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Abstract. Cloud base height (CBH) is an important parameter for many applications such as aviation, climatology or solar

irradiance nowcasting (forecasting for the next seconds to hours ahead). The latter application is of increasing importance to

operate distribution grids as well as photovoltaic power plants, energy storage systems and flexible consumers.

To nowcast solar irradiance, systems based on all-sky-imagers (ASIs), cameras monitoring the entire sky dome above their

point of installation, have been demonstrated. Accurate knowledge of CBH is required to nowcast the spatial distribution of5

solar irradiance around the ASI’s location at a resolution down to 5 m. Two ASIs located at a distance of usually less than 6 km

can be combined into an ASI-pair to measure CBH. However, the accuracy of such systems is limited. We present and validate

a method to measure CBH using a network of ASIs to enhance accuracy. To the best of our knowledge, this is the first method

to measure CBH by a network of ASIs which is demonstrated experimentally.

In this study, the deviations of 42 ASI-pairs are studied in comparison to a ceilometer and characterized by camera distance.10

The ASI-pairs are formed from seven ASIs and feature camera distances of 0.8...5.7 km. Each of the 21 tuples of two ASIs

formed from seven ASIs yields two independent ASI-pairs as the ASI used as main and auxiliary camera respectively is

swapped. Deviations found are compiled into conditional probabilities telling how probable it is to receive a certain reading of

CBH from an ASI-pair given that true CBH takes on some specific value. Based on such statistical knowledge, in the inference

the likeliest actual CBH is estimated from the readings of all 42 ASI-pairs.15

Based on the validation results, ASI-pairs with small camera distance (especially if < 1.2 km) are accurate for low clouds

(CBH< 4 km). In contrast, ASI-pairs with camera distance of more than 3 km provide smaller deviations for greater CBH.

No ASI-pair provides most accurate measurements under all conditions. The presented network of ASIs at different distances

proves that, under all cloud conditions, the measurements of CBH are more accurate than using a single ASI-pair.
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1 Introduction

Cloud base height (CBH) has become an important parameter in meteorology that is required, either directly or indirectly,

in many applications. CBH is used to validate and improve climate models (Costa-Surós et al., 2013) and numeric weather

prediction models (Hogan et al., 2009). In aviation, CBH is important to air traffic controllers (Khlopenkov et al., 2019;

Reynolds et al., 2012; Isaac et al., 2014). As clouds are the major cause of variability of the solar resource, they are of special25

interest for solar power applications. Here, CBH is of interest to forecast the solar resource for the next seconds to hours ahead

(nowcasting). All-sky-imager (ASI)-based nowcast methods require cloud top height (CTH) and CBH to calculate the position

and extent of cloud shadows on the ground (Nguyen and Kleissl, 2014). In a similar way, satellite-based nowcast methods can

profit from accurate knowledge of CBH and CTH (Bieliński, 2020). The statistical relationship between CBH and a cloud’s

further properties like optical thickness can be exploited to support the generation of such nowcasts (Nouri et al., 2019c). Also,30

cloud tracking schemes, used in ASI-based nowcasting, require knowledge of CBH to estimate the absolute displacement of

clouds over time.

The method to measure CBH, presented in this study, is used as part of an ASI-based nowcasting system of the solar resource.

ASI-based nowcasting is typically applied if variations of irradiance have to be predicted for lead times immediately ahead

(0...20 min) and at highest temporal and spatial resolution (e.g. 30 s and 5 m respectively as used by Nouri et al., 2020b). Such35

nowcasts can reduce the uncertainty of supply from solar power plants and can support efficient balancing of energy supply

and demand (Law et al., 2014; Kaur et al., 2016). Further, they can be applied to control concentrating solar power plants

(Nouri et al., 2020a) more efficiently. The coordination of renewable production and energy consumption at a local scale is a

way to minimize requirements on grid-infrastructure while keeping curtailment of feed-ins from renewable sources at a low

level. Ghosh et al. (2016) use nowcasts (15 s ahead) to control PV-feed in and provide reactive power. In this context, spatially40

and temporally highly resolved nowcasts enable distribution grid operators, microgrid controllers and energy management

administrators to control backup power, energy storage and flexible consumers. Cirés et al. (2019) pointed out the potential

of nowcasts to reduce battery storage capacities required by PV plants under ramp rate restrictions. As implied above, high

quality and real time information of local CBH is required at all sites for which accurate nowcasts should be provided.

CBH, required in ASI-based nowcasting, can be estimated in multiple ways. Most commonly, CBH is measured by ceilome-45

ters or other LiDARs. In Germany, the meteorological service Deutscher Wetterdienst (DWD) operates a network of ceilometers

which has a distance between stations of approximately 60 km in the region of the measurement site Oldenburg (Chan et al.,

2018). Ceilometers are specialized instruments that come at a high price and provide CBH zenith-wise for the location of

their installation. Therefore, we do not consider ceilometers as an option to provide CBH in real time for most solar power

plants or cities with many roof top installations. Further common approaches to measure CBH, which could be applied for50

operational use in nowcasting, include weather balloons and the estimation of CBH based on a recognized cloud genus (World

Meteorological Organization, 2018). Satellites can measure CTH of the highest cloud layer (Hamann et al., 2014) but require

estimations of cloud vertical extent (see e.g. Noh et al., 2017) to provide cloud base height (CBH). ASIs can directly measure
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CBH but require estimations of cloud vertical extent if CTH is of interest. In ASI-based nowcasting, the double use of ASIs for

the estimation of CBH besides cloud recognition is considered advantageous in a trade-off between system costs and accuracy.55

ASI-based estimation of CBH may follow different principles. Some approaches first measure the angular velocity of clouds

in the sky-image of a single ASI and estimate CBH with an external source of cloud velocity. Wang et al. (2016) derives cloud

velocity by three photocells placed at known distances from each other. Kuhn et al. (2018b) measures cloud velocity by a

cloud speed sensor based on nine photocells and by a shadow camera system and compares the accuracy of received CBH.

Tomographic reconstruction approaches (Mejia et al., 2018) or similarly voxel carving approaches (Nouri et al., 2018) first60

model 3-dimensional representations of clouds from which their base height can be retrieved.

Stereoscopic approaches match features found in the images of two ASIs. Used ASIs are located in proximity to each other,

this way forming an ASI-pair. From the position of matched features in both images, CBH is triangulated. The literature

describes various image features which can be utilized for this task. Blanc et al. (2017) exploits gradients of intensity. Allmen

and Kegelmeyer Jr (1996) used local velocity in an image point derived by optical flow. Similarly, Savoy et al. (2016) utilized65

three-dimensional scene-flow making use of the slow evolution of cloud structures. Kuhn et al. (2018b) subtract red-channel

images taken with a temporal offset of 30 s and match image areas with the most significant changes. Features from the

images of both cameras are typically matched by block-wise cross-correlation while the used block size may vary between

the approaches. Beekmans et al. (2016) generated dense 3-D representations of cumulus clouds using semi-global block-

matching with a very fine block size of 11× 11 pixels. Image areas, for which features are retrieved, are often restricted to70

areas that are segmented as cloud in a prior step (e.g. Blanc et al., 2017; Peng et al., 2015). The stereoscopic approach utilized

here (Nouri et al., 2019a) enhances the approach by Kuhn et al. (2018b) and works completely independently from cloud

recognition which is considered to bring a greater robustness. While stereoscopic and voxel carving/ tomographic approaches

are in principle competing techniques, Nouri et al. (2019a) demonstrated, that voxel carving-based cloud modelling can be

enhanced by incorporating CBH from a stereoscopic procedure.75

Most ASI-based nowcasting systems described in the literature feature one (Schmidt et al., 2016), two (Allmen and Kegelmeyer Jr,

1996; Beekmans et al., 2016; Blanc et al., 2017; Savoy et al., 2016) or three (Peng et al., 2015) ASIs. Four ASIs have been

used by (Kuhn et al., 2018a; Nouri et al., 2019a) and such systems are available at four different sites (Nouri et al., 2020b). A

network of six ASIs accompanied the HOPE measurement-campaign in 2013 around Jülich, Germany (Macke et al., 2017).

In the city state of Singapore, a larger number of 16 ASIs, interacting in a network to monitor the sky and clouds (in the80

following referred to as ASI network), has been set up (Sky cameras, 2020). A method to monitor clouds with an ASI network

using tomographic reconstruction has been described conceptually and based on synthetic data by Mejia et al. (2018). Aides

et al. (2020) studied a similar approach experimentally using an actual ASI network of up to 14 cameras located in an area of

12 km× 12 km around Haifa, Israel. ASI-networks have additionally been reported in astronomy, to track meteorites during

nighttime (Howie et al., 2017).85

In this study, seven of the ASIs included in the Eye2Sky ASI network (Schmidt et al., 2019; Blum et al., 2019a, b) are used.

The selected ASIs are located in the city of Oldenburg. At the moment of writing, Eye2Sky contains 24 ASIs in Oldenburg and

a region of about 110 km×100 km to the west of Oldenburg. Eye2Sky is mainly dedicated to nowcasting of solar irradiance at
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high spatial and temporal resolution. The forecasting procedure, which will be described in more detail in a future publication,

first recognizes clouds from the images of the ASIs. Cloud observations are then projected into a horizontal plane at the current90

CBH. These georeferenced cloud observations of multiple ASIs are merged and cloud properties are estimated. The angular

velocities of clouds, as recognized by the individual ASIs, are transformed into absolute velocities over ground relying on an

accurate estimation of CBH. Clouds are tracked along received cloud motion vectors to predict the clouds’ future positions.

Prior works studying ASI-based forecasting systems with up to four cameras (e.g. Nouri et al., 2019b) suggested that CBH

is an essential component when predicting maps of solar irradiance based on cloud observations from ASIs, as the current95

and future positions of cloud shadows on the ground can only be predicted accurately if the clouds’ height and velocity are

determined accurately. Thus, in this publication an important component of this nowcasting system, namely the estimation

of CBH, is presented. Our approach allows to use multiple ASI-pairs organized as ASI network and located in proximity, to

estimate CBH. 42 ASI-pairs are formed from the seven ASIs and CBH is estimated by each ASI-pair based on the method

presented by Nouri et al. (2019a). In a period of three months, the accuracy of the included ASI-pairs is evaluated for distinct100

conditions. Gained knowledge about the deviations of each ASI-pair is applied to merge the measurements of CBH from all

42 ASI-pairs into a more reliable measurement.

This publication is structured as follows. First, Eye2Sky, the ASI network used in the experiments, is introduced (Sect. 2).

Then, the measurement procedure of CBH using the ASI network is presented (Sect. 3). Here, the properties of CBH measured

by reference ceilometer and by 42 ASI-pairs are discussed (Sect. 3.1). The meteorological conditions at the site are studied105

next (Sect. 3.2). In Sect. 3.4 and Sect. 3.3, a novel procedure to combine CBH measurements from multiple ASI-pairs of the

ASI network is presented. Section 4 analyzes CBH measurement by the ASI network in comparison to the individual ASI-pairs

for all relevant conditions. A summary of the presented findings closes the study in Sect. 5.

2 Eye2Sky network and experimental setup

The so called Eye2Sky ASI network is being set up in the region of Oldenburg (Fig. 1, left). At its full extent, Eye2Sky will110

include 38 stations distributed over an area of roughly 110 km× 100 km equipped with ASIs. 13 of these stations will be

supported by additional meteorological measurements to provide beam, diffuse and global irradiance via rotating shadowband

irradiometers as well as ambient temperature and relative humidity. Eight ceilometers will be included in the network. Six of

these are operated by the meteorological service Deutscher Wetterdienst (DWD). Five of these ceilometers are in the region

viewed in Fig. 1. Several PV plants and numerous smaller distributed PV installations are also present in the study area. With115

its regional coverage, Eye2Sky aims to achieve nowcasts for individual PV installations from some minutes to multiple hours

ahead. In the urban area of Oldenburg, the network will feature a high density of 14 ASIs in an area of 13 km× 12 km. This

dense setup aims to provide ASI-based nowcasts of high accuracy across the urban area and reliable estimation of CBH under

all conditions is an important contribution to achieve this scope.
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Figure 1. Overview of the Eye2Sky ASI network including operational ASIs (ASI), radiometric measurements (Meteo) as well as planned

stations (left) and ASIs in the city of Oldenburg included in this study (right). The ceilometer used as reference (marked by a red circle in the

right figure) is located near the northwest-most ASI UOL. (background: © OpenStreetMap contributors 2020. Distributed under a Creative

Commons BY-SA License.)

This work utilizes seven ASIs and one ceilometer located in the city of Oldenburg (Fig. 1, right). The ceilometer is located120

133 m southeast of to the most northwestern ASI UOL. All included ASIs except for UOL are located east and south of the

ceilometer. ASIs are placed at most 5.7 km from this ceilometer.

For this study, these ASIs are arranged into several ASI-pairs as defined by iteratively selecting a tuple of two ASIs out of

the 21 tuples available and forming two independent ASI-pairs from each tuple by swapping its main camera. The main camera

of an ASI-pair is central to the measurement of CBH through an ASI-pair, described in more detail in Sect. 3.1, and defines125

the center of the area for which CBH is estimated. From 21 tuples of 2 ASIs, 42 ASI-pairs are received. All 42 ASI-pairs are

included in the estimation procedure. The paired cameras’ distance and the orientation of the ASI-pair’s axis characterize the

ASI-pairs. The orientation of an ASI-pair’s axis is defined as seen from the main ASI and given in degree north. Figure 2 shows

the distribution of orientations of ASI-pair’s axes (left) and camera distances (right) in the set of available ASI-pairs. This set

covers almost all possible orientations of ASI-pair’s axes. Available camera distances 0.8...5.7 km cover most of the range130

0.02...5.5 km that is used in literature (Kuhn et al., 2019). Only towards small camera distances below 0.8 km, the present set

lacks further ASI-pairs.
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Figure 2. Frequency distribution of the bearing angles of the ASI-pairs’ axes in the set of available ASI-pairs (over north, left) and of

available camera distances (right) resulting when arranging the seven ASIs in the urban area into 42 ASI-pairs (from each 2-ASI-tuple two

different ASI-pairs result by switching the main camera, counts of ASI-pairs with switched main camera are marked orange, striped)

The used ceilometer of type Lufft CHM 15 k Nimbus (firmware v0.747) is operated by DLR since 2018. CBH is measured

by the manufacturer’s Sky Condition Algorithm (Lufft, 2018) in the default configuration. Heese et al. (2010) specifies for a

ceilometer of the same type, that full overlap of the laser’s and the receiver’s field of view is reached at a height of 1500 m.135

However relying on an overlap correction, the manufacturer specifies a minimum CBH of down to 0 m. In this study the

manufacturer’s default minimum CBH of 45 m is used.

The used ASIs are surveillance cameras of type Mobotix Q25 6MP color version (Mobotix, 2017) with a fisheye lens

providing 180◦ field of view. The ASIs are configured to use a constant exposure time of 149 µs and a constant color temperature

of 5500 K. The effective image resolution is 2048 pixel× 2112 pixel. An exemplary sky image from ASI UOL is shown in140

Fig. 3, left. The ASIs’ intrinsic calibration was determined according to Scaramuzza et al. (2006). The ASIs’ locations defined

by latitude, longitude and altitude were identified in geolocated satellite images. Altitude was estimated based on the local

altitude of the ground and the stations’ height over ground. The exact orientation of the ASIs’ field of view was computed from

the trajectory of the full moon registered in nighttime images as described by Nouri et al. (2019a).

The ASIs provide sky images at every half and full minute. The ceilometer provides readings 0, 15, 30, 45 s after each full145

minute. The clock of each measurement instrument is at any time synchronized via NTP (Network Time Protocol). Sky images,

measurements of CBH and meteorological parameters are uploaded over the cellular network to a central server typically within

2.5 s and in most cases within 5 s after acquisition. A high-performance computer (HPC) is used to compute CBH from sky

images. Image processing takes up the major share of the computation time required by the presented method. These tasks are

performed in parallel for each of the seven ASIs (typically allocating 4 CPUs of 3.4 GHz and 1 GB memory to each ASI)150

avoiding redundant calculations. In this way, computational cost scales mostly linear with the number of ASIs used instead

of with the number of ASI combinations so that execution in real time is possible. In total, including computation time, the
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estimation of CBH by the ASI network can be retrieved within 10 s after image acquisition. CBH is computed by the ASI-pairs

and by the ASI network during daytime, i.e. if the sun elevation at the time of image acquisition is greater than 0◦.

The dataset used in this study covers the period from 01 April 2019 through 27 September 2019. It is split into a period155

used for deriving the method (until 29 June 2019) and a period used for validations (starting from 30 June 2019). Time stamps

from the validation period 30 June 2019 to 27 September 2019 are excluded from the model development and also from the

estimation of conditional probabilities.

3 Development of a CBH estimation using the ASI network

In this section we present a procedure to estimate CBH by an ASI network. The procedure aims to be more accurate compared160

to an estimation of CBH by independent ASI-pairs. First, properties of the reference CBH received from a ceilometer and

properties of CBH received from ASI-pairs are discussed. Next, meteorological conditions at the site are discussed which are

relevant to the performance of a CBH measurement. Based on this, we develop the estimation which borrows principles from

Maximum Likelihood Estimation (MLE).

3.1 Properties of CBH measurements from ceilometers and from ASI-pairs165

As introduced in Sect. 2, a ceilometer of type Lufft CHM 15 k Nimbus is used as reference in the development and validation

presented in this study. When low and optically thick clouds are present, only the lowest cloud layer is expected to be recognized

reliably by the ceilometer. Therefore, in the case of overlaid cloud layers, we only evaluate readings provided for the lowest

layer. This approach applies to all evaluations presented in this publication.

Regarding the accuracy of ceilometers in general, de Haij et al. (2016) and Görsdorf et al. (2016) noted that there is no170

generally excepted, quantifiable definition of CBH, yet. Further, due to a lack of reference measurements, benchmarks may

typically focus on the consistency of CBH measurements by different types of ceilometers. In a benchmark performed by

Martucci et al. (2010), the measurement of a Vaisala CL31 ceilometer CBHCL showed a significant deviation from the reading

CBHCHM of the instrument used here. This trend was given by CBHCL = 160.315 m + 0.925 ∗CBHCHM . However, the

measurement procedure, of the instrument used here, was modified by firmware updates in the meantime. Görsdorf et al. (2016)175

presented results from a more recent measurement campaign, CeiLinEx2015, which took place in 2015. In this experiment the

measurements of six types of ceilometers were compared. For stratus and stratocumulus clouds as well as for fog, deviations

between the instruments of up to 70 m were observed. For each of these conditions, the CHM 15 k, used here, provided the

smallest measurements of CBH in terms of mean deviation from the median of all tested instruments. More severe deviations

of several kilometers between the instrument types were observed during conditions with heavy rain.180

In an acceptance test, de Haij et al. (2016) measured CBH by two CHM 15 k, by a Vaisala LD40 ceilometer, by a UV lidar

(Leosphere ALS450) and by visibility sensors mounted in various altitudes on a tower of 213 m height. For CBH of up to

200 m, the CHM 15 k typically measured a CBH 30 . . .50 m smaller than the one of the LD40. However, the CHM 15 k was in

better agreement with the estimate based on visibility sensors. Görsdorf et al. (2016) and de Haij et al. (2016) suggest, that the
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Figure 3. Sky areas evaluated in the measurement of CBH exemplary for ASI-pair FLE-UOL, with ASI UOL in the top row and FLE in the

bottom row. Maximum extent (solid green shape) and area used by the main camera in the default case (red dashed shape) in the distorted

ASI image (left), in the undistorted ortho-image (center), in the binary red-channel difference image of two consecutive exposures (right).

The binary red-channel difference image (right) shows areas considered as features in the cross-correlation for the comparison to the second

camera as yellow shapes. A rejected match between the ASI images is marked orange, a valid match is marked light blue.

negative mean deviation of the CHM 15 k attested by all these studies, for clouds in the range CBH< 3 km, is mostly caused185

by the manufacturers’ algorithms to detect CBH from backscatter profiles. Whereas, according to the manufacturer (Lufft,

2018), the CHM 15 k detects the rising edge of a backscatter peak that exceeds a threshold, other manufacturers’ devices may

rather recognize the peak’s maximum.

For the range of CBH in 3 . . .12 km, an inspection of timeseries depicted by de Haij et al. (2016) indicates very good

agreement of the measurements from CHM 15 k and the UV lidar, used there. As a further test of de Haij et al. (2016),190

performed at a resolution of 60 s, high clouds, detected by the UV lidar in a range of 6 . . .7.5 km, were to be detected by the

CHM 15 k within a tolerance of ±3 classes in hh code (WMO Table 1677). This tolerance corresponds to a CBH-range of

±1050 m centered around the discretized reference CBH. CHM 15 k was attested a probability of detection of > 98% and

a false alarm rate of 0%. Based on these studies, the accuracy of the reference instrument is expected to be adequate for the

range of CBH< 3 km and also for the range of CBH≥ 3 km, a rather good performance of the instrument is indicated. The195

8



experimental results of this study will in particular be compared to prior studies which used a ceilometer of the same type. This

is expected to avoid possible inconsistencies related to the used reference.

From all ASIs available in the urban area, we form independent ASI-pairs that measure CBH by a stereoscopic triangulation

which was introduced by Kuhn et al. (2018b) and further refined by Nouri et al. (2019a). The algorithm used here to estimate

CBH by the individual ASI-pairs has been described and validated in the latter publication. Nouri et al. (2019a) evaluated an200

ASI-pair with a camera distance of 495 m. For four ranges of reference CBH, defined by the bin edges 0, 3, 6, 9, 12 km,

RMSDs of 0.6, 1.4, 3.2, 3.1 km were found for 10 min average CBH. The study did not provide information on BIAS. Further,

in that validation, higher clouds were more frequent and no observations at a reference CBH of less than 1 km occured. The

studies of Kuhn et al. (2018b) and Nouri et al. (2019a) were performed in Almería, Spain. Both studies validated the ASI-

based measurement of CBH using a ceilometer of type Lufft CHM 15 k as reference. At this point we recapitulate aspects205

of the procedure which are important for the remaining publication. For a more detailed description, we refer to Nouri et al.

(2019a).

Images from both ASIs (e.g. UOL and FLE, see Fig. 3, left) are first projected into horizontal planes yielding orthogonal

images (Fig. 3, center) by a well established method described e.g. by Luhmann (2000). Then, the difference in the red-channel

compared to the image recorded 30 s before is calculated for the image of each ASI. Areas in the difference images of the two210

cameras, in which the red-channel changes most significantly (98-percentile) within the 30 s between consecutive images, are

used as features (illustrated in Fig. 3, right) to be matched by block-wise correlation. With the known camera distance, a shift

received in cross-correlation is translated into a height of the feature over ground.

In practice, the triangulation relies on cloud edges which are visible from both perspectives and provide sufficient contrast.

Therefore, the method responds stronger to optically dense clouds, especially in the proximity of the sun, as found by Kuhn215

et al. (2018b). Moreover, we do not exactly measure CBH but the height of these distinct cloud edges. We expect to introduce

a small bias when using this cloud height as CBH. Nouri et al. (2019a) analyzed sources of deviations when estimating CBH

by an ASI-pair. In accordance with that study, we expect this bias to be acceptable compared to other uncertainties and to be in

the order of 100 m.

In accordance with the system used by Nouri et al. (2019a), we use a cascading procedure to estimate CBH robustly also220

in conditions with low sky coverage. First, the main ASI’s orthogonal image is restricted to a square-shaped area (Fig. 3,

red dashed shape) defined by a maximum zenith angle of 67◦, measured in the center of each side of the square. In a cross-

correlation, each of the nine squares confined by dotted or dashed lines (also known as windows, Fig. 3, bottom, right) from

the orthoimage of the main ASI is matched with an area of identical shape from the orthoimage of the second ASI (Fig. 3, top,

right). With the known camera distance, the shift is converted into a measurement of CBH.225

If the estimation of CBH failed for one of the windows, valid readings from neighboring ones are averaged ignoring any

window for which the estimation failed. In cases with no valid measurement in any of the windows, the orthogonal images of

both ASIs are evaluated up to a maximum zenith angle of 77.8◦ (measured at the center of each image side, green shapes in

Fig. 3). These orthoimages from both cameras are matched in the cross-correlation and the ASI-pair returns a uniform CBH.

This second step can yield a valid measurement of CBH in cases when only few clouds are present to be matched. This step230
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mainly intends to increase the robustness of the CBH measurement. This step is not expected to increase the capability of an

ASI-pair to detect very low clouds in relation to the camera distance, as the window size used in this step is very large.

As a modification of the method by Nouri et al. (2019a), we only use CBH provided for the central point of the orthoimage

of the main ASI, corresponding to a zenith angle of 0◦. This procedure is followed for both the ASI-pairs and for the ASI

network using these ASI-pairs. We expect that ASI-based measurement of CBH is most accurate for this central point. This235

point receives CBH primarily from matches involving the central window of the main ASI’s orthoimage, which is less affected

by image distortion. The central window of the main ASI’s orthoimage covers zenith angles up to 38.1◦, measured at the

center of each window side. Thus, a CBH measurement for a square-shaped area around the main ASI’s location is yielded.

For example, the area’s side lengths measure 1.6, 4.7, 7.8, 15.7 km for a respective CBH of 1, 3, 5, 10 km. Only based on

geometry and the evaluated image areas, this central window could provide readings down to a minimum CBH of 0.25× d.240

Where d is the camera distance. However, under such extreme conditions the matching procedure may fail very frequently. The

central peripheral windows, shown in Fig. 3, approximately cover zenith angles 38.1..67◦. The matched area from the auxiliary

ASI’s orthogonal image has identical shape and can cover a zenith angle up to 77.8◦. Based on this, we estimate the minimum

CBH, which an ASI-pair can measure, to be 0.18× d. However, from our experience, a large fraction of clouds observed at

zenith angles larger than 67◦ are not matched successfully between the ASIs and typically rejected. If the matching procedure245

could only be successful, if also the window of the second ASI included zenith angles not larger than 67◦, then CBH could be

measured down to 0.32× d using the peripheral windows and 0.64× d using the central window.

This central point of the orthoimage, used here, was also in the focus of the validation presented by Nouri et al. (2019a) as

the ceilometer was placed at one ASI’s location and as observed CBH values were not smaller than 1 km. Overall, we expect

that, by applying cross-correlation to binary difference images, our measurement approximates the median CBH of the cloud250

layer that is locally most dominant in features, driven by area and optical thickness.

A previous study by Kuhn et al. (2019) showed that camera distance and CBH itself significantly influence the accuracy

received in the measurement of CBH by an ASI-pair with the present approach. Based on this, we use camera distance and

CBH to characterize ASI-pairs.

3.2 Meteorological conditions at the site255

To understand the performance of the CBH measurement based on ASI-pairs we briefly analyze the meteorological conditions

on-site based on ceilometer and ASI data. Using ASI UOL we study the dominant directions of cloud motion at the site. Nouri

et al. (2019a) found a root mean squared deviation (RMSD) of 17◦ for the estimation of the direction of cloud motion based on

an ASI-pair. Based on this, we consider the estimation of cloud motion directions from ASI UOL as sufficiently accurate for

this statistical evaluation. Figure 4 left shows the distribution of cloud motion directions estimated with the ASI in the sense260

of a wind rose representing the directions from which clouds approach the urban area. Two main lobes at azimuthal angles

of 240◦N (west to south-west) and 290◦N (west to north-west) are seen while other directions of cloud motion are observed

rather seldom.
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Figure 4. Wind rose of cloud motion directions derived from UOL camera indicating a dominance of clouds coming from western directions

(left) and distribution of cloud base height (CBH) in the analyzed period (right)

The distribution of CBH at the site of Oldenburg for the full measuring period is given in Fig. 4 right. As in general in this

study, the analysis is based only on the lowest cloud layer detected by the ceilometer. The majority of all ceilometer readings265

(54 %) indicates a CBH smaller than 2 km. Within the interval CBH ∈]0,2[ km all values are observed similarly frequent.

This includes the lowest bin of CBH ∈]0,0.5[ km which indicates conditions with fog or low stratus clouds. For the majority

of situations, it is of special interest to receive accurate measurements in the low range of CBH. Moreover, 28% and 18% of

readings are found respectively in the intermediate range of CBH ∈ [2,6[ km and in the range of large CBH ∈ [6,12[ km.

Within the range of high clouds, a roll-off of the frequency is seen for CBH> 10 km. A reliable estimation of CBH should270

therefore provide accurate readings for the range of CBH ∈]0,12[ km.

A visual analysis and a k-means classification for the site of Oldenburg (not shown) suggested that local conditions predom-

inantly feature distinct cloud layers with temporally low vertical variability. The major cause of variable CBH is found in the

transitions between cloud layers. It is concluded that for sites with similar meteorological conditions, it is most important to

measure CBH of the cloud layer which is most dominant at the evaluated time as accurately as possible. Kottek et al. (2006)275

characterize the climate in Oldenburg as warm temperate, fully humid with warm summers (Cfb). In this publication a sum-

mer half-year period (April...September) is studied. The climate is strongly influenced by the North Sea which is located at

a distance of roughly 70 km. Eye2Sky and especially Oldenburg are situated in a plane with a maximum elevation over sea

level of less than 160 m including vegetation and human infrastructure, as we calculated from the TanDEM-X elevation model

(Wessel et al., 2018). The flat topography is expected to support a temporally and spatially low variability of CBH within cloud280

layers. For other sites, a focus on measuring CBH for every cloud object is of higher priority. For example, Tabernas, the site

studied by Nouri et al. (2019a), features a cold-arid steppe climate (BSk according to Kottek et al., 2006) and is surrounded
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by mountains with elevations up to 2168 m over sea level within a radius of 25 km. As shown by (Nouri et al., 2019c), CBH

at the site is distributed almost uniform in the range 0...11 km. These characteristics are expected to cause greater temporal

and spatial variability of CBH. To conclude, a procedure, which estimates CBH of the cloud layer most dominant in the urban285

area of Oldenburg accurately, is considered beneficial to assess and model clouds in the same area (depicted in Fig. 1, right).

Still, if clouds over the whole region covered by Eye2Sky (depicted in Fig. 1, left) are assessed, this method alone may not be

sufficient. In the future, local cloud conditions may be classified by image processing techniques (e.g. Fabel et al., 2021) and

CBH may be assigned to local clouds from clouds of the same type, which were recently observed in the urban area.

3.3 Estimating CBH in the ASI network290

In this section we present our method to combine the measurements of CBH from a large number ASI-pairs organized as

network. Prior works estimated CBH by a small number of two or in some cases four ASIs (Nouri et al., 2019a). However,

with a large number of ASI-pairs, we consider a statistical method promising, which analyzes the CBH samples received and,

based on the known characteristics of each ASI-pair, determines the CBH which is most likely to be present. The characteristics

of each ASI-pair are in the following described by conditional probability distributions, which will by retrieved in Sect. 3.4.295

These distributions provide the probability of receiving a certain CBH reading from an ASI-pair, given that actually a specific

reference CBH is present. Our estimation procedure then uses principles from Maximum Likelihood Estimation (MLE) and

modifies them for the specific case. To the best of our knowledge, the usage of a statistical method and in particular one relying

on conditional probability distributions is novel to the task of estimating CBH from the observations of a multitude of ASIs.

To give an overview, Fig. 5 shows the inference process used to estimate CBH by the network based on the 42 CBH readings300

provided by the individual ASI-pairs. For each range i of camera distance, in Sect. 3.4, conditional probability distributions will

be estimated. These conditional probabilities are translated into the likelihood that actually certain values of (reference) CBH

are present (step 1) based on the readings of CBH received from ASI-pairs in this range i of camera distance. After calculating

the cumulative likelihood for each range of camera distance (step 2), these are combined yielding the overall cumulative and

complementary cumulative likelihood from all ASI-pairs (step 3). Finally, the value of CBH which is most likely to be present305

at the site and at the evaluated time, given the readings from all involved ASI-pairs, is estimated (step 4). These steps are

presented in more detail in the following.

Step 1: For each ASI-pair, the median value of all valid CBH readings of the previous 10 min is calculated. If an ASI-pair

does not provide any valid CBH within this period, it is excluded from the prediction for the instance in time evaluated. The

ranges of camera distance 1...2.5 km and 3...4 km are represented by a larger number of ASI-pairs than the remaining distances.310

Thus, the readings of ASI-pairs in these ranges of camera distance may prevail in the estimation of CBH. As the variety of

camera distances is considered to bring a benefit to the procedure, we intend to represent all camera distances as uniformly as

possible. For this, we define ranges of camera distance, using the range limits {0.5,1,1.5, ...,6} km. CBH readings of all ASI-

pairs with camera distance in range i are averaged to yield CBHi. Consecutively, the conditional probability P (CBHi | htrue)
is evaluated that the found CBHi would be received for a given true CBH htrue (red marked box prior to step 1 in Fig. 5). Note315

that P (CBHi | htrue) will be modeled in Sect. 3.4 measuring CBH hRef by a ceilometer which provides hRef ≈ htrue. Thus,
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Figure 5. Inference procedure — Step 1: For each range i of camera distance CBHi is computed as mean CBH from the respec-

tive ASI-pairs. Conditional probability is evaluated that CBHi would be received if true CBH (at the ceilometer) took on a value

{0...0.1,0.1...0.2,...,11.9...12} km (red boxes). Step 1 yields a likelihood function for each range of camera distance. Step 2: Cumulative

and complementary cumulative likelihood are calculated for each range of camera distance. Step 3: These functions are logarithmized and

then summed over all ranges i of camera distance yielding overall cumulative and complementary cumulative likelihood. Step 4: The Inter-

section of both functions gives the estimated likeliest CBH.
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the likelihood Li(htrue) is obtained (Fig. 5, output of step 1):

Li(htrue) = P (CBHi | htrue). (1)

Step 2: We define cumulative likelihood Ci(ĥtrue) as the likelihood of receiving the present reading CBHi given that htrue

is smaller or equal to an estimation of true CBH ĥtrue. Accordingly in the implementation, likelihood is summed cumulatively320

over all bins of reference CBH htrue (Fig. 5, step 2):

Ci(ĥtrue) =
∑

htrue≤ĥtrue

Li(htrue). (2)

Likewise, a complementary cumulative likelihood is defined as the likelihood of receiving the present reading CBHi given that

htrue is greater than an estimation of true CBH ĥtrue:

C̄i(ĥtrue) =
∑

htrue>ĥtrue

Li(htrue). (3)325

In particular, the use of these cumulative functions and the estimation of likelihood functions from measurement data distin-

guishes the present approach from a regular Maximum-Likelihood-Estimation (MLE). This modification is used as in MLE

typically smooth analytical functions are assumed as likelihood function. In contrast, likelihood functions here will be esti-

mated based on empirical conditional probabilities. These approximated likelihood-functions, derived from a dataset of finite

size, may therefore be less smooth and may not be completely representative. When using cumulative distributions, it is ex-330

pected that the method still works robustly if the conditional probabilities are not estimated accurately for each grid cell of the

discrete distribution if at least the cumulative value over a range of CBH is appropriate. In spite of the modification, the pre-

sented approach may adopt beneficial properties of MLE: The use of appropriate conditional probabilities (determined in Sect.

3.4) reduces systematic deviations of estimated CBH compared to the measurement of a single ASI-pair. Moreover, applied

conditional probabilities are in general not specific to the studied site and its meteorological conditions which allows to apply335

the method at other sites. Both functions Ci(ĥtrue) and C̄i(ĥtrue) are shown for three exemplary intervals of camera distance

in Fig. 5 as output of step 2.

Step 3: We aim to determine the likelihood of receiving the combination of readings CBHi from all the intervals i of

camera distance given that htrue ≤ ĥtrue. This can be expressed as product of Ci(ĥtrue) from all intervals i. As this product

would often become zero in our numerical treatment, we instead calculate its natural logarithm, which we refer to as overall340

logarithmized cumulative likelihood log Cn(ĥtrue). This operation also allows to replace the product by a sum (Fig. 5, step 3):

log Cn(ĥtrue) =
∑
i

logCi(ĥtrue). (4)

Analogously, an overall complementary logarithmized cumulative likelihood is computed given all readings CBHi per interval

i of camera distance345

log C̄n(ĥtrue) =
∑
i

log C̄i(ĥtrue). (5)
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Both functions are visualized exemplarily as output of step 3 in Fig. 5.

Step 4: log Cn(ĥtrue) and log C̄n(ĥtrue) are only known at discrete points. Linear interpolation yields continuous rep-

resentations of these. Then finally, we aim to select the true CBH hlikeliest, which makes it likeliest to receive the given

combination of CBHi. In our formulation of the problem, this means we intend to find a ĥlikeliest which simultaneously max-350

imizes log Cn(ĥtrue) and log C̄n(ĥtrue). Consequently, we accept hlikeliest, for which log Cn(ĥtrue) and log C̄n(ĥtrue) are

equal (Fig. 5, step 4):

hlikeliest = argmin
ĥtrue

∣∣∣log C̄n(ĥtrue)− log Cn(ĥtrue)
∣∣∣ . (6)

Besides this estimation of CBH, a version of this procedure will be discussed that includes further refinements (in the

following referred to as refined estimation). As a first observation from the generation of conditional probabilities, ASI-pairs355

with camera distance greater than 4.5 km cause large deviations for CBH< 4 km and exhibit only a moderate advantage

at greater CBH. These ASI-pairs are excluded from the refined estimation of hlikeliest. On the other hand, ASI-pairs with

small camera distance are already accurate if only small CBH occur, as we will discuss in Sect. 4. We inspected conditional

probabilities of the ASI-pairs (exemplarily viewed as input to step 1 in Fig. 5) and identified the ASI-pairs which are most

appropriate for an interval of CBH. Based on this, the refined estimation is received from the arithmetic average of CBH360

measured by ASI-pairs with corresponding small camera distance, if the first iteration of hlikeliest yielded a sufficiently small

CBH. In summary, the refinement procedure to receive the final estimation of CBH hrefined reads

hrefined


hlikeliest, hlikeliest ∈]3,12] km

min(3 km,mean(hi∈{i|di<1.6 km})), hlikeliest ≤ 3 km∧mean(hi∈{i|di<1.6 km})> 1.5 km

min(1.5 km,mean(hi∈{i|di<1.2 km})), hlikeliest ≤ 3 km∧mean(hi∈{i|di<1.6 km})≤ 1.5 km.

(7)

3.4 Estimation of conditional probabilities of CBH

The procedure to combine CBH-measurements from independent ASI-pairs, which are organized as a network, requires knowl-365

edge of the (conditional) probability to receive a certain reading of CBH from an ASI-pair given the true CBH takes on some

specific value. The required distribution aims to answer the following question: If true CBH ranges in between 1.8...1.9 km,

how large will be the probability that an ASI-pair with camera distance 2.2 km delivers a certain CBH e.g. within 0...0.1 km or

1.8...1.9 km or 11.9...12 km? In the following, these conditional probabilities are estimated not only for the range of true CBH

between 1.8...1.9 km but for each range {0...0.1,0.1...0.2,0.2...0.3, ...,11.9...12} km of true CBH. Conditional probability370

distributions of this kind are not available so far for ASI-pairs. Therefore, we aim to approximate them from the measurement

data of a modelling period. Estimations of CBH from the available ASI-pairs and measurements from the ceilometer during

the period 01 April 2019 to 29 June 2019 are used. CBH measured by the ceilometer serves as reference CBH. It is considered

not to be essential that the training period is representative of the period to which the method is applied. However, we expect

that the method works best if the included ASI-pairs exhibit a similar distribution of measurement deviations given the same375

reference CBH in both periods. For solar applications and the latitude of this study, we consider the used dataset and its split
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reasonable. The summer and shoulder months provide the main share of the annual solar yield at the site and are therefore in

the focus of the nowcasting system under development. In that sense, the training dataset is considered to be for the large part

representative of conditions relevant to solar applications at similar latitudes.

The seven ASIs available in the urban area are arranged into 42 ASI-pairs. Each tuple of two ASIs, that is selected from the380

set of seven ASIs, yields 2 independent ASI-pairs by swapping the ASI used as main camera (see Sect. 3.1).

The procedure is developed based on periods in which valid measurements from ceilometer and the respective ASI-pair are

available and in which the variability of CBH is moderate: For each time stamp a window of 30 min centered at this time stamp

is defined. A time stamp is only included if standard deviation of reference CBH within the window is less than 30% of the

mean value of reference CBH within the same window. As discussed before, ASI-pairs and ceilometer measure CBH as spatial385

median and point-wise respectively. Therefore, this filter intends to assure that ceilometer and ASI-pair measure CBH of the

same layer. CBH from the respective ASI-pair and from the ceilometer are processed by a moving-median filter with a window

of 10 min. The joint frequency distribution of CBH measured by ceilometer hRef and the respective ASI-pair hASI is computed

from these simultaneously acquired time series. In other words, the domain of reasonable values, [0,12 km[×[0,12 km[, which

the pair (hRef ,hASI) can take on, is discretized into a mesh of square grid cells with side lengths ∆h. Then the frequency is390

calculated with which (hRef ,hASI) is observed in each of the discrete grid cells. A bin size ∆h= 100 m is chosen in a trade-

off between sources of error. Finer bins will allow to represent the distributions at higher resolution and will thus allow for

higher resolved measurements of CBH in the network. However, the size of the used data set is limited which makes it difficult

to model these distributions at highest resolution. The bin size chosen here is expected to limit the achievable uncertainty of

the measurement to a minimum level of 100 m.395

Joint frequency distributions were inspected and found to be well reproduced among the studied independent ASI-pairs,

if only the corresponding camera distances are similar. This meets the expectation from literature discussed in Sect. 3.1.

Moreover, we conclude that the distributions modeled here will be transferable to other setups that use camera distances in the

studied range. Local climate is expected to influence the transferability to a minor extent.

The limited size and representativeness of the data set used in model development are expected to cause random features400

in the joint frequency distributions which are not useful to the estimation procedure, when it is applied to other setups, sites

and times (such as represented by the validation data set). To suppress such random features of received joint frequency

distributions, we introduce a filtering procedure with two consecutive steps described here and in more detail in Appendix

A. The parameter values set in the filtering procedure are approximate to this point and are based on a visual comparison of

unfiltered and filtered distributions, evaluating the degree to which noise but also reasonable features were suppressed. The405

parameters values may be optimized in a future study.

First, a weighted mean filter is applied between the original joint frequency distributions received for ASI-pairs with similar

camera distance. As discussed above, ASI-pairs with similar camera distance are expected to perform similarly in the mea-

surement of CBH and should consequently also exhibit similar joint frequency distributions of CBH. Thus, the filter aims to

suppress differences between the joint frequency distributions of ASI-pairs which may result from disturbances in the estima-410

tion rather than from a difference in the systems’ characteristics.
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To each filtered distribution resulting from the prior step, a composite of three Gaussian filters is applied. We first decompose

each distribution by conditional filters into three separate modes, which correspond to parts of the joint frequency distributions

which are estimated with descending precision. Thereafter, we apply a Gaussian filter to each mode. The standard deviation

of the Gaussian filter applied to each mode corresponds qualitatively to the uncertainty with which the prior joint frequency415

distribution is estimated within grid cells of that mode. Consecutively, the three filtered modes are summed to receive the

smoothened joint frequency distribution.

The first mode is constituted by grid cells for which the ASI-pair based measurement of CBH deviates by more than 1.5 km

from the ceilometer reading. The large deviations represented by this mode occur less frequently which is why the joint

frequency distribution will be estimated less precisely for the respective grid cells. On the other hand, apart from such scattering420

effects, the joint frequency distributions are found to be comparably smooth in the grid cells of this mode. A Gaussian filter with

a large standard deviation of 1 km is applied to this mode which is considered to be apt to preserve the expected distribution

while suppressing random features.

The second mode is constituted by grid cells for which the ASI-pair based measurement of CBH deviates by less than 1.5 km

from the ceilometer reading and which feature a joint frequency below the average of all grid cells. These grid cells typically425

exhibit a larger joint frequency, i.e. more observations, than grid cells in the first mode. Still the comparably small number of

observations in these grid cells is expected to cause an increased uncertainty of the estimated joint frequencies. Consequently

in a trade-off between suppressing random scattering and preserving meaningful variations a Gaussian filter with standard

deviation 0.5 km is applied.

The third mode makes up the complementary of the first and second mode. It contains grid cells that are observed with an430

at least average joint frequency and which are not classified as outliers. Joint frequencies in these grid cells are considered to

be estimated with a comparably high accuracy. To avoid a loss of precision and ultimately a loss of accuracy in the estimation

of CBH, a Gaussian filter with a standard deviation of 0.1 km is used. Hence, only neighboring grid cells have a significant

influence on this filter.

In many joint frequency distributions, there are grid cells with joint frequency close to zero. Especially for these grid cells,435

a greater data set would be required to receive more representative values. For all grid cells, joint frequency is increased to

a minimum value of 0.5 to avoid underestimations of joint frequency. This value corresponds to half of the joint frequency

associated with a single actual observation in a grid-cell. For the estimation procedure of CBH, such a minimum value leads to

slightly reduced precision for most readings but increased robustness in the case that these grid cells (hRef ,hASI) are indeed

observed in the measurement. Finally, from each joint frequency distribution, the conditional probability P (hASI | hRef )440

to receive a certain CBH reading from an ASI-pair, given that the ceilometer measures some certain CBH, is derived (see

Appendix A for a more detailed description).

The inference procedure, which was introduced in Sect. 3.3, represents each range i of camera distance bounded by the limits

{0.5,1,1.5, ...,6} km by a single distribution of conditional probability. For each range of camera distance, the distribution of

conditional probability, which corresponds to the camera distance closest to the center of this range, is selected (example445

provided in Appendix A). Figure 5 (above Step 1) shows exemplary conditional probabilities for three ASI-pairs with camera
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Figure 6. Time series of cloud base height for an exemplary day (02 September 2019) measured by 42 ASI-pairs (grey filled), by two

exemplary ASI-pairs DON-MAR and CLO-FLE with respective camera distances 0.8 and 4.2 km, by the ASI network with refinements and

by a ceilometer in the urban area of Oldenburg.

distances 0.8, 2.2, 5.7 km representing the ranges of camera distance i= 1, 4, 11 respectively. BIAS and precision, with

which ASI pairs of distinct camera distances measure CBH, given a certain reference CBH, are visible in these conditional

probabilities. Such characteristics will be evaluated in more detail in the following, based on a separate validation data set.

4 Validation of CBH measurement by the ASI network and comparison to CBH measurements by the ASI-pairs450

In this section, the accuracy of CBH measurement by the ASI network and by 42 independent ASI-pairs set up at a wide

variety of camera distances and alignments is compared. This section is based on a validation data set including the days from

30 June 2019 to 27 September 2019. This dataset was excluded from the model development described in Sect. 3. The analyzed

quantity is 10 min-median CBH.

First, characteristics of CBH-measurements from the ASI network and from individual ASI-pairs are compared to the CBH-455

measurement of the reference ceilometer based on insightful days. Then, the measurements of CBH by ASI network and

ASI-pairs are compared to the one of the ceilometer by scatter-density plots. Subsequently, the accuracy of an ASI-pair and of

the ASI network are analyzed for the application of nowcasting of solar irradiance. Finally, deviation metrics of CBH received

from the network and from all individual ASI-pairs per interval of CBH are discussed.
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Figure 7. Sky images taken by ASI UOL representing a multi-cloud-layer situation on 02 September 2019 7:20 (left) and an almost clear-sky

situation on 02 September 2019 17:00 (right) respectively.

4.1 Comparison of CBH measurements for an exemplary day460

We first analyze the properties of the different procedures to measure CBH based on exemplary situations. Fig. 6 visualizes

time series of CBH for a variable day (02 September 2019) measured by ceilometer, by all available ASI-pairs and by the ASI

network. The time series of two exemplary ASI-pairs DON-MAR and CLO-FLE with respective camera distances 0.8 and

4.2 km are plotted. The range of CBH-readings covered by all available ASI-pairs is shaded grey in the figure.

In the morning (06:00), both ceilometer and the ASI network recognize adequately a high cloud layer. The ASI-pairs with465

valid measurements deliver similar estimations of CBH. Around 07:00, the ceilometer still recognizes the high layer whereas

many ASI-pairs as well as the ASI network recognize the approaching cumulus clouds. These already cover a significant

fraction of the sky in the urban area (compare Fig. 7, left). The CBH estimation approach tends to react stronger to clouds in

this area of the sky in which contrasts are typically pronounced. Around 10:20 a multilayer situation is present. In the whole

sky dome cumulus clouds are visible but a large fraction of the cloud cover is made up by the cirrus layer. Around this time470

the measurements of ceilometer and ASI network coincide well. All ASI-pairs recognize a rather low cloud layer while there

are periods in which the ceilometer recognizes the cirrus layer. All of the ASI-based CBH estimations react stronger to the

low layer and miss the high layer clouds. These two situations impress well why the ASI-based estimations of CBH are less

accurate for higher clouds and tend to be negatively biased. On the other hand, for low clouds a high accuracy of the combined

CBH estimation is demonstrated. Meanwhile, it is visible that, for low clouds, many ASI-pairs such as ASI-pair CLO-FLE,475

tend to overestimate CBH. In these conditions, the ASI network manages well to follow appropriate estimations.

Around 17:00, a nearly clear sky is visible (compare Fig. 7, right). Consequently, the ceilometer does not provide any valid

CBH. The ASI-pairs provide a CBH that scatters over a wide range, while the ASI network provides an intermediate CBH. A

similar reading of CBH is also recognized by a fraction of the ASI-pairs. From around 17:05, the ASI network detects a CBH

of 3 km. With 3.1 km, the following CBH measurements of the ceilometer around 17:25 confirm the suggested CBH of the480

approaching cloud layer (see Fig. B1 for a detail view of the CBH measurements during this almost clear sky period). This
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situation reflects the expected behavior of the ASI network under mostly clear conditions. However, for a completely clear sky,

the ASI network partly produces invalid readings (NaN) and partly it detects a large CBH of around 10 km. In this case, a

consecutive image processing step detects the absence of clouds. This step is not part of the present study.

The time series of CBH from DON-MAR and CLO-FLE demonstrate the properties of ASI-pairs with respectively small485

and large camera distance. DON-MAR is typically close to the reference CBH if it actually takes on a value below 4 km (e.g.

02 September 2019 9:00...13:00) while this ASI-pair tends to take on large deviations and a negative BIAS for larger CBH

(e.g. 02 September 2019 6:00...9:00). ASI-pair CLO-FLE typically misses the CBH of low clouds and provides a significantly

overestimated CBH (e.g. 02 September 2019 9:00...13:00). For high clouds, however, CBH measured by CLO-FLE often

coincides well with the reference. To give further insight, in Appendix B2, timeseries of CBH from the different sources are490

compared for another exemplary day.

4.2 Comparison of CBH measurements by relative frequencies

Deviations found for the exemplary ASI-pairs DON-MAR and UOL-HOL with camera distances of 0.8 km and 5.7 km as

well as for the ASI network, without and with the refinements described in Sect. 3.3, are now analyzed with the help of scatter-

density plots provided in Fig. 8. The plots visualize the relative frequency of CBH measured by the respective ASI-based495

systems given a CBH measured by ceilometer. Thus, relative frequencies in each of the columns add to one. The plots also

include the median (red dotted), limits to the interquartile range (IQR, red dashed) and 5−, 95−percentiles (red solid line)

based on floating 1000 m-bins of CBH from the ceilometer. Each of the subplots further indicates performance metrics of the

individual systems: Root mean squared deviation (RMSD), BIAS and coefficient of correlation (ρ).

4.2.1 ASI-pairs500

The readings of ASI-pair DON-MAR, (Fig. 8 upper row, left) are well aligned with the main diagonal up to a reference CBH of

around 4 km. As reference CBH increases further, the ASI-pair increasingly underestimates CBH, indicated e.g. by the median.

On the contrary, ASI-pair UOL-HOL (Fig. 8 upper row, right), overestimates CBH massively if reference CBH decreases below

3 km. Whereas based on the median-value, its readings are well aligned with the reference at larger CBH.

Both ASI-pairs exhibit a strong scattering of the measurements, clearly visible from the wide spread of the quartiles as505

well as of the 5−, 95−percentiles. In agreement with the prior finding, DON-MAR is rather precise at low CBH (≤ 3 km),

whereas UOL-HOL is notably more precise at greater CBH. CBH from the ASI-pairs often deviates towards low CBH, when

the ceilometer measures CBH in the range 3...12 km. In this range, the 5-percentile of ASI-based CBH increases only slightly

with reference CBH and comparably large relative frequencies are found close to the 5-percentile. As discussed in Sect. 4.1,

this can result from low cloud layers which are actually present in the ASI-pairs’ field of view but not at the ceilometer’s510

location.

Qualitatively, the effects seen meet the expectation from the literature (Nouri et al., 2019a; Kuhn et al., 2019; Nguyen and

Kleissl, 2014). ASI-pairs with large camera distance are expected to be more accurate when measuring the CBH of high

clouds. On the other hand, ASI-pairs with large camera distance are expected to be less accurate for small CBH values and are
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Figure 8. Relative frequency of ASI-based CBH estimation for given CBH from ceilometer. Evaluation for two of the ASI-pairs DON-MAR

(upper row, left) and UOL-HOL (upper row, right) with respective camera distances of 0.8 and 5.7 km, and from the ASI network without

(bottom row, left) and with refinements (bottom row, right). Relative frequency in each column adds up to 1. Additionally, median (50%-

quartile, red dotted), limits to the interquartile range (IQR, red dashed) and 5−,95−percentiles (red solid line) based on floating 1000 m-bins

of CBH from ceilometer are plotted.

expected to exhibit a larger minimum CBH, below which no physically meaningful readings are received. From the geometric515

considerations in Sect. 3.1, a minimum CBH of about 0.18× d was expected. Where d is the camera distance. For UOL-

HOL, a significantly larger minimum CBH of about 2 km is evident. If reference CBH is smaller than 2 km, the ASI-pair
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yields measurements of CBH which scatter randomly around a median value of 4 km. This behavior can be explained as the

matching procedure fails if pattern are matched which are located at a larger zenith angle than a maximum value. Consequently,

random features observed under a zenith angle smaller than the maximum value are often matched erroneously which yields a520

too large estimation of CBH. Similarly for DON-MAR a minimum CBH of around 0.3 km is suggested.

Overall, the ASI-pairs are characterized by a minimum CBH in the range of 0.32×d. As described above, this suggests that

the matching procedure of the ASI-pairs almost always fails if matched windows cover zenith angles larger than 67◦. Further,

also for reference CBH close to this minimum CBH, the ASI-pairs yield increased deviations, e.g. below 0.5 km and 3 km for

DON-MAR and UOL-HOL.525

4.2.2 ASI network

Based on Fig. 8 bottom row, left, the ASI-network without refinements succeeds to combine the preferred properties of ASI-

pairs with distinct camera distances. The median values of the ASI network are well aligned with the main diagonal for a

reference CBH in the range 0.5...10 km. As indicated by the quartiles, the ASI network’s precision is similar to that of an ASI-

pair with small camera distance, such as DON-MAR, for reference CBH ≤ 4 km. For larger CBH, the network’s precision is530

closer to the one of an ASI-pair with large camera distance, such as UOL-HOL.

In the range of reference CBH> 10 km, the ASI network constantly returns CBH of around 10 km. In the studied climate,

reference CBH in this range are comparably rare (see Fig. 4). Therefore, corresponding grid cells of the conditional probability

distributions, used by the estimation procedure, were approximated coarsely based on a small number of observations. The ASI

network’s combination method using cumulative likelihood is intended to avoid deviations resulting from these inaccuracies535

and thus to yield a more conservative estimation. However, this approach also suppresses the estimation of extreme CBH

readings, which causes a BIAS under these conditions. For the analyzed site, deviations found in this range of CBH are of

minor importance.

For very low values of reference CBH (especially CBH< 0.3 km) the ASI network without refinements overestimates CBH

drastically. None of the ASI-pairs used has a sufficiently small minimum CBH for this range. We expect that the ASI network’s540

accuracy would be enhanced significantly, especially in this range, if ASI-pairs with smaller camera distance than 0.8 km were

added.

To improve shortcomings connected to conditions with very low clouds (CBH< 1 km), the refinements introduced in

Sect. 3.3 are applied. As indicated by Fig. 8 bottom row, right, these refinements significantly improve the ASI network’s

performance for reference CBH< 2 km. In this range, the ASI network behaves for the greatest part like ASI-pairs DON-545

MAR and MAR-DON. The refinements do not affect the statistics notably for reference CBH≥ 2 km. Overall, this evaluation

indicates that the ASI network performs significantly better than an individual ASI-pair, especially if the whole range of studied

reference CBH 0...12 km should be covered. This is also indicated by the performance metrics shown in Fig. 8.
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Figure 9. Relative frequency of CBH from ceilometer for given ASI-based CBH estimation. Evaluation for ASI-pair DON-MAR (left) and

for the ASI network with refinements (right). Subplots (left,right) are created analogously to Fig. 8 (top, left and bottom, right). However,

relative frequencies add up to one in each row not column.

4.3 CBH accuracy under nowcasting conditions

The procedure to estimate CBH, developed here, will be used as part of a nowcasting system. In this application, it is of special550

interest to be aware at any time which accuracy can be expected from a specific reading provided by the ASI-network. For

this purpose, Fig. 9 shows the relative frequency of CBH measured by the ceilometer given a specific ASI-based estimation of

CBH. In each row, the frequencies add up to one. It should be noted, that the performance indicated by this evaluation is more

dependent on the local cloud conditions than the one in Sect. 4.2. We analyze the systems which are best in class: ASI-pair

DON-MAR (Fig. 9, left) and the ASI-network with refinements (Fig. 9, right). As in the previous section, the plots also include555

the median (red dotted), limits to the interquartile range (IQR, red dashed) and 5−, 95−percentiles (red solid line) based on

floating 1000 m-bins of ASI-based CBH.

Under most conditions included in Fig. 9, median and interquartile range indicate a good alignment of the CBH estimation

from the ASI-network and of CBH from the ceilometer. For ASI-pair DON-MAR, a notable negative BIAS is indicated if the

ASI-pair returns a CBH of 9 km or more. Also, if a CBH of more than 4 km is detected, the interquartile range indicates a560

notably increased precision of the ASI network. The range between the 5−, 95−percentiles is wide for both systems. For a

wide range of CBH-readings, 5% of the estimations of CBH may deviate by more than 4 km and 3 km from the ceilometer

measurement in the case of the ASI-pair and the ASI network, respectively. Still, this range is notably narrower for the ASI

network.
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Table 1. Frequency of measurements from the validation data set (period 30 June 2019 to 27 September 2019) per range of cloud base height

(CBH) used in the evaluations described in Sect. 4.4 (retained) and frequency of those filtered from the evaluation due to increased variability

of CBH (rejected).

CBH range [km] Observations Observations

retained rejected

0< CBH≤ 1 11844 13255

1< CBH≤ 2 14130 9120

2< CBH≤ 4 9962 5923

4< CBH≤ 8 5559 3570

8< CBH≤ 12 4935 1355

Based on Fig. 9, both systems are considered suited for an application in nowcasting at the studied site, while a considerable565

uncertainty is present. The ASI-network provides a notably improved accuracy in particular in cases when clouds at a CBH>

4 km are detected.

4.4 Comparison of CBH accuracy for a three-month data set

The statistical evaluations are now restricted to times in which the variability of CBH is small. More precisely, the standard

deviation of CBH within a window 15 min before and after the analyzed time is required to be less than 30% of mean CBH570

within the same window. As discussed above, the ASI-pairs and the ASI network are expected to measure a spatial median

CBH whereas the ceilometer measures CBH at the point of its installation. This restriction aims to assure a good comparability

of both measurements. Further, this way our results are more comparable to a prior study by Kuhn et al. (2019).

Accuracies of CBH measurement by ASI-pairs and ASI network are analyzed separately for five ranges of reference CBH

defined by the bounds {0, 1, 2, 4, 8, 12} km. The number of CBH measurements included in this evaluation is given in Table 1575

for each of these ranges. The interval bounds are spaced irregularly to correspond better to the distribution of CBH at the site

(see also Fig. 4). Table 1 also shows the number of observations excluded from the validation as significant temporal variability

of CBH was detected for these observations. While a significant fraction of the readings is sorted out, the representation of the

CBH ranges remains widely comparable to the original data set (see Fig. 2, left). Only the range of lowest CBH< 1000 m is

represented by a notably smaller share of the validation data set.580

4.4.1 Accuracy of the ASI network and ASI-pairs

Figure 10 compares RMSD (left) and BIAS (right) for CBH estimated by the ASI network, with (diamonds) and without

refinements (circles) described in Sect. 3.3, to the one estimated by all ASI-pairs (dots). The ASI network with refinements

provides measurements of CBH that are the most accurate or at least among the most accurate ones for all conditions. In terms
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Figure 10. RMSD (left) and BIAS (right) for five ranges of CBH received for all individual ASI-pairs (dots), for the ASI network without

(circles), with refinements (diamonds) and for a basic average of CBH measured by all ASI-pairs (horizontal line).

of RMSD the estimation from the ASI network is the most accurate for the range of CBH ∈ [1,8[ km (see Fig. 10 left). For585

CBH< 1 km it is slightly outperformed by two ASI-pairs (DON-MAR, MAR-DON) as well as for CBH> 8 km by two

other ASI-pairs (UOL-CLO, CLO-UOL). ASI network-based measurement of CBH provides among the smallest BIAS for

CBH< 8 km (see Fig. 10 right). The magnitude of BIAS ranges constantly below 100 m. Only for CBH> 8 km the ASI

network independently from applied corrections yields a BIAS of roughly −1050 m that corresponds to the average BIAS of

all used ASI-pairs for these conditions. This deviation is probably related to situations in which the ASI-based estimation of590

CBH recognizes a low cloud layer whereas the ceilometer also recognizes a high layer when gaps in the low layer appear.

Therefore, this deviation is rather related to the different nature of the measurements (spatial-median compared to point-wise).

The distance between the cameras used by an ASI-pair and the reference ceilometer were considered as an influence on the

accuracy of an ASI-pair. However, for the ASI-pairs studied, this distance to the validation site is not confirmed as a significant

influence on received accuracy. This was expected in part from the assumption that the ASI-pairs measure the median CBH of595

the most dominant cloud layer in terms of features, driven by area and optical thickness.

As shown in Fig. 10, without the refinements, in the range CBH< 1 km 12 ASI-pairs with camera distance up to 1.6 km

perform better than the ASI network in terms of RMSD and BIAS. As discussed in Sect. 4.2, in this range of reference CBH
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the ASI network could be improved by ASI-pairs with even smaller camera distance. The applied refinements improve the

accuracy notably. Figure 10 includes the error metrics received when simply averaging CBH measurements of all ASI-pairs.600

The ASI network in both variants, with and without refinements, provides a significantly more accurate estimation of CBH in

terms of RMSD and BIAS in most ranges of CBH compared to the simple approach.

The individual ASI-pairs and also the ASI-network exibit an RMSD of more than 180 m for all ranges of CBH. Based on

this, we do not expect that the bin size of 100 m chosen for the distributions of conditional probability in Sect. 3.4 is a limiting

factor to the accuracy of the ASI-based estimation of CBH in this study. Meanwhile, the underlying ASI-pairs can nowcast605

30 s-averages of solar irradiance at a spatial resolution of 5 m× 5 m. According to the considerations of Nouri et al. (2019b)

and with the sun elevations occuring at the site, deviations in CBH may cause deviations in the positions of cloud shadow

edges of at least 100 m under favorable conditions for the ASI-pairs and also for the ASI-network. This deviation is much

larger than the spatial resolution of these maps of solar irradiance. For certain applications, e.g. to control solar power plants

(Nouri et al., 2020a), it may still be advantageous to provide maps of solar irradiance at a resolution finer than the uncertainty610

of cloud shadow edge positions, as the statistical properties of spatial variability may still be captured in these maps.

4.4.2 Influence of the camera distance on performance metrics

Lastly we discuss how camera distance influences the performance metrics of the ASI-pairs in different ranges of CBH and

compare these results those of Kuhn et al. (2019) who studied the accuracy of ASI-pairs with camera distances in the range of

0.5...2.56 km. Figure 11 provides RMSD and BIAS received from the ASI network and ASI-pairs and distinguishes the latter615

by camera distance. Metrics of the ASI network, with refinements, are given by horizontal lines. Kuhn et al. (2019) analyzed

the accuracy of CBH measurement for three ranges of CBH defined by the limits {0, 3, 8, 12} km. Overall, in the present

study the magnitudes of RMSD and BIAS range well below the values found by Kuhn et al. (2019).

For the CBH ranges 0...1 km and 1...2 km, Fig. 11 shows that BIAS is very small for ASI-pairs with small camera distance.

However, beginning at a camera distance of around 1.1 km and 2.5 km respectively, BIAS increases linearly with camera620

distance. Consequently the same trend is visible for RMSD in these ranges of CBH. From the analysis in Sect. 4.2, this effect

is clearly connected to the minimum CBH specific to an ASI-pair’s camera distance. While the in study of Kuhn et al. (2019)

the lowest CBH range covered 0...3 km, which reduces the influence of minimum CBH, a qualitatively similar relationship of

camera distance and accuracy was found.

For intermediate and large CBH (4...12 km) the correlation of camera distance and accuracy is less clear – a slight trend seen625

in RMSD and BIAS is overlaid by strong scattering. The variation of error metrics found between these systems may indicate

further influences of the setup on accuracy apart from camera distance. On the other hand, the limited set of observations of high

clouds may not be sufficiently representative to identify the influence of camera distance in the presence of other disturbances

present in this benchmark, such as low clouds which may be present in spite of the applied filter.

Overall, in the range of CBH > 4 km, increased camera distance slightly improves the accuracy of CBH estimation. On630

average a reduction in RMSD of 500 m is suggested over the interval of studied camera distances. No significant influence is
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Figure 11. RMSD (top) and BIAS (bottom) received by 42 ASI-pairs utilizing camera distances in the range of 0.8...5.7 km and by the ASI

network with refinements (no camera distance applicable) for the period 30 June 2019 to 27 September 2019.
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noticed for BIAS. From Kuhn et al. (2019) the influence of camera distance on accuracy was expected to be more significant

in this range of CBH.

Further, the orientation of the ASI-pair’s axis to the present direction of cloud movement was considered as an influence

on accuracy in Kuhn et al. (2019). ASI-pairs may measure CBH more accurately if the ASI-pair’s axis is aligned with the635

direction of cloud motion. The direction of cloud motion was retrieved from ASI UOL as described in Sect. 3.2 and the dataset

was filtered to timestamps with cloud motion from west to east. Accuracies of ASI-pairs with similar camera distance but

different orientation of the ASI-pair’s axis were compared. In this comparison no correlation of accuracy and the alignment of

the ASI-pair’s axis over the direction of cloud motion was recognized.

Based on these findings we recommend to chose camera distance of a single ASI-pair, that is not part of an ASI network,640

based on the smallest CBH (CBHmin) which is of interest at a site. This consideration differs from previous studies by

Nguyen and Kleissl (2014) and Kuhn et al. (2019) which suggest, based on theoretical and experimental findings respectively,

to optimize camera distance for the most frequent or most relevant CBH. Our experimental results suggest that camera distance

of a single ASI-pair should if possible not be chosen larger than 1.4×CBHmin and in no case larger than 3×CBHmin. For

the meteorological conditions studied here, ASI-pairs with even smaller camera distances than 0.8 km would be beneficial to645

cover the range CBH< 0.5 km.

5 Conclusions

In this study, a method was presented and benchmarked to estimate cloud base height (CBH) by a network of all-sky-imagers

(ASIs). The ASI network-based estimation of CBH aims to combine the measurements of CBH from ASI-pairs arranged in

proximity and organized in a network. Conditional probabilities are modeled from historic CBH measurements received from650

ASI-pairs and a reference ceilometer. These indicate the probability that an ASI-pair with specific camera distance would

deliver a specific CBH reading if true CBH actually was in a specific range. In the inference the ASI network uses this

knowledge to calculate the likeliest CBH given the readings of CBH from individual ASI-pairs. Additionally, accuracy of CBH

measured by 42 independent all-sky-imager (ASI)-pairs over a period of 90 days was analyzed. This validation extended prior

studies of the analyzed system to the conditions of a Central-European climate (Cfb) and to an unpreceded variety of camera655

alignments and camera distances (0.8...5.7 km).

The influence of camera distance on the accuracy of ASI-based estimation of CBH was less pronounced than suggested by

prior studies. For low clouds (CBH< 4 km) small camera distances were found to lead to most accurate measurements. Under

these conditions deviations were found to increase steadily with camera distance as described in the literature. For higher

clouds (especially for CBH> 8 km) larger camera distances were found to affect received accuracy positively. However, this660

effect was small compared to the expectation. As main cause of deviations a minimum CBH was identified which is specific to

each ASI-pair. Minimum CBH was found to increase steadily with camera distance of an ASI-pair. Below this minimum CBH

ASI-pairs were found to return non-physical and positively biased readings.
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When selecting a camera distance for an ASI-pair with stereoscopic estimation of CBH based on cross-correlation, this study

suggests to consider the following depending on the meteorological conditions on-site. ASI-pairs with camera distance< 2 km665

are accurate only for CBH up to 4 km. ASI-pairs with camera distance > 3 km are slightly more accurate than ASI-pairs with

smaller camera distance for CBH≥ 4 km, but much less accurate for CBH< 4 km than ASI-pairs with smaller camera

distance. For ASI-pairs which are set up at sites with a similar distribution of CBH as in our study, we recommend including

camera distances smaller than 1.8 km. If mostly medium-height or high clouds are expected a greater camera distance is

preferable. If possible multiple setups also including ASI-pairs with small (< 0.8 km) and larger camera distances (> 1.8 km)670

are recommended to increase accuracy for all CBH ranges. However, larger camera distances can help to increase the spatial

coverage of an ASI network with a given number of cameras, which is also of advantage. A trade-off between CBH accuracy

and coverage or costs must hence be found for ASI networks.

The presented approach to merge measurements of ASI-pairs in an ASI network combined favored properties of the indi-

vidual ASI-pairs. For all five ranges, that were defined for reference CBH readings by the bin edges 0,1,2,4,8,12 km, the ASI675

network provides a measurement that is among the most accurate ones compared to individual ASI-pairs in terms of RMSD.

Individual ASI-pairs slightly outperformed the network but only for single intervals of CBH. In terms of BIAS the same finding

was received except for the range of CBH ∈ [8,12] km. In this CBH range the ASI network yields an average BIAS, compared

to the ASI-pairs, as all of the ASI-pairs are biased for these conditions.

The presented ASI network-based approach to CBH-measurement can be transferred to other sites using the conditional680

probabilities of CBH found at the Oldenburg site. Found distributions may then be extended to include more frequent obser-

vations of high clouds. Especially regarding its geometric dimensions and spatial coverage the used setup is suited for airports

and large or networked solar power systems.

Based on the present study, the proposed approach to measure CBH in an ASI network will in future be enhanced by

first extending the utilized statistics of measured CBH with data from other sites at which a combination of ASI-pair and685

ceilometer is available. Such an extended dataset will additionally allow to use more elaborate statistical methods including

neural networks. A procedure to generate irradiance nowcasts based on the whole ASI network utilizing the method to estimate

CBH described here is under development.

Data availability. Used all-sky-images and ceilometer measurements are property of DLR, Institut für Vernetzte Energiesysteme and can be

requested from the corresponding author. Processed data presented in this publication is available on request from the corresponding author690

(niklas.blum@dlr.de).
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Appendix A: Details on the retrieval of conditional probabilities

A1 Retrieval of raw joint frequency distributions

CBH from the respective ASI-pair and from the ceilometer are processed by a moving-median filter with a window of 10 min.

The joint frequency distribution of CBH measured by ceilometer hRef and the respective ASI-pair hASI is computed from695

these simultaneously acquired time series. That means, the frequency is calculated with which (hRef ,hASI) is observed in

a discrete grid cell defined by the interval [j∆h,(j+ 1)∆h[ for hRef and the interval [k∆h,(k+ 1)∆h[ for hASI , where

j,k ∈ {0,1,2, ...,N − 1}, where N is the number of bins used for CBH in the analysis. A bin size ∆h= 100 m is chosen in a

trade-off between sources of error. Finer bins will allow to represent the distributions at higher resolution and will thus allow for

higher resolved measurements of CBH in the network. However, the size of the used data set is limited which makes it difficult700

to model these distributions at highest resolution. The bin size chosen here is expected to limit the achievable uncertainty of

the measurement to a minimum level of 100 m. Joint frequency distributions modeled here are restricted to a maximum CBH

of 12 km. This yields N = 120.

A2 Filtering operations applied

First, a weighted mean filter is applied between original joint frequency distributions Fl received from all ASI-pairs with705

camera distance d, this yields Fl,filter 1:

Fl,filter 1 =

∑
mwl,mFm∑
mwl,m

. (A1)

For the joint frequency distribution Fl of each respective ASI-pair l, weights wl,m are used that include ASI-pairs with sim-

ilar camera distance. More precisely, a triangular window, based on the difference of camera distance ∆dl,m of ASI-pair m

compared to ASI-pair l, is used that is defined by710

wl,m =max(0,1−∆dl,m/0.5 km). (A2)

We decompose each distribution Fl,filter 1 by conditional filters into three separate modes. In the second step, we apply to

each mode a Gaussian filter gσ with distinct standard deviation σmode of the Gaussian kernel. The subscript mode indicates the

specific mode for which σmode is applied. The first mode is constituted by all outlier observations. Outliers are defined here

as grid cells (hRef ,hASI) for which ASI-pair measurement of CBH hASI deviates by more than 1.5 km from the ceilometer715

reading hRef :

Fl,outlier(hRef ,hASI) =

Fl,filter 1(hRef ,hASI), |hASI −hRef |> 1.5 km

0, else.
(A3)

Such outliers will contain a large random component. We expect that in a reproduction of the experiment, a similar number of

outliers will be received, while the joint frequency found for a single grid cell (hRef ,hASI) may vary significantly. Therefore,

the strongest filter is applied to this mode using σoutlier = 1 km.720
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The second mode is constituted by grid cells that are not part of the first mode and feature a joint frequency less than the

average over all grid cells of the joint frequency distribution:

Fl,inconfident(hRef ,hASI) =


Fl,filter 1(hRef ,hASI), |hASI −hRef | ≤ 1.5 km

∧ Fl,filter 1(hRef ,hASI)<mean(Fl,filter 1)

0, else.

(A4)

The comparably small number of observations in these grid cells is expected to cause an increased uncertainty of the estimated

joint frequencies. For this mode, σinconfident = 0.5 km is applied.725

The third mode Fl,confident(hRef ,hASI) makes up the complementary of the first and second mode. It contains grid cells

that are observed with an at least average joint frequency and which are not classified as outliers:

Fl,confident(hRef ,hASI) =


Fl,filter 1(hRef ,hASI), |hASI −hRef | ≤ 1.5 km

∧ Fl,filter 1(hRef ,hASI)≥mean(Fl,filter 1)

0, else.

(A5)

Joint frequencies in these grid cells are considered to have a comparably high accuracy. To avoid a loss of precision and

ultimately a loss of accuracy in the estimation of CBH, a small value of σconfident = 0.1 km is used. The three filtered modes730

gσ are summed to receive the smoothened joint frequency distribution

Fl,filter 2 = gσoutlier
(Fl,outlier) + gσinconfident

(Fl,inconfident) + gσconfident
(Fl,confident). (A6)

For all grid cells, joint frequency is increased to a minimum value of 0.5 to avoid underestimations of joint frequency. This

value is chosen to be half of the joint frequency associated with a single actual observation in a grid-cell.

Each joint frequency distribution is normalized with the sum of all joint frequency grid cells. In this way, a probability mass735

function P (hRef ,hASI) (also known as discrete density function) to measure a certain CBH with the respective ASI-pair and

to coincidentally measure a certain CBH with the ceilometer is yielded. The conditional probability P (hASI | hRef ) to receive

a certain CBH reading from an ASI-pair, given that the ceilometer measures some certain CBH, is calculated by dividing the

respective probability mass function by the marginal distribution of CBH measured by the ceilometer. The latter distribution

gives the probability to receive CBH from the ceilometer within a certain bin hRef regardless of which CBH reading is740

simultaneously received from an ASI-pair. The distribution can be derived from any of the probability mass functions by

summing all grid cells of the probability mass function which correspond to the respective bin hRef of CBH measured by the

ceilometer.

A3 Representation of intervals of camera distance

The inference procedure represents each range i of camera distance bounded by the limits {0.5,1,1.5, ...,6} km by a single745

distribution of conditional probability. For each range of camera distance, the distribution of conditional probability, which
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Figure B1. Detail view of CBH measured by ASI-pairs (grey dots), by the ASI network (blue triangles) and ceilometer (red circles) during

a period with low sky coverage. Around 17:00 approaching clouds are viewed close to the horizon by all ASIs.

corresponds to the camera distance closest to the center of this range, is selected. For example, for the range i= 2 representing

camera distances 1...1.5 km, the center of the range would be 1.25 km. For the camera distances 1.081, 1.247 and 1.352 km,

conditional probabilities have been modeled. Consequently, for this range of camera distance, the distribution of conditional

probability corresponding to the camera distance 1.247 km is used.750

Appendix B: Comparison of CBH time series

B1 Estimation of CBH during a clear sky period

Figure B1 provides a detail view of CBH measured by ASI-pairs, by the ASI network and by the ceilometer during a mostly

clear period on 02 September 2019. The period is discussed in Sect. 4.1.

B2 Comparison of CBH measurements for another exemplary day755

Figure B2 shows CBH on 06 August 2019 again measured by ceilometer, by all available ASI-pairs and by the ASI network.

This day, similar to 02 September 2019, discussed previously, includes multi-layer conditions with high layers overlaid by low

layers, resulting in similar observations. In the morning and evening high cloud layers are dominant. The CBH of these varies

in the range of 7...11 km according to the ceilometer. The range of CBH from ASI-pairs reflects this spread. Still, it is not

obvious which of the ASI-pair based observations would be the most appropriate. From the ASI network a rather steady CBH760

estimation results which most of the time reflects the dominant CBH layer as recognized by the ceilometer. The combined
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Figure B2. Time series of cloud base height for an exemplary day (06 August 2019) measured by 42 ASI-pairs (grey filled), by two

exemplary ASI-pairs DON-MAR and CLO-FLE with respective camera distances 0.8 and 4.2 km, by the ASI network with refinements and

by a ceilometer in the urban area of Oldenburg.

Figure B3. Sky image taken by ASI UOL representing a multi-cloudlayer situation on 06 August 2019 12:35

estimation misses physically meaningful variations of CBH typically towards higher values recognized by the ceilometer. Also

for this day time series of CBH and corresponding ASI images were compared. Again large underestimations of CBH by the

ASI network (at 05:30, 08:15, 10:00, 12:30, 16:00) were traced back to the ASI-based estimations responding stronger to lower

optically denser low cloud layers which pass the vicinity of the urban area (compare Fig. B3).765
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