is

::::::
created

:::
by

::::::::
grouping

:::::::
together

:::
all

:::::
water

:::::::
surfaces

::
as

::
a
:::::
single

:::::
water

::::::::
category,

::::
and

:::::::
grouping

:::::::
together

::::
land

::::
and

:::::::
coastline

:::
as

:
a
:::::
single

::::
land

::::::::
category. Sun glint zenith angle is the angle between the surface normal

of the estimated specular point (the point of maximum sun glint) and atmospheric path viewed by VIIRS.
:::
For

::::
each

:::
of

:::
the

:::::
twenty

::::::
inputs,

::
a
:
3
:::::
pixel

::
by

::
3

::::
pixel

:::::
array

::
is

:::::::
extracted

::::
and

::
is

::::
used

::
to

::::::
predict

:::
the

::::::
cloudy

::
or

:::::::::
cloud-free

::::
label

::
at

:::
the

:::::
center

:::::
pixel.

:
160

The VIIRS/CrIS fusion channels (Weisz et al., 2017) are estimates of MODIS-like channels using coarse-resolution mea-

surements from the Cross-track Infrared Sounder (CrIS) that are interpolated to match the moderate resolution channels of

VIIRS. The
::
A

:::::
subset

::
of

::::
the VIIRS/CrIS fusion channels

::::::
without

::::
solar

:::::::::::
contributions

::::::
(Table

::
2)

:
are used in a pseudo-labeling

model for sun glint scenes (described later in section 3.1), but
::::
these

:
are not used in the final neural network model. For all of

the channels used , a 3 pixel by 3 pixel array is extracted and is used to predict the cloudy or cloud-free label at the center165

pixel
::::::
NNCM

::::::
model.

:::::
Table

:
3
::::::::::
summarizes

::::::
which

:::::
inputs

:::
are

::::
used

:::
for

:::
the

:::::::
NNCM,

:
a
::::::
neural

:::::::
network

:::::::
without

:::::::::::::
pseudo-labeling,

::::
and

::
the

::::::::::::::
pseudo-labeling

:::::
model.

2.3 Dataset Splitting

In statistical modeling , it is important to ensure independence between the training, validation, and testing datasets. As

mentioned previously, the
:::
The

:
CALIOP Cloud Layer product’s feature identification algorithm often relies on horizontal aver-170

aging to detect cloud layers of low optical depth. This averaging increases the signal to noise ratio and allows for more accurate

identification of such features. As a result, clouds with low optical depth may have their attributes replicated across neighboring

CALIOP profiles. As pointed out in Håkansson et al. (2018), separating imager and CALIOP collocations by random sampling

would result in three nearly identical datasets and would yield a model that greatly overfits. To avoid this, we stratify our

collocations by year into our training set that consists of 16.5
::::
14.3 million collocations from 2016 and 2018, a validation set175

consisting of 5.9
::
5.7

:
million collocations from 2017, and our testing set consisting of 7.1 million collocations from 2019. The

training set is what is supplied to the model during the training stage. The validation dataset is used for hyperparameter tuning

during model development and early stopping during
:::
the training stage. The testing set is used to provide estimates of model

performance which we will analyze in section 4 and is not seen by the model during the training and
::
or

:
hyperparameter tuning

stages.180

:::
The

::::::
spatial

::::
and

:::::::
seasonal

::::::::::
distribution

:::
of

:::::
these

::::::::::
collocations

::::
can

::
be

:::::
seen

::
in

::::
Fig

::
1.

:::::
There

::::
are

:::::
slight

:::::::::
differences

:::
in

::::::
spatial

:::::::
sampling

::::::::
between

:::
the

::::::
testing

::::::
dataset

::::
and

:::
the

:::::::::
validation

:::
and

:::::::
training

::::::::
datasets.

:::
We

::::::
expect

::::
that

:::
this

::
is
::::

due
::
to
::

a
:::::::::::
combination

::
of

:::
the

::::
strict

::::::::
2-minute

::::
time

:::::::::
difference

:::
we

::::::
require

:::
of

:::
the

::::::::::
collocations

:::
and

::::
the

:::
exit

::
of

:::::::::
CALIPSO

:::::
from

:::
the

::::::
A-train

:::
in

:::
late

:::::
2018

::::::::::::::::
(Braun et al., 2019).

:::
We

:::::
select

:::::
2019

::
for

:::
our

::::::
testing

::::::
dataset

:::::
since

:
it
::::::::
provides

::
the

:::::
most

:::::::
spatially

:::
and

:::::::::
temporally

::::::::
complete

:::::::
dataset.

::::
2016

:::
and

:::::
2018

:::
are

::::
used

::
in
::::

our
:::::::
training

::::::
dataset

::::
since

::::
they

:::::
offer

:::
the

::::
next

::::::
largest

::::::
number

:::
of

::::::::::
collocations.

::::
We

::::::
judged

:::
that

:::::
2017185

:::
was

:::
the

::::
least

::::::::
spatially

:::
and

:::::::::
temporally

::::::::::::
representative

:::::
hence

:::
its

:::
use

::::
only

::
as

::
a
::::::::
validation

:::::::
dataset

::
for

::::::::::::::
hyperparameter

:::::
tuning

::::
and

::::
early

:::::::
stopping

::::::
during

:::::::
training.

:
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2.4 CALIOP Data Preprocessing

A common preprocessing step when training imager cloud masks with CALIOP observations is to filter the collocations using

several heuristics in order to infer when CALIOP cloud detection is unreliable or unrepresentative of the corresponding imager190

pixel. Heidinger et al. (2012) filters AVHRR collocations so that only CALIOP observations where the 5 km along-track cloud

fraction is equal to 0% or 100% are included. Holz et al. (2008) only retained MODIS pixels where all collocated CALIOP

retrievals are identical. Wang et al. (2020) require that both the 1 km and 5 km CALIOP Cloud Layer products agree, that five

consecutive 1 km CALIOP profiles agree, and they additionally remove profiles with high aerosol optical depths. Many of these

filters achieve a similar result in requiring that CALIOP profiles, to a varying degree, are spatially homogeneous with regards to195

the presence of clouds. This filtering is often applied to remove fractionally cloudy profiles , or profiles where the clouds may

have moved out of the corresponding imager pixel. Karlsson et al. (2020) employ an approach that filters AVHRR/CALIOP

collocations on the basis of cloud optical depth. This is done in an iterative fashion in order to determine the lower optical

depth threshold in which their cloud masking method can reliability detect clouds.

In our approach, we intentionally do not perform any of the above preprocessing steps to our training dataset. This is because200

we include a substantial amount of spatial information in our neural network inputs. If such a spatial filter were applied to the

CALIOP data, then cloud edges and small clouds (often boundary-layer clouds) would rarely occur in our training dataset.

This would yield a large amount of bias in a model that accounts for any amount of spatial variability and could cause it to

generalize poorly. Alternatively, we apply a spatial filter to only our testing dataset to create a second filtered testing dataset

that we can evaluate our models against. This allows us to evaluate the performance of our cloud masking model against others205

using only the most reliable CALIOP collocations without biasing any model that considers spatial variability. Additionally, we

can analyze the performance of our neural network approach in fractionally cloudy scenes using the unfiltered testing dataset

with the knowledge that these collocations may be overall less reliable. The specific filter we apply to our testing dataset

requires that five consecutive 1 km profiles agree. This spatial filter creates a filtered testing dataset of 5.9 million collocations

compared to the unfiltered testing dataset of 7.1 million collocations. In no way does this filter affect the training or validation210

data.

3 Methods

3.1 Pseudo-Labeling Procedure

A general concern in using statistical models such as neural networks, is the ability for them to generalize to unseen data. One

such scenario in this dataset is sun glint. Sun glint is the specular reflection of visible light usually over water surfaces which215

results in very large visible reflectivity for both cloudy and cloud-free scenes
::::::::::
observations. In our dataset of VIIRS/CALIOP

collocations, we never observe any substantial amount of sun glint. Thus, without accounting for sun glint, any statistical

model will likely fail to make a reasonable assessment of cloud cover under these conditions. Often, this results in erroneously

predicting cloud cover in sun glint regions due to their high visible reflectivity. In the ECM, sun glint is handled by turning

7



off cloud tests that use visible and NIR
:::::::::
shortwave

::::::
infrared

:
channels with solar contributions. In the MVCM, this is handled by220

decision paths that use visible channels to detect clear-sky pixels specifically in sun glint regions. CLDPROP optical properties

(which use the MVCM) also use a clear-sky restoral algorithm (Platnick et al., 2017) in an attempt to remove erroneously

cloudy pixels, but it is not included in the MVCM output.

We aim to overcome this limitation by using a simple semi-supervised learning approach called pseudo-labeling (Lee, 2013).

Pseudo-labeling is the approach of using a model to make predictions on unlabeled data, assuming that some or all of these225

predictions are correct, and adding these predictions to the original training dataset as if they were true labels. In our application,

the pseudo-labeling model only uses VIIRS and VIIRS/CrIS fusion channels unaffected by sun glint, while the final
:::
and

:::
the

::::
final

::::::
NNCM

:
model uses all VIIRS channels and no VIIRS/CrIS fusion channels.

:::::
Stated

:::::::
simply,

::::::
adding

::::
these

::::::::::::
pseudo-labels

::
to

::
the

:::::::
training

::::::
dataset

::::::::::
incentivizes

::::
the

::::
final

::::::
NNCM

::::::
model

::
to

:::::
match

:::
the

::::::::::
predictions

::
of

:::
an

:::::::::::
infrared-only

:::::
model

:::
in

::::
areas

::::
with

::::
sun

::::
glint.

:
230

We first train a
:::::::::::::
pseudo-labeling neural network model using only channels that are unaffected by sun glint. For VIIRS, these

channels are M14, M15, and M16(central wavelengths of roughly 8.6 , 10.8 , and 12.0 respectively). In addition to these VIIRS

channels, we also use some a
::::::

subset
:
of the VIIRS/CrIS fusion estimates of MODIS-like channels (MODIS bands 27-36, with

central wavelengths of 6.7 , 7.3 , 8.6 , 9.7 , 11.0 12.0 13.3 , 13.6 , 13.9 respectively) . Similarly, these are only VIIRS/CrIS

fusion channels that are
::::
Table

::
2)

::::
that

:::
are

:::::::
similarly

:
unaffected by sun glint. The

:
,
:::
the

:::::
binary

:::::::::
land/water

:::::
mask

::::
and

:::
the

:::::::
absolute235

::::
value

:::
of

:::::::
latitude.

:::
The

::::::::::
VIIRS/CrIS

::::::::
channels

:::
are

::::::::
included

::
in

::
an

:::::
effort

::
to

:::::
make

:::
up

:::
for

:::
the

::::
loss

::
of

:::
the

:::::::::
shortwave

:::
and

:::::::::
shortwave

::::::
infrared

::::::
VIIRS

::::::
bands

:::::::::
(M1-M13).

:::::
After

::::::::
training,

:::
the

:
pseudo-labeling model is then used to make predictions for all SNPP

VIIRS scenes for the 15th
::::
with

:::
sun

::::
glint

:::
of

:::::
angles

:::
of

:::
less

::::
than

:::
40

::::::
degrees

::::
over

::::::
water.

:::
For

:::
this

::::::::
purpose,

::
we

::::::
select

:::::
scenes

:::::
from

::
the

::::::::
fifteenth day of every month in 2018 that contain significant amounts of sun glint

::
(a

::::
year

:::::::
included

::
in
::::

our
::::::
training

::::::::
dataset).

::::
This

:
is
:::::

done
::
to

::::::
ensure

::::
even

::::::::::::
representation

::
of

:::::::
seasons

::::
and

:::::::::::
combinations

::
of

::::
sun

::::
glint

:::::
angle

:::
and

:::::::
latitude. Of these predictions,240

roughly one million pseudo-labels are randomly sampled without replacement and added to the original training and validation

datasets
:
as
::
if
::::
they

:::::
were

:::::::
obtained

::::
from

::::::::
CALIOP. No pseudo-labels are added to the testing dataset.

The class probabilities for the pseudo-labeled examples are not required to be equal to 0 or 1. They
::::::
Instead,

::::
they

:
are left

unmodified in an effort to promote more reliable class probabilities in pixels affected by sun glint from the final neural network

model. In section ?? we demonstrate the impact of training with245

:::::
Before

:::::::::
discussing

:::
the

::::::
details

:::
of

:::
the

:::::::
NNCM,

:::
we

::::
train

:
a
:::::

naive
::::::
model

::
on

:::::
only

:::::::
CALIOP

::::
data

::::::::
ignoring

:::
the

:::
fact

::::
that

:::
sun

:::::
glint

:::::
scenes

:::
are

:::
not

::::::::::
represented

::
in

::::
order

::
to

:::::
better

::::::::
illustrate

::
the

:::::::
purpose

::
of

::::::::::::::
pseudo-labeling.

:::
The

::::::
neural

:::::::
network

::::::
without

::::::::::::
pseudo-labels

::::
does

:::
not

::::::
include

:::::
solar

:::::
zenith

:::::
angle

::::
and

:::
sun

::::
glint

::::::
zenith

:::::
angle

::::
since

:::::
these

::::::
values

:::
for

:::
sun

::::
glint

::::::
scenes

:::
are

::::::
outside

:::
the

:::::
range

:::
of

:::::
values

:::
for

:::::
these

:::::::
variables

::::::::
included

::
in

:::::::
CALIOP

:::::::::::
collocations.

::::
The

:::::
inputs

::
to

::::
each

::::::
model

:::
are

::::::::::
summarized

::
in

:::::
Table

::
3.

::
In

:::
Fig.

::
2
:::
we

:::::::::::
qualitatively

:::::::
compare

:::
the

::::::::::
predictions

::
of

:::
the

:::::::
NNCM

::::
(that

::
is
:::::::

trained
::::
with

::::::::::::
pseudo-labels)

::
to

::
a
::::::
neural

:::::::
network250

:::::
model

:::
that

::
is
:::
not

::::::
trained

::::
with

:
these pseudo-labelson a single scene with a large amount of sun glint. .

:::::::
Without

::::::::::::::
pseudo-labeling,

::
the

:::::
high

:::::
visible

::::::::::
reflectivity

:::::
causes

:::
the

::::::
neural

:::::::
network

:::::
model

::
to
::::
over

:::::::
predict

:::::
cloud

::::
cover

:::
in

::::
these

:::::::
regions.

:::::
Even

::::
areas

:::
far

:::::
away

::::
from

:::
the

:::::::
specular

::::
point

::::
with

::::
only

::::::::
marginal

:::
sun

::::
glint

:::
are

::::::::::
significantly

::::::::
impacted.

::::
This

::::::::
behavior

:
is
:::
not

:::::::::
surprising

::::::
because

::::
sun

::::
glint

:
is
:::
an

::::::::::::
out-of-domain

:::::::::
prediction

:::
for

:::
the

:::::
neural

::::::::
network

::::::
without

::::::::::::
pseudo-labels.

:::::
This

::::
issue

::
is
:::::::::
somewhat

::::::::
remedied

:::
by

::::::::
including
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:::::::::::
pseudo-labels

::
in

:::::::
training

:::
the

::::::
NNCM

:::::
(Fig.

::::
2.d).

:::::::::::
Qualitatively,

:::
the

:::::
ECM

:::::
(Fig.

:::
2.f)

:::::::
appears

::
to

::
be

:::
the

:::::
least

:::::::
effected

::
by

:::
sun

:::::
glint255

:::
and

::::
most

::::
able

:::
to

:::::::
correctly

:::::::::::
discriminate

:::::::::
cloud-free

::::
from

::::::
cloudy

:::
in

:::
the

:::
sun

::::
glint

:::::::
region.

:::
The

:::::::
MVCM

:::::
(Fig.

::::
2.e)

::::
over

:::::::
predicts

::::
cloud

:::::
cover

:::::::
directly

::::
over

:::
the

:::::::
specular

::::::
point,

::::
but

:::::::
captures

:::::
small

:::::
cloud

::::::::
variability

:::::::::::
surrounding

::
it.

:::
The

:::::::
NNCM

::::::
makes

::::::::
relatively

::::::
realistic

::::::::::
predictions

:::::::::
compared

::
to

:::::::
without

::::::::::::::
pseudo-labeling.

::::::::
However,

::
it

::::
does

::::
not

::::::
capture

:::::
small

:::::
cloud

:::::::::
variability

:::::::
around

:::
the

:::::::
specular

::::
point

:::
to

:::
the

::::
same

::::::
degree

::
as
::::

the
:::::
ECM.

::::
The

:::::::::::::
pseudo-labeling

::::::
model

:::::
likely

:::
has

::::
low

::::
skill

::
in

::::
such

:::::::::
conditions

::::
due

::
to

:::
the

:::
lack

:::
of

:::::
visible

::::::::
channels

:::
and

:::
the

::::
low

::::::
contrast

::::::::
between

:
a
::::::::
low-level

::::::::::
fractionally

::::::
cloudy

::::
pixel

::::
and

::
the

:::::::::::
background.

:::::
There

:::::::
appears260

::
to

::
be

::::
little

:::::::::::
disagreement

:::::::
between

:::
the

:::::
cloud

::::::
masks

:::
for

:::
the

:::::
larger,

:::::
more

::::::::
reflective,

::::
and

:::::
colder

:::::
cloud

:::::::
features.

:

::
To

::::::::::
summarize,

:::::
there

:::
are

::::
three

::::::
neural

:::::::
network

:::::::
models

::::::
trained

::
in

::::
this

:::::
work:

:::
(1)

:::
the

:::::::
NNCM,

:::
(2)

::
a
::::::
neural

:::::::
network

:::::::
without

:::::::::::
pseudo-labels,

::::
and

:::
(3)

:::
the

:::::::::::::
pseudo-labeling

:::::::
model.

:::
The

:::::::
NNCM

::
is

:::
the

::::::::
approach

:::
we

:::
are

:::::::::
proposing

:::
and

:::::::::
evaluating.

::::
The

::::::
neural

:::::::
network

::::::
without

::::::::::::
pseudo-labels

:::
and

:::
the

:::::::::::::
pseudo-labeling

:::::
model

:::
are

:::::::::
developed

::
in

::::::
support

:::
of

::
the

:::::::
NNCM.

::::
The

::::
only

:::::::
purpose

::
of

:::
the

:::::
neural

:::::::
network

:::::::
without

:::::::::::
pseudo-labels

::
is

::
to

:::::::
illustrate

:::
the

::::
need

:::
for

:::::::::::::
pseudo-labeling

::
in
::::
Fig.

::
2.

::::
The

::::::
purpose

:::
of

::
the

::::::::::::::
pseudo-labeling265

:::::
model

::
is

::
to

::::::
provide

:::::::
training

:::::
labels

:::
for

:::
the

::::::
NNCM

::
in

:::
sun

::::
glint

:::::::
scenes.

::::
Only

:::
the

:::::
results

:::::
from

:::
the

::::::
NNCM

:::
are

::::::::
analyzed

::
in

:::::::
Sections

:
4
:::
and

::
5.
:::
In

::
the

:::::::::
following

::::::
section

:::
we

:::::::
describe

:::
the

::::::
details

:::::
behind

::::
how

:::
the

:::::::
NNCM

::
is

::::::
trained.

:

3.2 Neural Network Description and Training Details

We use a simple neural network model that consists of Fully Connected (FC) layers, Leaky Rectified Linear Unit activations

(Leaky ReLU), Dropout (Srivastava et al., 2014)
:
, and a sigmoid activation as the last layer. The architecture of this model is270

described in Fig. 1.
::::
Table

:::
4.

:::
All

:::::
except

:::
the

::::
last

:::
FC

::::
layer

:::
are

::::::::
followed

::
by

::::::
Leaky

:::::
ReLU

:::::::::
activation

:::
and

:::::
2.5%

::::::::
Dropout.

:::::::
Dropout

:
is
::
a
:::::
neural

:::::::
network

::::::::::::
regularization

::::::::
technique

:::::
where

::
a
::::::
fraction

:::
of

:::
the

::::
units

::
in

::::
each

:::::
layer

:::
are

::::::::
randomly

::::::
ignored

::::
and

::::
helps

:::::::
prevent

:::::::::
over-fitting.

:
For each VIIRS pixel, a centered 3 pixel by 3 pixel image patch from all 20 inputs is passed to Layer Group

::::
layer

:::::
group 1 (LG1) of Fig. 1. All except the last FC layer are followed by Leaky ReLU activation and 2.5% Dropout

:::::
Table

:
4
::::
and

::::::
through

::::
each

:::::
layer

:::::
group

::::::::::
successively

::::
until

:::
the

:::
last

:::::::
sigmoid

::::::::
activation

::
is
:::::::
reached. The last sigmoid activation bounds the output275

of the model between 0 (indicating cloud-free) and 1 (indicating cloudy).

The model in Fig. 1
:::::
Table

::
4 is the result of a grid search over a fairly small set of hyperparameters. We tested several

configurations by multiplying the number of units in all but the last FC layer by 0.25, 0.5, 1.0, and 2.0. We also tested dropout

rates of 0%, 2.5%, 5%, and 10%, and Leaky ReLU vs. ReLU activations. This results in 32 model configurations which are

each trained and evaluated three times
:::
with

::::::::
different

::::::::
randomly

::::::::
initialized

:::::::
weights. Two configurations with double the number280

of units in the FC layers reported slightly higher validation accuracies compared to that of Fig. 1
:::::
Table

:
4
:

(a difference of

0.05%). However, we judged that the increase in prediction time was not worth the very small gains in performance. Across all

model configurations, Leaky ReLU activation was better than ReLU. Dropout percentages larger than 2.5% only helped when

models had a twice the number of units in the FC layers.

Data augmentation is a common method to artificially increase the diversity of examples in the training dataset (Shorten and285

Khoshgoftaar, 2019). This is often performed by creating plausible alternative views of training examples. Data augmentation

methods have been critical in improving performance on widely-used computer vision benchmarks (Zhang et al., 2018, for

example). In our case, we are limited by the chosen shape and nature of our input to the kinds of augmentations we can apply
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to our training dataset. For instance, we cannot reasonably scale, zoom, or translate (all common augmentations applied to

images) a 3 pixel by 3 pixel image patch where the center values have special meaning. During training, we apply uniformly290

random 90 degree rotations (0, 90, 180, 270), horizontal flips, and vertical flips.

J =�(y log ŷ+(1� y) log(1� ŷ))
::::::::::::::::::::::::::::

(1)

The neural network is trained to minimize binary cross-entropy, with a mini-batch size of 4, 098 examplesJ
:::
(Eq.

:::
1),

:::::
where

::
y

:
is
:::
the

:::::
label

:::
and

::̂
y

:
is
:::
the

::::::::
predicted

::::::::::
probability. All inputs are standardized by subtracting the mean and dividing by the standard

deviation of each input
:::::
scaled

::
to

::::
have

::::
zero

:::::
mean

:::
and

::::
unit

:::::::
variance

::::
with

:::
the

::::::
means

:::
and

:::::::
standard

:::::::::
deviations calculated from the295

training dataset. The Adam optimizer is used with its suggested default parameters (Kingma and Ba, 2015), and we did not

notice any substantial changes in the final model when other optimization algorithms were used. The learning rate is initially set

to 5⇥10�3
::::
with

:
a
:::::::::
mini-batch

::::
size

::
of

:::::
4,098

::::::::
examples. This value is selected using a learning rate range test (Smith, 2017). After

each epoch, the model is evaluated on the validation set. The learning rate is reduced by a factor of 10 when the performance

on the validation dataset does not improve for 3 epochs. This continues until a learning rate of 1⇥ 10�6 is reached. Training300

is stopped once the validation performance does not improve for 5 epochs. Both the final model, and the pseudo-labeling

model are trained in the same way with the same set of hyperparameters. Although, since the input size is smaller, the pseudo-

labeling model has fewer parameters in the first fully connected layer. Using the same set of hyperparameters is not necessarily

ideal since the pseudo-labeling model may have a different set of optimal hyperparameters. We did not perform a separate

hyperparameter grid search due to the large computational cost.305

:::
The

:::::::::::
development

::
of

:::
the

::::::
NNCM

:::
and

:::
the

::::::::
following

:::::::
analysis

::::
was

::::::::
performed

:::::
using

:::
the

::::::::::
TensorFlow

::::::::::::::::
(Abadi et al., 2016),

:::::::
NumPy

::::::::::::::::
(Harris et al., 2020),

:::::
SciPy

::::::::::::::::::
(Virtanen et al., 2020)

:
,
:::
and

:::::::::
Matplotlib

:::::::::::::
(Hunter, 2007)

::::::
python

:::::::
libraries.

:

4 Results

4.1 Validation with CALIOP

When evaluating classification models many performance metrics need to be viewed in context of the class distribution. Oth-310

erwise, quantities such as accuracy (ACC
:
,
:::
Eq.

:
4) and true positive rate (TPR,

::::
Eq.

:
2; equivalent to probability of detection) can

be misleading. For example, a trivial binary classification model that predicts only the positive class achieves 0.9 ACC and 1.0

TPR in a dataset with a positive/negative class distribution of 0.9 and 0.1 respectively. Thus, while metrics like ACC and TPR

are useful, they must be interpreted within the context of the mean cloud fraction.

We calculate the mean cloud fraction for all VIIRS/CALIOP collocations in our 2019 testing dataset over different surface315

types for both day and night (Fig. 2
:
3). For each instance, a cloud fraction value is reported from CALIOP, the neural network

cloud mask
::::::
NNCM, the MVCM and the ECM. Daytime cloud fractions include collocations where the solar zenith angle is less

than 85 degrees. Land and water surface types are determined from the VIIRS level-1 geolocation data product. The presence

of sea ice, snow, and permanent snow (primarily Greenland and Antarctica) is determined from the National Snow and Ice

Data Center sea ice index included with the CALIOP Cloud Layer products. The cloud fraction estimates are not necessarily320
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representative of the true cloud fraction over these surface types since they only represent VIIRS/CALIOP collocations for

2019. Instead, we use them to compare the relative tendencies of each cloud mask to generally overestimate or underestimate

cloud cover for a given surface type.

The neural network
::::::
NNCM

:
cloud fractions match closely to that of CALIOP with the exception of an underestimate of 7%

over nighttime permanent snow. In all other instances the neural network
::::::
NNCM reports cloud fractions

:::
that are within 3% of325

CALIOP. The MVCM predicts smaller mean global cloud fraction compared to CALIOP. This seems to be due to a combination

of slightly overestimating cloud cover over daytime water, and underestimating cloud cover elsewhere. Of particular note are

nighttime snow scenes where MVCM underestimates by 17%, nighttime sea ice where it underestimates by 24%, and areas

with permanent snow cover during the night where it underestimates by 30%. The ECM predicts roughly similar values to the

neural network
::::::
NNCM with the exception of overestimating cloud cover during the night over sea ice by 12%.330

TPR=
TP

P
(2)

TNR=
TN

N
(3)

ACC =
TP +TN

P +N
(4)

BACC =
TPR+TNR

2
(5)

In order to evaluate the performance of each cloud masking model, we calculate the balanced accuracy (BACC; Eq. ??
:
5) of335

all cloud masks across each surface type examined in Fig. 2
:
3. BACC is the mean of the true positive rate (TPR; Eq. ??

:
2), and

the true negative rate (TNR; Eq. ??
:
3), where TP is the number of correctly identified clouds, P is the number of clouds, TN is

the number correctly identified of cloud-free scenes, and N is the number of cloud-free scenes. The advantage of using BACC

over ACC (Eq. ??
:
4) is that BACC accounts for class imbalance. One example of class imbalance is daytime sea ice scenes

where the mean CALIOP cloud fraction is 76%. A trivial model that predicts 100% cloud fraction would obtain 76% ACC, but340

only 50% BACC over daytime sea ice.

BACC is calculated for several surfaces separated for day and night (Table ??) . The neural network cloud mask reports

higher BACC over every surface type examined compared to both the ECM and MVCM. BACC is calculated on the filtered

dataset so Table ??
:::::
values

:::
are

:::::::::
calculated

:::
for

::::
both

::::
the

::::::
filtered

::::::
(Table

::
5)

:::
and

:::::::::
unfiltered

:::::
(Table

:::
6)

:::::::
datasets.

:::::
Table

::
5
:
represents

the most reliable VIIRS/CALIOP collocations. However,
::::::::::
collocations,

:::
but

:
this means that fractionally cloudy scenes, cloud345

edges, and boundary layer clouds are not well representedhere. The
:
.
:::
The

:::::::
NNCM

::::::
reports

::::::
higher

::::::
BACC

::::
over

:::::
every

:::::::
surface

:::
type

:::::::::
examined

:::::::::
compared

::
to

::::
both

:::
the

:::::
ECM

::::
and

:::::::
MVCM

:::
for

:::
the

:::::
both

:::
the

::::::
filtered

::::
and

::::::::
unfiltered

::::::::
datasets.

:::
The

:
most notable
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improvement from the neural network
::::::
NNCM

:
occurs over sea ice, snow, and permanent snow during both day and night.

McNemar’s test (McNemar, 1947) is applied to the neural network
::::::
NNCM and the best operational model (either ECM or

MVCM) for each category in Table ??
::::
both

:::::
tables with the null hypothesis that there is no difference in predictive performance350

between the two models. We reject the null hypothesis with a p-value less than 0.001 in every comparison of the neural network

::::::
NNCM

:
and the best operational model.

::
In

:
a
::::
few

:::::
cases,

:::::
there

:::
are

::::::::
instances

::::::
where

:::
one

::::::::::
operational

::::::
model

:::
has

::
a
::::::
higher

::::
TPR

::
or

:::::
TNR

:::::
value

::::
than

:::
the

:::::::
NNCM

:::
for

::
a

::::::::
particular

::::::
surface

::::
type.

:::
We

::::
find

:::
that

::::
that

:::::
when

:::::
either

:::
the

:::::
ECM

::
or

::::::
MVCM

::::
has

:
a
:::::
larger

::::
TPR

:::::
value,

::
it
::
is

::::
often

::
at
:::
the

:::::::
expense

::
of

::
a

::::
very

:::
low

:::::
TNR

::::
value

::::
(and

:::::::::
vice-versa

:::
for

::::
low

::::
TPR

:::
and

::::
high

::::::
TNR).

::::
One

::::::
notable

::::::::
example

::
of

:::
this

::
is

::::::::
nighttime

::::::
sea-ice

::::::
where

:::
the355

::::
ECM

:::
has

::
a
::::
TPR

::
of

::::::
93.3%

:::
and

:
a
:::::
TNR

::
of

::::::
36.6%

::
in

:::
the

:::::::
analysis

::
of

:::
the

::::::::
unfiltered

::::
data

:::::
(Table

:::
6).

:::::::
Another

::
is

::::::::
nighttime

:::::::::
permanent

::::
snow

:::::
cover

:::::
where

:::
the

:::::::
MVCM

:::
has

::
a

::::
TPR

::
of

:::::
43.6%

::::
and

:
a
:::::
TNR

::
of

::::::
92.2%.

:::
The

:::::::
NNCM

::::
often

::::
has

::
the

:::::
most

::::::
similar

::::
TPR

:::
and

:::::
TNR

::::::
values.

::::::::
However,

:::
this

::
is
:::
not

::::::
always

:::
the

:::::
case.

::::
The

:::::
largest

:::::::::
TPR/TNR

::::::::
disparity

:::
for

:::
the

::::::
NNCM

::
is
::::
over

:::::::::
nighttime

:::::
water

:::::
where

::
it

:::
has

:
a
::::
TPR

::
of

::::::
93.6%

:::
and

::
a

::::
TNR

::
of

::::::
79.2%.

::::
This

::
is
:
a
::::::::
category

:::::
where

:::
the

:::::::
MVCM

:::
has

:
a
:::::::
smaller

:::::::
disparity

:::::::
between

::::
TPR

::::
and

:::::
TNR,

:::
but

:::
still

::::::
overall

:::::
lower

::::::
BACC

::::
than

:::
the

:::::::
NNCM.

::::::::
Generally

:::::
when

:
a
::::::
model

:::
has

:
a
:::::
large

:::::::
disparity

:::::::
between

:::::
TPR

:::
and

:::::
TNR,

::::
that

:
is
:::
an360

:::::::
indicator

::
of

:::::::
severely

:::::::::::::
over-predicting

:::
one

:::
of

:::
the

:::
two

:::::::
classes.

Cloud detection ability relies on many factors including the underlying surface and the characteristics of a given cloud.

Clouds with low optical depth may have only a small impact on the top-of-atmosphere radiation observed by the imager.

Similarly, clouds that are close to the surface, even if they are optically thick, may be difficult to identify due to low thermal

contrast with the surface. We calculate the TPR for all collocations as a function of cloud-top pressure and cloud optical depth365

as estimated from CALIOP (Fig. 3
:
4).

As expected, all cloud masks struggle with the identification of clouds that are optically thin and clouds that are close to the

surface. The neural network
::::::
NNCM

:
has the largest TPR values across all cloud-top pressures and optical depths with a few

exceptions. In the unfiltered dataset during the day, the MVCM has the highest TPR values for clouds with tops lower than

850 hPa. For the same cloud-top pressures, the neural network
::::::
NNCM

:
has the highest TPR in the filtered dataset. This may370

indicate that the MVCM is better able to discriminate small clouds that are close to the surface. However, when these clouds

are removed, the neural network
::::::
NNCM

:
detects a larger portion of the remaining clouds at all cloud-top pressures. During

the night, the MVCM severely underestimates cloud cover for all cloud-top pressures lower than roughly 350 hPa. This is

consistent with the overall lower mean cloud fraction for nighttime scenes reported in Fig. 2
:
3. When considering optical depth,

the neural network
::::::
NNCM

:
consistently has a larger TPR for all values during the day and night for the filtered dataset. This is375

also true for the unfiltered dataset with one exception where it is competitive with the MVCM at optical depths less than 0.2

during the day.

There are some differences between Fig. 3 and Table ??
:
4
::::

and
::::::
Tables

::
5

:::
and

::
6
:
that may seem unintuitive. For example,

the ECM has much higher TPR during the night compared to the MVCM for all optical depths and all cloud-top pressures.

However, its BACC values for all nighttime collocations is slightly less than that of the MVCM. In this case it is helpful to380

remember that BACC accounts for both clear and cloudy scenes, and weights each class equally. TPR only accounts for the
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proportion of clouds correctly identified. The MVCM results in the TPR analysis of Fig. 3
:
4
:
appear to be to due to its tendency

to underestimate cloud cover during the night over certain surfaces.

We also investigate the TPR of the three cloud masks as a function of cloud type (Fig. 4
:
5). The cloud types are obtained

from the 1 km CALIOP Cloud Layers product. Overall, the neural network
::::::
NNCM

:
reports the highest TPR for most cloud385

types. One exception is the broken cumulus cloud type in the unfiltered dataset for which the MVCM has the highest TPR. This

difference for broken cumulus clouds implies that the neural network
::::::
NNCM has relatively worse performance in fractionally

cloudy scenes compared to the MVCM.
:::::
While

::::
these

::::::::::
differences

:::
are

:::::
fairly

::::::
small,

::::
they

::::
may

:::
be

::::::::
indicative

:::
of

:
a
:::::
much

::::::
larger

::::::::
difference

::
in

::::
skill

::::
due

::
to

:::
the

:::::::
relative

::::::::::
unreliability

:::
of

:::
the

::::::::
unfiltered

:::::::::::
collocations. When examining the filtered dataset results

for these same clouds, we see that the neural network
::::::
NNCM

:
has the highest TPR. This suggests that the neural network390

::::::
NNCM

:
and the ECM are only better at detecting broken cumulus when they occupy a substantial horizontal area. When there

is considerable fine-scale spatial variability, such as in the unfiltered dataset, these results suggest that the MVCM is the most

likely to correctly detect a cloud. Besides the broken cumulus cloud type, the neural network
::::::
NNCM

:
has the highest TPR

for both the filtered and unfiltered collocations. The largest differences are observed when comparing cloud masks for the

transparent cloud types. Almost no differences are observed for deep convection which are likely optically thick and have high395

altitude cloud-tops.

As discussed previously, large TPR values do not necessarily indicate skilful models since they can be obtained by over

predicting the positive class. The mean cloud fraction values from Fig. 2
:
3
:
offer some evidence that this is not the case for any

of these cloud masks in most scenarios. To add additional context, we plot the receiver operating characteristic (ROC) curves

under various geographic and solar illumination conditions (Fig. 5
:
6). The ROC curve of each cloud mask depicts the TPR and400

false positive rate (FPR) over a varying threshold applied to their class probabilities. The neural network
::::::
NNCM

:
and ECM

both natively output cloud probabilities. The MVCM includes a clear-sky confidence estimate which we take the compliment

of. An ideal model has a high TPR with very low FPR. A random classifier lies along the diagonal in the middle of a typical

ROC plot where TPR is equal to FPR (not shown due to our choice of x and y axis limits).

Figure 5
:
6 indicates that the neural network

::::::
NNCM can obtain higher TPR for any specified FPR in every scenario examined.405

This is true for both the filtered and unfiltered datasets. This result illustrates that the larger TPR values reported by the neural

network
::::::
NNCM are not strictly due to the larger mean cloud fraction compared the MVCMwhich predicts smaller mean global

cloud fraction. In addition to Table ??
:::::
Tables

::
5
::::
and

:
6, Fig. 5

:
6 implies that most of the improvement by the neural network

::::::
NNCM

:
comes from the high latitudes during the night, but small improvements can still be observed elsewhere. In every

scenario the unfiltered results are worse than those of the filtered datasets. The largest discrepancy between the filtered and410

unfiltered datasets occurs in the low-latitudes over the ocean. This is likely due to the prevalence of small broken cumulus

clouds that are mostly removed from the unfiltered dataset.

There are a few situations where the actual TPR and FPR of the models (marked by the colored circles in Fig. 5
:
6) are in

unintuitive locations on the ROC curve. The ECM’s FPR is larger than 40% for nighttime water scenes at the middle and high

latitudes (not shown due to our choice of x-axis limits). We expect that this is related to the high mean cloud fraction over these415

regions measured by CALIOP. Given that the naïve Bayesian models behind the ECM require an initial guess, it is likely that
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the ECM is relying heavily on climatology in regions where cloud masking is difficult from infrared observations. Overall, it

seems that the locations on the ROC curve of the actual TPR and FPR of the neural network
::::::
NNCM are related to the mean

cloud fraction of the different regions. This is particularly true for nighttime scenes, where statistical models may rely more

heavily on the background mean cloud fraction. More cloudy regions such as middle and high latitude nighttime water (with420

cloud fractions of roughly 79%) have larger FPR. Conversely, nighttime low-latitude land (with a cloud fraction of 50%) has

a much lower FPR. Applications that require specific TPR or FPR from a cloud mask could tune the thresholds applied to the

cloud probabilities to reach their desired values indicated by the ROC curves.

Next , we examine the performance as a function of geographical region. The mean ACC on the filtered testing dataset is

calculated on a 5 by 5 degree grid (Fig. 6
:
7). McNemar’s test is used to test the differences in model performance between425

the neural network
::::::
NNCM and each operational model at every grid point. Only points with significant differences in model

performance (p-values less than 0.001) are shown (Fig. 6
:
7.d, Fig. 6

:
7.f).

::::::
Overall,

:::
the

:::::::
NNCM

::::::
appears

::
to
:::

be
:::
the

::::
least

::::::::
sensitive

::
to

:::::::
latitude. Most large differences

::::::
between

:::
the

:::::::
NNCM

:::
and

:::
the

::::::::::
operational

::::::
models occur over high latitude land. In particular,

the neural network
::::::
NNCM

:
shows large improvement (10-20% difference) over North America, Greenland, Northeastern Asia,

and Antarctica over both the MVCM and ECM. Only small improvement (0-10% difference) is observed over the ocean at430

low and middle latitudes compared to the MVCM. The neural network
::::::
NNCM shows mixed results compared to the ECM

in tropical ocean. A large contribution to the poor performance of the MVCM in the Arctic and Antarctic is likely due to the

severe underestimation of cloud cover observed during the night at high latitudes.

All the of the
::::::::
Similarly,

:::
we

:::::::
calculate

:::
the

:::::
mean

::::::
BACC

::
on

:::
the

::::
same

::::
grid

::
in

::::
Fig.

:
8
:::::
using

:::
the

::::::
filtered

::::::
testing

::::::
dataset.

::::
The

::::::
BACC

:::::
values

:::
are

:::::::::
somewhat

::::::
noisier

:::::
since

::::
areas

:::::
with

::::::::
extremely

::::
high

:::::
cloud

:::::::
fraction

:::::::
depend

::::::
largely

::
on

::::
the

::::::
correct

:::::::::::
identification

::
of

::
a435

:::
few

:::::::::
cloud-free

:::::::
CALIOP

:::::::
profiles.

:::
An

:::::::
example

::
of
::::
this

::
is

::::
over

::
the

::::::::
Southern

::::::
Ocean,

::::::
where

::
the

:::::
ECM

:::
has

::
a
::::
large

::::::::
disparity

:::::::
between

::::
ACC

:::::
(Fig.

:::
7.e)

::::
and

::::::
BACC

:::::
(8.e).

::
A

:::::
slight

::::::::
tendency

::
to

:::::::::::
overestimate

:::::
cloud

:::::
cover

:::
for

:::
this

::::::
region

:::::
yields

:::::
very

::::
large

::::::::::
differences

::
to

:::
the

::::::
NNCM

:::::
(Fig.

::::
8.f).

::::::
Besides

::::
this

:::::::
example

::::
and

::::
some

:::::
areas

::::::
where

:::
the

:::::::
MVCM

::::::::
improves

::::
upon

:::
the

:::::::
NNCM

::
in

:::
the

::::::::
Southern

::::::
Ocean,

:::
the

:::::
results

:::
are

::::::
largely

::::::
similar

::
to

:::::
those

::
of

::::
Fig.

::
7.

:::
All

::
of

:::
the previous analyses in this work rely heavily on an individual cloud mask’s effective definition of cloud. A difficulty440

with comparing different clouds masks is that the definition of a cloud is somewhat subjective at low optical depths and perhaps

dependent
::::::
depends

:::
on the particular application. It is plausible that each cloud mask may be more effective at discriminating

clouds around a certain optical depth threshold. Thus, a reasonable argument based on the reported global mean cloud fractions

in Fig. 2
:
3, and the BACC values in Table ??

:::::
Tables

::
5
::::
and

:
6, is that the MVCM, due to its lower global mean cloud fraction,

may only be sensitive to clouds with slightly larger optical depths compared to the neural network model
::::::
NNCM

:
and ECM.445

In order to further probe the differences in these cloud masks, we recalculate BACC after removing clouds below an increas-

ing lower optical depth threshold from our testing dataset (Fig. 7
:
9). The aim of this analysis is to understand how the optical

depth of a cloud impacts its detectability by each approach, and identify if certain cloud masks perform better if we remove

clouds with trivially low optical depths. Even if two cloud masks are developed around slightly different optical depth-based

definitions of a cloud, we can reasonably expect their BACC values in Fig. 7 to converge when clouds with optical depths450

above both thresholds are removed.
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As expected, when optically thin clouds are removed from our testing dataset, the BACC of all the cloud masks is improved.

Consistent with Fig. 5
:
6, the filtered dataset has higher BACC for all scenarios. The neural network

::::::
NNCM

:
reports the highest

BACC across all land/water, day/night, and latitude combinations examined with a few key exceptions. In low-latitude night-

time water scenes (Fig. 7
:
9.j), the ECM has larger BACC for every cloud optical depth threshold in the unfiltered dataset, but455

more similar values in the filtered dataset. In daytime land scenes at low latitudes (Fig. 7
:
9.a), the ECM has larger BACC values

above an optical depth threshold of roughly 0.4 for the unfiltered dataset, but has lower BACC values at most optical depths

for the filtered dataset. The fact that the neural network
::::::
NNCM

:
BACC values are still equal to or larger than the other cloud

masks for high optical depth clouds in most scenarios suggests the neural network
::::::
NNCM

:
is overall more skillful in cloud

detection regardless of a reasonable optical-depth based definition of a cloud. Because of this, we can infer that improvement460

:::::::::::
improvements

:
in BACC by the neural network in Table ?? is

::::::
NNCM

::
in

::::::
Tables

:
5
::::
and

:
6
:::
are

:
not solely due to discrepancies in

the detection of optically-thin clouds.

It may be initially unintuitive why some of the curves in Fig. 7
:
9
:
vary so little with the removal of optically thin clouds. This

is partially due to the choice of BACC as our
::::::
primary performance metric, but it is also representative of the fact that cloud

optical depth is not the only variable controlling the detectability of a cloud. Thermal contrast with the surface also plays a465

significant role. Often, this can be analysed by examining performance of a given cloud mask as a function of both optical depth

and cloud-top height. However, this may be misleading where clouds in inversion layers may be warmer than the underlying

surface.

To examine the approximate impact of thermal contrast with the surface, we calculate ACC as a function of the difference be-

tween the VIIRS M15 measurement (10.8 µm) and the surface temperature obtained from the Global Forecasting System (GFS)470

analysis dataset
::::::::::
twelve-hour

::::::::
forecasts

::::
made

:::::
every

:::
six

:::::
hours

:
(Fig. 8). We calculate ACC

:::
10).

:::::
These

:::::::
surface

:::::::::::
temperatures

:::
are

:::::::
matched

::
to

::::::
VIIRS

::::::::::
observations

:::
by

::::::
linearly

:::::::::::
interpolating

::
in

:::::
space

::::
and

::::
time

::::
from

:::
the

:::::::::
preceding

:::
and

:::::::::
subsequent

:::::
GFS

::::::::
forecasts.

:::::
Given

:::
the

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution

::
of

:::
the

::::
GFS

::::::::
products,

:::::
these

::::::
should

::::
only

::
be

:::::::::
interpreted

::
as

::::
very

::::::
rough

::::::::
estimates

::
of

:::
the

::::::
surface

::::::::::
temperature.

::::
The

:::::::::
differences

:::
are

:::::::::
calculated after the removal of clouds below two different cloud optical depth thresh-

olds: 0.3, and 3.0. As expected, all cloud mask models
:::::
masks

:
perform well where the 10.8 µm measurement is significantly475

colder than the surface. Once the differences are greater than -16 , the
:::
The performance of all models decreases

::
as

:::
the

::::::
VIIRS

::::::
10.8µm

:::::::::
brightness

:::::::::::
temperatures

::::::
become

:::::
more

::::::
similar

::
to

::
or

:::::
larger

::::
than

:::
the

::::::
surface

:::::::::::
temperature.

:::::
Figure

:::
10.Figure 8.b illustrates

that even for optically thick clouds, the performance of both operational models is largely dependent on thermal contrast with

the surface. The neural network
::::::
NNCM

:
appears to be more robust to scenes where the 10.8 µm measurement is similar to or

warmer than the surface. This is surprising given that the neural network
::::::
NNCM is not supplied with any information about480

surface characteristics other than latitude and whether it is viewing a land or water surface.

4.2 Uncertainty Assessment

Class probabilities produced by machine learning models are often used to obtain uncertainty estimates. While these values

are typically not the same as true uncertainties, they can be useful for interpreting model output. For binary classification

models, an approximation for uncertainty can be usually obtained by examining the distance from the decision threshold.485
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These uncertainty estimates are generally unreliable when predictions are made on inputs that are outside the distribution
::
of

the original training dataset. With this significant caveat in mind, we calculate the ACC with respect to the cloud probabilities

of the neural network
::::::
NNCM

:
and ECM, as well as the clear-sky confidence from the MVCM (Fig. 9

::
11). A model with a cloud

probability threshold of 0.5 is perfectly calibrated if its predictions lie along the line where ACC =min(ŷ,1� ŷ) where ŷ is

the scalar predicted cloud probability. The MVCM appears to follow a different convention with a decision threshold of 0.95490

since that is where the minimum accuracy is reached with respect to the MVCM clear-sky confidence.

Overall, the neural network
::::::
NNCM

:
appears to be the best calibrated with the ACC on the unfiltered collocations closely

following the expected values from a perfectly calibrated model. It is slightly over-confident when predicting cloud probabilities

for clear-sky cases in the range of 0.1 to 0.4. The ECM appears to be overconfident for the majority of cloud probability values.

The assessment of MVCM accuracy as a function of clear-sky confidence is somewhat noisy, but could be attributed to the495

extremely low number of values in the calculated intervals. Despite the minor differences, all cloud masks examined here have

accuracies that vary in an intuitive way with their predicted cloudy or clear-sky probability values. The differences among them

can be mostly attributed to how well their class probabilities correspond to a particular level of accuracy. As a result, we expect

that these values can be used to convey the relative uncertainty in estimating which imager pixels the CALIOP cloud products

might determine to be cloudy. However, it remains to be demonstrated if accurate uncertainties in predicting CALIOP cloud500

detection translate well to accurate uncertainties outside of CALIOP collocations.

4.3 Cloud Detection Consistency

Evidenced by much of the previous analysis, the detectability of a cloudy pixel by a cloud masking algorithm can depend on a

number of factors including surface characteristics, solar illumination, cloud optical depth, cloud-top height, thermal contrast

with the surface, and the algorithm itself. The variation of BACC, ACC, TPR, and FPR across these conditions suggest that505

clouds of a fixed optical depth may be more likely detected over certain surface conditions or time of day. This is potentially

problematic and conducive to spatial and temporal artifacts in cloud amount analyses. Consider for example, a cloud of fixed

low optical depth advected sequentially over a cold land surface, a relatively warm ocean surface, and sea ice. Regardless of the

overall accuracy of a cloud mask or effective definition of a cloudy scene, an algorithm with a varying TPR over these surface

types could produce spatial artifacts related to these surfaces. Considering that solar illumination may change during this time510

further complicates this example and could produce unrealistic cloud amount variability through time. In many scenarios, this

is unavoidable due to the limitations of the satellite instrument. However, we argue that a desirable quality of a cloud mask is

consistency in TPR across varying surface types and solar illumination conditions, and that, ideally, cloud detection should be

dependent on characteristics of the cloud and not characteristics of the surface or solar illumination. We expect that additionally

optimizing for minimal
::::::::
examining

:
TPR differences between these conditions at fixed cloud optical depths could help eliminate515

:::::
reveal artificial spatial and temporal variability in cloud amount analyses.

To investigate this concern, we calculate the TPR for clouds above an increasing optical depth threshold. Then, we find the

difference in TPR across daytime, nighttime, land, and water for three latitude bands (Fig. 10
::
12). An important consideration
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for Fig. 10
::
12 is that a cloud mask can have low accuracy, but also low TPR differences if it makes consistent predictions with

respect to cloud optical depth across the conditions examined.520

In general, as the lower optical depth threshold increases, TPR differences decrease for all cloud masks with a few exceptions.

The neural network
::::::
NNCM

:
has TPR differences less than or equal to 5% for all scenarios examined except for the difference

between nighttime water and nighttime land, and the difference between daytime land and nighttime land at the high latitudes.

In both instances, the differences converge to less than 5% at optical depths greater than 1. All cloud masks struggle with

consistency at high latitudes and for optically thin clouds.525

The ECM shows strong consistency in TPR between daytime and nighttime water at all latitudes for both datasets. However,

it struggles in many other scenarios. In Fig. 10
::
12.d (low latitude nighttime water and nighttime land), the ECM is the only

mask with differences greater than 5%. In Fig. 10
::
12.f (high latitude nighttime water – nighttime land) the ECM has the largest

TPR difference observed of roughly 28% for optically thin clouds.

The MVCM has the largest TPR differences in nine out of the twelve scenarios examined in Fig. 10
::
12. In a few cases (Fig.530

10
::
12.a, 10

::
12.b, 10

::
12.g) the large TPR differences converge to zero at larger optical depths. However, in other cases, the large

differences remain even for optically thick clouds. This is especially true for daytime/nighttime consistency over both land and

water at high latitudes (Fig. 10
::
12.i, 10

::
12.l) where differences are larger than 10% for clouds with optical depths greater than

1.0.

4.4 Regional Analysis535

In order to give some context to the largest differences we have observed when validating with CALIOP collocations, we

perform a limited regional analysis comparing the neural network cloud mask
::::::
NNCM and the MVCM. We focus this analysis

on Greenland because it is one of the worst performing regions for both masks. We process every SNPP-VIIRS
:::::
S-NPP

::::::
VIIRS

scene in 2019 where the nadir VIIRS ground track comes within the bounding box of latitudes 60N to 80N and longitudes

70W to 20W. This results in a total of 4,412 six-minute VIIRS scenes. Due to the large amount of scenes, we additionally540

subsample every fifth pixel from every fifth scanline. For the neural network
::::::
NNCM and the MVCM we calculate the mean

cloud fraction for the region 58N to 84N, and 80W to 10W using a grid size of 0.5 degrees latitude and 1 degree longitude

(Fig. 11
::
13.a, 11

::
13.b).

Consistent with the CALIOP validation, we observe large differences over the Greenland land mass (Fig. 11
::
13.c). The

neural network
::::::
NNCM predicts 10-25% higher cloud fraction over Greenland varying with exact location. Differences over545

the ocean to the southeast of Greenland are negative and fairly small. However, the ocean to the north and west of Greenland

have large positive differences similar to those over Greenland itself. Based on the spatial characteristics of the mean MVCM

cloud fraction over the ocean, we hypothesize that these differences may be a result
::
of sea ice cover. A similar result was

found previously in Liu et al. (2010), where MODIS cloud detection errors related to the presence of sea ice were suggested to

contribute to large errors in cloud fraction trends.550

Focused regional comparisons between imagers and CALIOP can be difficult due to the relative sparsity of CALIOP ob-

servations in small geographical regions. A domain-wide averaged cloud fraction comparison between the two imager cloud
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masks and CALIOP is subject
:
to

:
a large amount of error due to the differences in spatial sampling and observation times. We

calculate a domain-wide average of cloud fraction for CALIOP and the two cloud masks and plot the 31-day moving average

as a function of time (Fig. 11
::
13.d). To account for some of the differences in sampling, this average only includes grid points555

from the neural network
::::::
NNCM

:
and MVCM for which CALIOP has sampled on the same day. This effectively removes the

impact of differences in spatial sampling, but ignores differences in temporal sampling. Thus, we should still not expect either

the MVCM or the neural network
::::::
NNCM to follow the CALIOP 1 km or 5 km products extremely closely. The averages across

space are weighted by the cosine of latitudeexpressed in radians
::::::
closely.

:::::
When

:::::::::
calculating

:::
the

:::::
mean

:::::
cloud

:::::::
fraction,

:::::::::
individual

:::::
values

:::
on

:::
the

::::::
regular

::::::::::::::
latitude/longitude

::::
grid

:::
are

::::::::
weighted

::
to

:::::::
account

::
for

::::::::::
differences

::
in

::::::
surface

::::
area

:::::::
between

::::::::
locations.

:
560

The largest differences occur in northern hemisphere winter, with better agreement between the MVCM and neural network

::::::
NNCM occurring during northern hemisphere summer. This suggests that the MVCM’s tendency to underestimate cloud cover

during conditions with no solar illumination heavily contributes to the spatial differences observed in Fig. 11
::
13.c. Similarly,

the magnitude of the seasonal cycle in the MVCM is likely exaggerated due to variation of solar zenith angle throughout the

year. Both cloud masks also show very different shapes to the seasonal cycle even when ignoring the overall differences in565

mean cloud fraction. Despite differences in temporal sampling, the neural network
::::::
NNCM

:
shows somewhat similar variability

to both CALIOP products. Overall, the neural network
::::::
NNCM

:
shows mean cloud fractions more similar to the 5 km km

CALIOP product despite being trained with labels from the 1 km product. This is not a surprising result since the neural

network
::::::
NNCM is a statistical algorithm and is incentivized to predict the majority class (cloudy) in uncertain conditions when

both classes are given equal weight. The 5 km CALIOP product likely has a larger mean cloud fraction due to its ability to570

detect clouds with low optical depths. Of the two cloud masks, the neural network
::::::
NNCM

:
appears to give a more realistic

assessment of cloud cover variability in this analysis and more closely aligns with that of CALIOP.

4.5 Sun Glint Example

As mentioned in Section 3.1 the VIIRS/CALIOP collocations used in this analysis do not contain scenes with a significant

amount of sun glint. Figure 12 illustrates the impact of pseudo-labeling sun glint scenes with VIIRS infrared and VIIRS/CrIS575

fusion channels. Without pseudo-labeling (Fig. 12.c), the high visible reflectivity causes the neural network model to over

predict cloud cover in these regions. Even areas far away from the specular point with only marginal sun glint are significantly

impacted. This is somewhat remedied by including pseudo-labels in training the neural network (Fig. 12.d). Qualitatively, the

ECM (Fig. 12.f) appears to be the least effected by sun glint and most able to correctly discriminate clear from cloudy in

the sun glint region. The MVCM (Fig. 12.e) over predicts cloud cover directly over the specular point, but captures small580

cloud variability surrounding it. The neural network with pseudo-labels makes relatively realistic predictions compared to

without pseudo-labeling. However, it does not capture small cloud variability around the specular point to the same degree

as the ECM. The pseudo-labeling model likely has low skill in such conditions due to the low contrast between a low-level

fractionally cloudy pixel and the background. There appears to be little disagreement between the cloud masks for the larger,

more reflective, and colder cloud features.585
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5 Discussion

There are few common themes in much of the analysis done in section 4. The BACC calculated over global averages of a

few surface types suggests that the neural network
::::::
NNCM is better at discriminating cloudy from cloud-free scenes in most

scenarios. Further analysis shows that a large majority of this improvement comes from collocations located at the middle and

high latitudes. According to the CALIOP collocations, the ECM and neural network
::::::
NNCM cloud masks appear relatively590

comparable over low-latitude land and ocean with the MVCM trailing slightly behind both in this region. The ECM appears

slightly more capable of identifying low-level small clouds in the unfiltered dataset in low-latitude nighttime scenes over water.

:::
The

::::::::
NNCM’s

:::::::::::
improvement

::
at

::::::
higher

:::::::
latitudes

:::::
raises

:::::
some

::::::::
questions

:::
on

::
its

::::::::::
dependence

:::
on

:::::::
latitude

:::::::::
particularly

:::::
since

::
it

::
is

:::
the

::::
only

:::::
model

:::
that

::::
uses

::::
this

::::::::::
information

::::::
directly

::
in

::
its

::::::
inputs.

:::
To

:::
test

:::
this

:::::::::::
dependency,

::
we

::::::::
retrained

:::
and

::::::::
evaluated

:::
the

:::::::
NNCM

::::
after

::::::::
removing

:::::::
latitude,

::::
solar

::::::
zenith

:::::
angle,

::::
sun

::::
glint

:::::
angle,

::::
and

:::
the

:::::::::
land/water

:::::
mask.

::::
The

::::::
largest

::::::
change

::
in

::::::
BACC

::::
was

:
a
::::::::
decrease595

::
of

:::::
-0.5%

::::
over

:::::::::
nighttime

:::::
water,

::::
and

:::
all

:::::
other

:::::::
surfaces

:::::::
changed

:::
by

::::
less

::::
than

:::::
0.2%.

:::::::::::
Considering

:::::
these

::::::
results,

::
it
::
is

::::::::
probable

:::
that

:::
the

:::::::
NNCM

:::::::
depends

::
on

:::::::::
latitudinal

:::::
mean

:::::::::
cloudiness

::
in
:::::

some
::::::::
capacity

::::
over

:::::
water

:::::::
(similar

::
to

:::
the

:::::
ECM

::::
over

:::
the

::::::::
Southern

::::::
Ocean).

::::::::
However,

::
it
::
is

:::::::
difficult

::
to

:::::
assess

::::
how

:::
this

::::::::::
information

::
is

::::::
utilized

::::
and

:::::::
whether

:
it
::
is

::::::
serving

::
a
:::::::
purpose

::::::
similar

::
to

:::
that

::
of

::
a

:::::::::::
climatological

::::
first

:::::
guess,

:::
or

:
if
::
it
::
is

::::::::
changing

:::
the

:::::
usage

::
of

::::
other

:::::::::::
observations.

:

Despite training using an unfiltered dataset that contains fractionally cloudy pixels identified by CALIOP, the neural network600

cloud mask
::::::
NNCM

:
still struggles in fractionally cloudy scenes. This is likely due to a combination of noisy labels from

CALIOP in these conditions and the low contrast with the underlying and surrounding surface. A
::::::
Broken

:::::::::
cloudiness

::
is

::
a

consistent problem in using CALIOP as a referenceis broken cloudiness. These clouds pose a significant challenge to cloud

masking in general, but are particularly difficult to handle when the corresponding CALIOP profile is not fully representative

of its collocated imager pixel. Future efforts to provide a high-quality, fine-resolution, globally-distributed cloud labels could605

prove extremely useful to solve these issues.

Our choice of training on an unfiltered collocation dataset was made to avoid any bias with regards to the spatial charac-

teristics of cloud cover. We expect that filtering out spatially variable clouds from the training dataset would result in an even

worse characterization of small clouds by the neural network
::::::
NNCM. Despite training on a relatively unreliable collection of

CALIOP collocations, we report much higher BACC for the vast majority of scenarios, especially in homogeneously cloudy610

scenes represented by the filtered testing dataset.

It should also be noted that the decision to use CALIOP as a reference and the lack of filtering applied to the training

dataset affects how the neural network
::::::
NNCM uncertainty estimates can be interpreted. Reported uncertainties by the neural

network
::::::
NNCM

:
should not be purely attributed to the ability of the model to detect clouds based on spectral variability alone.

Since we include neighboring pixels in the inputs, spatial variation in VIIRS channels is also a contributor. Additionally, these615

uncertainty estimates are also a function of how representative CALIOP profiles typically are of a given pixel. This suggests

that uncertainties associated with regions of broken clouds are elevated due to the difficulty of obtaining mutually representative

collocations between CALIOP and VIIRS.
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There are many areas for improvement in the neural network
::::::
NNCM approach. For instance, we included all 16 moderate

resolution channels in our algorithm. It is plausible that some channels that are not especially useful in cloud detection, or the620

useful information they provide to the task is redundant among other channels. Pruning inputs to the model could ultimately

speed up processing and could reduce the likelihood of over-fitting. Future work could investigate the benefit of including the

375 m I-band measurements from VIIRS. We did not include I-band measurements, since obtaining these observations more

than doubled the processing time for creating the collocation dataset, training the model, and making predictions. Sub-pixel

information from the I-band measurements could likely help identify small cloud features. However, we expect that the poor625

representation of small clouds by the CALIOP/VIIRS collocations would severely limit the usefulness of their incorporation.

Further work is needed to in order to properly assess how I-band measurements could be used to maximize their value in cloud

property algorithms trained with CALIOP.

Despite the large increase in BACC made by our neural network
::::::
NNCM

:
approach, there is still room for improvement

particularly during the night. One potential solution might be the incorporation of VIIRS/CrIS fusion channels into the inputs630

of the final neural network
::::::
NNCM model. Similar to the usage of I-band measurements, this may increase the prediction time.

However, the spectral regions covered by the I-bands are already well-represented in the moderate resolution channels. The

VIIRS/CrIS fusion channels represent spectral regions not covered in the native VIIRS channels such as those with significant

CO2 (MODIS bands 33-36) , H2O (MODIS bands 27 and 28), and O3 (MODIS band 30) absorption. Thus, the increase in

cloud detection accuracy may be worth the trade-off of increased prediction time associated with their inclusion. However,635

an added difficulty is that the fusion channel estimates are made from relatively coarse resolution CrIS channels. This could

negatively impact cloud detection for fractionally cloudy pixels to an even greater degree.

Our approach currently includes very little ancillary data: only a VIIRS-derived binary land/water mask. The MVCM uses

several, including surface temperatures, sea ice, snow cover, and Normalized Difference Vegetation Index maps. The ECM

also includes surface temperatures, sea ice, snow cover, tropopause temperatures, and clear-sky estimates of many channels640

using radiative transfer models. Anecdotally, we notice that some spatial artifacts we have observed in the two operational

cloud masks appear to be related to the relatively coarse resolution of the ancillary datasets. Early experiments with the neural

network lead us to believe that including surface temperature increased the frequency of spatial artifacts in its output. This

motivated our decision to initially not include information such as surface temperatures in our approach even though it lead

to substantial increases in cloud detection performance .
::::::::
estimated

::
by

::::::::
CALIOP

:::::::::::
collocations.

:::
The

::::::::
relatively

:::::::::::::::
coarse-resolution645

::
of

:::
the

:::::::
ancillary

:::::
data

:::::
might

:::::
cause

:::::
issues

:::::::
around

:::::::::
boundaries

:::
of

::::::
surface

:::::
types

::
or

:::::::
around

::::
large

:::::::::
horizontal

::::::::
gradients

::
in

:::::::
surface

::::::::::
temperature.

::::
This

:::::::::::::::::
mischaracterization

::
of

:::
the

:::::::
surface

::::::::
condition

:::::
could

:::::
result

:::
in

:::::
errors

::
in

:::::
cloud

::::::::
detection

::
if
::

a
:::::
given

::::::
model

::
is

:::::
highly

:::::::::
dependent

::
on

::::
this

::::::::::
information.

::::
This

::
is
:::::::::
potentially

::::
one

::
of

:::
the

:::::::::::
explanations

::
for

:::
the

::::::::
disparity

::
in

:::::::::::
performance

::
in

::::::::
instances

::
of

:::
low

:::::::
thermal

:::::::
contrast

::::
with

:::
the

:::::::
surface.

:
We leave it to future work to investigate how to include coarse-resolution ancillary

data in the neural network without increasing the prevalence of spatial artifacts in cloud masking output.650

For all scenarios examined in Fig. 10
::
12 we conclude that the neural network

::::::
NNCM

:
is the most consistent in identifying

clouds across various geographical, solar illumination, and surface conditions while controlling for cloud optical depth. There

are several reasons why the neural network
::::::
NNCM model might be successful in this regard. The ECM and MVCM both apply
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different tests based on surface condition and solar zenith angle. The ECM, for example, is a collection of naïve Bayesian

models trained for different surface types. This a very intuitive approach, but in practice requires partitioning collocation655

datasets according to surface type and reduces the number of collocations that can be used for training each model. Similarly

the MVCM uses different decision pathways and restricts or requires usage of certain inputs accordingly. We hypothesize that

training a only single model (rather than multiple), and instead providing the land/water mask and solar-zenith angle as inputs

has contributed to its consistency in cloud detection under these varying conditions.

In one of the worst performing regions for all three cloud masks, we observe very substantial differences in mean cloud660

fraction for 2019 across both space and time. These results demonstrate how differences in TPR of a cloud mask over varying

surface and illumination conditions could potentially contribute to very different spatial and temporal variability. Because of

this, we argue that minimizing TPR differences over varying surface and illumination conditions could be a useful objective

:::::
useful

:::::::
metrics

:::
for

:::::::::
identifying

::::
such

::::::
issues

:
in cloud mask development in addition to maximizing accuracy or other related

performance metrics
:::
and

::::::::::
assessment.

:::
We

:::::::
suspect

:::
that

:::
this

::
is
::
a

:::::::::
particularly

::::::::
important

::::::::::::
consideration

::
for

:::
the

:::
use

:::
of

::::
cloud

::::::::
masking665

:::::::::
approaches

::
in

:::::::
climate

:::::::
records.

:::
For

::::::::
example,

::::::
annual

::::
sea

:::
ice

:::
loss

:::
or

:::::
trends

:::
in

:::::::
seasonal

:::::
snow

:::::
cover

:::::
could

:::::::
produce

:::::::::
erroneous

:::::
trends

::
in

:::::
cloud

:::::
cover

:
if
::
a
:::::
given

:::::
cloud

::::::
mask’s

::::
TPR

::::::
differs

::::::::::
significantly

::
to

::::
that

::
of

::::::
ice-free

:::::
ocean

:::
or

::::::::
snow-free

::::
land.

We note several potential caveats in the assessment of the neural network cloud mask
::::::
NNCM

:
in addition to issues with

fractional cloudiness. One clear limitation with using CALIOP as a source for labels is the relatively narrow range of sensor

viewing angle and solar illumination combinations. We examined one specific example of this in sun glint and have limited,670

but not completely removed, its adverse impact on cloud detection using pseudo-labeling. One disadvantage of the pseudo-

labeling approach, is that the associated uncertainty estimates lose much of their meaning in domains where we exclusively

train on pseudo-labels. We have attempted to limit the impact of this issue by training the neural network
::::::
NNCM

:
to estimate

the class probabilities produced by the pseudo-labeling model, and not the predicted class labels themselves. This approach

appears to be successful in preventing severe overclouding of sun-glint
:::::::::::
over-clouding

:::
of

:::
sun

::::
glint

:
regions, but reasonably, it675

can only be expected to perform as well as a model that uses infrared observations exclusively. Additionally, we
:::::
There

:::
are

::::
very

::::::
specific

:::::::::
conditions

::
in

::::::
which

:::
the

:::
two

::::::::::
operational

:::::
masks

::::::::::
outperform

:::
the

:::::::
NNCM

:::
and

::
it

::::
may

::
be

:::::::
possible

::
to
::::
use

::::::
MVCM

:::
or

::::
ECM

::::::::::
predictions

::
as

:::::::::::
pseudo-labels

::
to

:::::::
address

::::::::::
deficiencies

::
in

:::
the

::::::
NNCM

::
if

::::
these

:::::::::
conditions

::::
can

::
be

::::::::
identified

:::::::
without

::
the

::::
use

::
of

::::::::
CALIOP.

::::
We have not evaluated how the neural network

::::::
NNCM

:
performs specifically in cloud-free scenes with high aerosol

loading
:
in

:::
this

:::::::
analysis. We expect that this could depend largely on the ability for CALIOP to distinguish cloud from aerosol680

layers
:::::
could

:::
add

::
an

:::::::
another

::::
layer

:::
of

:::::::
difficulty

::
in
::::::::
addition

::
to

:::
the

:::::
ability

::
of

::::::
VIIRS

:::::::::::
observations

::
to

:::::::::
distinguish

:::::
these

::::::
features.

:::
One

::::::
source

::
of

::::
bias

::
in

::::
this

:::::::::
assessment

::
is

:::
our

::::::
choice

::
of

:::::
using

:::
the

::
1 km

::::::::
CALIOP

:::::
Cloud

::::::
Layers

::::::::
products

::
in

:::
the

:::
vast

::::::::
majority

::
of

:::
our

:::::::::::
comparisons.

::
It

:
is
:::::::
possible

::::
that

:::::
some

:::::::
optically

::::
thin

:::::
clouds

::::
that

:::
are

:::::::
detected

::
in

:::
the

:
5
:
km

:::::::
CALIOP

:::::::
product

:::
but

:::
are

::::::
missed

::
in

:::
the

:
1
:
km

::::::
product

:::::
could

:::
be

:::::::
correctly

::::::::
identified

:::
by

:::
the

::::::
imager

:::::
cloud

::::::
masks.

::::
This

::
is
::::::::
plausible

::
in

:::::::::
conditions

::::
such

:::
as

:::::::
daytime

::::::::::
low-latitude

:::::
ocean

:::::
where

::
a

:::
thin

:::::
cirrus

:::::
cloud

:::
has

:::::
large

:::::::
thermal

::::::
contrast

::::
with

:::
the

:::::::
surface.

:::
We

:::::
have

:::
not

::::::::::
investigated

:::
this

:::::::
specific685

::::::
concern

::
in
::::
this

::::
work

::::
due

::
to

:::
the

::::::::
difficulty

::
of

:::::::
ensuring

::::::::
mutually

:::::::::::
representative

:::::::::::
collocations

:::::::
between

:::
the

:
5
:
km

:::::::
CALIOP

:::::::
product

:::
and

:::
the

::::
750 m

:::::::::::
observations.

::
It

::
is

:::::::
possible

:::
that

:::
the

:::::
slight

:::::::::::::
overestimation

::
in

:::::::
daytime

:::::
mean

:::::
cloud

:::::::
fraction

::
by

:::
the

:::::::
MVCM

:::::
(Fig.

::
ref

:::::::
fig:fig03

:
)
:::::
could

::
be

::::
due

::
to

:::
the

::::::::
detection

::
of

::::::
clouds

::::::
missed

:::
by

:::
the

:
1
:
km

:::::::
CALIOP

:::::::
product.

::::
For

:::::
purely

:::::::::
statistical

::::::::::
approaches,
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:::
like

:::
the

:::::::
NNCM,

::
it
::
is

:::::::
difficult

::
to

:::::::
separate

::::
this

:::::::::
possibility

:::::
from

:::
that

:::
of

::::::::::::
over-predicting

::::::
cloud

::::::
fraction

:::::::
simply

:::::::
because

::::::
cloudy

:::::
scenes

:::
are

:::::
more

:::::::
common

::::
than

:::::::::
cloud-free.

:
690

6 Conclusions

In this work, we examine the performance of a neural network cloud mask
::::::::
(NNCM) for VIIRS that is trained with coincident

CALIOP observations and compared it with two operational cloud masks. Both the MVCM and ECM appear to be slightly

better at identifying small broken clouds than the neural network
::::::
NNCM. However, the neural network

::::::
NNCM

:
outperforms

both operational masks in most other conditions. We observe particularly large improvement at the middle and high latitudes695

during the night where the operational masks missed substantial fractions of optically-thick clouds that were correctly identified

by the neural network
::::::
NNCM. We have ruled out the possibility that the improvement is due to disagreements in each approach’s

effective definition of a cloud. Furthermore, we find that uncertainty estimates from the neural network are well calibrated

::::::
NNCM

:::
are

::::::::::::
well-calibrated

:
and appropriately represent the ability to estimate cloudy or cloud-free labels from CALIOP. When

examining differences in true positive rate, we find that the neural network
::::::
NNCM

:
is the most consistent in identifying clouds700

of a fixed optical depth when considering day/night and land/water conditions. A regional analysis over Greenland for 2019

confirms that such differences could contribute to vastly different assessments of the spatial and temporal variability of cloud

cover over certain regions. Some issues with the global representativeness of VIIRS/CALIOP collocations are successfully

mitigated with a simple semi-supervised learning approach, but more work is needed in improving detection of fractionally

cloudy pixels by the neural network
::::::
NNCM.705
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::::
Band

: ::::::
Spectral

:::::
Range

::::
(µm)

: ::::
Units

::
M1

: ::::
0.400

:
-
:::::
0.421

:::
Refl.

:

::
M2

: ::::
0.436

:
-
:::::
0.451

:::
Refl.

:

::
M3

: ::::
0.477

:
-
:::::
0.496

:::
Refl.

:

::
M4

: ::::
0.541

:
-
:::::
0.561

:::
Refl.

:

::
M5

: ::::
0.662

:
-
:::::
0.680

:::
Refl.

:

::
M6

: ::::
0.738

:
-
:::::
0.752

:::
Refl.

:

::
M7

: ::::
0.843

:
-
:::::
0.881

:::
Refl.

:

::
M8

: ::::
1.225

:
-
:::::
1.252

:::
Refl.

:

::
M9

: ::::
1.368

:
-
:::::
1.383

:::
Refl.

:

::::
M10

::::
1.571

:
-
:::::
1.631

:::
Refl.

:

::::
M11

::::
2.234

:
-
:::::
2.280

:::
Refl.

:

::::
M12

::::
3.598

:
-
:::::
3.791

:::
BT [

:
K]

::::
M13

::::
3.987

:
-
:::::
4.145

:::
BT [

:
K]

::::
M14

::::
8.407

:
-
:::::
8.748

:::
BT [

:
K]

::::
M15

:::::
10.234

:
-
:::::
11.248

: :::
BT [

:
K]

::::
M16

:::::
11.405

:
-
:::::
12.322

: :::
BT [

:
K]

Table 1.
::
The

:::::
band,

::::::
spectral

:::::
range,

:::
and

::::
units

::
of

::
all

::::::
sixteen

:::::::
moderate

::::::::
resolution

:::::
VIIRS

::::::::
channels.

::::
Each

::::::
channel

::
is

:::::::
expressed

::
as

:
a
:::::::::

reflectivity

:::::
(Refl.),

::
or

:
a
::::::::
brightness

:::::::::
temperature

:::::
(BT).
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:::::::::
VIIRS/CrIS

:::::
Fusion

::::::
Channel

::::::
Spectral

:::::
Range

::
of

::::::
MODIS

::::::::
Equivalent

:::::::
Channel

::::
(µm)

::::::
MODIS

::
27

::::
6.535

:
–
::::
6.895

:

::::::
MODIS

::
28

::::
7.175

:
–
::::
7.475

:

::::::
MODIS

::
29

::::
8.400

:
–
::::
8.700

:

::::::
MODIS

::
30

::::
9.580

:
–
::::
9.880

:

::::::
MODIS

::
31

:::::
10.780

:
–
:::::
11.280

:

::::::
MODIS

::
32

:::::
11.770

:
–
:::::
12.270

:

::::::
MODIS

::
33

:::::
13.185

:
–
:::::
13.485

:

::::::
MODIS

::
34

:::::
13.485

:
–
:::::
13.785

:

::::::
MODIS

::
35

:::::
13.785

:
–
:::::
14.085

:

::::::
MODIS

::
36

:::::
14.085

:
–
:::::
14.385

:

Table 2.
:::
The

:::::::::
VIIRS/CrIS

:::::
fusion

:::::::
channels

::::
used

::
in

::
the

::::::::::::
pseudo-labeling

::::::
model.

::
All

:::::::
channels

:::
are

:::::::
expressed

::
as

::::::::
brightness

::::::::::
temperatures.

:
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::::
Inputs

: ::::::
NNCM :::::

Neural
:::::::
network

::::::
without

::::::::::
pseudo-labels

::::::::::::
Pseudo-labeling

::::
model

::::::
M1-M13

: ::
X

::
X

::::::::
M14-M16

::
X

::
X

:
X
:

::::::
MODIS

::
27

:
-
:::::::
MODIS

::
36

:
X
:

:
|
::::::
Latitude

:
|

::
X

::
X

:
X
:

::::
Solar

:::::
Zenith

:::::
Angle

::
X

:::
Sun

::::
Glint

:::::
Angle

::
X

::::::::
Land/Water

:::::
Mask

::
X

::
X

:
X
:

Table 3.
:::::::
Summary

::
of
:::
the

:::::
inputs

:::::::
included

:
in
:::
the

::::
three

:::::
neural

:::::::
networks

::::
used

::
in

:::
this

::::
work.

:::
See

:::
the

::::
main

:::
text

:::
for

::::::::
description

::
of

::::
each

:::::
model.
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::::
Layer

::::::
Group

::::
(LG)

::::
Layer

::::
Type

: ::::
Input

::::
Size

:::::
Output

::::
Size

::::
LG1

:::::::
FC(200),

:::::
Leaky

:::::
ReLU,

:::::::::::
Dropout(2.5%)

: :::
180

:::::::
(3x3x20)

:::
200

::::
LG2

:::::::
FC(200),

:::::
Leaky

:::::
ReLU,

:::::::::::
Dropout(2.5%)

: ::
200

: :::
200

::::
LG3

:::::::
FC(100),

:::::
Leaky

:::::
ReLU,

:::::::::::
Dropout(2.5%)

: ::
200

: :::
100

::::
LG4

:::::
FC(50),

:::::
Leaky

::::::
ReLU,

:::::::::::
Dropout(2.5%)

::
100

: :
50

:

::::
LG5

:::::
FC(25),

:::::
Leaky

::::::
ReLU,

:::::::::::
Dropout(2.5%)

::
50

:
25

:

::::
LG6

::::
FC(1),

:::::::
Sigmoid

::
25

:
1

Table 4.
::

The
:::::::::
architecture

::
of

:::
the

::::::
NNCM.

:::
LG

:::::
refers

::
to

::::
Layer

:::::
Group

:::
and

::
is
::::
used

::
to

::::::
describe

:::
the

:::::::
collection

::
of
:::::
layers

::
in

::::
each

:::
row.

:::::
FC(x)

:::::
refers

:
to
:::
the

::::
fully

::::::::
connected

::::
layers

:::::
where

:
x
::
is

:::
the

::::::
number

:
of
::::
units

::
in

::::
each

::::
layer.

::::::::
Similarly,

::::::::
Dropout(x)

:::::
refers

::
to

::
the

::::::
fraction

::
of

:::::
inputs

:::::
which

::::::
dropout

:
is
::::::
applied.
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NNCM ECM MVCM Cloud

Fraction

Number

(Million)Day
::::
BACC

:
Night

:::
TPR

:
Day

:::
TNR

:
Night

:::::
BACC Day

:::
TPR Night

:::
TNR

:
Day

::::
BACC

:
Night

:::
TPR

: ::::
TNR

Day Global 0.968 0.934
::::
0.982

::::
0.954 0.938 0.849

::::
0.957

::::
0.918

:
0.910 0.876

::::
0.941

::::
0.879

: ::::
0.662 2.96

Night Global
::::
0.934

: :::::
0.960

::::
0.908

::::
0.849

:::::
0.927

::::
0.772

: ::::
0.876

: :::::
0.853

::::
0.900

: ::::
0.721 2.91

Day Water 0.969 0.932
::::
0.985

::::
0.952 0.940 0.842

::::
0.977

::::
0.902

:
0.909 0.893

::::
0.966

::::
0.852

: ::::
0.735 1.99

Night Water
::::
0.932

: :::::
0.976

::::
0.888

::::
0.842

:::::
0.969

::::
0.715

: ::::
0.893

: :::::
0.899

::::
0.887

: ::::
0.803 1.99

Day Land 0.965 0.916
::::
0.974

::::
0.956 0.917

:::::
0.898

::::
0.936

: ::::
0.887

: :::::
0.866

::::
0.908

: ::::
0.512

:::
0.97

Night Land
::::
0.916

: :::::
0.906

::::
0.927 0.808 0.868

::::
0.791

::::
0.825

:
0.808 0.97

::::
0.705

: ::::
0.912

: ::::
0.542 0.91

Day Sea Ice 0.966 0.895
::::
0.966

::::
0.966 0.883 0.661

::::
0.962

::::
0.804

:
0.879 0.790

::::
0.859

::::
0.899

: ::::
0.775 0.29

Night Sea Ice
::::
0.895

: :::::
0.932

::::
0.859

::::
0.661

:::::
0.944

::::
0.379

: ::::
0.790

: :::::
0.663

::::
0.917

: ::::
0.757 0.31

Day Permanent Snow 0.961 0.863
::::
0.964

::::
0.959 0.885 0.701

::::
0.840

::::
0.929

:
0.822 0.694

::::
0.739

::::
0.905

: ::::
0.421 0.30

Night Permanent Snow
::::
0.863

: :::::
0.832

::::
0.895

::::
0.701

:::::
0.671

::::
0.731

: ::::
0.694

: :::::
0.461

::::
0.927

: ::::
0.578 0.36

Day Snow Land 0.954 0.920
::::
0.961

::::
0.947 0.855 0.758

::::
0.859

::::
0.852

:
0.864 0.778

::::
0.825

::::
0.903

: ::::
0.631 0.16

Night Snow Land
::::
0.920

: :::::
0.927

::::
0.913

::::
0.758

:::::
0.827

::::
0.688

: ::::
0.778

: :::::
0.675

::::
0.880

: ::::
0.617 0.19

Table 5. Balanced Accuracy (BACC) ,
::::
TPR,

::::
and

::::
TNR calculated for each cloud mask over different surfaces during day and night for the

filtered dataset. Collocation counts do not sum to the count listed in the “All” row . Sea Ice
:::::
because

:::
sea

:::
ice

:
collocations are also counted

in the water category, and the two snow categories are also counted in the land category
:
.
:::::
Cloud

::::::
fraction

::
is

::::::::
calculated

::::
from

:::
the

:::::::
CALIOP

:::::::::
collocations.

:
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NNCM ECM MVCM Cloud

Fraction

Number

(Million)
:::::
BACC

:::
TPR

::::
TNR

:::::
BACC

:::
TPR

::::
TNR

:::::
BACC

:::
TPR

::::
TNR

Day Global
::::
0.905

::::
0.934

: ::::
0.877

: ::::
0.879

::::
0.906

: ::::
0.853

: ::::
0.851

::::
0.902

: ::::
0.801

: ::::
0.635

:::
3.63

Night Global
::::
0.879

::::
0.920

: ::::
0.838

: ::::
0.808

::::
0.889

: ::::
0.726

: ::::
0.830

::::
0.816

: ::::
0.843

: ::::
0.687

:::
3.46

Day Water
::::
0.900

::::
0.937

: ::::
0.863

: ::::
0.876

::::
0.930

: ::::
0.822

: ::::
0.842

::::
0.935

: ::::
0.749

: ::::
0.691

:::
2.48

Night Water
::::
0.864

::::
0.936

: ::::
0.792

: ::::
0.796

::::
0.930

: ::::
0.663

: ::::
0.832

::::
0.860

: ::::
0.804

: ::::
0.747

:::
2.45

Day Land
::::
0.910

::::
0.925

: ::::
0.895

: ::::
0.865

::::
0.835

: ::::
0.895

: ::::
0.839

::::
0.807

: ::::
0.871

: ::::
0.515

:::
1.16

Night Land
::::
0.884

::::
0.870

: ::::
0.899

: ::::
0.782

::::
0.754

: ::::
0.810

: ::::
0.783

::::
0.671

: ::::
0.895

: ::::
0.542

:::
1.01

Day Sea Ice
::::
0.931

::::
0.941

: ::::
0.922

: ::::
0.851

::::
0.944

: ::::
0.759

: ::::
0.852

::::
0.832

: ::::
0.872

: ::::
0.757

:::
0.31

Night Sea Ice
::::
0.870

::::
0.906

: ::::
0.834

: ::::
0.650

::::
0.933

: ::::
0.366

: ::::
0.772

::::
0.640

: ::::
0.903

: ::::
0.741

:::
0.33

Day Permanent Snow
::::
0.930

::::
0.928

: ::::
0.932

: ::::
0.854

::::
0.790

: ::::
0.917

: ::::
0.795

::::
0.692

: ::::
0.899

: ::::
0.430

:::
0.32

Night Permanent Snow
::::
0.836

::::
0.797

: ::::
0.875

: ::::
0.684

::::
0.646

: ::::
0.722

: ::::
0.679

::::
0.436

: ::::
0.922

: ::::
0.577

:::
0.40

Day Snow Land
::::
0.905

::::
0.920

: ::::
0.891

: ::::
0.818

::::
0.815

: ::::
0.820

: ::::
0.827

::::
0.779

: ::::
0.875

: ::::
0.619

:::
0.19

Night Snow Land
::::
0.887

::::
0.890

: ::::
0.885

: ::::
0.737

::::
0.797

: ::::
0.678

: ::::
0.756

::::
0.641

: ::::
0.870

: ::::
0.610

:::
0.21

Table 6.
::::
Same

::
as
:::::
Table

::
5,

::
but

:::
all

:::::
metrics

:::
are

::::::::
computed

::
for

:::
the

:::::::
unfiltered

::::::::::
collocations.
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Figure 1. Schematic
:::::
Spatial

:::::::::
distribution of the neural network model used. LG refers to Layer Group

:::::::
unfiltered

:::::
S-NPP

:::::::::::::
VIIRS/CALIOP

:::::::::
collocations

:::
for

::
the

:::
(a)

:::::::
training,

:::
(b)

::::::::
validation,

:
and is used to describe

::
(c)

::::::
testing

::::::
datasets.

:::::
Panel

:::
(d)

:::::::
indicates

:
the collection

::::::
seasonal

::::::::
distribution

:
of layers in

:::::::::
collocations

::
for

:
each box

:::::::
unfiltered

::::::
dataset. FC

::::
Note

:::
the

:::::::
difference

::
in
:::::

color
:::
bar

::::
limits

:::::::
between

:
(x

:
a)refers to

:
,
:::
(b),

:::
and

::
(c).
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Figure 2.
::::::::
Comparison

::
of
:

the fully connected layers where x is
::::
neural

:::::::
network

::::
cloud

:::::
mask

::::::
without

::::::::::
pseudo-labels

:::
(c),the number of units

in each layer. Similarly
::::::
NNCM

::
(d), Dropout

::
the

:::::::
MVCM (x

:
e)refers to ,

::::
and the fraction

::::
ECM

:::
(f).

::::
Also

:::::
shown

:::
are

::::
band

:::
M5

::::
with

:
a
::::::
central

::::::::
wavelength

:
of inputs to which dropout is applied

::::::
roughly

::::::
0.67µm

::
(a)

:::
and

::::
band

::::
M15

::::
with

:
a
:::::
central

:::::::::
wavelength

::
of

::::::
roughly

::::::
10.8µm

:::
(b).
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Figure 3. Mean cloud fraction for the 2019 unfiltered testing dataset. Each bar grouping from left to right shows the value from the CALIOP

1 km product, the neural network
::::::
NNCM, MVCM, and ECM. Time of day and surface categorizations are described in the main text.
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Figure 4. True positive rate (TPR) calculated as function of cloud-top pressure (a,b) and optical depth (c,d) for daytime and nighttime

collocations respectively. The grey bars represent the fraction of cloudy 1 km CALIOP profiles. Only profiles with non-zero optical depths

are included in (c) and (d).
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Figure 5. The True Positive Rate (TPR) for various CALIOP cloud-feature types from the 1km
:
1
:::
km CALIOP Cloud Layers product. The

order shown in the legend indicates the ordering of the bars in each grouping.
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Figure 6. Receiver operating characteristic (ROC) curves for all three cloud masking models
::::
masks. The text above each subplot indicates

the subset of collocations for which the curves are plotted. Note that the x and y axis limits are somewhat atypical for ROC curve plots and

are chosen here to emphasize the differences between the masks and different datasets. The TPR and FPR for the model using the standard

threshold of 0.5 for the neural network and ECM, as well as the integer cloud mask for MVCM are also shown with similarly colored circles.
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Figure 7. Geographic comparison of the ACC between the three cloud masks on the filtered testing dataset. Each grid cell is 5 degrees

latitude by 5 degrees longitude. The gap in coverage over South America is due to the removal of low-energy laser shots from the CALIOP

datasets. Cells with less than 100 collocations are not shown in (a) or (c)-(f). Differences are only shown where determined significant by

McNemar’s test with p-values less than 0.001.
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Figure 8.
::::
Same

::
as
::::
Fig.

:
7
:::
but

::
all

::::
using

::::::
BACC

:::::
instead

::
of

:::::
ACC.

::::
Panel

:::
(b)

:::
has

:::
been

:::::::
replaced

::::
with

::
the

::
1 km

:::::::
CALIOP

::::
cloud

::::::
fraction

::::::::
computed

:::
from

:::
the

::::::::::::
VIIRS/CALIOP

::::::::::
collocations.
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Figure 9. Balanced Accuracy (BACC) recalculated after removing clouds below a certain cloud optical depth (COD) threshold. Tick marks

on the neural network lines indicate significant differences in performance between the neural network and the best operational model using

McNemar’s test with p-values less than 0.001. Note that the y-axis limits are different for (l) compared to the other subplots.
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Figure 10. ACC calculated as a function of thermal contrast with the surface approximated by the difference between VIIRS M15 (10.8 µm)

and surface temperature in Kelvin. Each subplot represents a set of collocations consisting of clear-sky scenes and cloudy scenes with optical

depths greater than 0.3 (a) and 3.0 (b).
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Figure 11. Uncertainty assessments for (a) the neural network cloud mask model
::::::
NNCM (b) the MVCM, and (c) the ECM. ACC values (left

y-axis) for cloud probability and clear sky confidence values are calculated for bins of size 0.01. For (a) and (c) a perfectly-calibrated model

is plotted with the grey dashed line (see main text). Orange shading indicates the 99.9% confidence interval. Grey bars indicate the fraction

of collocations falling within each bin of width 0.01.
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Figure 12. TPR differences over combinations of land/water and day/night conditions. The specific TPR difference and latitude is labeled at

the top of each subplot. Note that the y-axis limits are different for (f) and (l).
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Regional analysis of cloud fraction over Greenland. (a) and (b) illustrate the mean cloud fraction for the neural network and the MVCM for

all selected VIIRS scenes in 2019. (c) is the difference between (a) and (b). (d) is the domain-wide 31-day moving average of grid points

spatially matched with CALIOP (see main text for

details).

Figure 13.
:::::::
Regional

::::::
analysis

::
of

::::
cloud

::::::
fraction

::::
over

::::::::
Greenland.

:::
(a)

:::
and

:::
(b)

::::::
illustrate

:::
the

::::
mean

:::::
cloud

::::::
fraction

::
for

:::
the

::::::
NNCM

:::
and

:::
the

::::::
MVCM

::
for

::
all

:::::::
selected

:::::
VIIRS

:::::
scenes

::
in

::::
2019.

:::
(c)

:
is
:::
the

::::::::
difference

::::::
between

::
(a)

::::
and

:::
(b).

::
(d)

::
is

::
the

::::::::::
domain-wide

::::::
31-day

::::::
moving

::::::
average

::
of

:::
grid

:::::
points

::::::
spatially

:::::::
matched

:::
with

:::::::
CALIOP

::::
(see

::::
main

:::
text

::
for

:::::::
details).
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Comparison of the neural network cloud mask without pseudo-labels (c), with pseudo-labels (d), the MVCM (e), and the830

ECM (f). Also shown are band M5 with a central wavelength of roughly 0.67µm (a) and band M15 with a central wavelength

of roughly 10.8µm (b).
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