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Abstract. We evaluate vertical profile retrievals of CO2 from 0.02 cm-1 resolution ground-based near-infrared solar absorption 

spectra with the GFIT2 algorithm, using improved spectroscopic linelists and line shapes. With these improvements, CO2 15 

profiles were obtained from sequential retrievals in five spectral windows with different vertical sensitivities using synthetic 

and real spectra. A sensitivity study using synthetic spectra shows that the leading source of uncertainty in the retrieved CO2 

profiles is the error in the a priori temperature profile, even with 3-hourly reanalysis a priori profiles. A 2°C error in the 

temperature profile in the lower troposphere between 0.6 and 0.85 atm causes deviations in the retrieved CO2 profiles that are 

larger than the typical vertical variations of CO2. To distinguish the effect of errors in the a priori meteorology and trace gas 20 

concentration profiles from those in the instrument alignment and spectroscopic parameters, we retrieve CO2 profiles from 

atmospheric spectra while using an a priori built from coincident AirCore, radiosonde, and surface in situ measurements at the 

Lamont, Oklahoma (USA) Total Carbon Column Observing Network station. In those cases, the deviations in retrieved CO2 

profiles are also larger than typical vertical variations of CO2, suggesting that remaining errors in the forward model limit the 

accuracy of the retrieved profiles. Implementing a temperature retrieval or correction, and quantifying and modeling an 25 

imperfect instrument alignment, are critical to improve CO2 profile retrievals. Without significant advances in modeling 

imperfect instrument alignment, and improvements in the accuracy of the temperature profile, the CO2 profile retrieval with 

GFIT2 presents no clear advantage over scaling retrievals for the purpose of ascertaining the total column.  

1. Introduction 

Carbon dioxide (CO2) is the most abundant well-mixed greenhouse gas in the atmosphere and the main driver of the increase 30 

in global mean surface temperatures since the start of the industrial era (Ciais et al., 2013; Myhre et al., 2013). A yearly global 

carbon budget has been produced by the Global Carbon Project since 2012 (Friedlingstein et al., 2019; Le Quéré et al., 2013, 
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2014, 2015b, 2015a, 2016, 2018b, 2018a). It presents current knowledge of CO2 emissions to inform policies that aim to reduce 

the emissions of greenhouse gases into the atmosphere. The project uses ensembles of models and inventories, as well as CO2 

surface measurements, to estimate different components of the global emissions of CO2. It also uses CO2 fluxes obtained from 35 

atmospheric inversions (Chevallier et al., 2005; van der Laan-Luijkx et al., 2017; Rödenbeck et al., 2003; Saeki and Patra, 

2017) as a semi-independent validation tool for these estimates, most of the CO2 measurements used in these inversions come 

from surface networks. Since 2014, the project makes mention of the potential of inversions using space-based measurements 

of total column CO2 to provide additional constraints on sources and sinks of CO2. 

 40 

Column-averaged dry-air mole fractions of CO2 (XCO2), are retrieved from solar absorption spectra measured from space by 

the Atmospheric InfraRed Sounder (AIRS, Aumann et al., 2003), the Greenhouse gases Observing SATellite (GOSAT, and 

GOSAT-2) (Kuze et al., 2009, 2016; Nakajima et al., 2012), the Orbiting Carbon Observatory (OCO-2, and OCO-3) (Crisp, 

2008, 2015; Eldering et al., 2019), and Tansat (Liu et al., 2018). CO2 fluxes obtained from inversions assimilating OCO-2 

observations over land are now becoming as reliable as those obtained from inversions using surface air sampling networks 45 

(Chevallier et al., 2019). Measurements of XCO2 by satellites can be made with unprecedented spatial coverage. Inversions 

using CO2 total columns over land are less sensitive to transport errors than inversions using surface CO2 (Basu et al., 2018; 

Rayner and O’Brien, 2001), which requires accurate modeling of the planetary boundary layer height and vertical mixing, both 

of which are a major source of uncertainty in inversions (Parazoo et al., 2012). However, even small (< 1 ppm) spatially 

coherent biases in column measurements can have a large impact on inversions assimilating XCO2 (Chevallier et al., 2007), 50 

and efforts must be made to characterize and minimize such biases (Kiel et al., 2019; O’Dell et al., 2018). 

 

The Total Carbon Column Observing Network (TCCON) is a ground-based network of high-resolution (0.02 cm-1) ground-

based Fourier transform Infrared (FTIR) spectrometers that record Short Wave IR (SWIR) solar absorption spectra (Wunch et 

al., 2011b). TCCON produces retrievals of XCO2 which are widely used to validate satellite observations and to study the 55 

carbon cycle (Wunch et al., 2010a, 2017; Keppel-Aleks et al., 2012, 2013). New versions of the TCCON retrieval algorithm 

(GGG) are released every few years, and each new version is designed to improve the quality of the data. 

 

GGG2014 (Wunch et al., 2015) is the current version of the GGG software used by TCCON to transform measured 

interferograms into spectra, and then to retrieve trace gas mixing ratios from those spectra. Central to this process is GFIT, a 60 

non-linear least-squares spectral fitting algorithm. A forward model computes an atmospheric transmittance spectrum for a 

given observation geometry using a priori knowledge of atmospheric conditions and assuming a perfectly aligned instrument. 

An inverse method then compares the measured spectrum with the resulting calculation and adjusts the retrieved parameters 

to obtain the best fit. In GFIT, these parameters include volume mixing ratio scaling factors (VSF) for the different fitted gases. 

GFIT performs profile scaling retrievals: for each retrieved trace gas, a single VSF scales the entire a priori concentration 65 

profile at all altitude levels simultaneously and therefore the retrieved profile shape is unchanged from the a priori profile 
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shape. Technically, GFIT handles the scaling retrieval by weakly constraining the fitted VSF factor. The approach is equivalent 

to performing an optimal estimation of the VSF, assigning a value of unity to the a-priori VSF and a value of 106 as its expected 

range of variability. XCO2 can be retrieved with a 2-σ precision and accuracy of 0.8 ppm (Wunch et al., 2010). GFIT minimizes 

the spectral fit residuals: the difference between the measured and calculated spectra. The measurement noise is not required 70 

to be accurately known; all retrievals from TCCON CO2 windows use an assumed signal-to-noise ratio (SNR) of ~200. This 

assumption has only a small effect on the result because for CO2 the absorption line depths and the spectral fitting residuals 

far exceed the measurement noise. 

 

Even though TCCON XCO2 observations are precise and accurate, they explicitly lack information about the vertical 75 

distribution of CO2 in the atmosphere, which is of interest for the validation of satellite measurements and model simulations, 

and could improve the ability of atmospheric inversions to resolve emissions at regional scales (Keppel-Aleks et al., 2011). 

The most precise and accurate source of information on CO2 vertical profiles are provided by air samples collected at different 

altitudes using weather balloons or aircrafts, but these observations are sparse in space and time. Aircraft vertical profiles are 

used as validation tools for inversion studies (Peters et al., 2007; Stephens et al., 2007; Pickett-Heaps et al., 2011), which 80 

requires them to remain independent from the inversion systems (Chevallier et al., 2019). Obtaining reliable CO2 profile 

information from ground-based direct sun measurements could significantly augment the number of observations available for 

verification and assimilation in atmospheric inversions, and would allow TCCON to be used for validation of thermal infrared 

satellite products, e.g. from AIRS and GOSAT/2, and vertically resolved NIR GOSAT and OCO-2 experimental products. 

Vertical profile information derived from ground-based absorption spectra cannot be as accurate as aircraft-based vertical 85 

profiles, and would also be spatially sparse, but would provide a higher temporal sampling. 

 

CO2 profile retrievals from ground-based SWIR spectra have been calculated using the band centered at 1.6 µm with a Voigt 

line shape (Kuai et al., 2012), and in the band centered at 2.06 µm with the PROFFIT optimal estimation software package 

(Hase et al., 2004) fitted with a Voigt line shape with line mixing (Dohe, 2013). In our approach, we use the GFIT2 software 90 

package initially described by Connor et al. (2016), which is a profile retrieval algorithm based on the GGG software suite, 

but modified such that it allows the profile shape to vary during the retrieval process. Instead of retrieving a single VSF value 

that scales the whole a priori profile, a VSF value is retrieved for each atmospheric level. The algorithm thus has much more 

freedom to fit the observed spectra but is also more sensitive to uncertainties in the forward model calculations such as errors 

in the atmospheric temperature profile, spectroscopic errors, and instrument misalignment, for example.  95 

Connor et al. (2016) showed that CO2 profile retrievals in the CO2 band centered at 1.6 µm are very sensitive to errors in 

spectroscopy. GFIT2 was first developed using the GGG2014 version of the GGG suite (Wunch et al., 2015), which uses a 

Voigt line shape to compute absorptions coefficients. In this study, we use the GGG2020 version, which will be released in 

early 2021. This version of the code implements quadratic speed-dependent Voigt line shapes with line mixing (qSDV+LM) 

for CO2 (Mendonca et al., 2016) and CH4 (Mendonca et al., 2017) bands, and qSDV line shapes for O2 in the band centered at 100 
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1.27 µm (Mendonca et al., 2019). The line mixing coefficients are derived with the first order Rosenkranz approximation 

(Rosenkranz et al., 1975). This leads to significantly better spectral fits, especially in the strong CO2 band centered at 2.06 µm, 

and smaller variations of gas amount with airmass. Other improvements to the forward model include: (1) updates to the 

spectroscopic linelist (Toon, 2015); (2) a solar-gas stretch fitted to account for Doppler-driven differences between solar and 

telluric wavenumber scales, in GGG2014 only the stretch in the telluric wavenumber scale was fitted; and (3) improved a 105 

priori profiles as described in Sect. 2.2. 

This study assesses the quality of CO2 profile retrievals with GFIT2 implemented in GGG2020. Section 2 describes the 

retrieval algorithm and our methodology. Section 3 presents a sensitivity study using synthetic spectra, followed by retrievals 

using real measured spectra. Finally, Sect. 4 presents a summary of the results and conclusions. 

2. Methods 110 

In this study, GFIT2 is used to retrieve CO2 profiles from the two original TCCON retrieval windows and three new windows 

that possess a large range of opacities, and therefore vertical sensitivities. These windows are presented in Table 1 and Fig.1. 

The TCCON1 window (centered at 6220 cm-1) and TCCON2 window (centered at 6339.5 cm-1) are used to derive XCO2 in 

the public TCCON data products, because the spectral absorption lines opacities are close to 1 and are therefore equally 

sensitive at most altitudes. The CO2 line intensities in the weak windows are 10 times smaller than in the standard TCCON 115 

windows, providing more sensitivity to CO2 variations aloft. The CO2 lines in the strong window are 15 times stronger than 

those in the standard TCCON windows, providing more sensitivity to CO2 variations near the surface. All windows have an 

average lower-state energy (E’’) of roughly 240 cm-1, rendering the retrieved total column of CO2 highly independent of the 

assumed temperature (<0.1%.K-1). The derivation of XCO2 as calculated in GGG is described in Appendix A. XCO2 is the 

ratio of the CO2 column to the column of dry air, and the column of dry air is expressed as the retrieved O2 column (from the 120 

window centered at 7885 cm-1, see Table 1) divided by 0.2095 (Wunch et al., 2011b). OCO-2/3 and GOSAT/2 use two 

windows comparable to the TCCON1 and Strong windows to retrieve CO2, and use the O2 A-band (centered near 13158 cm-

1). 
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Table 1: CO2 spectral windows used with GFIT2. Interfering absorbers labeled “solar” are due to absorption by heavy metal ions 125 
(e.g., Fe, Si, Ca, Ni) in the solar photosphere. Also shown are the strength-weighted averages of the lower-state energy (E’’), and of 

the line strengths (S) over all the CO2 lines in each window. The column of O2, retrieved with scaling retrievals from the O2 window, 

is used to compute XCO2. 

Window 

name 

center  

(µm) 

center 

 (cm-1) 

width 

 (cm-1) 

Primary interfering 

absorbers 

E’’ 

(cm-1) 

S 

(cm-1/(molecule.cm-2)) 

× 10−23 

TCCON1 1.61 6220 80 solar, H2O 245.3 1.14 

TCCON2 1.58 6339.5 85 solar, H2O 254.6 1.14 

Weak1 1.65 6074 70.8 CH4, solar, H2O 223.5 0.118 

Weak2 1.54 6499.1 69.8 solar, H2O, HDO 229.3 0.130 

Strong 2.06 4852.87 86.26 H2O, 13CO2, solar 243.8 17.8 

O2 1.27 7885 240 solar, H2O, HF, CO2 203.4 0.00518 

 

 130 

A qualitative representation of the vertical sensitivity due to the range of different line opacities is presented in Fig. 2 which 

shows the normalized CO2 Jacobian for typical absorption lines in the Strong window (centered at 4852.87 cm-1), the Weak1 

window (centered at 6074 cm-1), and the TCCON1 window (centered at 6220 cm-1). The strong saturated lines of the Strong 

window are more sensitive to levels below 5 km than in the TCCON1 window, but the Strong window also contains lines of 

intermediate absorption strength that provide more uniform sensitivity up to ~10 km, and that extend the window’s sensitivity 135 

to up to 30–40 km. The saturated lines in the Strong window correspond to the 20013–00001 band, while the lines of 

intermediate strength around 4820 cm-1 come from the R-branch of the 21113–01101 band. The TCCON1 window has more 

uniform sensitivity up to ~10–15 km and contains weak lines which contain information on CO2 above 15 km. The Weak1 

window is less sensitive below 10 km and has more uniform sensitivity between 10–20 km. Figure 2 also shows little to no 

sensitivity to levels above ~30 km in all windows. 140 
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Figure 1: Contributions of different absorbing gases to the calculated transmittance spectrum on a dry winter day at a solar zenith 

angle of 60.6° for each of the spectral windows used to retrieve CO2. 
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 145 

Figure 2: CO2 absorption lines (black line) overlaid on heatmaps of the CO2 Jacobian for lines of (a) the Strong window; (b) the 

Weak1 window; and (c) the TCCON1 window. The color bar represents the normalized Jacobian where 1 corresponds to the 

maximum amongst all the CO2 Jacobians from the five CO2 windows. Lines of the Weak2 and TCCON2 windows are not shown as 

they look like the Weak1 and TCCON1 windows, respectively. 

2.1 Retrieval algorithm 150 

The GFIT2 retrieval algorithm is described in detail in Appendix B and follows the formulation of Rodgers (2000). Currently, 

GGG has no option to simultaneously retrieve information about a gas from spectral windows that are not contiguous in 

wavenumber. Therefore, we retrieve trace gas information from each window separately. We see no advantage to fitting non-

contiguous windows simultaneously, rather than separately, and then combining the results. In TCCON post-processing the 

total columns retrieved from different retrieval windows (CO2 from the TCCON1 and TCCON2 windows, for example) are 155 

averaged after removing window-dependent multiplicative biases, using retrieval errors as weights. Table 2 summarizes the 

components of the state vector used in GFIT2. Fifty-one VSFs are retrieved (one for each atmospheric level) for the primary 

target gas, while only one VSF is retrieved for each of the interfering species profiles (non-12C16O2 species included in Fig. 1, 

except for “solar” and “other”, other CO2 isotopologues are only retrieved as interfering species in the Strong window). Aside 
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from the retrieved gases, other fitted parameters are part of the state vector. Orthogonal continuum basis functions are used to 160 

fit the shape of a spectrum’s continuum, with different orders of curvature. An overall frequency stretch is retrieved for all 

lines and a second “solar-gas” stretch is retrieved to correct for differences between the solar and telluric wavenumber scales. 

A zero-level offset is also retrieved in the Strong window that makes use of saturated lines. 

 

Table 2: Components of the state vector in GFIT2 profile retrievals. These are all the retrieved parameters. 165 

State vector parameter Number of elements 

Main target gas (CO2) 51 (number of atmospheric levels) 

Interfering species 3–6 (scaling retrievals) 

Continuum basis functions: 

N (5 in the Strong window, 3 in the other 

windows) 

Continuum level 1 

Continuum tilt 1 

Continuum curvature N-2 

Frequency stretch 1 

Solar-gas stretch 1 

Zero-level offset 0 (1 in the Strong window) 

 

In principle, a CO2 profile retrieval should have little sensitivity to errors in the a priori CO2 profile (differences from the true 

profile) since it can adjust for differences between measured and calculated spectra caused by erroneous prior profile shapes 

(Connor et al., 2016). However, the retrieval may also conflate errors due to other sources, such as incorrect spectroscopic 

parameters, incorrect modeling of the instrument line shape, or errors in the a priori meteorology and profiles of interfering 170 

species, with these errors in the a priori CO2 profile.  

2.2 Data sets 

CO2, and CH4 a priori profiles were built by combining the balloon-borne AirCore (Karion et al., 2010) profiles with surface 

in situ measurements, adding the GGG2020 a priori profile above the maximum altitude sampled by AirCore. These composite 

profiles will be referred as “truth”. The CH4 profile is included because CH4 is an interfering gas in the Weak1 window. 175 

AirCore is a sampling system that consists of a long, coiled stainless-steel tube initially filled with a dry calibrated gas. As a 

balloon carries it up, the fill gas evacuates. When the AirCore descends from the stratosphere, ambient air enters the tube 

through the open end. Upon landing, the AirCore is quickly retrieved for subsequent laboratory analysis, wherein the sample 

is pushed through a continuous gas analyzer. The first gases to come out were the last to enter, and vice versa, allowing the 

preserved atmospheric trace gas concentration profiles to be derived. This method has precision similar to, or better than, 180 

discrete gas flask samples, with a repeatability of 0.07 ppm for CO2 concentrations (Karion et al., 2010). The balloons reach 

~30 km altitude, with profiles retrieved to ~25km and therefore sample 98% of the mass of the atmosphere. In Sect. 3.2, 
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AirCore profiles from the v20181101 dataset were used as “truth” to assess the quality of GFIT2 profile retrievals. We used 

all AirCore profiles measured over the Lamont TCCON station that had coincident ground-based measurements within 1 h 

of the AirCore landing and within ±1.5 h of the closest a priori time. All figures showing profiles use the average of profiles 185 

retrieved from the coincident spectra. The launch dates of the eight AirCore profiles used are presented in Table 3. An iMet-1 

radiosonde carried by the same balloon as the AirCore provides in situ temperature and relative humidity profiles. 

 

Table 3: AirCore launch dates and number of coincident spectra within ±1 h of the AirCore last sampling time and within ±1.5 h of 

the closest a priori time. The range of solar zenith angles covered by the coincident spectra is also shown. 190 

Launch date 
Coincident 

spectra 

Solar Zenith angles 

(degrees) 

14 January 2012 65 60.6–73.8 

15 January 2012 48 65.6–77.9 

23 July 2013 44 20.8–36.5 

26 February 2014 61 46.6–59.0 

27 February 2014 41 46.2–53.3 

17 September 2014 48 37.9–51.1 

19 October 2016 31 47.1–50.3 

11 April 2017 33 31.2–39.2 

 

 Instead of the diagonal prior covariance used in Sect. 3.1, a more realistic CO2 prior covariance matrix was built for retrievals 

with real spectra in Sect. 3.2. The difference between GGG2020 a priori CO2 profiles and aircraft profiles (Biraud et al., 2013) 

over Lamont from NOAA’s ObsPack (Sweeney et al., 2017) between 500 and 5000 m were computed for 382 aircraft profiles 

and for each month between 2008 and 2016. The mean difference profile plus one standard deviation of the month with the 195 

largest differences, August, was used to build the diagonal of the a priori covariance matrix. The a priori CO2 uncertainty can 

be expressed as: 

𝝈𝑖 = 3.99𝑒−0.92𝒙𝒊 + 0.98 (1) 

where x is the altitude of the ith atmospheric level in kilometers. The a priori covariance is expressed as: 

𝒛𝑖,𝑗 = 𝒙𝑖 (2) 200 

(𝚫𝒛)𝑖,𝑗 = |𝐳𝑖,𝑗 − 𝐳𝑇
𝑖,𝑗| (3) 

(𝑺𝑎)𝑖,𝑗 = (𝝈𝑇𝝈)𝑖,𝑗 × 𝑒− 
(𝚫𝒛)𝑖,𝑗

ℎ (4) 

where z is a matrix with each row containing the altitude profile, 𝚫𝒛 is the matrix of absolute altitude differences between each 

level, 𝑺𝑎 is the a priori covariance matrix, and h is the length scale of interlayer correlations. The length scale was set to 2 km 

based on the width of the rows of correlation matrices built from the ensemble of aircraft vertical profiles.  205 
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The vertical grid used in the retrievals presented in this study has 51 levels between 0 and 70 km, and the spacing between 

levels increases with altitude (see Appendix A). Figure 3 shows the a priori uncertainty as a function of pressure for each of 

the eight a priori states used to process the Lamont spectra presented in Table 3. 

 210 

Figure 3: A priori uncertainty profiles for each of the 10 dates presented in Table 3. These are defined by Eq. (1). Since 𝝈 is defined 

on an altitude grid, it varies slightly with pressure. 

 

Since the AirCore profiles do not extend down to the surface or above about 25 km, other sources are used to complete the 

“true” CO2 profile. The TCCON spectrometer used in this study is located at the U.S. Department of Energy Atmospheric 215 

Radiation Measurement program (ARM) central facility in Lamont, Oklahoma. The facility hosts a suite of instruments for 

remote and in situ measurements of the atmosphere. When available within 5 h of the last AirCore sampling time, surface CO2 

and CH4 measurements from precision gas systems were used (Biraud and Moyes, 2001). When they were not available, 

measurements from discrete flask samples were used (on 23 July 2013, 27 February 2014, and 17 September 2014) (Biraud et 

al., 2002). Surface pressure, temperature and relative humidity were obtained from in situ measurements at the Lamont central 220 

facility. 

 

GGG2020 uses 3-hourly a priori profiles of the atmospheric state. For each spectrum in the retrievals, GGG uses the nearest a 

priori profile in time. The a priori meteorology and H2O profiles are obtained from analyses of the Global Modeling and 

Assimilation Office (GMAO) Goddard Earth Observing System Version 5 Forward Processing for Instrument Teams (GEOS5-225 

FPIT) (Lucchesi, 2015). The CO2 a priori profiles are constructed from the deseasonalized NOAA Mauna Loa and Samoa 

flask data (Dlugokencky et al., 2019) by determining the transport lag between the measurement site and each level of the a 
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priori (Laughner et al., n.d.). In the troposphere, this is done with an age-of-air formula and an effective latitude that accounts 

for synoptic motion of air. In the stratosphere, this is obtained from an age climatology derived from a Chemical Lagrangian 

Model (McKenna, 2002) of the stratosphere using equivalent latitude to account for air motion. The stratospheric priors also 230 

account for turbulent mixing with age spectra (Andrews et al., 2001). A seasonal cycle parametrization is then applied and the 

resulting CO2 profiles are corrected to match the CO2 latitudinal gradients observed by the High-Performance Instrumented 

Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) (Wofsy, 2011), and by the 

Atmospheric Tomography (ATom) mission (Wofsy et al., 2018).  

2.3 Information content and degrees of freedom 235 

The information content in the profile retrieval can be quantified using the averaging kernel matrix A (Rodgers, 2000). The 

information content H is defined as: 

𝐻 = −
1

2
𝑙𝑛(|𝐈 − 𝐀|), (5) 

where “ln” is the natural logarithm and |𝐈 − 𝐀| is the determinant of the difference between the identity matrix and the 

averaging kernel matrix. The degrees of freedom for signal (DOFS) can be expressed as: 240 

𝐷𝑂𝐹𝑆 = 𝑡𝑟(𝑨). (6) 

The DOFS can be divided into the CO2 profile DOFS and the DOFS corresponding to the rest of the state vector elements. The 

profile DOFS can be interpreted as the number of independent pieces of information that improve the retrieved CO2 profiles 

compared to the a priori. The DOFS are shown in Fig. 4-7, and 9-10. 

3. Results 245 

In Sect. 3.1, we investigate the sensitivity of the profile retrievals to different sources of error using synthetic spectra produced 

by running the GGG forward model with a given set of atmospheric conditions. The resulting spectra were then used as input 

to the profile retrieval algorithm using the same set of atmospheric conditions, except for a perturbation in either the CO2, 

temperature, or H2O profiles, or in the spectroscopic parameters of CO2 lines (air- and self-broadened half-width coefficients, 

and their temperature dependence). In these retrievals, the SNR of the spectrum to be fitted is set to 1000 and the CO2 a priori 250 

covariance matrix is diagonal with 5% (~20 ppm) uncertainty at all levels. No noise is added to the calculated spectra, but the 

assumed 1000:1 SNR is used to build the measurement covariance matrix and affects the relative weight of the measurement 

and the a priori. The weak prior constraint and high SNR serve to highlight the sources of variability in the retrieved profiles. 

 

In Sect. 3.2, CO2 profile retrievals are tested with atmospheric solar absorption spectra measured at the Lamont, Oklahoma 255 

(USA) TCCON site. If the forward model were perfect and the a priori state equal to the true state of the atmosphere, the 

retrieved scale factor at each level would be equal to 1. However, errors in the forward model (including spectroscopy, a priori 
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meteorological information, radiative transfer, and instrument line shape) cause the retrieved scale factors to deviate from 1. 

To isolate the effect of instrument misalignment and errors in spectroscopic parameters from errors in a priori meteorology, 

we build a priori profiles of H2O, temperature, CO2 and CH4 using in situ measurements. In Sect. 3.2 we also use an a priori 260 

covariance matrix with off-diagonal elements based on comparisons between the a priori profile and aircraft profiles, as 

described in Sect. 2.2. 

3.1. Synthetic spectra 

In this section, we attempt to identify the main sources of error in the retrieved CO2 profiles. To do this we use synthetic spectra 

that are calculated with GFIT’s forward model for a given set of inputs (atmospheric conditions and spectroscopic parameters). 265 

These “perfect” synthetic spectra are then used as measurements to be fitted in retrievals with one perturbed input. Thus, when 

the perturbed input is not the a priori CO2 profile itself, the a priori CO2 profile is the “truth”. In Sect. 3.1.1, we look at the 

ability of the retrieval algorithm to retrieve CO2 when it is the only unknown. 

 

Over the course of a day, the water vapour profile can vary by 40% and the temperature profile can vary by more than 10C 270 

in the lowest troposphere, and therefore 3-hourly a priori meteorological information could differ from the true atmospheric 

state by several degrees C for temperature and by 10% for water vapour.  In Sect. 3.1.2, we perturb the a priori H2O profile, 

the main interfering absorber. In Sect. 3.1.3, we perturb the temperature profile, as the intensity and width of all absorption 

lines depend on temperature. Finally, in Sect. 3.1.3 we perturb spectroscopic line parameters themselves to within their 

uncertainties. 275 

 

The total retrieval random error for the retrievals presented in this section is ~4.5% (~18 ppm), the contribution of random 

noise is ~0.8% (~3 ppm), see Appendix D for definitions of total and measurement noise errors. When the deviations from the 

truth are larger than the a priori uncertainty (~20 ppm), it means the perturbation applied has a severe effect on the retrieval. 

Of course this can be mitigated by using a stronger a priori constraint or a measurement covariance matrix that reflects expected 280 

systematic errors, and not just random noise, but always at the cost of reduced sensitivity to CO2 too. The goal here is to 

estimate the relative effect of different kinds of expected systematic errors on retrieved profile shapes. Stronger constraints 

can only reduce the amplitude of the deviations from the truth, but the same structures would remain. When the perturbation 

to a parameter other than CO2 results in deviations from the truth much larger than those presented in Section 3.1.1, it means 

that errors in that parameter will dominate the variability in the retrieved CO2 profiles regardless of the retrieval constraints. 285 

3.1.1 Perturbed CO2 profile 

With a perturbed CO2 prior profile, the algorithm can retrieve the true profile shape very well in all windows, even with an a 

priori profile vastly different from the truth as shown in Fig. 4. In Fig. 4(a), when using the same prior that generated the 

synthetic spectrum, the retrieved profiles do not align exactly with the prior profile. This is due to small imperfections in the 
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synthetic spectra, but these result in differences of less than 1 ppm at any altitude. In Fig. 4(c) the standard GGG2020 a priori 290 

is used as the a priori, while the “true” CO2 profile used to generate the synthetic spectrum was built from a composite “true” 

profile as described in Sect. 2.2. In each window the retrieved profile is within 2 ppm of the truth. In Fig. 4(e) a constant CO2 

profile with 380 ppm at all levels is used as the a priori. Again, the retrieved profiles are within 2 ppm of the truth except at 

the bottom and top of the profile where most of the information comes from the a priori. This self-consistency test shows that 

the GFIT2 algorithm works as expected and can accurately retrieve CO2 when the a priori CO2 profile is the only source of 295 

uncertainty. 
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Figure 4: The left-hand panels show CO2 profiles retrieved using synthetic spectra. In (a), we use the AirCore profile, which was 

used to generate the synthetic spectra, as the a priori. In (c), we use the GGG2020 a priori CO2 profile as the a priori profile. In (e), 

we use a constant CO2 a priori profile. The right-hand panels: (b), (d), and (f), show the difference between the retrieved profiles 300 
and AirCore, corresponding to (a), (c), and (e) respectively. 
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3.1.2 Perturbed H2O profile 

Figure 5 shows the effect of a +10% perturbation to the H2O vapour profile below 5 km for a dry winter day and a wet summer 

day. It leads to 2 ppm deviations from the CO2 a priori in the Strong window under dry conditions and up to 15 ppm under wet 305 

conditions. In both cases, the deviations from the truth in the CO2 profiles retrieved from the other windows were within 2 

ppm.  

 

Figure 5: The left-hand panels show CO2 profiles retrieved using synthetic spectra. 10% is added to the H2O profile below 5 km for 

(a) dry conditions on 14 January 2012, and for (c) wet conditions on 23 July 2013. The right-hand panels: (b) and (d), show the 310 
difference between the retrieved profiles and AirCore, corresponding to (a) and (c) respectively. 

3.1.3 Perturbed temperature profile 

A +5C perturbation to the temperature profile below 5 km (0.5 atm < P < 1.0 atm), as in Fig. 6(a), leads to deviations from 

the truth in the retrieved CO2 profiles of up to 50 ppm in the Weak and TCCON windows, and up to 100 ppm in the Strong 

window. In that case the fit residuals can exceed 1% in the Strong window and 0.5% in the TCCON windows. For the retrievals 315 

used to obtain the profiles in Fig. 6(a) the SNR was set to 100 in the Strong window, 200 in the TCCON windows, and 1000 

in the Weak windows. In Fig. 6(c) and (e) the SNR is set to 1000 in all windows. In Fig. 6(c), a +2C perturbation is applied 
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between 8 and 13 km (0.2 atm < P < 0.35 atm). The amplitude of deviations in the TCCON windows and in the Strong window 

is close to 50 ppm at ~0.9 atm and 100 ppm at ~0.2 atm. In the two Weak windows, the deviation amplitude is ~10 ppm at 

~0.9 atm and ~20 ppm at 0.2 atm. In Fig. 6(e), a +2C perturbation is applied above 15 km. In the Strong window, the resulting 320 

deviation at pressures > 0.6 atm has the smallest amplitude amongst the five windows, within 4 ppm, and the deviation at ~0.2 

atm is ~20 ppm. In the TCCON windows, the deviation at pressures > 0.6 atm is reduced to ~10 ppm while the deviation at 

pressures > 0.6 atm is comparable to that in Fig. 6(b). In the two Weak windows, the deviations at ~0.9 atm is unchanged when 

to compared to Fig. 6(b) and the deviation at ~0.2 atm is reduced from ~15 ppm to ~10 ppm. 
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 325 

Figure 6: The left-hand panels show CO2 profiles retrieved using synthetic spectra for: (a) +5C added to the a priori temperature 

profile below 5 km, (c) +2C between 8 and 13 km, and (e) +2C above 15 km. The right-hand panels: (b), (d), and (f), show the 

difference between the retrieved profiles and AirCore profile, corresponding to (a), (c), and (e) respectively. Note the difference in 

the horizontal axis range between the panels. Here 5 km corresponds to ~0.55 atm, 8–13 km to ~0.36–0.17 atm, and 15 km to ~0.125 

atm. 330 
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From the results in Sect. 3.1.1, 3.1.2, and 3.1.3, we observe that CO2 profile retrievals do not need accurate prior knowledge 

of the CO2 profile, but require accurate knowledge of the prior temperature and water vapour profiles. Moreover, these results 

suggest that errors in the temperature profile are the main source of deviations from the truth in retrieved CO2 profiles. 335 

Retrievals using the two Weak windows are the least affected by biases in the prior temperature and water vapour profiles. 

The need for accurate a priori water vapour profile could be alleviated by retrieving H2O profiles simultaneously with CO2 

profiles, but this was not tested with GFIT2 which currently can only retrieve the main target gas in a window with profile 

retrievals. In addition, H2O profile retrievals would also be affected by temperature errors. 

3.1.4 Perturbed line parameters 340 

The linelist used by GGG is a compilation of different versions of the HITRAN linelists (Gordon et al., 2017; Rothman et al., 

2005, 2009, 2013; Toon, 2015; Toon et al., 2016). GGG2020 has the option to use either the qSDV+LM line shape or the 

Voigt line shape for some windows and gases (Mendonca et al., 2016, 2017, 2019). The reference linelists and the uncertainties 

on air- and self-broadened Lorentz half-width coefficients, and their temperature dependence, are summarized in Table 4. The 

qSDV+LM line shape is only implemented for the CO2 lines of the two TCCON windows and the Strong window, for the CH4 345 

lines of the Weak1 window, and for the O2 lines of the oxygen window centered at 7885 cm-1. The qSDV+LM line shape is 

not implemented for the CO2 lines of the Weak1 and Weak2 windows, but these weak lines are minimally affected by line 

mixing, and they lack laboratory measurements of speed-dependent line parameters. The effect of errors in the half-width 

coefficients on the retrieved CO2 profiles was tested by increasing both the self- and air-broadened Lorentz half-width 

coefficients by 0.1% for all CO2 lines as shown in Fig. 7(a). This perturbation corresponds to the median uncertainty of these 350 

parameters in the Strong and TCCON windows as shown in Table 4. This caused deviations of up to 10 ppm in the Strong 

window, 5 ppm in the TCCON windows, and 2 ppm in the Weak windows. Similar deviations are obtained by perturbing the 

temperature dependence of the half-width coefficients by -1% as shown in Fig. 7(b). In this case, the deviations appear mirrored 

about the a priori compared to Fig. 7(a). The shape of deviations in both cases is similar; it is also similar to the shape obtained 

in Fig. 6 from perturbing the temperature profiles. This is because all those perturbations ultimately lead to an altered line 355 

width and all cause residuals patterns that cannot be distinguished from each other, as illustrated in Fig. 8. This implies that 

errors in the a priori temperature profile, water vapour profile, and spectroscopic widths are difficult to disentangle in the 

current GFIT2 profile retrieval. A simultaneous temperature (hence pressure) and CO2 profile retrieval would be necessary to 

overcome these issues. 

 360 

A factor 10 increase in the perturbations applied to the width coefficients or their temperature dependence also leads to a factor 

10 increase in the amplitude of deviations in the retrieved CO2 profiles. Panels (a) and (b) of Fig. 7 use perturbations 

corresponding to uncertainties in the line parameters when using qSDV+LM for the TCCON windows and the Strong window. 
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The same perturbations were applied for all five windows. However, in the Weak1 and Weak2 windows, these perturbations 

are 10 times smaller than realistic uncertainties as reported in Table 4 for the Voigt line shape. Therefore, for the Weak 365 

windows, we can expect deviations from the truth 10 times larger than in Fig. 7, within ~10–20 ppm. 

 

Table 4: 1-σ relative errors of the air- and self-broadened Lorentz half-width coefficients (b) and of their temperature dependence 

(n). The values from Benner et al. (2016) and Devi et al. (2007a,b) use the median 1-σ uncertainty for the whole band, from the 

Appendix or supplemental files of these studies. The values for the Voigt line shape use the error codes reported in the HITRAN2016 370 
linelist (Gordon et al., 2017).  

Line shape 
Window 

(band) 

b (air) 

(%) 

n (air) 

(%) 

b (self) 

(%) 

n (self) 

(%)  
Reference 

Voigt 

TCCON1 

>=1 and <2 

- 

>=1 and <2 

- 

Toth et al. (2008) 
TCCON2 

Weak1 
From <10 

To <1 

Lamouroux et al. (2015) 

Gordon et al. (2017) 
Weak2 

Strong 

qSDV+LM 

TCCON1 

(30013–00001) 
0.13 

- 

0.07 Devi et al. (2007a) 

TCCON2 

(30012–00001) 
0.14 0.07 Devi et al. (2007b) 

Strong 

(20013–00001) 
0.03 0.12 0.09 0.33 

Benner et al. (2016) 
Strong 

(21113–01101) 
0.25 1.47 0.49 2.27 

 

In Connor et al. (2016), the authors used a Voigt line shape. Figure 7(e) shows the effect of fitting with a Voigt line shape a 

synthetic spectrum that was generated using qSDV+LM. In that case the fit residuals in the Strong window can exceed 1% and 

the residuals in the TCCON windows can exceed 0.5%. For these retrievals, the SNR is set to 100 in the Strong window, 200 375 

in the TCCON windows, and 1000 in the Weak windows. The profiles retrieved from the Strong window present deviations 

from the truth within 60 ppm. In the two TCCON windows, the deviations from the truth are within 30 ppm. In the Weak1 

window, the deviations from the truth are within 10 ppm, because qSDV+LM was not used to calculate the CO2 line 

absorptions themselves, but only for the relatively strong CH4 lines in that window. In the Weak2 window, there is no 

difference between the two linelists or line shape, and thus the retrieved profile does not differ from the a priori profile. 380 

Therefore, even if we assume perfect a priori meteorology, the deviations in the CO2 profiles retrieved from the TCCON1 

window observed by Connor et al. (2016), when fitting real spectra could be entirely due to the use of the Voigt line shape. 
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Figure 7: The left-hand panels show CO2 profiles retrieved using synthetic spectra. In (a) the air- and self-broadened half-width 

coefficients of all CO2 lines is increased by 0.1%. In (c) the temperature dependence of these coefficients is decreased by 1%. In (e), 385 
the synthetic spectrum used as “measurement” is generated with the speed-dependent Voigt line shape with line mixing, but profiles 

are retrieved using a Voigt line shape. The right-hand panels: (b), (d), and (f), show the difference between the retrieved profiles and 

AirCore, corresponding to (a), (c), and (e) respectively. 
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 390 

The effect of the errors in the a priori water vapour and temperature profiles, and in the spectroscopic parameters cannot be 

mitigated by adjusting the measurement covariance, for example by using a variable SNR. Figure 8 shows an example of 

spectral residuals from fits to synthetic spectra from the Strong window using scaling retrievals, but with different perturbations 

applied. Showing residuals from scaling retrievals reveals systematic features that the profile retrieval will attempt to suppress. 

Figure 8(b) presents residuals from fitting a synthetic spectrum using the same a priori that was used to generate the synthetic 395 

spectrum. It shows small (< 0.05 %) residuals, caused by the use of a constant ILS across the window for a faster convolution 

of the spectrum with the ILS. The corresponding profiles are shown in Fig. 4(a). In Fig. 8(c), a 2C offset is applied to the a 

priori temperature profile between 8 and 13 km before fitting the synthetic spectrum. In Fig. 8(d), a constant a priori CO2 

profile is used to fit a synthetic spectrum that was generated with an AirCore CO2 profile as a priori. In Fig. 8(e), the air- and 

self-broadened Lorentz half-width coefficients are increased by 0.1% compared to the parameters used to generate the synthetic 400 

spectrum. In Fig. 8(f), the temperature dependence of the air- and self-broadened Lorentz half-width coefficients is decreased 

by 1% compared to the parameters used to generate the synthetic spectrum. In Fig. 8(g), the GGG2020 a priori meteorology 

and trace gas profiles are used as a priori profiles instead of the a priori constructed with AirCore profiles used to generate the 

synthetic spectrum. 

 405 

In all panels of Fig. 8 except (c) and (g), all the residual features correspond to CO2 absorption lines. In Fig. 8(c), with a 

perturbation to the a priori temperature profile, there is an added contribution of temperature errors on interfering species. 

Furthermore, the residuals in Fig. 8(g) result from a combination of errors in the a priori meteorology and trace gas profiles 

but are dominated by temperature errors. Perturbations in the temperature profile, CO2 profile, or CO2 line width coefficients 

all cause residuals with the same shape because they all affect the width of CO2 lines. It is not possible to de-weight the effect 410 

of any of those errors by adjusting the measurement error without also losing the ability to correct for residuals caused by CO2 

errors. Residuals caused by realistic temperature errors as shown in Fig. 8(c) are of the same magnitude of those caused by 

unrealistically high errors in the a priori CO2 profile shape as shown in Fig. 8(d). 
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Figure 8: Panel (a) shows an example of calculated lines in the Strong CO2 window. The other panels show residuals from fits to a 415 
synthetic spectrum, using the same inputs used to generate the synthetic spectrum except for: (b) no perturbation; (c) +2C 

perturbation to the a priori temperature between 8 and 13 km; (d) CO2 prior profile set to 380 ppm at all levels, corresponding to 

~15 ppm offset from the unperturbed prior; (e) air- and self-broadened Lorentz half-width coefficients is increased by 0.1%; (f)  

temperature dependence of the half-width coefficients decreased by 1%; and (g) using the a priori that would be used by TCCON 

operational processing, instead of that constructed from in situ measurements, resulting in a combination of different errors in the 420 
a priori such as H2O, temperature, and CO2. Note the vertical scale of panels (b), (e), and (f) is five times smaller than that of panels 

(c), (d), and (g). 
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3.1.5 Synthetic spectra: discussion 

For retrievals on synthetic spectra, the “measurement” SNR is set to 1000, which is high compared to most solar spectra 425 

measured by TCCON. So in profiles retrieved from real spectra, we can expect a greater influence of the a priori CO2 profile: 

the deviations will be smaller, and the degrees of freedom for signal will be lower than those shown in the figures of Sect. 3.1. 

This is not a desirable outcome; the a priori CO2 covariance is meant to nudge the retrieval such that the solution lies close to 

realistic ensembles of CO2 profiles, not to constrain deviations caused by temperature errors. Tuning the a priori or 

measurement covariances is not the right approach until profile deviations caused by typical errors in spectroscopy or 430 

meteorology are smaller than typical vertical variations in CO2 profiles. Figure 4 shows that the profile retrieval algorithm 

works well and could be a powerful tool to derive information about the vertical distribution of CO2, even with ill-defined a 

priori CO2 profiles. Panels (a) and (b) of Fig. 7 show that profile information could still be retrieved to within ~5 ppm given 

realistic errors in line width parameters. But as shown with Fig. 6, a temperature retrieval, or correction, is critical to producing 

reliable CO2 profile retrievals. This study does not show the effect of typical instrument misalignment errors on the retrieved 435 

profiles. GFIT2 currently has no capacity to fit the instrument line shape (ILS) of a misaligned instrument given specific 

angular and shear misalignments, and instead always assumes a perfect ILS. This is an area of future development for the 

program. The effect of an error in the instrument’s internal field of view and the effect of a zero-level offset are presented in 

Appendix F, both should lead to minor deviations from the truth, within less than 3 ppm. 

 440 

In Sect. 3.2, GFIT2 is tested with real spectra using an a priori built from in situ measurements. In that case, the deviations 

from the truth in the retrieved CO2 profile caused by errors in the a priori meteorology (temperature, pressure, and water vapour 

profiles) are minimized, and the remaining deviations are caused by errors in the spectroscopic line parameters, in the radiative 

transfer, in the instrument line shape, or in the pointing of the sun tracker. 

3.2 Real spectra 445 

Here the algorithm is tested with real spectra measured at Lamont as described in Sect. 2.2. A scaling retrieval is performed 

before each profile retrieval and the root mean square of the residuals from the scaling retrieval is used as measurement 

uncertainty for the profile retrieval. Since the residuals from the scaling retrieval include systematic features larger than the 

random noise in the measurement, the root mean square is a conservative estimate of the noise. In Sect. 3.2.1, we present CO2 

profiles retrieved from real spectra and we attempt to isolate the effect of errors in instrument line shape, in spectroscopic 450 

parameters, and in pointing, from the effect of errors in meteorology. In Sect. 3.2.2, we present an analysis of the information 

content and altitude sensitivity of the retrieval. Finally, in Sect. 3.2.3, we compare XCO2 derived from the scaling retrieval to 

XCO2 derived from the profile retrieval. 
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3.2.1 Profiles 

Figures 9 and 10 show CO2 profiles retrieved from real spectra measured from Lamont, OK, on 14 January 2012 and 11 April 455 

2017, respectively. In each figure, panel (a) shows profiles retrieved using in situ profiles (the “truth”) as the a priori. In those 

cases, we assume that deviations from the truth caused by errors in a priori meteorology (pressure, temperature and water 

vapour profiles) are minimized, and the remaining deviations can be attributed to the combination of instrument misalignment 

(ILS), pointing errors, or errors in spectroscopic parameters. Panel (c) shows profiles retrieved using the GGG2020 a priori. A 

first complication for obtaining a satisfactory CO2 profile retrieval is that the a priori CO2 profiles in GGG2020 already 460 

compare well with in situ profiles, typically within 5 ppm over Lamont. In Fig. 9(c) and 10(c), the profile that most closely 

matches the AirCore is the a priori. 

 

Even with ideal prior knowledge of the meteorology and trace gas profiles, the CO2 deviations from the truth can be as large 

as 50 ppm as shown in Fig. 9(a) and 10(a). When synthetic spectra were perturbed with realistic errors in line width parameters, 465 

profile deviations remained within 5 ppm for profiles retrieved from the Strong window and within 10 ppm for the TCCON 

windows. This suggests that the main cause of deviations in Fig. 9(a) and 10(a) is not due to errors in spectroscopic parameters. 

The assumption that there is no contribution from temperature errors in the radiosonde profile is supported by the CO2 profile 

deviation being smallest in the Strong window, which is the most sensitive to temperature errors. Although the effect of typical 

perturbations in the instrument field of view, zero-level offset, and spectroscopic parameters is relatively small compared to 470 

the effect of temperature errors, the cumulative effect of these errors could explain the deviations from the truth in Fig. 9(a) 

and 10(a). 
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Figure 9: CO2 profiles retrieved from spectra measured at the Lamont TCCON site on 14 January 2012, at 61–74° solar zenith angle, 

coincident with AirCore measurements using: (a) the AirCore “truth” as a priori and (c) the GGG2020 a priori. In (b) and (d) the 475 
difference of the retrieved profiles minus the AirCore profile is shown, corresponding to (a) and (c), respectively. The points 

represent the 51 levels of the vertical grid. The DOFS for each retrieval window are indicated in (b) and (d). 
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Figure 10: Same as Fig. 9 but for spectra measured on 11 April 2017 at 28–39° solar zenith angle. 

 480 

Figure 11 shows the difference between the GGG2020 a priori temperature profile, used in Fig. 9(c) and 10(c), and the 

radiosonde temperature profile used in Fig. 9(a) and 10(a). In both cases, we replace the a priori surface temperature with the 

measured surface temperature. On 14 January 2012, the radiosonde temperature profile is about 1C higher than the GGG2020 

a priori profile at pressures < 0.6 atm. The shape of the Strong window CO2 profile deviations in Fig. 9(c) is consistent with 

the sensitivity tests using synthetic spectra in Sect. 3.1.3. In Fig. 6(a), a +5C offset below 5 km results in +500 ppm CO2 error 485 

at ~0.9 atm, while in Fig. 10, a -1C offset in the lower troposphere leads to a -50 ppm error at ~0.9 atm. The deviations are 

smoother in Fig. 9 and 10 than in Fig. 6 because the SNR of real spectra is between 200 and 500 instead of 1000, and because 

of the smoothing effect of the off-diagonal elements of the a priori covariance used in this section. The off-diagonal elements 

of the a priori covariance introduce inter-layer correlations that reduce large differences between levels over a given length 

scale (see Sect. 2.2). Retrievals on real spectra after applying a +5C offset to the radiosonde temperature profile below 5 km 490 

lead to a +100 ppm offset at ~0.9 atm. The CO2 profiles in Fig. 10(c) differ less with those in Fig. 10(a) than do the profiles in 
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Fig. 9(a) and 9(c). In Fig. 11, the difference between the GGG2020 and radiosonde temperature profile on 11 April 2017 is 

~3C for the first two levels above the surface, but the average difference between 0.85 and 0.6 atm is -0.15C compared to -

1.05C on 14 January 2012. 

 495 

Figure 11: Temperature profile difference for the GGG2020 a priori minus radiosonde on 14 January 2012 and 11 April 2017. The 

radiosonde profile is included in the a priori used in panel (a) of Figs. 9 and 10, and the GGG2020 a priori is used in panel (b) of 

Figs. 9 and 10. In situ temperature measurements are used for both cases at the surface. The dashed line marks the average 

difference, with the value indicated in the legend. 

 500 

In aircraft profiles over Lamont between 2008 and 2018 from NOAA’s ObsPack, the steepest vertical gradients in CO2 profiles 

are ~5 ppm/km between the surface and ~3 km. In its current state, CO2 profile retrieval with GFIT2 cannot distinguish these 

vertical variations from CO2 deviations caused by errors in the forward model, even with very accurate a priori meteorology. 

Typical errors in the a priori temperature profiles will prevent operational use of CO2 profile retrieval without a scheme for 

retrieving or correcting the temperature profiles. 505 

3.2.2 Information content and averaging kernel 

Table 5 presents the average values of the Shannon information content, H, and of the CO2 profile DOFS, from all profile 

retrievals performed on Lamont spectra when using the GGG2020 a priori profiles. It also includes the Ratio of Residuals (RR) 

of the spectral fits (see Appendix B, Eq. B10), which represents the residuals of the profile retrievals as a fraction of the 

residuals of the scaling retrievals. The same quantities are plotted in Fig. 12 for each spectrum. The RR is always smaller than 510 

1 because the profile retrieval has more freedom to adjust the calculated spectrum and so can never produce larger residuals 

than scaling retrievals. Figure 12 also shows XCO2 obtained from the scaling retrievals subtracted to XCO2 obtained from 

profile retrievals for each window. 
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 515 

Table 5: Shannon information content (H), degrees of freedom for signal (DOFS) for the CO2 profile, and Ratio of Residuals (RR) 

averaged over all 492 profile retrievals from near-infrared TCCON spectra measured at Lamont and coincident within ±1 h of the 

AirCore last sampling time. The standard deviation is also shown. 

Window name H DOFS RR 

TCCON1 5.4±0.6 2.7±0.2 0.988±0.014 

TCCON2 5.4±0.6 2.7±0.2 0.992±0.009 

Weak1 2.3±0.7 1.7±0.3 0.996±0.002 

Weak2 2.5±0.9 1.8±0.4 0.994±0.008 

Strong 6.8±1.0 3.0±0.4 0.957±0.038 

 

 520 

Figure 12: Shannon information content (top left), degrees of freedom for signal for the CO2 profile (top right), and ratio of residuals 

(bottom left), and profile minus scaling retrieval XCO2 (bottom right) for all Lamont spectra coincident within ±1 h of the AirCore 

last sampling time for AirCores launched on the dates indicated on the right. Each new date is marked by a vertical dashed line. 

 

Figure 13 shows the sums of the rows of the partial column averaging kernel matrix over different altitude ranges. The sum 525 

from 0 to 70 km is the total column averaging kernel (see Appendix C). The total column averaging kernel is close to 1 at all 

levels in all windows, indicating good sensitivity to changes in the CO2 total column. The partial column kernels show that 
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most of this sensitivity comes from altitudes below 15 km. That the total column averaging kernel is close to 1 at all levels is 

not inconsistent with the large deviations we observe in the retrieved CO2 profiles. If the total column averaging kernel is 

exactly one at each level, adding N molecules of CO2 anywhere in the atmosphere will lead to N more molecules in the retrieved 530 

total column. However, in the presence of a priori temperature errors, for example, the retrieved value can be biased. The 

averaging kernel indicates that without the effect of these errors, the CO2 profile retrieval would have excellent sensitivity to 

CO2 and would be able to provide information about CO2 in two distinct layers. Here, the vertical representation is not a 

concern. Using 51 vertical levels only affects the speed of the retrieval. The retrieved profiles can then be reduced to a number 

of partial columns corresponding to the DOFS. This was not done here because it is evident that large deviations due to 535 

temperature errors could easily bias the resulting partial columns. The reduction into a subset of layers also requires an arbitrary 

choice: in Fig. 13 the altitude ranges were set such that the DOFS of the first two partial columns would be roughly close to 1 

in each window. We could also have chosen two regions with approximately equal DOFS from 0–7 km and 7–70 km. The 

partial column averaging kernels overlap with each other, so the partial columns are not completely uncorrelated even if their 

respective DOFS are higher than 1. The DOFS are not exactly independent pieces of information, as it is impossible to obtain 540 

independent partial column amounts from direct sun measurements on the ground (see Appendix C), but an arbitrary criterion 

can be defined to identify distinct layers, for example if the peaks in their partial column averaging kernels are separated by a 

given fraction of their widths in altitude. Additional analysis of the vertical sensitivity of the retrieval is presented in Appendix 

D, as well as a decomposition of the retrieval error into the interference, measurement noise, and smoothing errors as shown 

in Fig. D8. The interference error is the smallest (<0.5%) contribution but does not include the effect of temperature errors. 545 

The measurement noise error decreases from ~1% at the surface to ~0.2% at pressures less than 0.6 atm (> 5 km), and the 

smoothing error dominates and decreases roughly from ~3% at the surface to 1% at the top of the atmosphere. 
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Figure 13: Sum of the rows of the partial column averaging kernel matrix over different altitude ranges as indicated by the legend, 

for each of the five CO2 windows. The sum between 0–70 km is the total column averaging kernel. The numbers in each panel are 550 
the DOFS corresponding to each of the altitude ranges. 

3.2.3 XCO2  

The XCO2 derived from profile and scaling retrievals using the GGG2020 a priori was compared to XCO2 derived from the 

CO2 profile built from the AirCore CO2 profile, in situ surface measurements of CO2, and the GGG2020 a priori CO2 above 

the maximum altitude sampled by the AirCore. The results are shown in Fig. 14 for the eight days we have AirCore profiles 555 

that are coincident with measurements at the Lamont TCCON station. Despite the large deviations observed in retrieved 

profiles, the XCO2 derived from profile retrievals compares well to the AirCore XCO2, but it does not present a clear 

improvement over the XCO2 derived from the scaling retrievals. The effect of temperature errors on XCO2 derived from scaling 

and profile retrievals is relatively small because the spectral windows utilize the entire (fundamental) band. Across a wide 

window, the residuals due to temperature errors show alternating positive and negative residuals, because of the different 560 

temperature sensitivities of absorption lines. Collectively, these lines have a small net temperature sensitivity. The scaling 

retrieval, which can only add or remove CO2 at all levels simultaneously, is limited in its ability to fit out such residuals across 

a wide window by adjusting the CO2 scale factor. For profile retrievals, although large deviations are observed in the retrieved 

profile, they compensate each other when deriving the total column. These deviations compensate due to the wide windows 
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including a range of spectral lines with different temperature sensitivities. If a narrow window over only a few lines were used 565 

instead, we would expect more localized errors in the retrieved CO2 profiles, and total columns sensitive to temperature errors. 

 

Figure 14: XCO2 derived from scaling (dashed lines and squares) and profile (solid lines and circles) retrievals for each CO2 window 

when using the GGG2020 a priori, compared to XCO2 derived from smoothed AirCore profiles (see Appendix C). The black dotted 

line marks the 1-to-1 line. When comparing with scaling retrievals, the AirCore profile is smoothed using the total column averaging 570 
kernel of the scaling retrieval, and when comparing to profile retrievals the AirCore profile is smoothed using the averaging kernel 

matrix of the profile retrieval. The legend indicates the slopes and squared Pearson correlation coefficients of fits to lines passing 

through the origin, assuming that in the absence of CO2 the retrieval would return a CO2 value of zero. 
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3.2.4 Real spectra: discussion 575 

Profile retrievals that use real spectra and an a priori profile built from coincident in situ measurements show CO2 profile 

deviations up to 40–50 ppm. Even when the errors due to the a priori meteorology are minimized, deviations from the truth 

due to instrument misalignment, radiative transfer, sun-tracker pointing, or uncertainties in line parameters are larger than the 

steepest vertical CO2 gradients (~5 ppm/km) observed in the ensemble of aircraft profiles from NOAA’s ObsPack. 

When performing retrievals on the same spectra but replacing the AirCore a priori profile with a standard a priori profile, small 580 

errors in the a priori temperature profile cause large deviations in the retrieved CO2 profile. Despite the large deviations in the 

retrieved profiles, the retrieval still shows high sensitivity to XCO2 but does not present a clear improvement over XCO2 

obtained from scaling retrievals. Introducing a temperature retrieval or correction, as well as the ability to model an imperfect 

instrument line shape, is the best avenue to improve the CO2 profile retrieval results. Appendix E presents an attempt at 

applying empirical corrections to reduce the effect of systematic imperfections in the forward model. 585 

4. Summary and conclusions 

In this study we investigated the use of CO2 profile retrievals from near-infrared solar absorption spectra measured by TCCON. 

The performance of CO2 profile retrieval was reassessed after improvements were implemented in the forward model of GGG. 

Retrievals were performed using five CO2 windows with significantly different optical opacities. 

 590 

We first use retrievals on synthetic spectra to check the self-consistency. Typical errors in the a priori H2O profile, which is 

retrieved with a scaling retrieval, caused limited deviations from the truth in the CO2 profile, within 5–10 ppm in the Strong 

window, and within 2 ppm in the other windows. Perturbing the CO2 air- and self-broadened Lorentz half-width coefficients 

and their temperature dependence to within their estimated uncertainties led to CO2 deviations from the truth of less than 5 

ppm. The implementation of a non-Voigt line shape is a significant improvement to CO2 profile retrievals; errors in 595 

spectroscopic parameters are no longer the leading source of uncertainty in retrieved profiles. We observed deviations from 

the truth of up to 100 ppm in profiles retrieved with typical temperature errors. The temperature profile is an important retrieval 

input, but is not retrieved, thus spectral residuals caused by errors in the a priori temperature profile are free to be suppressed 

by adjustments to the CO2 scale factors. The implementation of a temperature profile retrieval, or correction, is critical to 

improve CO2 profile retrieval results. In GGG2020, 3-hourly a priori temperature profiles are used, but temperatures can still 600 

vary by several degrees between 3-hourly profiles and can still be wrong even without any time mismatch. Temperature could 

be retrieved from CO2 windows and from windows with temperature-sensitive water vapour absorption lines. 

 

We then perform retrievals with atmospheric TCCON spectra collected at the Lamont site, which were coincident with AirCore 

profiles, including radiosonde profiles of temperature and relative humidity; these were considered as the true state of the 605 

atmosphere. When running retrievals with the truth as the a priori, the deviations due to errors in the a priori meteorology are 
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minimized and the resulting deviations are caused by instrument misalignment, errors in spectroscopy, or sun tracker pointing. 

We observed CO2 deviations of up to 40 ppm in that case. Even with ideal knowledge of the a priori meteorology, the CO2 

deviations are larger than the largest expected vertical CO2 variations and no useful profile information can be inferred from 

the profile retrieval. Stricter alignment requirements, which can be challenging to achieve in practice, or the ability to model 610 

an imperfect instrument line shape are needed to improve profile retrieval results. The sensitivity study of Sect. 3.1 could then 

be extended to assess the effect of specific misalignments on the retrieved profiles. 

 

In these retrievals, we used a full a priori covariance matrix, with off-diagonal elements, based on comparisons between the 

GGG2020 a priori and aircraft vertical profiles from NOAA’s ObsPack over the Lamont TCCON site. Before tuning the a 615 

priori covariance and considering stronger regularisations, it must be shown that CO2 deviations caused by typical errors in 

the a priori meteorology are smaller than typical variability in real CO2 profiles. Because it is more computationally expensive, 

and because it requires stronger constraints on the a priori statistics than scaling retrievals, a profile retrieval must present clear 

advantages over a scaling retrieval to justify its operational use. And with each new improvement to the CO2 a priori profiles, 

requirements for profile retrieval to be better than scaling retrieval become more stringent. 620 

 

A method to combine the profiles obtained from sequential retrievals in different spectral windows still needs to be developed. 

Alternatively, the ability to perform simultaneous retrievals using multiple spectral windows could be implemented in GFIT2. 

Appendices 

Appendix A: Vertical columns 625 

The vertical grid for the retrievals presented in this study has 51 levels from 0 to 70 km, with spacing increasing with altitude 

and following: 

𝑧𝑖 = 𝑖 × (0.4 + 0.02 × 𝑖) (𝐴1) 

where 𝑧𝑖 is the altitude in kilometers of the ith level. Each level is associated with an effective vertical path distance 𝑣𝑝: 

𝑣𝑝𝑖 ≈ 0.4 + 0.04 × 𝑖 (𝐴2)  630 

The total column of air in molecules per square meter can be obtained as: 

𝑐𝑜𝑙𝑢𝑚𝑛𝐴𝑖𝑟 = ∑ 𝑣𝑝𝑖 × 𝑑𝑖

𝑁

𝑖=1

(𝐴3) 

where d is the air number density in molecules of air per cubic meter.  N is the number of atmospheric levels. If the prescribed 

grid contains layers below the altitude of the site considered, their effective vertical path will be 0. The layer containing the 

site altitude will be truncated. The total column of CO2 is: 635 
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𝑐𝑜𝑙𝑢𝑚𝑛𝐶𝑂2 = ∑ 𝑠𝑓𝑖 × 𝑣𝑚𝑟𝑖 × 𝑑𝑖 × 𝑣𝑝𝑖

𝑁

𝑖=1

(𝐴4) 

where sf is the retrieved scaling factor and vmr is the a priori CO2 wet mole fraction (molecules of CO2 per molecules of air). 

In the forward model, the retrieval grid is not vertical, but along the slant path from the instrument towards the sun, the scaling 

factors retrieved for the slant layers are used with the corresponding vertical layers to compute the vertical column. The a priori 

profiles used by GFIT are built on the prescribed altitude grid directly above the site. This should contribute to an unknown 640 

error, largest at high solar zenith angles when the projection of the sun ray on the ground can reach a few hundred kilometers; 

in that case the a priori slant profiles of temperature and H2O could be significantly different from the vertical profile directly 

above the instrument. 

 

The column-averaged dry-air mole fraction of CO2 (XCO2) is the ratio of the column of CO2 to the column of dry air, where 645 

the column of dry air is expressed as the column of O2 divided by 0.2095 (Wunch et al., 2011b): 

𝑋𝐶𝑂2 = 0.2095 ×
𝑐𝑜𝑙𝑢𝑚𝑛𝐶𝑂2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑐𝑜𝑙𝑢𝑚𝑛𝑂2

(𝐴5) 

where the O2 column is retrieved from a spectral window centered at 7885 cm-1. For the official TCCON products, 𝑐𝑜𝑙𝑢𝑚𝑛𝐶𝑂2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is a weighted average of the columns retrieved from the TCCON1 and TCCON2 windows.  

 650 

Appendix B: GFIT2 algorithm 

To find the state vector with maximum a posteriori probability given a measurement, the cost function J is minimized: 

𝐽 = (𝒚 − 𝑓(𝒙))
𝑇

𝐒𝑦
−1(𝒚 − 𝑓(𝒙)) + (𝒙𝑎 − 𝒙)𝑇𝐑(𝒙𝑎 − 𝒙) (𝐵1) 

by iteratively solving for the state update Δx in the least square problem: 

(𝑲𝑖
𝑇𝑺𝑦

−1𝑲𝑖 + 𝐑 + 𝛾𝐃 ) 𝛥𝒙 = 𝐊𝑖
𝑇𝑺𝑦

−1(𝒚 − 𝑓(𝒙𝑖)) + 𝐑(𝒙𝑎 − 𝒙𝑖), (𝐵2) 655 

Here, y is the measured transmittance spectrum, f is the forward model that computes a transmittance spectrum from the state 

vector x, Sy is the measurement covariance matrix, xa is the a priori state vector, and the regularisation matrix R is taken to be 

the inverse of the a priori covariance matrix Sa. K is the Jacobian matrix, each column of K contains the derivative of the 

spectrum with respect to an element of the state vector, 𝐊 =
𝜕𝑓(𝑥)

𝜕𝑥
. The Levenberg–Marquardt parameter 𝛾 is applied to a 

scaling matrix D, which is also taken to be Sa
-1. The Levenberg–Marquardt parameter affects the size of the state update so 660 

that smaller steps may be taken when the linearization of the forward model is not satisfactory. 

 

The expected χ2 of the maximum a posteriori probability solution should be: 

𝜒2(𝒙 − 𝒙) = (𝒙 − 𝒙)𝑇(𝐊𝑇𝐒𝑦
−1𝐊 + 𝐒𝑎

−1)(𝒙 − 𝒙) ≈ 𝑛 (𝐵3) 
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where n is the number of state vector elements. A solution is accepted when the ratio of the squared state update to the estimated 665 

variance is a negligible fraction of the expected χ2: 

𝛥𝒙 (𝐊𝑇𝐒𝑦
−1(𝒚 − 𝑓(𝒙𝑖)) + 𝐒𝑎

−1(𝒙𝑎 − 𝒙𝑖)) ≪ 𝑛. (𝐵4) 

In an algorithm, “<< n” must use a specific limit, and in GFIT2, “< n/10” was used. If the inequality check is made with a 

parameter that is too large, like “<n”, the algorithm may take fewer iterations to converge, but will take the same steps at each 

iteration, often leading to a retrieved profile closer to the a priori. The inequality check should be done with a small enough 670 

fraction of n that reducing it further does not significantly affect the solution. 

 

If convergence is not reached in the ith iteration, an algorithm determines if the Levenberg–Marquardt parameter needs to be 

adjusted for the next iteration (Fletcher, 1971). Three different cost functions are used: 

𝐽𝑜𝑙𝑑 = (𝒚 − 𝑓(𝒙𝑖))
𝑇

𝐒𝑦
−1(𝒚 − 𝑓(𝒙𝑖)) + (𝒙𝑎 − 𝒙𝑖)

𝑇𝐒𝑎
−1(𝒙𝑎 − 𝒙𝑖) (𝐵5) 675 

𝐽𝑛𝑒𝑤 = (𝒚 − 𝑓(𝒙𝑖 + 𝛥𝒙))
𝑇

𝐒𝑦
−1(𝒚 − 𝑓(𝒙𝑖 + 𝛥𝒙)) + (𝒙𝑎 − 𝒙𝑖 − 𝜟𝒙)𝑇𝐒𝑎

−1(𝒙𝑎 − 𝒙𝑖 − 𝛥𝒙) (𝐵6) 

𝐽𝑝𝑟𝑒𝑑 = (𝒚 − 𝑓(𝒙𝑖) − 𝐊𝛥𝒙))
𝑇

𝐒𝑦
−1(𝒚 − 𝑓(𝒙𝑖) − 𝐊𝛥𝒙)) + (𝒙𝑎 − 𝒙𝑖 − 𝜟𝒙)𝑇𝐒𝑎

−1(𝒙𝑎 − 𝒙𝑖 − 𝛥𝒙) (𝐵7) 

where Jold is the cost function using the state vector at the beginning of the ith iteration, Jnew is the cost function using the 

updated state vector at the end of the ith iteration, and Jpred is the cost function using the state vector update and the linear 

approximation: 680 

𝑓(𝒙 + 𝛥𝒙) ≅ 𝑓(𝒙) + 𝐊𝛥𝒙. (𝐵8) 

The ratio r is then evaluated: 

𝑟 =
𝐽𝑛𝑒𝑤 − 𝐽𝑜𝑙𝑑

𝐽𝑝𝑟𝑒𝑑 − 𝐽𝑜𝑙𝑑

. (𝐵9) 

This is the relative change in the cost function produced by a state vector update when using the forward model and a linear 

approximation of the forward model. The Levenberg–Marquardt parameter is then adjusted as follows: 685 

• r > 0.75: the linearization of the forward model is satisfactory and 𝛾 is reduced to allow larger steps 

o 𝛾 =
𝛾

2
 

• r ≥ 0.25: intermediate case, make no change to 𝛾 and reset the number of consecutive divergences 

o ndiv = 0 

• r < 0.25: the linearization of the forward model is not satisfactory, increment the number of consecutive 690 

divergences, 𝛾 is increased to take smaller steps. 

o ndiv=ndiv+1 

o if , 𝛾 = 0 then , 𝛾=1 

o if , 𝛾 > 0 then , 𝛾 = 10𝛾 

If ndiv reaches some specified maximum number, there will not be another iteration. When r < 0.25, it means that the 695 

linearization of the forward model is not good enough. In GFIT2, this was not allowed to happen more than twice in a row. 
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Increasing 𝛾 will lead to a smaller step for the state vector update, increasing the chance that the linearization of the forward 

model at the next step will be better and r ≥ 0.25. 

 

In GFIT2 𝑟 > 0.75 in most cases, and if 𝛾 is not initially set to 0 it will tend towards zero until the convergence criterion is 700 

met, thus the initial value of  𝛾 was set to 0. However, the increase of the parameter is often triggered when fitting noisier 

spectra and can give the algorithm a chance to converge when it would otherwise need more iterations or fail without 𝛾. 

 

After the last iteration, the goodness of the retrieval is checked by evaluating the reduced χ2 of the spectral residuals. 

𝜒𝑟𝑒𝑑
2 (𝒚 − 𝑓(𝒙)) =

1

𝑁
∑ (

𝒚𝑖 − 𝑓(𝒙)𝑖

𝑦𝑛𝑜𝑖𝑠𝑒

)

𝑁

𝑖=1

2

(𝐵10) 705 

where 𝑦𝑛𝑜𝑖𝑠𝑒  is the measurement uncertainty, and 𝑁 is the number of spectral points. Profile retrievals from real spectra are 

presented in Sect. 3 where the root mean square of the residuals from a scaling retrieval is used as 𝑦𝑛𝑜𝑖𝑠𝑒 . In that case Eq. B10 

is the average Ratio of Residuals (RR) between the profile and scaling retrieval. 

 

The retrieval covariance matrix is: 710 

�̂� = (𝑲𝑇𝐒𝑦
−1𝐊 + 𝐒𝑎

−1)
−1

. (𝐵11) 

The square root of its diagonal elements is used as the uncertainty on the retrieved scaling factors. 

 

Appendix C: Averaging kernel 

The state vectors of GFIT and GFIT2 contain scaling factors to be applied to a priori mole fractions. The averaging kernel 715 

matrix is: 

𝐀 = (𝑲𝑇𝑺𝑦
−1𝐊 + 𝐒𝑎

−1)
−1

𝐊𝑇𝑺𝑦
−1𝐊. (𝐶1) 

It is a change in the retrieved state for a change in the state vector elements.  

(𝑨𝑆𝐹)𝑖,𝑗 =
𝛿𝒙𝑖

𝛿𝒙𝑗

(𝐶2) 

Even though the averaging kernel is dimensionless, its units can be written as e.g., “ppm per ppm” to indicate that it is the 720 

change at a given level for a change at a different level. 

To obtain the averaging kernel in ppm per ppm: 

(𝐀𝑉𝑀𝑅)𝑖,𝑗 = (𝐀𝑆𝐹)𝑖,𝑗

𝑣𝑚𝑟𝑖

𝑣𝑚𝑟𝑗

(𝐶3) 

where vmr is the a priori mole fraction at the ith and jth levels and the partial column averaging kernel matrix in molecules.cm-

2 per molecules.cm-2 is: 725 
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(𝑨𝑐𝑜𝑙)𝑖,𝑗 = (𝑨𝑆𝐹)𝑖,𝑗

𝑣𝑚𝑟𝑖 × 𝑑𝑖 × 𝑠𝑝𝑖

𝑣𝑚𝑟𝑗 × 𝑑𝑗 × 𝑠𝑝𝑗

(𝐶4) 

Where sp are the widths of the slant layers along the sun ray that correspond to the altitude levels of the prescribed vertical 

grid. The total column averaging kernel vector can be obtained from the partial column averaging kernel matrix: 

𝒂𝑗 = ∑(𝑨𝑐𝑜𝑙)𝑖,𝑗

𝑛𝑙𝑒𝑣

𝑖=1

. (𝐶5) 

It represents the change in the total column (molecules.cm-2) caused by a change in the partial column of the jth layer. It should 730 

ideally be equal to 1 at each level, meaning that adding N target molecules anywhere in the atmosphere will lead to N more 

molecules in the retrieved total column.  

 

The averaging kernel matrix would ideally be an identity matrix, meaning that adding N molecules in the j th layer would lead 

to N more molecules retrieved in that layer. However, adding N molecules in the jth layer will lead to an increase in the width 735 

of CO2 absorption lines of a spectrum observed from the ground. As illustrated for CO2 in Fig. 2, each wavenumber is affected 

by the CO2 concentration over a range of altitudes, because the spectrum observed on the ground is the product of all the 

spectra that would be observed at each altitude. Even if that change in line widths was the only change in the spectrum and 

could be fitted perfectly, it would be impossible to exactly attribute that change to a specific level. Although the total column 

averaging kernel could be exactly 1 at each level, the averaging kernel matrix can never be exactly the identity matrix for direct 740 

sun measurements from the ground. 

 

The column averaging kernel matrix can be used to degrade higher resolution profiles before comparing them to retrieved 

profiles (Rodgers and Connor, 2003). 

𝒄𝑠 = 𝐀𝑐𝑜𝑙(𝒄 − 𝒄𝑎) + 𝒄𝑎 (𝐶6) 745 

where 𝒄𝑠 is the smoothed partial column profile, c is the partial column profile to be smoothed, and 𝒄𝑎 is the a priori partial 

column profile. Or using the total column averaging kernel: 

𝑐𝑠
𝑡𝑜𝑡 = 𝑐𝑎

𝑡𝑜𝑡 + 𝒂𝑇(𝒄 − 𝒄𝑎) (𝐶7) 

where 𝒂𝑇 is the transpose of 𝒂, and the “tot” superscript indicates a total column: 

𝑐𝑎
𝑡𝑜𝑡 = ∑ 𝒄𝒂𝑖

𝑛𝑙𝑒𝑣

𝑖=1

(𝐶8) 750 

Appendix D: Information content and error analysis 

The singular value decomposition of the CO2 Jacobian matrix can provide information on the relative precision with which 

different vertical patterns are measured. The Jacobian matrix K is decomposed into: 

𝐊(𝑛𝑚𝑝, 𝑛𝑙𝑒𝑣) = 𝐔(𝑛𝑚𝑝, 𝑛𝑙𝑒𝑣)𝐋(𝑛𝑙𝑒𝑣, 𝑛𝑙𝑒𝑣)𝐕𝑇(𝑛𝑙𝑒𝑣, 𝑛𝑙𝑒𝑣) (𝐷1) 
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where nmp is the number of measured spectral points, nlev is the number of atmospheric levels, U is the matrix of left singular 755 

vectors, L is the diagonal matrix of singular values, and 𝐕𝑇 is the transpose of the matrix of right singular vectors. The right 

singular vectors of K associated with the eight largest singular values are shown in Figs. D1 to D5 for each CO2 band on 14 

January 2012. The right singular vectors represent independently measured vertical patterns with a precision indicated by their 

corresponding singular values shown above each panel. The singular values are also shown as a fraction of the largest singular 

value in parenthesis. The singular vectors all show an increasing number of oscillations with decreasing singular value. In each 760 

window, the first singular vector is close to a uniform weighting at all altitudes and has 3 to 10 times more sensitivity than the 

second pattern. The singular vector in panel (d) has a structure like that of the CO2 profile deviations observed in the sensitivity 

tests of Sect. 3.1. 

 

Figure D1: Right singular vector of the Jacobian associated with the eight largest singular values for profile retrievals from the 765 
Strong CO2 window on 14 January 2012. The singular values are shown above each panel, and the singular value normalized to the 

largest singular value is shown in parenthesis. 



39 

 

 

Figure D2: Same as Fig. D2 but for the TCCON1 window. 

 770 

Figure D3: Same as Fig. D1 but for the TCCON2 window. 
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Figure D4: Same as Fig. D1 but for the Weak1 window. 

 

Figure D5: Same as Fig. D1 but for the Weak2 window. 775 

 

The retrieval covariance matrix �̂� can be expressed as a sum of the null space covariance 𝑺𝑁  and the measurement noise 

covariance 𝑺𝒎 (Rodgers, 1990):  

𝐒𝑁 = (𝑺𝑎
−1 + 𝐊𝑇𝑺𝑦

−1𝐊)
−1

𝐒𝑎
−1(𝑺𝑎

−1 + 𝐊𝑇𝐒𝑦
−1𝐊)

−1
(𝐷2) 

𝐒𝑚 = (𝑺𝑎
−1 + 𝑲𝑇𝑺𝑦

−1𝐊)
−1

𝑲𝑇𝐒𝑦
−1𝐊(𝐒𝑎

−1 + 𝐊𝑇𝑺𝑦
−1𝐊)

−1
(𝐷3) 780 
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The error patterns of these matrices hold information on vertical structures in the CO2 profiles that the retrieval cannot resolve, 

due to the smoothing effect of the a priori covariance matrix 𝑺𝑎 in the case of 𝑺𝑁, and due to the effect of measurement noise 

in the case of 𝑺𝑚, as the measurement error covariance matrix 𝐒𝑦 only represents random errors in the measured radiances. 

The error patterns of a matrix are defined as its eigenvectors multiplied by the square root of their corresponding eigenvalue. 

The error patterns of 𝐒𝑁 associated with the four largest eigenvalues are shown in Fig. D6, and those of 𝐒𝑚 are shown in Fig. 785 

D7. In both cases, the largest error pattern peaks at the surface and falls to 0 at ~0.9 atm; these peaks in the error patterns 

correspond to a minimum in the singular vectors of the CO2 Jacobian. The large errors in the retrieved CO2 profiles are 

explained by the larger a priori uncertainty in the lower troposphere, and by the relatively larger effect of errors at wavenumbers 

strongly weighted at low altitudes. This is because “sensitivity” is determined by the Jacobian; the retrieval will simply 

preferentially adjust CO2 at levels where a given change in CO2 causes a larger change in radiance. At pressures larger than 790 

~0.9 atm, the error patterns of 𝑺𝑁 represent vertical scales that cannot be resolved in the retrieval, with a vertical scale of 0.3 

atm or less. 

 

Figure D6: The four largest error patterns of the null space covariance matrix for a Lamont spectrum measured on 14 January 

2012. 795 

 

Figure D7: Same as Fig. D6 but for the measurement noise covariance matrix. 
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The uncertainty on the retrieved CO2 profile is taken to be the square root of the diagonal elements of �̂� even though the 

retrieval covariance is not diagonal. It is presented in Fig. D8 as a percentage of the a priori uncertainties. The retrieval error 

is always smaller than the a priori covariance by construction in optimal estimation, so this alone gives no indication of a 800 

successful retrieval. But the retrieval is more sensitive to altitudes where the retrieval uncertainty is a smaller fraction of the a 

priori uncertainty. The error from the diagonal of 𝐒𝑁 and 𝑺𝑚 is also shown. In addition to 𝐒𝑁, the smoothing contribution from 

state vector elements other than CO2 scale factors is shown as 𝐒𝑖, the interference error covariance (Rodgers and Connor, 

2003): 

𝐒𝑖 = 𝑨𝑥𝑒𝑺𝑎,𝑒𝑨𝑥𝑒
𝑇 (𝐷4) 805 

where 𝑺𝑎,𝑒 is the part of the a priori covariance matrix that corresponds to “extra” state vector elements other than CO2 scale 

factors. With N total state vector elements and nlev atmospheric levels, 𝐒𝑎,𝑒 has dimensions (N-nlev,N-nlev). 𝑨𝑥𝑒 is the subset 

of the averaging kernel matrix that characterizes the smoothing effect of the extra state vector elements on the CO2 profiles, 

with dimensions (nlev,N-nlev). The interference error is the smallest contribution to the total error and most of the error comes 

from the smoothing effect of the a priori CO2 covariance, followed by the contribution of measurement noise which oscillates 810 

between ~10–25% of the a priori CO2 uncertainty. If temperature were retrieved, for example with a temperature offset or with 

a scale factor added to the extra state vector elements, we would expect the interference error to increase. 

 

Figure D8: The left panel shows the square root of the diagonal elements of the retrieval total error covariance matrix �̂�, the null 

space covariance matrix 𝑺𝑵, the interference error covariance matrix 𝑺𝒊, and the measurement noise error covariance matrix 𝑺𝒎 815 
expressed as a fraction of the a priori uncertainty 𝝈𝒂. Each line is the average from the set of 8 days with AirCore measurements 

over Lamont, and the bands indicate the standard deviation. The right panel shows the a priori uncertainty. 
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Appendix E: Empirical corrections 

In Sect. 3 we saw that CO2 profile retrievals have high sensitivity to CO2 in the absence of errors in the a priori meteorology 

and systematic errors in instrument line shape. Here we investigate the possibility of empirically removing the effect of those 820 

errors by de-weighting systematic spectral fitting residuals using empirical orthogonal functions (EOFs). EOFs have been 

used, for example, with retrievals from GOSAT and OCO-2 measurements (O’Dell et al., 2018). 

E.1 Empirical orthogonal functions 

To reduce the effect of systematic residuals on retrieved profiles, empirical orthogonal functions (EOFs) of the spectral fitting 

residuals were derived to find and remove systematic patterns in the residuals related to temperature errors, instrument line 825 

shape, and other effects. The residuals divided by airmass, from a set of retrievals covering a wide range of observational 

conditions are stored in a matrix M(m,n) with n the number of spectra and m the number of spectral points. Then a singular 

value decomposition is performed on this matrix. The columns of the matrix of left singular vectors are orthogonal basis 

vectors of the residuals and those associated with the largest singular values represent the main patterns in the residuals, while 

the corresponding right singular vectors can provide information on the temporal frequency of these patterns. 830 

 

We use a linear combination of left singular vectors. Each singular vector is associated with a scaling factor. The scaling factor 

is part of the state vector and adjusted during the retrieval using 100% uncertainty. Before each inversion step, the spectrum 

“c” calculated with the forward model becomes: 

𝑐 = 𝑐 + ∑ 𝑎𝑖𝑢𝑖

𝑁

𝑖=1

(𝐸1) 835 

where N is the number of EOFs to use, ordered with decreasing singular value. The first EOF, associated with the highest 

singular value, is like the scaled average residual from all the spectral residuals in the matrix M. Our implementation differs 

from that described by O’Dell et al. (2018) in that here the EOFs are derived from a set of residuals obtained using scaling 

retrievals, and not using profile retrievals. Since they are meant to remove systematic errors in the calculated spectra before 

the retrieval adjusts the CO2 scaling factors, the EOFs should be derived from a large set of residuals obtained with scaling 840 

retrievals to have a significant effect on the profile retrieval. If they are derived from residuals obtained with profile retrievals, 

these mainly include systematic error patterns corresponding to interfering species, which are not the main source of deviations 

in retrieved CO2 profiles. When using scaling retrieval residuals, each EOF includes different error patterns corresponding to 

CO2 absorption lines. These error patterns may be attributed to systematic errors for the first EOF, such as errors in 

spectroscopy, or in the instrument line shape, or a persistent bias in meteorology. The error patterns can also correspond to 845 

errors in the a priori meteorology. The temporal frequency of each error pattern is contained in the corresponding right singular 

vector. The right singular vectors could help diagnose, for example, biases in a priori temperature profiles on different time 
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scales. The right singular vectors can also be used to find correlations between each spectral residual patterns and other 

quantities measured in time, such as differences between a priori and measured meteorology. 

 850 

If the residual patterns corresponding to CO2 lines have the same shape as residuals caused by errors in the a priori CO2 profile 

shape, adjustments to the CO2 scaling factors will compete with adjustments to the EOF scaling factors in the retrieval. Because 

higher order EOFs are associated with residuals with different time periodicity, they can also introduce errors that do not exist 

in calculated spectra. We chose to only include the first EOF, which represents residual patterns common to most spectra. The 

leading EOF can explain 40 to 52% of the variability in the residuals, depending on the window, as shown in Fig. E1. The 855 

fraction of variability is obtained as the singular value of a given EOF divided by the sum of all singular values. The first 10 

EOFs in each window are above the noise level of singular values and account for over 90% of the variability in the residuals. 

 

Figure E1: Fraction of the variability in the spectral residuals accounted for by each empirical orthogonal function in each CO2 

window. The EOF numbers are shown in decreasing order of singular value. Panel (b) highlights the blue rectangle inside panel (a). 860 

E.2 Results 

One year of measurements from the East Trout Lake (SK, Canada) TCCON station were processed in three ways: with scaling 

retrievals, with profile retrievals, and with profile retrievals including the first EOF derived from residuals obtained with the 

scaling retrievals.  The residuals used to derive the EOFs are filtered such that spectra that would not pass the TCCON quality 

checks are not included. To avoid isolated spectra with large residuals to have a disproportionate impact on the singular value 865 

decomposition of the matrix of residuals, all the spectra are ordered by increasing solar zenith angle and filtered based on the 

root mean square of the residuals: the 500-points rolling median is computed, and the median of the 500-points rolling standard 

deviation is used as an estimate of the standard deviation σ, then only spectra within 1-σ of the rolling median for all windows 
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are used to derive the EOFs. The matrix of residuals resulting from this filtering includes 42037 out of 64245 total spectra. 

XCO2 was retrieved from each window separately. The statistics on the retrieved XCO2 error are shown in Table E1 for each 870 

retrieval type and for each window. In all windows but the Strong window, the changes in 𝑋𝐶𝑂2 error between the different 

retrieval methods are small, less than 0.05 ppm. This is eight times smaller than the reported TCCON 1-σ single-measurement 

precision of 0.4 ppm. However, the mean XCO2 error is ~55% larger in the strong window with profile retrievals compared to 

scaling retrievals. 

 875 

Table E1: Statistics on the retrieved XCO2 error for one year of measurements at the East Trout Lake TCCON station. “STD” 

indicates the standard deviation. 

𝑋𝐶𝑂2 𝑒𝑟𝑟𝑜𝑟 

(ppm) 
Scaling retrieval Profile retrieval Profile retrieval with the first EOF 

Window Mean Median STD Mean Median STD Mean Median STD 

Strong 0.51 0.38 0.37 0.79 0.63 0.60 0.78 0.61 0.59 

Weak1 0.89 0.64 0.68 0.91 0.67 0.66 0.90 0.66 0.66 

Weak2 0.80 0.56 0.64 0.81 0.61 0.56 0.80 0.61 0.56 

TCCON1 0.74 0.48 0.66 0.79 0.51 0.70 0.79 0.51 0.70 

TCCON2 0.69 0.45 0.61 0.74 0.47 0.66 0.74 0.47 0.66 

 

Figures E2 to E6 show quantities derived from each type of retrieval for an example day and for each window. In each window, 

the profile retrieval with the first EOF appears as an intermediate case between the profile retrieval and the scaling retrieval. 880 

In each case, the root mean square of the residuals is smaller for profile retrieval with the first EOF, but the 𝑋𝐶𝑂2 error is not 

necessarily smaller. 
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 885 

Figure E2: Quantities derived from retrievals on East Trout Lake measurements on 29 March 2018 for the Strong window. The 

retrieval type is indicated by the legend. Panel (a) shows the column-integrated CO2 scale factor. Panel (b) shows XCO2 and panel 

(c) shows the XCO2 error. Panel (d) shows the root mean square of the residuals as a fraction of the continuum level. 
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Figure E3: Same as Fig. E2 but for the TCCON1 window. 890 
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Figure E4: Same as Fig. E2 but for the TCCON2 window. 
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Figure E5: Same as Fig. E2 but for the Weak1 window. 
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 895 

Figure E6: Same as Fig. E2 but for the Weak2 window. 

 

In Fig. E7(a), XCO2 differences are shown between profile and scaling retrievals, and between profile retrievals including the 

first EOF and scaling retrievals in Fig. E7(b). We have seen that differences in 𝑋𝐶𝑂2 error between the different retrieval types 

are within 0.05 ppm. However, differences in XCO2 between profile and scaling retrievals can be several times larger than the 900 

𝑋𝐶𝑂2 𝑒𝑟𝑟𝑜𝑟, indicating different sources of bias between profile and scaling retrievals. In the Weak1 window, the median of 

the XCO2 absolute differences are ~4 times larger than the median 𝑋𝐶𝑂2 error, and ~3 times larger in the Strong window. In 

the TCCON1, TCCON2, and Weak2 windows, the median of the XCO2 absolute difference is smaller than the median XCO2 

error. In all but the Weak1 window, the XCO2 differences are 25 to 35% smaller between August and November than for the 
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rest of the year. In Fig. E7(b), the XCO2 differences between the profile retrievals with EOF and the scaling retrievals are 905 

smaller and more consistent between windows than in Fig. E7(a). And the median of the XCO2 absolute differences is smaller 

than the median XCO2 error in all windows. Including the leading EOF in a profile retrieval reduces the XCO2 differences 

between the scaling and profile retrievals, but the XCO2 of the profile retrieval with EOF is more strongly correlated with the 

XCO2 of the profile retrieval than that of  the scaling retrieval as shown in Table E2. 

 910 

Figure E7: In panel (a), the XCO2 obtained from the scaling retrieval is subtracted from the XCO2 obtained from the profile 

retrieval. In panel (b), the XCO2 obtained from the scaling retrieval is subtracted from the XCO2 obtained from the profile retrieval 

with EOF. In panel (c), the XCO2 error from the scaling retrieval is shown, with the median values as dashed lines. In the top two 

panels, the horizontal dashed lines show the median values of absolute differences in XCO2. 

 915 

When compared to preliminary data from aircraft measurements, the deviations in the CO2 profiles obtained with profile 

retrievals are larger than the vertical variations in the aircraft measurement. When the retrieved profiles present large deviations 

typical of temperature errors like that in Fig. 9(b), the CO2 profile obtained from profile retrieval with the first EOF reduces 

the amplitude of the deviations, but the shape persists. This is expected as the first EOF represents the average residuals, which 

should not include residual features caused by temperature errors, unless the temperature errors were always biased in the same 920 
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way. We would expect the first EOF to reduce deviations like that in Fig. 9(a). In such cases, the CO2 profiles obtained from 

profile retrieval with the first EOF are smoother than profile retrievals but present no clear advantage over scaling retrievals. 

 

Table E2: Squared Pearson correlation coefficient for XCO2 between the scaling and profile retrievals (SCL–PRF), and between the 

profile retrieval with the first EOF and the profile retrieval (EOF–PRF). 925 

R2 SCL–PRF EOF–PRF 

Strong 0.9368 0.9929 

Weak1 0.9633 0.9951 

Weak2 0.9586 0.9814 

TCCON1 0.9922 0.9995 

TCCON2 0.9931 0.9999 

 

Appendix F: Synthetic spectra, perturbed field of view and zero-level offset. 

The saturated lines of the Strong window allow to fit a zero-level offset. Figure F1 shows the zero-level offset retrieved from 

the Strong window using real spectra for each of the days with Lamont data used in Sect. 3. The median absolute value is at 

most 0.001 on 23 July 2013. The effect of a zero-level offset on retrieved profiles was tested with synthetic spectra. Figure 930 

F2(a) and F2(b) are the same as Fig. 4(a) and (b) and show profiles retrieved from synthetic spectra in the reference case, when 

no perturbation is applied. Figure F2(e) and F2(f) show the effect of a +0.002 perturbation to the zero-level offset, without 

retrieving it in the Strong window. This has a large effect in the profile retrieved from the Strong window, with deviations 

from the truth within 30 ppm, and a smaller effect in the other bands with deviations up to 10 ppm. 

 935 

In Fig. F2(c) and F2(d) we also consider the effect of one type of ILS error by perturbing the internal field of view by +7%, 

this leads to a widening of the ILS. The unperturbed internal field of view of the spectrometer is 2.4 mrad. The deviations from 

the truth are within 1 ppm for P > 0.5 atm and within 3 ppm for P < 0.5 atm. 

 

This sensitivity test shows the effect of zero-level offsets will not be a major source of variability in the retrieved profiles. If 940 

the zero-level offset retrieved from the Strong window is added to the TCCON and Weak windows before the retrieval, the 

change in the retrieved profiles is less than 3 ppm at all altitudes as shown in Fig. F3 using days with AirCore profiles at 

Lamont. 
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Figure F1: Zero-level offset retrieved from the Strong CO2 window for the Lamont spectra coincident within ±1 hour of the last 945 
AirCore sampling time and within ±1.5 hour of the closest a priori time on each of the days indicated by the legend. The dashed lines 

mark the median value for each date. 
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Figure F2: The left-hand panels show CO2 profiles retrieved using synthetic spectra. In (a), we use the AirCore profile, which was 

used to generate the synthetic spectra, as the a priori. In (c), the internal field of view is perturbed by +7%, increasing the width of 950 
the ILS. In (e), the zero-level offset is perturbed by +0.002 and is not retrieved in the Strong window. The right-hand panels: (b), 

(d), and (f), show the difference between the retrieved profiles and AirCore, corresponding to (a), (c), and (e) respectively. 
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Figure F3: Using real Lamont spectra with the AirCore profile as a priori, the zero-level offset was first retrieved from the Strong 

window and then added in the Weak and TCCON windows. The difference in the retrieved profiles with and without the added 955 
offset is shown for each window and for all the days with AirCore profiles over Lamont. In the Strong window, where the offset is 

retrieved, the differences are less than 0.001 ppm. 
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publicly available through TCCON, until then it can be made available upon request to the corresponding author. 960 

 

Data availability. The data used in this study consists of synthetic spectra generated with GGG2020 and measured spectra 
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