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Abstract. An ability to accurately detect convective regions is essential for initializing models for short term precipitation 

forecasts. Radar data are commonly used to detect convection, but radars that provide high temporal resolution data are mostly 

available over land and the quality of the data tends to degrade over mountainous regions. On the other hand, geostationary 10 

satellite data are available nearly anywhere and in near-real time. Current operational geostationary satellites, the Geostationary 

Operational Environmental Satellite-16 (GOES-16) and -17 provide high spatial and temporal resolution data, but only of cloud 

top properties. One-minute data, however, allow us to observe convection from visible and infrared data even without vertical 

information of the convective system. Existing detection algorithms using visible and infrared data look for static features of 

convective clouds such as overshooting top or lumpy cloud top surface, or cloud growth that occurs over periods of 30 minutes 15 

to an hour. This study represents a proof-of-concept that Artificial Intelligence (AI) is able, when given high spatial and temporal 

resolution data from GOES-16, to learn physical properties of convective clouds and automate the detection process. 

A neural network model with convolutional layers is proposed to identify convection from the high-temporal resolution GOES-

16 data. The model takes five temporal images from channel 2 (0.65µm) and 14 (11.2µm) as inputs and produces a map of 

convective regions. In order to provide products comparable to the radar products, it is trained against Multi-Radar Multi-Sensor 20 

(MRMS), which is a radar-based product that uses rather sophisticated method to classify precipitation types. Two channels from 

GOES-16, each related to cloud optical depth (channel 2) and cloud top height (channel 14), are expected to best represent 

features of convective clouds: high reflectance, lumpy cloud top surface, and low cloud top temperature. The model has correctly 

learned those features of convective clouds, and resulted reasonably low false alarm ratio (FAR) and high probability of 

detection (POD). However, FAR and POD can vary depending on the threshold, and a proper threshold needs to be chosen based 25 

on the purpose. 

1 Introduction 

Artificial intelligence (AI) is flourishing more than ever as we live in the era of big data and increased processing power. 

Atmospheric science, with vast amounts of satellite and model data, is not an exception. In fact, numerical weather prediction 

and remote sensing are ideally suited to machine learning as weather forecasts can be generated on demand, and satellite data are 30 

available around the globe (Boukabara et al., 2019). Applying machine learning to forecast models can be beneficial in many 

ways. It can improve computational efficiency of model physics parameterizations (Krasnopolsky et al., 2005) as well as 

developing new parameterizations (O’Gorman et al., 2018; Brenowitz and Bretherton, 2018; Beucler et al., 2019; Gentine et al., 

2018; Rasp et al., 2018; Krasnopolsky et al., 2013). On the other hand, applying machine learning techniques to satellite data can 

help overcome limitations with both pattern recognition as well as multi-channel information extraction.  35 
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Detecting convective regions from satellite data is of great interest as convection resolving models begin to be applied 

on global scales. Historically, these models were only regional, and surface radars within dense radar networks were used. 

Radars are useful because of the direct relationship between radar reflectivity and precipitation rates and their ability to provide 

vertical information about convective systems. However, ground-based radars are not available over oceanic or mountainous 40 

regions, and radars on polar-orbiting satellites have been limited to very narrow swaths. Therefore, many studies have suggested 

methods for using geostationary visible and infrared imagery that has good temporal and spatial coverage.  

 

Visible and infrared data from geostationary satellites are available nearly anywhere and in near-real time. They have 

provided an enormous amount of weather data, but due to the lack of vertical information, their use in forecasting has been 45 

limited largely to providing cloud top temperature or atmospheric motion vectors in regions without convection (Benjamin et al., 

2016). Some studies have tried to identify convective regions using these sensors by finding overshooting tops (Bedka et al., 

2010; Bedka et al., 2012; Bedka and Khlopenkov, 2016) or enhanced-V features (Brunner et al., 2007). However, since not all 

the convective clouds have such features, and never until they reach a very mature stage, some studies have tried to detect 

broader convective regions by using lumpy cloud top surfaces (Bedka and Khlopenkov, 2016). Studies have also looked at 50 

convective initiation by observing rapidly decreasing cloud top heights (Mecikalski et al., 2010; Sieglaff et al., 2011) but were 

limited by tracking problems when only 15-, 30-, or even just 60-minute data were available.  

 

Current operational geostationary satellites, the Geostationary Operational Environmental Satellite-R (GOES-R) series, 

foster the use of visible and infrared sensors in detecting convection as their spatial and temporal resolutions are much improved 55 

from their predecessors. Currently operational GOES-16 and GOES-17 carry the advanced baseline imager (ABI), whose 16 

channels comprise wavelengths from visible to infrared. Data is collected every 10 minutes over the full disk area, 5 minutes 

over Contiguous United States (CONUS), and every minute in mesoscale sectors defined by the National Weather Service as 

containing significant weather events. When humans look at image loops of reflectance data with such high temporal resolution, 

most can point at convective regions because they know from past experiences that bubbling clouds resemble bubbling pots of 60 

water that imply convective heating. A recent study by Lee et al. 2020 uses several features of convective clouds such as high 

reflectance, low brightness temperature (Tb), and lumpy cloud top surface to detect convection from GOES-16 data in mesoscale 

sector. In their method, respective thresholds for reflectance, Tb, and lumpiness are determined empirically. Here we seek to 

automate the process of detecting convection using AI, which, provided with the same type of information that humans use in 

this decision process, might be able to learn similar strategies as humans. Thus this study applies machine learning techniques to 65 

detect convection using high temporal resolution visible and infrared data in ABI.  

 

Machine learning, and in particular neural networks, are emerging in many remote sensing applications for clouds 

(Mahajan and Fataniya, 2020). Application of neural networks has led to more use of geostationary satellite data in cloud-related 

products such as cloud type classification or rainfall rate estimation which has been challenging in the past (Bankert et al., 2009; 70 

Gorooh et al., 2020; Hayatbini et al., 2019; Hirose et al., 2019). Especially using GOES-16, raining cloud is detected by Liu et al. 

2019 with a deep neural network model, and radar reflectivity is estimated by Hilburn et al. 2020 using a model with 

convolutional layers. Spectral information from several channels in geostationary satellites has been useful to deduce cloud 

physics along with the spatial context that can be extracted using convolutional layers.  

 75 
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Machine learning techniques have recently been viewed as solving every existing problem without the need for physical 

insight, but in practice, physical knowledge of the system is usually essential to solve problems effectively. These properties that 

are associated with mature convection have temporal aspects; continuously high reflectance, high or growing cloud top height 

and bubbling cloud top surface over time. Therefore, these time-evolving properties are considered when selecting and 

processing the input and output dataset as well as in constructing the model setup.  80 

 

This study explores a machine learning model with a convolutional neural network (CNN) architecture to detect 

convection from GOES-16 ABI data. The model is trained using Multi-Radar Multi-Sensor (MRMS), one of the radar-based 

products, as outputs. After training, the model results on validation and testing dataset are compared to examine its detection skill, 

and two scenes from the testing data are presented to further explore which feature of convection the model uses to detect 85 

convective regions.  

 

Features that distinguish this work from existing work are: (1) Studies using machine learning with geostationary 

satellite data are typically designed for the goal of rainfall rate estimations or classification of various cloud types, while our goal 

is detecting convection so that appropriate heating can be added to initiate convection in the forecast model; (2) We feed 90 

temporal sequences of GOES-16 imagery into the neural network model to provide the algorithm with the same information a 

human would find useful to detect the bubbling texture in GOES-16 imagery indicative of convection; (3) We use a two-step loss 

function approach which makes the model’s performance less sensitive to threshold choice. 

2 Data 

GOES-16 ABI data are used as inputs to the CNN model, while the outputs are obtained from the Multi-Radar Multi-95 

Sensor (MRMS) dataset. Three independent datasets are prepared for training, validation, and testing. Data are collected over the 

central and eastern part of CONUS where GOES-16 focuses on. Table 1 and 2 lists time and location of 20 significant weather 

events to span a broad set of deep convective storms that are used to create the dataset. Input data are obtained every 20 minutes 

so that the dataset contains overall evolution of convection from convective initiation to mature stage of convection. As shown in 

the table, training data are selected mostly over the southern and eastern part of CONUS to effectively train the model with 100 

higher quality of radar data over those regions. A total of 19,987 training data are collected from 10 convective cases in Table 1, 

but only 10,019 images that contain raining scenes are used during the training, and the remaining scenes are discarded. This is 

done to force the model to focus more on distinguishing between convective core and surrounding stratiform clouds, rather than 

training with redundant non-precipitation scenes. For validation and testing, a total of 9,192 and 7,914 data samples are collected, 

respectively, each from five convective cases in Table 2. Similarly to training data, around half of both validation and testing 105 

dataset are clear regions, but no scenes are discarded in that case, whether they contain rain or not. 
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Table 1. A description of ten convective cases used for training data. 115 

Date Time Mainly affected area 
2019-05-28 2000 ~ 2350UTC OK, KS, IA 
2019-07-05 2000 ~ 2350UTC CO, WY, NM, KS 
2019-07-10 1600 ~ 2350UTC OK, AR, MO, TX 
2020-05-12 1600 ~ 2350UTC TX 
2020-05-15 1400 ~ 2350UTC OK, TX 
2020-05-24 1900 ~ 2350UTC TX 

2020-06-19 (M1) 1900 ~ 2350UTC PA, MD, VA, NC 
2020-06-19 (M2) 1900 ~ 2350UTC TX, OK, CO 

2020-06-21 1900 ~ 2350UTC KS 
2020-07-12 1900 ~ 2050UTC AL, MS 

 

 

 

 

Table 2. A description of ten convective cases used for validation (upper five) and testing (lower five) data. 120 

Date Time Mainly affected area 
2019-05-23 2100 ~ 2350UTC TX, OK, KS 
2019-05-24 1900 ~ 2350UTC TX, OK, KS 
2019-08-20 1800 ~ 2150UTC MO, IL, IN 
2020-07-22 1800 ~ 2350UTC VA, MD, PA, DE, JN 
2020-07-31 1800 ~ 2350UTC TX, LA, MS, AL 
2019-06-22 1900 ~ 2350UTC MS, AL, GA 
2019-06-23 2000 ~ 2350UTC TX, OK, AR, LA 
2019-08-13 1900 ~ 2150UTC TN, NC, SC, VA 
2020-07-02 2000 ~ 2350UTC CO, KS, NE, SD 
2020-08-06 1900 ~ 2350UTC NC, VA, DE 

 

2.1 The Geostationary Operational Environmental Satellite R series (GOES-R) 

GOES-R series, consisting of GOES-16 and GOES-17, carry the ABI with 16 channels. Channel 2 is referred to as the 

“red” band, and its central wavelength is at 0.65µm. It has the finest spatial resolution of 0.5km, and therefore provides the most 

detailed image for a scene. Any data with sun zenith angle higher than 65° is removed, and reflectance data at this channel are 125 

divided by the cosine of the sun zenith angle to normalize the reflectance data. Since normalized reflectance values rarely exceed 

2, any data with a reflectance value greater than 2 is truncated at 2. All data is subsequently scaled to a range from 0 to 1. 

Although we can observe bubbling from reflectance images at channel 2 (0.65µm), additional Tb data can effectively remove 

some low cumulus clouds that appear bright. These clouds are not distinguishable from high clouds in the visible image, but they 

appear distinct in an infrared Tb map. Therefore, Tb data at channel 14 are also inserted as input for the AI model. Note that the 130 

spatial resolution of channel 14 is 2km, i.e. four times coarser than that of channel 2. Channel 14 is a “longwave window” band, 

and its central wavelength is located at 11.2µm. This channel is usually used to retrieve cloud top temperature, and therefore is 

used to eliminate low cumulus clouds. Channel 14 data are also scaled linearly from 0 to 1, corresponding to a minimum value of 

180K and a maximum value of 320K.  

 135 

Mesoscale sector data covers 1000km´1000km domains, but the entire image is not used as an input. They are divided 

into smaller images to train the model more efficiently with fewer number of weights in the model and reduced clear sky regions 
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that are not useful during training. Input data of channels 2 and 14 are created by separating the whole image into multiple 

64km´64km images corresponding to 128´128 and 32´32 pixels at channels 2 and 14, respectively. We will refer to these small 

images as tiles. Each input sample then consists of five consecutive tiles at channel 2, at two-minute interval, and five 140 

consecutive tiles at channel 14, also at two-minute interval, but lower resolution.  

2.2 Multi-Radar/Multi-Sensor (MRMS) 

MRMS data, developed at NOAA’s National Severe Storms Laboratory, are produced combining radar data with 

atmospheric environmental data, satellite, lightning, and rain gauge data (Zhang et al., 2016). It has a spatial resolution of 1km 

and the data are provided every 2 minutes. “PrecipFlag”, one of the available variables in MRMS, classifies surface precipitation 145 

into seven categories; 1) warm stratiform rain, 2) cool stratiform rain, 3) convective rain, 4) tropical-stratiform rain mix, 5) 

tropical-convective rain mix, 6) hail, and 7) snow. A detailed description of the classification can be found in Zhang et al. (2016). 

The classification goes beyond using a simple reflectivity threshold as it considers vertically integrated liquid, composite 

reflectivity, and reflectivity at 0°C or -10°C according to radar’s horizontal range. In addition, the quality of the product is 

further improved by effectively removing trailing straitiform regions with high reflectivity or regions with bright band or melting 150 

graupel (Qi et al., 2013). 

 

This radar-based product is used as output or truth with slight modifications. Since our model is set up to produce a 

binary classification of either convection or non-convection, the seven MRMS categories are reconstructed into two classes. 

Precipitation types of convective rain, tropical-convective rain mix, and hail are assigned as convection, and everything else are 155 

assigned as non-convection excluding grid points with snow class. A value of either 0 (non-convective) or 1 (convective) is 

assigned to each grid point of the 128x128 tile (64´64km), after applying a parallax correction with an assumed constant cloud 

top height of 10km. Five MRMS data with two-minute intervals are combined to produce one output map for the model, and grid 

points are assigned to 1 if the grid point is assigned as convective at least once during the five time steps. In order to remove low 

quality data, only the data with “Radar quality index (RQI)” greater than 0.5 are used in the study.  160 

 

As mentioned in the beginning of this section, non-precipitating scenes that are not classified to any of the precipitation 

type are removed during training. Otherwise, the number of non-convective scenes greatly exceeds the number of convective 

scenes, and misclassification penalties calculated from misclassified convective cases have less impact in updating the model. 

 165 

 

3 Machine learning model 

The problem we are trying to solve can be interpreted as an image-to-image translation problem, namely converting the 

GOES-R images to a map indicating convective regions. Neural networks have been shown to be a powerful tool for this type of 

task. A neural network can be thought of as a function approximator, that learns, from a large number of input-output data pairs, 170 

to emulate the mapping from input to output. Just like a linear regression model seeks to learn a linear approximation from input 

to output variables, neural networks seek to achieve approximations that are non-linear and might capture highly complex input-

output relationships. 

 

Convolutional neural networks (CNNs) are a special type of neural network developed for working with images, 175 

designed to extract and utilize spatial patterns in images. CNNs have different layer types that implement different types of 
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image operations, four of which are used here, namely convolution (C), pooling (P), upsampling (U), and batch normalization 

(BN) layers. Convolution layers implement the type of mask and convolution operation as used in classic image processing. 

However, in classic image processing the masks are predefined to achieve a specific purpose, such as smoothing or edge 

detection, while the masks in convolutional layers have adjustable mask values that are trained to match whatever functionality is 180 

needed. Pooling layers are used to reduce the resolution of an image. For example, a so-called “maxpooling” layer of size 2´2 

takes non-overlapping 2´2 patches of an image and maps each to a single pixel containing the maximum value of the 2´2 patch. 

Upsampling layers seek to invert pooling operations. For example, an upsampling layer of size 2´2 expands the resolution of an 

image by replacing each original pixel by a 2´2 patch through interpolation. Obviously, as information is lost in the pooling 

operation, an upsampling layer alone cannot invert a pooling layer, it just restores the image dimension, but additional 185 

convolution layers are needed to help fill in the remaining information. Batch normalization layers apply normalization to 

intermediate results in the CNN, namely, enforcing constant means and variances at the input of a CNN layer, to avoid extremely 

large or small values, which in turn tends to speed up neural network training (Kohler et al., 2018). 

 

The type of CNN used here is an encoder-decoder model. Encoder-decoder models take as input one or more images, 190 

feed them through sequential layers (C,P and U) that transform the image into a series of intermediate images, that finally lead to 

one or more images at the output. Encoder-decoder models use an encoder section with several convolution and pooling layers 

that reduces image dimension in order to extract spatial patterns of increasing size from the input images. The encoder is 

followed by a decoder section with several convolution and upsampling layers that expands the low resolution intermediate 

images back into the original input image size, while also expanding it in a different representation, such as converting the 195 

GOES-16 images to a map indicating convective regions. 

 

Here an encoder-decoder model is built to produce a map of convective regions from two sets of five consecutive 

GOES-R images with two-minute interval: one set from channel 2 (0.65µm) and the other from channel 14 (11.2µm). The 

encoder-decoder model is implemented using the framework of Tensorflow and Keras. Figure 1 shows the architecture of the 200 

encoder-decoder model, and a model summary is shown in Table A1. Note that each convolution layer in Fig. 1 is followed by a 

batch normalization layer. Those batch normalization layers are not shown in Fig. 1 to keep the schematic simple, but are listed 

in Table A1. In the input layer, only the reflectance data are read in. After two sets of two convolution layers (the first set with 16 

filters and the second set with 32 filters), each set followed by a maxpooling layer, the spatial resolution of the feature maps is 

reduced to the same resolution as the Tb data. The Tb data are added at that point to the 32 feature maps from the previous layer, 205 

producing 37 feature maps. After another two sets of two convolution layers (each set respectively with 64 and 128 filters), each 

set followed again by one maxpooling layer, we reach the bottleneck layer of the model, i.e. the layer with the most compressed 

representation of the input. The bottleneck layer is the end of the encoder section of the model, and the beginning of the decoder 

section. The decoder section consists of four sets of two convolution layer (with a decreasing number of 128, 64, 32, and 16 

filters). The first three sets of convolution layers are each followed by an upsampling layer, but the last set is followed by a 210 

transposed convolution layer with one filter to match with the 2D output. The single transposed convolution layer used here 

contains both upsampling and a convolution layer. Every layer uses the Rectified Linear Unit (ReLu) activation function except 

for the last transposed convolution layer, which uses a sigmoid function instead. A sigmoid function is chosen for the last layer 

so that the model produces a 128´128 map with continuous values between 0 and 1. These continuous values imply how close 

each pixel is to being non-convective (0) or convective (1). The values rarely reach 1, and therefore, a threshold has to be set to 215 
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determine whether a grid point is convective or not. Higher threshold can increase the accuracy of the model, but more 

convective regions can be missed. Using different thresholds will be discussed in the next section.  

 

A neural network is trained, i.e. its parameters are optimized, such that it minimizes a cost function that measures how 

well the model fits the data. It is very important to choose this cost function, generally called loss function for neural networks, to 220 

accurately represent the performance we want to achieve. Generally, binary cross-entropy is used for a binary classification 

problem, but since there is no clear boundary between convective and non-convective clouds, using a discrete value of either 0 or 

1 seemed too strict, and experiments confirmed that the model did not appear to learn much when binary cross-entropy was used. 

Loss functions that produce continuous values are therefore used instead, resulting in continuous output values between 0 and 1 

which can then (loosely) be interpreted to indicate the confidence of the neural network that a cloud is convective vs. non-225 

convective. This approach produces better results for this application and provides additional confidence information. We 

investigate using a standard or two-step training approach, as described below. The standard approach minimizes a single loss 

function throughout the entire training. In this case, we use the mean squared error (MSE) as the loss function which penalizes 

misses and false alarms equally:  

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 = (𝑦*+,- − 𝑦/+-012*-0)4 																			(1) 230 

where 𝑦*+,-  is true output image and 𝑦/+-012*-0  is the predicted output image, and the sum extends over all pixels of the 

true/predicted image. 

 

 The two-step training approach also starts out using the MSE as loss function (equation (1)). However, once the MSE 

on the validation data converges to a low steady value that no longer improves (which is determined by looking at the 235 

convergence plot of the loss function, the number of overlapping grid points between true and predicted convective regions as 

well as the sum of each true and predicted convective regions), the neural network training resumes with the loss function in 

equation (2) which adds an extra penalty when the model misses convective regions (but not when it overestimates), in an effort 

to reduce missed regions: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 + 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑦*+,- − 𝑦/+-012*-0 , 0 																			(2) 240 

 

where the sum again extends over all pixels of the true/predicted image. The additional term in equation (2) is a positive for all 

pixels where the prediction is too small and 0 otherwise, thus it is expected to guide the model to detect more convective regions. 

The idea of using two different loss functions for coarse training and subsequent finetuning, or, more generally, to adjust loss 

functions throughout different stages of training, is discussed in more detail for example by Bu et al. 2020.  245 

 

When using only MSE as the loss function, the model reaches convergence fairly fast after around 15 epochs and performance 

stays fairly constant after that, i.e. the model is not sensitive to the number of epochs trained beyond initial convergence. We use 

convergence plots, i.e. plots of loss values over epochs, to ensure each model has indeed reached this convergence. One model is 

trained with the standard approach (equation (1)) and using the Root Mean Square Propagation (RMSprop) method as optimizer 250 

(Sun, 2019), and run for 15 epochs, which shows convergence in the loss. Another model is trained with the two-step approach 

and the same optimizer, RMSprop. This model is first trained using MSE as the loss function (equation (1)) for 50 epochs and 

then trained again using equation (2) for 18 epochs. (In additional experiments (not shown here) similar results were obtained in 

the two-step approach using only 15 epochs rather than 50.) Different number of epochs are used in the second model when 
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training with MSE, but 50 is used to ensure that the model is well converged, even though the number of epochs do not matter 255 

much after 15. Results using both models are compared in the next section. Detailed evaluation of the results is only presented 

for the two-step approach, as that represents our preferred model. 

 

 

 260 
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Figure 1 Description of the encoder-decoder model. (3´3) represents the dimension of a filter used in convolutional layers. MP 
refers to the maxpooling layer and UP refers to the upsampling layer, both with a window size of (2´2). Starting from five 
channel 2 images (upper left), the encoder section is presented in the upper row with the additional five channel 14 images 
entering after the second maxpooling layer. The decoder section is shown in the lower row from right to left with the output 
layer at the end (lower left). 
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4 Results 275 

4.1 Overall performance using standard approach and two-step approach 

In order to evaluate detection skill of the model, false alarm ratio (FAR), probability of detection (POD), success ratio 

(SR), and critical success index (CSI) are calculated for the training, validation, and testing dataset. FAR, POD, SR, and CSI can 

be calculated from the equations below. 

𝐹𝐴𝑅 = 	
𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠
						(3)		 280 

𝑃𝑂𝐷 = 	
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
																(4) 

𝑆𝑅 = 1 − 𝐹𝐴𝑅 = 	
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠
					(5) 

𝐶𝑆𝐼 = 	
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
						(6) 

“Hits” are grid points that are classified as convective both by the model and MRMS. Considering slight mismatch due to 

different views by GOES and MRMS, hits are defined for a grid point deemed convective by the CNN model if MRMS assigns 285 

convective within 2.5km (5 grid points apart) even if MRMS classifies as non-convective at the actual grid point. “Misses” are 

grid points that are assigned as convective by MRMS but not by the model within 2.5km. “False alarms” are grid points that are 

predicted as convective by the model but not by MRMS within 2.5km. Figure 2 shows a performance diagram (Roebber, 2009) 

for a model using the two-step training approach demonstrating the effect of different thresholds for the training and validation 

dataset. As shown in the figure, there is a trade-off between fewer false alarms and more correctly detected regions. A higher 290 

threshold prevents the model from resulting in high FAR, but at the same time, POD becomes lower, and vice versa. Compared 

to SR and POD of 0.86 and 0.45 from Lee et al. 2020 that uses GOES-16 data as well, POD is much improved.  

To compare results using the additional term in the loss function, a performance diagram for the testing dataset is shown 

in Fig. 3a for the same two-step model as in Fig. 2, together with a performance diagram using a model trained using the 

standard approach (only using MSE) in Fig. 3b. Figure 3a and 3b show similar curves and thus similar detection skills, but the 295 

model trained with the standard approach needs a lower threshold to achieve similar detection skill. In Fig. 3b, SR starts to 

degrade as the threshold becomes higher than 0.75, indicating that grid points with higher values, which are supposed to have the 

highest possibility to be convective, might be falsely detected ones in the model. This effect is also observed in the two-step 

model for extremely large thresholds (higher than 0.95), but those are not shown in Fig. 3a. The two-step model has slightly 

higher maximal CSI value of 0.62 than the model trained with standard approach which has CSI of 0.61. Even though adding the 300 

second term in equation (2) does not seem to improve overall detection skill significantly, the resulting two-step model has less 

variation in FAR and POD between the thresholds, and more thresholds in the two-step model show CSI exceeding 0.6. We thus 

prefer the two-step model, as it delivers good performance without being overly sensitive to the specific threshold choice, so 

likely to perform more robustly across different data sets. Only results using the two-step model are further discussed.  

The overall FAR and POD using the two-step approach are similar for the validation (Fig. 2b) and testing dataset (Fig. 305 

3a), which implies the model is consistent, but they tend to fluctuate between different convective cases. Further examination on 

what the model has learned to identify convection is conducted by taking a closer look at two different scenes from the testing 

dataset in the following subsection. For each scene, results using different thresholds are presented, and several tiles in the scene 

are shown for discussion. 
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 310 

Figure 2 Performance diagrams using the two-step training approach for (a) training and (b) testing dataset. Numbers next to the 
symbol are thresholds used to get corresponding SR and POD. Dashed lines represent CSI contours with labels at the top. 

Figure 3 Performance diagrams using a model trained with (a) two-step training approach and (b) standard approach for testing 
dataset. Numbers next to the symbol are thresholds used to get corresponding SR and POD. Dashed lines represent CSI contours 
with labels at the top. The maximum CSI value is (a) 0.62 and (b) 0.61. CSI above 0.6 is achieved in (a) for thresholds from 0.25 to 
0.45 and in (b) only for thresholds from 0.2 to 0.25. POD, FAR, SR, and CSI for all thresholds shown here are provided in Tables 
A2 and A3. 

(a) (b)

(a) (b)
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4.2 Exploring results for different scenes 

Figure 4a shows GOES-16 visible imagery at channel 2 on 20th August, 2019 when a eastward moving low pressure 

system produced torrential rain. As described earlier, each input scene is divided into small non-overlapping tiles of 128´128 

pixels each, as shown in Fig. 4a. Tiles with lower radar quality were eliminated from the dataset, represented as blank tiles in Fig. 

4a. Each input tile is transformed separately by the neural network into an output tile of equal size and location that indicates 315 

convective and non-convective regions within the tile. These transformed tiles are then plotted in their corresponding locations, 

resulting in the output for an entire scene, as shown in Fig. 4b. While it is possible that the tiled approach might lead to 

discontinuities at tile boundaries, it does not look too discontinuous just that sometimes a small portion of a cloud is left out in 

the adjacent tile, but this issue can be further improved in the future. Comparing with convective regions (pink) assigned by 

MRMS PrecipFlag in Fig. 4b, convective clouds in the south of Missouri and Illinois or over Indiana show clear bubbling 320 

features while some over the Lake Michigan do not. This is reflected in the results using different thresholds as the lower 

threshold tends to allow less bubbling regions to be convective. FAR and POD when using 0.5 are 11.0% and 51.4%, while they 

are 15.0% and 67.7% with 0.3. Additional detection made by 0.3 that contributed to increase in POD mostly occurred in less 

bubbling regions. Convective regions predicted by the model using two different thresholds of 0.5 and 0.3 are shown in Fig. 5a 

and 5b, respectively. Colored regions in Fig. 5 are convective regions predicted by the model, and the colors represent a scale of 325 

how much it is close to being convective (values close to 1 are more convective and values close to 0 are more stratiform). It is 

evident from the figures that using 0.3 as the threshold detects more convective regions than using 0.5. The colored boxes in Fig. 

5b indicate six scenes selected for further study, namely two scenes that are correctly identified as convection (green boxes), two 

scenes detected using the threshold of 0.3, but not of 0.5 (yellow boxes), and two scenes missed at both thresholds (red boxes). 

 330 
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Figure 4 A scene at 19:00UTC on August 20th, 2019 (a) Visible imagery at channel 2 from GOES-16. (b) Precipitation type 
(convective or non-convective) classified by the MRMS PrecipFlag product. Tiles that do not appear on the map (missing square 
regions) are excluded due to low RQI. 

Figure 5 Predicted convective regions by the model using a threshold of (a) 0.5 and (b) 0.3. Colors represent a scale of being 
convective (1 being convective and 0 being non-convective). The colored boxes in (b) indicate six scenes selected for further study, 
namely two scenes that are correctly identified as convection (green boxes), two scenes detected using the threshold of 0.3, but not 
of 0.5 (yellow boxes), and two scenes missed at both thresholds (red boxes). 

(a) (b)

(a) (b)

Convective
Non-convective

Missouri

Illinois

Lake 
Michigan
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As mentioned above, the two yellow boxes in Fig. 5b are regions that are missed by the model using a threshold of 0.5, 

but detected by the model using 0.3. Figure 6 shows a map of MRMS PrecipFlag, reflectance, and predicted results 345 

corresponding to the 128´128 tile of the yellow box on the left. In Fig. 6c, some of the rainbands around 38°N are missed, but 

they appear in Fig. 6d with the threshold of 0.3. Figure 7 shows a scene for the right yellow box. Again, more regions with less 

bubbling are predicted as convective with the threshold of 0.3.  

 

 350 

 

 

Figure 6 A 128´128 tile corresponding to the left yellow box in Fig. 5b. (a) MRMS PrecipFlag. (b) Reflectance at channel 2. (c) 
Predicted convective regions using 0.5. (d) Predicted convective regions using 0.3. 

(a) (b)

(c) (d)
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Figure 7 Same as Fig. 6 but for the right yellow box in Fig. 5b. 

(a) (b)

(c) (d)
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The two green boxes in Fig. 5b are regions that are correctly predicted by the model using both thresholds. Figure 8 

shows 128´128 tiles for the upper green box. Although the predicted regions do not perfectly align with convective regions in 355 

MRMS, each model still predicts high values in contiguous regions around the bubbling area. Convective clouds in the lower 

green box show clear bubbling and even overshooting top feature in Fig. 9b. Predicted convection using 0.5 as the threshold 

matches well with the bubbling regions in Fig. 9c, while using 0.3 in Fig. 9d predicts broader regions as convective. The region 

on the left in Fig. 9d that is additionally predicted by using 0.3 does not actually show bubbling, but MRMS also assigns it to be 

convective as well. Therefore, it seems that the model also learned other features that make the scene convective such as high 360 

reflectance or low Tb.  

Figure 8 Same as Fig. 6 but for the upper green box in Fig. 5b. 

(a) (b)

(c) (d)
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Figure 9 Same as Fig. 6 but for the lower green box in Fig. 5b. 

(a) (b)

(c) (d)
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Nevertheless, some regions are still missed even with the lower threshold, and they are shown in red boxes. Figure 10a 

and 10b display MRMS PrecipFlag and reflectance image of the 128´128 tile of the upper red box. While a long convective 

rainband is shown in the MRMS PrecipFlag, no bubbling is observed in the reflectance image even though the reflectance 365 

appears high. In addition, lower part of convection in the lower red box (Fig. 10c and 10d) is also totally missed in the model 

prediction due to no bubbling observed in the reflectance image. These examples suggest that the model mostly looks for the 

bubbling feature of convective clouds to make a decision. 

 

 370 

 

Figure 10 (a) MRMS PrecipFlag and (b) reflectance at channel 2 of the upper red box in Fig. 5b. (c) MRMS PrecipFlag and (d) 
reflectance at channel 2 of the lower red box in Fig. 5b. 

(a) (b)

(c) (d)
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Another scene on 24th of May, 2019 is presented in Fig. 11. Severe storms occurred over Texas, Oklahoma, and Kansas 

producing hail over Texas. Unlike the previous case, most convective clouds show clear bubbling, and accordingly, FAR is very 

low and POD is very high in this case, even with the threshold of 0.5. With 0.5, FAR and POD are 11.0% and 89.0%, and they 

increase to 23.9% and 95.7% by using 0.3, respectively. More increase in FAR than in POD seems to imply that it might be 375 

wrong to use 0.3 in this case. However, the increase is mostly from detecting broader regions of mature convective clouds, and 

since they are further from the convective core, sometimes they do not overlap with MRMS convective regions. In addition, 

earlier detection by the model than MRMS contributes to the increase. MRMS tends to define early convection as straitiform 

before it classifies as convective due to its low reflectivity. Convective regions in the blue boxes in Fig.12b are such regions that 

did not have strong enough echoes yet to be classified as convective by MRMS, but later they are assigned as convective from 380 

19:12UTC once they start to produce intense precipitation. Convective regions in green boxes in Fig.12b are additional correctly 

detected regions but only with the threshold of 0.3.  
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Figure 11 A scene at 19:00UTC on May 24th, 2019 (a) Visible imagery at channel 2 from GOES-16. (b) Precipitation type 
(convective or non-convective) classified by the MRMS PrecipFlag product. Again, tiles that do not appear on the map (missing 
square regions) are excluded due to low RQI. 

(a) (b)

Convective
Non-convective

Texas
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Furthermore, in some true positive cases, interesting patterns are observed. Convection in the red box in Fig. 12a is one 415 

of the true positive cases that are classified as convective both by the model and MRMS. The location of predicted convective 

regions matches well with MRMS. However, once the 128´128 tiles of MRMS and model detection are overlaid on reflectance 

image, detection area is not precisely on top of the bubbling convective core, but slightly askew. In Fig. 13a and 13b, MRMS 

PrecipFlag and model prediction are plotted on top of the first and the last reflectance image respectively to show the temporal 

evolution of the convective cloud. Both MRMS and the model assign convection in the region a little to the right of the 420 

convective core and even in the dark area shadowed by the mature convective cloud. This is expected from MRMS as lumpy 

cloud top surfaces do not always perfectly match with precipitating location due to sheared structure of the cloud and two 

instruments have different views (radar from below and satellite from above), but it is surprising that the model does predict 

convection in the same location as in MRMS. The model seemed to have learned about the displacement in locations and figured 

out where to predict convection in radar perspective. Although it is not ideal that the prediction is not made in the bubbling area, 425 

these results can be beneficial when this product is used in the short-term forecast to initiate the convection as it resembles the 

radar product. 

 

 

Figure 12 Predicted convective regions by the model using a threshold of (a) 0.5 and (b) 0.3. Colors represent a scale of being 
convective (1 being convective and 0 being non-convective). 

(a) (b)
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4.3 Training the model with different combinations of input variables 

The model developed in this study is constructed based on the hypothesis that the high-temporal resolution data that are 

related to cloud properties would lead to detection of convection. Results from previous sections show that the model can predict 

convective regions fairly well, and thus in this section, more experiments are conducted with the same model setup, but with 450 

different combinations of input variables to examine which information was most useful during training. Figure 14 shows the 

resulting performance diagrams. In one experiment, a model is trained using only channel 2 reflectance to assess the impact of 

adding channel 14 Tb (Fig. 14b). In another set of experiments, a model is trained using both channel 2 reflectance and channel 

14 Tb, but using only a single image (no temporal information, Fig. 14c), using two images (8-minute intervals, Fig. 14d), and 

using three images (4-minute intervals, Fig. 14e) to assess the impacts of using different temporal resolution data. Excluding 455 

channel 14 Tb (Fig. 14b) lowers the performance significantly compared to results in Fig. 14a (same as Fig. 3a), and using one 

static image (Fig. 14c) also shows a slight degradation. On the other hand, using different temporal resolution data in Fig. 14d 

and 14e shows comparable results to Fig. 14a, reaching CSI of 0.6 in some threshold cases. While no significant benefits were 

observed for the current neural network architecture for the highest temporal resolutions, we believe that this may be due to the 

relatively simple CNN architecture used here. Proposed future work includes investigation of more sophisticated neural network 460 

architectures for extracting spatio-temporal features, such as the convolutional Long Short-Term Memory (convLSTM) 

architecture. 

 

Figure 13 A 128´128 tile corresponding to the red box in Fig. 12a. (a) MRMS PrecipFlag on top of the first reflectance image. 
(b) Predicted convective regions using a threshold of 0.5 on top of the last reflectance image. 



21 
 

 

 465 

 

 

 

 

Figure 14 (a) Performance diagram in Fig. 3a is shown here for ease of comparison. Performance diagrams 
using (b) only channel 2 reflectance images, (c) one static image, (d) two images with 8-minute intervals, and 
(e) three images with 4-minute intervals.  

(a)

(c) (d)

(b)

(e)
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5 Conclusion 470 

An encoder-decoder type machine learning model is constructed to detect convection using GOES-16 ABI data with 

high spatial and temporal resolutions. The model uses five temporal images from channel 2 reflectance data and channel 14 Tb 

data as inputs and is trained with the MRMS PrecipFlag as outputs. Low FAR and high POD are achieved by the model, 

considering they are calculated in 0.5km resolution. However, FAR and POD can vary depending on the threshold chosen by the 

user. Higher POD is accompanied by higher FAR, but it was shown that some of the additional false alarms were not totally 475 

wrong because they are usually either the extension of mature convective clouds or earlier detection by the model. Earlier 

detection by the model actually raises a question whether the model is well trained for early convection. If early convections 

were in the training dataset with a label of stratiform, then the model could learn early convective features as the feature of 

stratiform. However, it seemed that the model was able to correctly learn bubbling as the main feature of convection due to much 

larger portions of mature convective regions in the dataset.  480 

Unlike typical objects in classic training images for image processing, e.g., cats and dogs, that have clear edges and do 

not change their shapes, clouds have ambiguous boundaries and varying shapes as they grow and decay. These properties of 

clouds make the classification problem harder. However, bubbling feature of convective clouds are usually very clear in high 

spatial and temporal resolution data, and the model was able to sufficiently learn the spatial context over time within the high-

resolution data, which led to good detection skill. FAR and POD presented in this study are shown to be better than results 485 

applying non-machine learning method to GOES-16 data. These results show that using GOES (or similar sensors) in identifying 

convective regions during the short-term forecast can be beneficial especially over regions where radar data are not available, 

although this method is limited to daytime only due to use of visible channels. 

Acknowledgments 

This research is supported by the Cooperative Institute for Research in the Atmosphere (CIRA)’s Graduate Student Support 490 

Program, as well as Korean Meteorological Administration. 

Author contributions 

All three authors contributed to designing the machine learning model and analysing the results. The manuscript was written 

jointly by YL, CK, and IE. 

Competing interests 495 

The authors declare that they have no conflicts of interests. 

Data availability  

GOES-16 data are obtained from CIRA, and the past MRMS datasets are available in http://mtarchive.geol.iastate.edu/. 

 

 500 

 

 

 

 

 505 

 

 

 



23 
 

References 

Bankert, R. L., Mitrescu, C., Miller, S. D., and Wade, R. H.: Comparison of GOES cloud classification algorithms employing 510 

explicit and implicit physics. Journal of applied meteorology and climatology, 48, 1411-1421. 

https://doi.org/10.1175/2009JAMC2103.1, 2009. 

Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting 

tops using infrared window channel brightness temperature gradients. Journal of applied meteorology and climatology, 49, 181-

202. https://doi.org/10.1175/2009JAMC2286.1, 2010. 515 

Bedka, K. M., Dworak, R., Brunner, J., and Feltz, W.: Validation of satellite-based objective overshooting cloud-top detection 

methods using CloudSat cloud profiling radar observations. Journal of applied meteorology and climatology, 51(10), 1811-1822. 

https://doi.org/10.1175/JAMC-D-11-0131.1, 2012. 

Bedka, K. M., and Khlopenkov, K.: A probabilistic multispectral pattern recognition method for detection of overshooting cloud 

tops using passive satellite imager observations. Journal of Applied Meteorology and Climatology, 55, 1983-2005. 520 

https://doi.org/10.1175/JAMC-D-15-0249.1, 2016. 

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, 

D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manakin, G. S.: A North 

American hourly assimilation and model forecast cycle: The rapid refresh, Mon. Weather. Rev., 144, 1669-1694, 

 https://doi.org/10.1175/MWR-D-15-0242.1, 2016. 525 

Beucler, T., Rasp, S., Pritchard, M., and Gentine, P.: Achieving Conservation of Energy in Neural Network Emulators for 

Climate Modeling, arXiv [preprint] arXiv:1906.06622, 2019. 

Boukabara, S. A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging Modern 

Artificial Intelligence for Remote Sensing and NWP: Benefits and Challenges. Bulletin of the American Meteorological Society, 

100, ES473-ES491. https://doi.org/10.1175/BAMS-D-18-0324.1, 2019. 530 

Brenowitz, N. D., and Bretherton, C. S.: Prognostic validation of a neural network unified physics parameterization. Geophysical 

Research Letters, 45, 6289-6298. https://doi.org/10.1029/2018GL078510, 2018. 

Brunner, J. C., Ackerman, S. A., Bachmeier, A. S., and Rabin, R. M.: A quantitative analysis of the enhanced-V feature in 

relation to severe weather, Weather and Forecasting, 22, 853-872, https://doi.org/10.1175/WAF1022.1, 2007. 

Bu, J., Elhamod, M., Singh, C., Redell, M., Lee, W. C., and Karpatne, A.: Learning neural networks with competing physics 535 

objectives: An application in quantum mechanics. arXiv [preprint] arXiv:2007.01420, 2020. 

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could machine learning break the convection 

parameterization deadlock?. Geophysical Research Letters, 45, 5742-5751. https://doi.org/10.1029/2018GL078202, 2018. 

Afzali Gorooh, V., Kalia, S., Nguyen, P., Hsu, K. L., Sorooshian, S., Ganguly, S., and Nemani, R. R.: Deep Neural Network 

Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS. Remote Sensing, 12, 316. 540 

https://doi.org/10.3390/rs12020316, 2020. 

Hayatbini, N., Kong, B., Hsu, K. L., Nguyen, P., Sorooshian, S., Stephens, G., Fowlkes, C., Nemani, R. and Ganguly, S.: 

Conditional Generative Adversarial Networks (cGANs) for Near Real-Time Precipitation Estimation from Multispectral GOES-

16 Satellite Imageries—PERSIANN-cGAN. Remote Sensing, 11, 2193. https://doi.org/10.3390/rs11192193, 2019. 

Hilburn, K. A., Ebert-Uphoff, I., and Miller, S. D.: Development and Interpretation of a Neural Network-Based Synthetic Radar 545 

Reflectivity Estimator Using GOES-R Satellite Observations. arXiv [preprint] arXiv:2004.07906, 2020. 



24 
 

Hirose, H., Shige, S., Yamamoto, M. K., and Higuchi, A.: High temporal rainfall estimations from Himawari-8 multiband 

observations using the random-forest machine-learning method. Journal of the Meteorological Society of Japan. Ser. II. 

https://doi.org/10.2151/jmsj.2019-040, 2019. 

Kohler, J., Daneshmand, H., Lucchi, A., Zhou, M., Neymeyr, K. and Hofmann, T.: Towards a theoretical understanding of batch 550 

normalization. stat, 1050, arXiv:1805.10694v2, 2018. 

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New approach to calculation of atmospheric model physics: 

Accurate and fast neural network emulation of longwave radiation in a climate model. Monthly Weather Review, 133, 1370-

1383. https://doi.org/10.1175/MWR2923.1, 2005. 

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Belochitski, A. A.: Using ensemble of neural networks to learn stochastic 555 

convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving 

model. Advances in Artificial Neural Systems, 2013, 485913. https://doi.org/10.1155/2013/485913, 2013. 

Lee, Y., Kummerow, C. D., and Zupanski, M.: A simplified method for the detection of convection using high resolution 

imagery from GOES-16, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-38, in review, 2020. 

 Liu, Q., Li, Y., Yu, M., Chiu, L. S., Hao, X., Duffy, D. Q., and Yang, C.: Daytime rainy cloud detection and convective 560 

precipitation delineation based on a deep neural Network method using GOES-16 ABI images. Remote Sensing, 11, 2555. 

https://doi.org/10.3390/rs11212555, 2019. 

Mahajan, S. and Fataniya, B.: Cloud detection methodologies: Variants and development-a review. Complex & Intelligent 

Systems, 6, 251-261. https://doi.org/10.1007/s40747-019-00128-0, 2020. 

Mecikalski, J. R., MacKenzie Jr, W. M., Koenig, M., and Muller, S.: Cloud-top properties of growing cumulus prior to 565 

convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. Journal of applied meteorology and 

climatology, 49, 521-534. https://doi.org/10.1175/2009JAMC2344.1, 2010. 

O'Gorman, P. A., and Dwyer, J. G.: Using machine learning to parameterize moist convection: Potential for modeling of climate, 

climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10, 2548-2563. 

https://doi.org/10.1029/2018MS001351, 2018. 570 

Qi, Y., Zhang, J., and Zhang, P.: A real-time automated convective and stratiform precipitation segregation algorithm in native 

radar coordinates. Quarterly Journal of the Royal Meteorological Society, 139, 2233-2240. https://doi.org/10.1002/qj.2095, 2013. 

Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models. Proceedings of the 

National Academy of Sciences, 115, 9684-9689. https://doi.org/10.1073/pnas.1810286115, 2018. 

Roebber, P. J.: Visualizing multiple measures of forecast quality. Weather Forecasting, 24, 601-608. 575 

https://doi.org/10.1175/2008WAF2222159.1, 2009. 

Sieglaff, J. M., Cronce, L. M., Feltz, W. F., Bedka, K. M., Pavolonis, M. J., and Heidinger, A. K.: Nowcasting convective storm 

initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. Journal of applied meteorology and 

climatology, 50, 110-126. https://doi.org/10.1175/2010JAMC2496.1, 2011. 

Sun, R.: Optimization for deep learning: An overview. arXiv [preprint] arXiv:1912.08957, 2019. 580 

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., 

Cooper, K., Brogden, J., and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial 

operating capabilities. Bulletin of the American Meteorological Society, 97, 621-638. https://doi.org/10.1175/BAMS-D-14-

00174.1, 2016. 

 585 

 



25 
 

 

 

 

 590 

 

 

 

 

 595 

 

 

 

 

 600 

 

 

 

 

 605 

 

 

 

 

 610 

 

Appendix A 

Table A1. Model summary of the encoder-decoder model. 

Layer  Output shape Param # Connected to 
Input_1  (None, 128, 128, 5) 0  

Conv2d_1  (None, 128, 128, 16) 736 Input_1 
Batch_normalization_1 (None, 128, 128, 16) 64 Conv2d_1 

Conv2d_2 (None, 128, 128, 16) 2320 Batch_normalization_1 
Batch_normalization_2 (None, 128, 128, 16) 64 Conv2d_2 

Max_pooling2d_1 (None, 64, 64, 16) 0 Batch_normalization_2 
Conv2d_3 (None, 64, 64, 32) 4640 Max_pooling2d_1 

Batch_normalization_3 (None, 64, 64, 32) 128 Conv_2d_3 
Conv2d_4 (None, 64, 64, 32) 9248 Batch_normalization_3 

Batch_normalization_4 (None, 64, 64, 32) 128 Conv2d_4 
Max_pooling2d_2 (None, 32, 32, 32) 0 Batch_normalization_4 

Input_2 (None, 32, 32, 5) 0  
Concatenate_1 (None, 32, 32, 37) 0 Maxpooling2d_2 

Input_2 
Conv2d_5 (None, 32, 32, 64) 21376 Concatenate_1 

Batch_normalization_5 (None, 32, 32, 64) 256 Conv2d_5 
Conv2d_6 (None, 32, 32, 64) 36928 Batch_normalization_5 
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Batch_normalization_6 (None, 32, 32, 64) 256 Conv2d_6 
Max_pooling2d_3 (None, 16, 16, 64) 0 Batch_normalization_6 

Conv2d_7 (None, 16, 16, 128) 73856 Max_pooling2d_3 
Batch_normalization_7 (None, 16, 16, 128) 512 Conv2d_7 

Conv2d_8 (None, 16, 16, 128) 147584 Batch_normalization_7 
Batch_normalization_8 (None, 16, 16, 128) 512 Conv2d_8 

Max_pooling2d_4 (None, 8, 8, 128) 0 Batch_normalization_8 
Conv2d_9 (None, 8, 8, 128) 147584 Max_pooling2d_4 

Batch_normalization_9 (None, 8, 8, 128) 512 Conv2d_9 
Conv2d_10 (None, 8, 8, 128) 147584 Batch_normalization_9 

Batch_normalization_10 (None, 8, 8, 128) 512 Conv2d_10 
Up_sampling2d_1 (None, 16, 16, 128) 0 Batch_normalization_10 

Conv2d_11 (None, 16, 16, 64) 73792 Up_sampling2d_1 
Batch_normalization_11 (None, 16, 16, 64) 256 Conv2d_11 

Conv2d_12 (None, 16, 16, 64) 36928 Batch_normalization_11 
Batch_normalization_12 (None, 16, 16, 64) 256 Conv2d_12 

Up_sampling2d_2 (None, 32, 32, 64) 0 Batch_normalization_12 
Conv2d_13 (None, 32, 32, 32) 51243 Up_sampling2d_2 

Batch_normalization_13 (None, 32, 32, 32) 128 Conv2d_13 
Conv2d_14 (None, 32, 32, 32) 25632 Batch_normalization_13 

Batch_normalization_14 (None, 32, 32, 32) 128 Conv2d_14 
Up_sampling2d_3 (None, 64, 64, 32) 0 Batch_normalization_14 

Conv2d_15 (None, 64, 64, 16) 12816 Up_sampling2d_3 
Batch_normalization_15 (None, 64, 64, 16) 64 Conv2d_15 

Conv2d_16 (None, 64, 64, 16) 6416 Batch_normalization_15 
Batch_normalization_16 (None, 64, 64, 16) 64 Conv2d_16 

Conv2d_transpose_1 (None, 128, 128, 1) 145 Batch_normalization_16 
 

Table A2. POD, FAR, SR, and CSI values for using different thresholds in the two-step training model. 615 

Threshold POD FAR SR CSI 
0.05 0.94298559 0.535044175 0.464955825 0.4522424 
0.1 0.913858215 0.456447233 0.543552767 0.517060558 

0.15 0.887655352 0.398784349 0.601215651 0.558702899 
0.2 0.85875747 0.348113473 0.651886527 0.588760871 

0.25 0.834369835 0.312095964 0.687904036 0.605253444 
0.3 0.798756916 0.269845006 0.730154994 0.616706239 

0.35 0.769121649 0.240217357 0.759782643 0.618677759 
0.4 0.743219236 0.21689681 0.78310319 0.616344624 

0.45 0.712533049 0.194027871 0.805972129 0.608205409 
0.5 0.686385805 0.176749293 0.823250707 0.598228029 

0.55 0.659030631 0.159993321 0.840006679 0.585532586 
0.6 0.633640923 0.146901862 0.853098138 0.571304851 

0.65 0.607174665 0.133743247 0.866256753 0.555134673 
0.7 0.580303795 0.121656374 0.878343626 0.53713138 

0.75 0.551572206 0.110995861 0.889004139 0.516034904 
0.8 0.523822546 0.101982567 0.898017433 0.49441128 

0.85 0.501165661 0.095021454 0.904978546 0.476111856 
0.9 0.481326022 0.088852528 0.911147472 0.459746639 

0.95 0.45801003 0.080131638 0.919868362 0.44043737 
 
Table A3. POD, FAR, SR, and CSI values for using different thresholds in the standard training model. 

Threshold POD FAR SR CSI 
0.05 0.942117438 0.540193427 0.459806573 0.447173927 
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0.1 0.894713617 0.429747339 0.570252661 0.534392221 
0.15 0.855999591 0.363530845 0.636469155 0.574913234 
0.2 0.803875684 0.291727494 0.708272506 0.603916012 

0.25 0.755258694 0.238557529 0.761442471 0.610744279 
0.3 0.683399631 0.180284591 0.819715409 0.59410355 

0.35 0.627938452 0.146008324 0.853991676 0.567059181 
0.4 0.580581814 0.121687532 0.878312468 0.537357899 

0.45 0.534164411 0.103516198 0.896483802 0.503131513 
0.5 0.419381773 0.070663682 0.929336318 0.406421632 

0.55 0.358005307 0.056815544 0.943184456 0.350447719 
0.6 0.305014843 0.046418477 0.953581523 0.300552384 

0.65 0.255235442 0.037863312 0.962136688 0.252697257 
0.7 0.205429901 0.032025597 0.967974403 0.204043085 

0.75 0.158849869 0.031320871 0.968679129 0.158038156 
0.8 0.126544575 0.033665056 0.966334944 0.125989146 

0.85 0.099957158 0.037122494 0.962877506 0.09957343 
0.9 0.070457093 0.046153482 0.953846518 0.070217708 

0.95 0.034891193 0.080737421 0.919262579 0.034784597 
 


