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Abstract. The planetary boundary-layer height (zi) is a key parameter used in atmospheric models for estimating the exchange 

of heat, momentum and moisture between the surface and the free troposphere. Near-surface atmospheric and subsurface 10 

properties (such as soil temperature, relative humidity etc.) are known to have an impact on zi.  Nevertheless, precise 

relationships between these surface properties and zi are less well known and not easily discernible from the multi-year dataset.  

Machine learning approaches, such as Random Forest (RF), which use a multi-regression framework, help to decipher some 

of the physical processes linking surface-based characteristics to zi.  In this study, a four-year dataset from 2016 to 2019 at the 

Southern Great Plains site is used to develop and test a machine learning framework for estimating zi.  Parameters derived 15 

from Doppler lidars are used in combination with over 20 different surface meteorological measurements as inputs to a RF 

model. The model is trained using radiosonde-derived zi values spanning the period from 2016 through 2018, and then 

evaluated using data from 2019. Results from 2019 showed significantly better agreement with the radiosonde compared to 

estimates derived from a thresholding technique using Doppler lidars only.  Noteworthy improvements in daytime zi estimates 

were observed using the RF model, with a 50% improvement in mean absolute error and an R2 of greater than 85% compared 20 

to the Tucker method zi. We also explore the effect of zi uncertainty on convective velocity scaling and present preliminary 

comparisons between the RF model and zi estimates derived from atmospheric models. 

 

1 Introduction 

Measuring the growth of the Planetary Boundary Layer (PBL) height is crucial for understanding the turbulent transfer 25 

of air mass, which in turn strongly influences the winds, temperature, and moisture within the atmospheric boundary layer.  

During daytime, the air within the PBL is well mixed due to convection and results in weakening of turbulence at the top of 

the PBL (entrainment zone).  One of the characteristics of the top of the PBL during clear sky conditions is that the turbulence 

is near zero, while in cases with boundary-layer clouds, significant up and downdrafts can be observed at the top of the 
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boundary layer (typically the cloud base height).  Routine, continuous, long-term monitoring of the PBL height, zi, is crucial 30 

for evaluating climate, weather, and air quality models skill in representing near-surface turbulent mixing, entrainment across 

the PBL top, the development of shallow cumulus, understanding effects of morning or evening transitions (Grant 1997), and 

nocturnal convection initiation (Reif et al., 2017).  Profiles of potential temperature, water vapor mixing ratio, and particulate 

concentration often exhibit strong gradients at or near the top of the PBL. Typically, estimates of zi are obtained from an 

analysis of temperature and humidity profiles obtained from radiosondes. Indeed, radiosondes continue to be the de facto 35 

standard due to their long operational history, fine vertical resolution, accuracy, and reliability. However, major limitations are 

the poor temporal resolution and large sampling error because radiosondes are typically only launched twice daily at 

operational centers around the world.   The launch time periods are generally not optimal for looking at various boundary layer 

properties.  As a result, the diurnal variation in zi is usually poorly represented in radiosonde data. 

Modern remote sensing instruments can provide continuous estimates of the boundary layer dynamics.  Space-based 40 

remote sensing instruments, such as Moderate Resolution Imaging Spectroradiometer, Tropical Rainfall Measuring Mission 

data, and Multiangle Imaging SpectroRadiometer have also shown the ability to estimate PBL height (Wood and Bretherton 

2004, Karlsson et al. 2010). 

Ground-based lidar systems, such as the Raman lidars (Turner et al., 2014), ceilometer, micro pulse lidar (Campbell 

et al. 2002), atmospheric emitted radiance interferometer (Knuteson et al., 2004; Sawyer and Li, 2013), Doppler lidar (Tucker 45 

et al., 2009, Berg et al., 2017, Bonin et al., 2018, Vakkari et al., 2015, Banakh et al., 2021) and high spectral resolution lidar, 

have been commonly used to provide PBL height estimates (Quan et al., 2013, McNicholas and Turner 2014).  For elastic lidar 

systems such as the micro pulse lidar, zi is estimated by locating the height where the range-corrected signal-to-noise ratio 

(SNR) or attenuated backscatter profile experiences a strong decrease with height (Emeis et al., 2008). A similar approach is 

used to estimate zi from profiles of water vapor mixing ratio from Raman lidar (Summa et al., 2013) or differential absorption 50 

lidar systems (Hennemuth and Lammert 2006); however, the peak in the water vapor variance has also been used as an estimate 

of zi (Turner et al. 2014).   

Doppler lidars provide range-resolved measurements of radial velocity, attenuated backscatter, and SNR.  When 

staring vertically, a ground-based Doppler lidar measures height-resolved profiles of vertical velocity in the lower atmosphere 

with a temporal resolution of 1 second or less. Profiles of the vertical velocity variance can then be computed by averaging 55 

over an appropriate time interval (typically 15 to 30 minutes).  The primary advantage of Doppler lidars is that they measure 

the turbulence directly and thus provide a more defensible measure of zi.  Other systems rely on gradients of aerosol loading 

or moisture that are used to infer zi.   

One method for estimating the convective boundary layer (CBL) depth using Doppler lidars is to find the height 

where the vertical velocity variance profile falls below some prescribed threshold, which in some cases can vary with time 60 

(Lenschow et al., 2000, Tucker et al., 2009, Lenschow et al., 2012, Berg et al., 2017). This method, which we refer to as the 

Tucker method, is simple to implement and provides a direct measure of zi. However, the estimates are sensitive to the choice 

of variance threshold, which is somewhat arbitrary.  Also, this method fails under stable nocturnal conditions due to weak 
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turbulence and the fact that the lowest gate of the lidar is often above the depth of the nocturnal zi.  Horizontal velocity variance 

and dissipation rate profiles from a Doppler lidar can be used to estimate zi in nocturnal conditions (Vakkari et al., 2015, 65 

Banakh et al., 2021).  Alternatively, one can estimate the PBL height based on wind shear and Turbulence Kinetic Energy 

(TKE), but there has been limited research on this topic (Brost and Wyngaard, 1978, Teixeira and Cheinet, 2004, Le Mone et 

al., 2018).   

Due to different measurement approaches between multiple remote sensing instruments, considerable uncertainties 

exist when comparing zi to standard radiosonde retrievals.  PBL heights from different instruments provide expected trends 70 

during certain atmospheric conditions (mostly daytime convective time periods) but differ slightly due to measurement 

uncertainties and thresholds chosen associated with each instrument.  Therefore, a framework independent of threshold 

techniques used in previous studies is warranted. Although this paper does not directly address a unified approach to estimate 

zi, it is a step in that direction. 

In view of these limitations, we investigate the potential of using a machine learning (ML) approach for continuous 75 

monitoring of zi, with a focus on CBL.  ML enables us to bring together various observations to arrive at a consensus answer.  

ML models, such as RF and Neural Networks, have been used for classifying various atmospheric phenomena (McGovern et 

al. 2017, Gagne II et al., 2019, Vassalo et al., 2020) or retrieving atmospheric variables (e.g., Solheim 1998, Cadeddu et al. 

2009).  The RF model is versatile, simple to implement, and robust.  Training the RF model entails providing it with 

observations (i.e. features) that aid in predicting zi. Examples of such observations include surface sensible and latent heat flux, 80 

soil temperature, soil moisture, surface potential temperature, surface humidity etc. These features have all been shown to 

exhibit some degree of correlation with zi (Santanello et al., 2005; Zhang et al., 2013).  

Here we use a RF model to predict zi using input features derived from vertically-staring Doppler lidar data and 

various surface and sub-surface observations.  We use a multi-year dataset from the U.S. Department of Energy (DOE)’s 

Southern Great Plains (SGP) site (Sisterson et al., 2016) for training and evaluating the RF model. Reference zi measurements 85 

from radiosondes are used in the RF training process (Sivaraman et al., 2013). Specifically, the RF model is trained using 

observations from 2016 through 2018, and its performance is evaluated using data from 2019.   

In this paper, Section 2 describes the observations that are used in this study, Section 3 describes the details of the RF 

model, including the training method, data conditioning and performance. Results of the RF model’s performance are presented 

in Section 4, and in Section 5 we examine how RF model-derived zi estimates affect the scaling of the vertical velocity variance 90 

profiles.  PBL heights estimates from Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1), 

large-eddy simulations (LESs), and observations are compared in Section 6.  Finally, a summary and future work are provided 

in Section 7. 
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2 Data Sources 95 

The U.S. DOE Atmospheric Radiation Measurement (ARM) User Facility operates the SGP site in north-central Oklahoma 

(Mather and Voyles, 2013; Sisterson et al., 2016). The site contains an extensive suite of instrumentation for monitoring the 

atmosphere and surface properties. Most of these instruments operate continuously and the data are freely available from the 

ARM website (https://adc.arm.gov/discovery; McCord and Voyles 2016).  The SGP site contains several heavily instrumented 

subsites or “facilities” that are geographically dispersed over Oklahoma and Kansas (Mather and Voyles, 2013).  For this 100 

study, we use observations from the central facility (C1), which also contains the largest number and most diverse suite of 

instruments in ARM. Figure 1 shows the layout of the SGP C1 site and the locations of instruments used in this study. 

Additionally, Table 1 lists the instruments, ARM data stream names, and specific measurements that were used.  In ML, 

independent variables, or inputs, are often referred to as features. A model can have multiple features/inputs and for this project, 

the measurements from the observations will be referred to as features in the RF model.  105 

 

 
Figure 1. ARM SGP site C1 layout and instruments used in this study in Oklahoma, USA.  Maps are extracted from © Google Earth 

and © Google Maps. 
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Table 1: Instruments, ARM data stream names, and measurements used in this study.  

Instrument ARM data stream Measurements or features 
Measurement 

height/range 
References 

Radiosonde sgppblhtsonde1mcfarlC1.c1 PBL height estimates (m) 
100 m to 5000 m 

AGL 

Sivaraman et al., 

2013 

Surface eddy 

correlation 

station  

sgp30co2flx25mC1.b1 

 

Sensible heat flux (Wm-2) 25 m AGL 

Cook et al., 2018 

and Tang et al., 

2019 

Latent heat flux (Wm-2)  

Vertical velocity variance (m2s-2)  

Friction velocity (ms-1)  

Turbulence Kinetic Energy (m2s-2)  

Monin-Obukhov length (m)  

Wind speed (ms-1)  

Wind direction (degrees from north)  

Surface 

meteorological 

station 

sgpmetE13.b1 
Air temperature (deg K) 4 m AGL Ritsche and Prell, 

2011 Relative humidity (%)  

Soil temperature 

and moisture 

probes  

sgpstampE13.b1 or 

sgpswatsE13.b1 

Soil moisture (m3m-3) 

Soil temperature (deg C) 
-5 cm below surface Cook, 2018 

Surface energy 

balance system / 

solar infrared 

radiation station 

sgpqcrad1longE13.c1 and 

sgpqcrad1longE13.c2 

Best estimate of longwave, 

shortwave and normal radiation 

(Wm-2) 

 

2 m AGL 
Cook and Sullivan, 

2019 

Doppler lidar 

sgpdlfptC1.b1 

Range-corrected attenuated 

backscatter variance (m-1sr-1), SNR 

variance (dB), and average eddy 

dissipation rate (m2s-3). 

90 m to 800 m AGL 

Champagne et al., 

1977, Newsom 

and 

Krishnamurthy, 

2020 

sgpdlprofwstats4newsC1.c1 

Cloud base height (m) 

CBL depth from Tucker method (m) 

Year, month and hour of day 

 

0 m to 9000 m AGL 

Newsom et al., 

2019b, Tucker et 

al., 2009 

sgpdlprofwinds4newsC1.c1 

Wind shear exponent  (𝛼 =

 log10 (
𝑈1

𝑈2
) log10 (

𝑍1

𝑍2
)⁄ ), where 𝑈𝑖 

and 𝑍𝑖 are wind speed and height at 

altitude i.   

z1 = 90 m to z2 = 300 

m AGL (or lower, 

depending on data 

availability) 

Wharton and 

Lundquist, 2012. 
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The ARM User Facility has operated a Halo Photonics Stream Line XR (Pearson et al., 2009) at C1 since April 2011. 

The instrument provides height- and time-resolved measurements of radial velocity, attenuated backscatter, and SNR. The 

range resolution is set to 30 m and the temporal resolution is about 1-s. The instrument is configured to stare vertically most 115 

of the time. Once every 15 minutes, it executes a plan-position-indicator scan, from which profiles of the wind speed and 

direction are computed. The vertical staring data are used to compute profiles of noise-corrected vertical velocity variance 

using a 30-minute averaging period. More details about the instrument are provided by Newsom and Krishnamurthy (2020). 

Details about the vertical velocity statistics value-added product (VAP) are provided by Newsom et al. (2019a), and detail 

about the Doppler lidar wind VAP are given by Newsom et al. (2019b). 120 

Doppler lidar-derived features used in this study are listed in Table 1. The list includes raw height-resolved 

measurements of attenuated backscatter and range-corrected SNR, which are known to be directly correlated with zi (Cohn 

and Angevine 2000, Brooks 2003). Also listed are several derived quantities such as cloud base height, wind shear, turbulence 

eddy dissipation rate, and zi estimated using the Tucker method (Tucker et al., 2009).  Typically, the nocturnal vertical velocity 

variance estimates are too small, and the threshold used in the Tucker method is not applicable.  During certain rare nocturnal 125 

convection initiation events, larger vertical velocity variance estimates are observed and the same threshold (0.04 m2s-2) is 

used to estimate nighttime values of zi from the lidar.  For consistency in terminology being used here, we refer to all zi 

estimates from the lidar as the Tucker method (both nighttime and daytime).  Because the range of the Doppler lidars at SGP 

C1 is often less than 1 km (see Appendix A), estimates of eddy dissipation rate (using 1 Hz vertical velocity stares, Champagne 

et al., 1977) above 800 m were affected by system noise.  Thus, features such as the eddy dissipation rate, attenuated 130 

backscatter, and SNR from the Doppler lidar were limited to 800 m AGL.  Reducing the height from 800 m to 500 m AGL 

did not impact the results.  Moreover, RF models used in this study are only capable of ingesting 1-dimensional timeseries 

data; therefore, 2-dimensional Doppler lidar features were averaged over the vertical column (90 m [lowest range gate] to 800 

m AGL).  Adding these features increased the overall variance explained by the RF model (82% of the total variance compared 

to 74% of the total variance without using lidar derived parameters). 135 

The ARM PBL VAP (sgppblhtsonde1mcfarlC1.c1) contains estimates of zi derived from radiosondes launched at 

SGP C1. We note that radiosondes are typically launched four times daily from SGP C1, nominally at 0530, 1130, 1730 and 

2330 UTC each day (local time = UTC - 0600 hours). The PBL VAP uses three different algorithms for estimating zi. These 

include the Heffter 1980, two bulk Richardson thresholds methods, and Liu and Liang (2010).  The Heffter (1980) method is 

a well-established and widely used algorithm (e.g., Marsik et al. 1995, Delle Monache et al., 2004) that determines zi from 140 

potential temperature gradients using criteria related to the strength of an inversion and the potential temperature difference 

across the inversion.  The bulk Richardson number (Rib) is a dimensionless number relating vertical stability to vertical shear. 

It represents the ratio of thermally produced turbulence to that generated by vertical shear. Methods using Rib to estimate zi 

assume that there is no turbulence production at the top of the stable boundary layer and therefore Rib exceeds its critical value 

at the top of the boundary layer (Seibert et al., 2000).  Several different critical thresholds of Rib, are provided in the literature 145 
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based on resolution of sondes, location, etc.  The ARM PBL VAP includes zi estimates based on two critical thresholds (0.25 

and 0.5). Liu and Liang (2010) provide different thresholds for estimating convective and stable boundary layer depths using 

potential temperature profiles.  The inversion strength thresholds used in the method varies for given stability regime and land 

type classification (land, ocean, or ice).  We note that the various estimates can differ considerably. More details about the 

ARM PBL VAP are provided by Sivaraman et al. (2013). 150 

 

2.1 Preliminary Data Analysis 

Boundary-layer height estimation algorithms (Tucker et al., 2009, Berg et al., 2017, Bonin et al., 2018) purely using 

the Doppler lidars are limited by the range of the Doppler lidars at the ARM SGP facility, which may or may not reach the top 

of the boundary layer.  The data availability of the ARM Doppler lidar SGP C1 systems is typically less than 1-2 km (Newsom 155 

and Krishnamurthy, 2020), and the data availability of the Doppler lidar vertical stares and velocity azimuth display scans for 

the study period are shown in Appendix A.  The Tucker method zi is used for inter-comparison with the RF model in this study, 

primarily due to its ease in application to the multi-year dataset, known performance, including its established usage in studies 

using the ARM Doppler lidar and other locations and instruments (Träumner et al., 2011, Shukla et al., 2014, Schween et al., 

2014, Berg et al., 2017, Lareau et al., 2018, Lareau 2020).  Vertical velocity variance profiles provided in the 160 

sgpdlprofwstats4newsC1.c1 VAP and a variance threshold of 0.04 m2s-2 is used to determine zi, following Tucker et al., 2009.  

The results are somewhat sensitive to the choice of threshold such that the zi estimates decrease as the threshold is increased 

(Berg et al., 2017). 

Figure 2 shows a typical example of vertical velocity variance during the warm season at SGP. Also shown are 

estimates of zi from the Tucker method.  We find that the Tucker method generally works well at tracking the height of the 165 

convective mixed layer during its initial development phase and can be made to match the radiosonde observations by changing 

the vertical velocity variance threshold (Schween et al., 2014).  In that case, there is sufficient SNR for the lidar to see both 

the developing convection and the overlying residual layer.  However, as the mixed layer continues to deepen, at some point 

the SNR becomes too small to enable reliable estimates of the vertical velocity variance. This problem is sometimes 

compounded by a slight reduction in sensitivity during the hottest portion of the day, which we suspect is the result of strong 170 

refractive turbulence in the surface layer. Although this effect has not been thoroughly analysed due to lack of refractive 

turbulence profiles and concurrent radiosonde data, there could be instances when the Doppler lidar is indeed measuring the 

top of the boundary layer.  In any event, the loss of signal near the CBL top could result in zi estimates from the Tucker method 

to be low biased. 

 175 
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Figure 2: Typical CBL showing lidar variance (colours), Tucker zi (black line), and radiosonde zi (three methods; symbols). The 

horizontal axis shows the number of hours after 00:00 UTC on 27 July 2019. 

 

For this study, radiosonde-derived zi estimates are used to calibrate the RF algorithm.  Figure 3 shows comparisons 180 

between lidar-derived CBL (using the Tucker method) and simultaneous estimates from the ARM PBL VAP. These 

comparisons were performed using 1785 cases with radiosonde data and daytime clear (identified as periods when surface heat 

flux is positive from sunrise to sunset and cloud base height is zero) or shallow cumulus conditions (identified as cloud base 

height less than 5 km from Doppler lidar and cloud fraction less than 0.1) for the years 2016 through 2019.  From these results, 

we found that the Liu and Liang (2010) technique resulted in the best overall agreement with the Tucker method zi, in terms 185 

of the correlation coefficients (r = 0.75) and slope (0.70). Thus, zi estimates from the Liu-Liang technique in the ARM PBL 

VAP (pblhtsonde1mcfarl.c) are used as a reference to calibrate the RF model in this study.  It should be noted that any of the 

above three model outputs can be used to calibrate the ML model, if needed, and the choice could vary with each site. For a 

different site, we would recommend conducting a similar correlation analysis as shown above with various radiosonde models 

and lidar data to determine the optimal model for RF calibration.  It is important to note that during stable conditions, the 190 

determination of zi from radiosondes is very uncertain, as the turbulence can result from either buoyancy forcing or wind shear 

and radiosonde rapidly rises through the relatively thin stable boundary layer.  At SGP C1, the nose of the low-level jet can 

also be used to define the height of the boundary layer (Sivaraman et al., 2013).  Therefore, the focus of this study is to only 

demonstrate the ability of the RF model to replicate nighttime zi estimates compared to radiosonde-derived values.  We hope 

this framework developed in this article can be adapted easily to future research in estimating the true stable boundary layer 195 
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height from radiosondes or other reference sources.  During stable conditions, the true zi can be below the lowest range-gate 

of the Doppler lidar and we expect such a technique would aid in representing true zi, estimates with proper calibration. 

 

 
Figure 3: Comparisons between Tucker method and three different zi estimates from radiosondes a) Heffter 1986, b) Liu and Liang 200 

2010 and c) Bulk Richardson number method using a threshold of 0.5. The red line is the best fit with the fit y = mx shown above.  r 

is the correlation coefficient and N is the total number of radiosonde and Tucker method observations used in each scatter plot. 

 

3 Machine Learning 

In this study, an RF algorithm was used to predict PBL heights.  RF regression (Breiman, 2001) is an ensemble 205 

method that is made up of a population of decision or decorrelated trees.  Figure 4 provides a graphical illustration of the 

RF bootstrapping process.  Bootstrap aggregation (bagging) is used so that each RF tree (a sample is shown in Appendix B) 

can randomly sample from an entire feature set, while only a subset of the total feature set is given to each individual tree.  For 

example, if the entire feature set contains say M different features, an individual RF tree can contain a fraction of those M 

features.  The premise behind RF is to improve the variance reduction of bagging by reducing the correlation between the trees 210 

without increasing the variance.  The trees can be truncated to add further diversification.  After construction, the population’s 

individual predictions are averaged to give a final prediction of the target variable. Ideally, this process results in a diversified 

and decorrelated set of trees whose predictive errors cancel out, producing a more robust final prediction.   

An advantage of RFs is their ability to determine the importance of all input features for the predictive process. This 

is done by calculating the mean decrease in impurity, or the decrease in variance that is achieved during a given split in each 215 

decision tree. The decrease in impurity for each input feature can be averaged over the entire forest, providing an approximation 

of the feature’s importance for the prediction (feature importance estimates sum to 100% to ease interpretability).  A sample 

regression tree developed by real data used in this article is shown in Appendix B (Figure B1).  The statistics and ML toolbox 

in MATLAB contain all the functions needed to build the RF algorithm used in this study. 
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Figure 4: Graphical representation of a standard RF algorithm (adapted from online sources and Figure A1). 

 

3.1 Model Hyperparameters 

In this study, a least-squares boosting regression (LSboost) ensemble RF model (Breiman 2001) is built based on 225 

observational data listed in Table 1.  At every iteration, the ensemble fits a new decision tree to minimize the mean-squared 

error between the observed response and the aggregated prediction of all decision trees developed previously.  The MATLAB 

function fitrensemble is used to develop the RF model.  The algorithm creates several regression trees using a subset of input 

features and radiosonde observations.  The RF model creates a learning process to map the reference data to input features. 

Hyperparameters are used to control the learning process in the RF model.  It is good practice to tune hyperparameters such as 230 

the maximum number of decision splits per tree (see Figure 4), learn rate for shrinkage and the number of iterations for reducing 

the generalization error (Breiman, 2001).  In this article, hyperparameters for the RF model are chosen by performing a 

Bayesian optimization on the data, which minimizes the k-fold cross validation loss function for select hyperparameters 

(MATLAB function bayesopt).  For this study, three hyperparameters were optimized: the number of tree splits, number of 

learning cycles or iterations, and learn rate for the model.  Based on the optimization results, the number of iterations was set 235 

to 460, number of tree splits to 11 and the learning rate was set to 0.25 for the current model. 
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Regularization techniques are used to prevent statistical overfitting in a predictive model (Hastie et al., 2008), by 

reducing the magnitude of the coefficients of the RF model for certain parameters that do not contribute to the target variable. 

In general, regularization algorithms can treat issues such as multicollinearity and redundant predictors and make the model 

more precise.  The MATLAB function regularize is used for the regularization process, which is based on the Lasso 240 

regularization algorithm (Tibshirani, 1996).  This regularization algorithm optimizes the number of trees and avoids data 

overfitting.   

3.2 Data Preprocessing 

Surface and lidar data from 2016 to 2019 are used in this analysis.  ARM VAPs provides processed and quality-controlled 

data from several atmospheric sensors.  Each VAP provides quality control thresholds that are used to filter the data.  For 245 

example, the lidar VAPs (DLWSTATS and DLWIND) provide quality control flags based on the system noise and SNR 

(Newsom and Krishnamurthy, 2020).  For this analysis, thresholds specified in the VAPs are used to remove any erroneous 

data.  Similarly, quality control flags for all variables mentioned in Table 1 above are used to filter bad data (Tang et al., 2019).  

Because the temporal resolution of the surface data are variable, measurements are interpolated or averaged to the lidar 15-

minute resolution time stamps.  The frequency of radiosondes is generally 6 hours at SGP but can be in intervals of 3 hours 250 

during select field campaigns (Mather et al., 2018).  For training purposes, surface and lidar data to the nearest radiosonde 

observations within 15-minutes are chosen. 

Normalizing/standardizing/scaling processes are used to scale the variables in an ML model, such that they have the same 

order of magnitude in their value.  Standardizing involves aligning the features to have a zero mean and scaled to have standard 

deviation of one.  Typically, RF models do not need standardizing or normalizing features due to the inherent bagging process 255 

(Breiman, 2001).  At SGP C1, large diurnal variability was observed for certain parameters (like TKE, dissipation rate, etc.), 

leading to a large distribution of values between daytime and nighttime.  This skewed the number of trees the RF model builds 

for daytime and nighttime estimates.  Standardizing the features showed improvements while estimating nocturnal zi estimates 

from the RF model.  Therefore, to improve nocturnal zi estimates, standardized datasets will be used in the following analysis 

for all conditions. 260 

All the features, listed in Table 1, are filtered based on ARM mentor guidelines for each instrument and then normalized.  

These measurements are fed into an ensemble RF model using the hyperparameters described above.  Once the RF model is 

built, a Lasso regularization approach is used on the RF model to limit the effect of collinearity on the target variable.  Similar 

to a least-squares regression, collinear columns tend to deteriorate the accuracy of the output (Krishnamurthy et al., 2013, Yoo 

et al., 2014).  Once the RF model is built, it can be used to estimate zi for time periods that are not being used to train the 265 

model. In MATLAB, this is typically done using the predict function. 

The RF model is trained using sub-surface, surface, lidar and concurrent radiosonde zi data from 2016, 2017 and 2018.  

Hereon, these data are referred to as training-input features.  A total of 3919 radiosonde zi measurements were used in the 

training process.  The 2019 sub-surface, surface and lidar data are referred to as future-input features and are used to provide 
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an independent dataset to evaluate the trained RF method.  From an operational perspective, missing input features are quite 270 

common.  The most common approach is to fill in (impute) the missing features (Hastie et al., 2008).  Surrogate data using a 

local median of the nearest 10 data points are used in the analysis (Hastie et al., 2008).  Other imputation algorithms such as 

k-nearest neighbour was also tested, and similar results were observed.  It is critical for the RF model to deal with missing 

values in its training phase.  In some cases, the added noise in the system can help improve the stability of the RF model.  But 

too much noise is also detrimental in the training process, and the imputed data may no longer be useful and can cause 275 

erroneous results.  The imputation process is done inherently during the RF bagging process.  The effect of data imputation on 

model performance was evaluated by training the RF model with and without data imputation.  Four different possibilities in 

evaluating the performance of the RF model with and without imputation are evaluated, as shown in Table 2 below.  In the 

case of no imputation (no missing data), only time periods when all features/parameters are available are used in the RF 

regression.  In the case of 50% missing data, approximately 50% of the time series data were missing (at random) due to say 280 

issues with data quality and surrogate data were used.  The choice of 50% was to mimic a worst-case real-world scenario based 

on experience, where either one or two instruments from the feature set of 20 odd variables have data quality issues.  Other 

combinations, such as no missing data used in the RF regression during training process and 50% future-input feature missing 

data and vice versa were evaluated. 

 285 

Table 2. Data imputation evaluation and performance on boundary layer heights for year 2019 

Case 

Training-Input 

Features 

Future-Input 

Features 

R2 

(%) 

RMSE 

(m) YRF = m XRS + C 

No Imputation No missing data No missing data 76.86% 324 YRF = 0.912 XRS + 211 

Future-Input 

Imputation No missing data 

50% missing data 

imputed 65.28% 366 YRF = 0.789 XRS + 288 

Training-Input 

Imputation 

50% missing data 

imputed No missing data 76.15% 328 YRF = 0.876 XRS + 258 

Training and 

Future-Input 

Imputation 

50% missing data 

imputed 

50% missing data 

imputed 66.50% 357 YRF = 0.792 XRS + 324 

 * RF – Random forest, RS – Radiosondes 

 

As can be seen from Table 2, data imputation overall reduces the accuracy of RF model performance.  Missing future-

input features seems to have the highest effect on the RF model zi estimates, regardless of training the model based on missing 290 

training-input features.  This could be due to several reasons, such as the median value does not represent the current state of 

the missing data, the same input features are not missing in both training and future input features as the combinations to test 

are near infinite (as the data in real-world can be missing in random as in the case above), etc.  Assessing the performance of 

the RF algorithm using data imputation creates an additional level of complexity when one of the features is missing for a 

given time step compared to others.  For example, if relative humidity feature is missing for a given time step and lidar 295 
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measurements are missing for another time step, the effect on the RF model output is not similar.  The RF model provides 

weights to each feature, and the impact on the RF model would be dependent on the calibration and ability of the imputation 

algorithm to estimate the missing value.  Since there are several possible scenarios here (as we have close to 20 odd features), 

and capturing all errors effectively would be a challenge, as each feature is not weighted equally in the model.  Therefore, in 

this analysis, the model is trained with no missing data, and no imputation is done on the data (either input or future features) 300 

to accurately test the efficacy of the RF model.  The authors would like to note that the results in Section 4 are in some sense 

optimistic due to the treatment of missing data, and the worst-case performance of such an algorithm must be thoroughly 

evaluated.  Future studies are planned to implement a better imputation model based on data from past trends for a given 

feature and to test RF model performance. 

RF models are generally site specific; initial tests (not shown) show the possibility to develop a generalized RF model to 305 

estimate zi for all sites around SGP (C1 and other satellite sites) with good accuracy under all atmospheric conditions.  A 

round-robin type analysis, where a model developed at a given site is tested at every other site and vice versa, would be a 

valuable exercise (Bodini and Optis, 2020). 

 

4 Performance of RF zi 310 

Boundary layer height predictions from the RF model and Tucker method were compared to radiosonde estimates. 

Mean absolute error (MAE) is defined as: 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑧𝑖𝑅𝑆 −  𝑧𝑖𝛾|𝑁

𝑖=1           (1) 

 315 

Where, ziRS is the boundary layer height estimated from the radiosondes (Liu and Liang, 2010), ziγ is the boundary 

layer height estimated from either the Tucker method or RF model.  The root mean square error (RMSE) is defined as  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑧𝑖𝑅𝑆 −  𝑧𝑖𝛾)

2𝑁
𝑖=1          (2) 

 320 

Similarly, the linear correlation coefficient (R) is defined as 

 

𝑅 =  
1

𝜎𝑅𝑆𝜎𝛾(𝑁−1)
∑ (𝑧𝑖𝑅𝑆  −  𝑧𝑅𝑆)(𝑧𝑖𝛾 −  𝑧𝛾)𝑁

𝑖=1         (3) 
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Where, 𝑧𝑅𝑆 and 𝑧𝛾 denote the mean of radiosonde and RF/Tucker method boundary layer heights, respectively, 𝜎𝑅𝑆 and 𝜎𝛾 325 

denote their standard deviations, and N denotes the number of samples. 

MAE and RMSE for the daytime atmospheric conditions from Tucker and RF methods are shown in Table 3.  Daytime 

is defined as the period when surface heat flux is positive (i.e., sunrise to sunset), clear sky is defined as time periods when no 

clouds are observed from the Doppler lidar (with an hourly cloud fraction less than 0.1) and cloudy conditions are defined as 

time periods when clouds below 5 km are observed from the Doppler lidar (with an hourly cloud fraction greater than 0.1).  It 330 

can be observed that the RF method shows considerable improvements compared to the Tucker method for all three categories.  

Improvements of 40-50% in MAE and RMSE are observed under various conditions.  The least improvement in RF zi estimates 

is observed during cloudy conditions, with a MAE improvement of 45% compared to the Tucker method.  Correlation 

coefficients are also observed to improve significantly during all daytime conditions. 

Due to the presence of a nocturnal low-level jet (LLJ) at SGP, all seasons, the radiosonde nighttime zi estimates are 335 

generally below the LLJ height and are well tracked by the RF model (see Section 4.1).  A comparison of nocturnal RF model 

zi estimates with other remote sensing devices that continuously monitor the boundary layer height needs to be conducted (e.g., 

Raman lidar) and is a part of future work. 

 
Table 3. Systematic mean absolute errors, root mean square error and correlation coefficient (R2) between RF, Tucker method, and 340 

radiosonde zi estimates in 2019. 

 

Nocturnal estimates of zi from radiosondes at SGP are much more uncertain (Sivaraman et al., 2013).  Regardless of 

the accuracy of the zi estimate from radiosondes, the ability of the RF model to predict the input data is evaluated.  

Consequently, the data were split into five atmospheric conditions: 1) daytime and clear sky (26%), 2) day and night clear sky 345 

(60%), 3) day and night cloudy (40%), 4) daytime only (53%), and 5) nighttime only (46%).  Although some cases overlap in 

the above situations, the idea was to evaluate the RF model performance reasonably during both daytime, nighttime, cloudy, 

and clear-sky condition combinations.  These five atmospheric conditions were chosen, because these are commonly observed 

atmospheric conditions at SGP and have been observed to have an impact on zi (e.g., variations in cloud base height varies zi).  

The associated correlation plots between RF zi estimates and corresponding radiosonde zi estimates are shown in Figure 5.  350 

Overall, the RF model zi estimates correlate well with radiosonde zi, with an R2 of greater than 0.85 during all the above 

conditions.  During clear sky conditions (including both daytime and nighttime), RF zi estimates show the highest correlation 

Observed 

atmospheric 

conditions 

MAE (m) RMSE (m) R2 

RF 

Tucker 

Method 

% 

Improvement RF 

Tucker 

Method 

% 

Improvement 

RF Tucker 

Method 

Daytime Only 167 311 46% 249 441 43% 0.845 0.545 

Daytime Clear 

sky 165 336 51% 235 479 51% 0.857 0.520 

Daytime 

Cloudy 141 255 45% 208 363 43% 0.878 0.725 
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of 0.88. Although the sample size varied for five categories, the correlation coefficients are overall high for the RF zi estimates 

(compared to Tucker method in Figure 3).  During the night, the zi values from the radiosondes are relatively constant, and the 

RF estimates are consistent with these values.  However, due to the small dynamic range of the nighttime zi values, the 355 

correlation between the radiosonde and RF methods is relatively poor (0.54).  Based on the slopes of the regression lines in 

Figure 5, the RF model tends to overestimate zi when it is small and slightly underestimate zi when it is large.  Possible reasons 

for this trend are under further investigation. 

Overall, a uniform improvement in zi can be obtained using RF techniques.  Reducing or increasing the training data 

had an impact on the RF model performance, but the increase in the magnitude of the correlation coefficient was negligible 360 

using at least two years of data.  In this analysis, three years of data were used for training the RF model. 

 

 
Figure 5: Correlations between RF PBL height and radiosonde PBL height for a) all data in 2019, b) daytime clear sky, c) clear sky 

daytime and nighttime, d) cloudy daytime and nighttime, e) daytime only, and f) nighttime only. 365 
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4.1 Time series, diurnal, and seasonal performance 

The RF model was trained using data from 2016 to 2018, and zi estimates for 2019 were estimated using the parameters listed 

in Table 1.  The temporal resolution of the RF model zi estimates is 15 minutes.  Figure 6 and Figure 7 show lidar zi estimates 

from the Tucker method, radiosondes and RF model on June 20 and June 22, 2019, respectively.  Cloud base height and 370 

vertical velocity variance profiles from Doppler lidar are also overlaid.  Due to an ongoing field campaign, the micropulse 

differential absorption lidar demonstration project, these days observed a higher frequency of radiosonde observations 

(Weckwerth et al., 2020).  It is clear that the RF model zi closely follows radiosonde zi estimates and the Tucker method 

underestimates zi as estimated from radiosondes.  Although, the Tucker method is observed to track the convective boundary 

layer height effectively, a bias is observed when compared to the radiosonde zi.  Optimizing the vertical velocity variance 375 

thresholds could potentially reduce the bias in certain conditions, but the bias is not uniform across all time periods (see Figure 

7).  Because aerosol concentration decreases with altitude, signal availability reduces as a function of height.  During peak 

convection, when the aerosol concentration above the boundary layer is minimal, lidar measurements sometimes do not reach 

the top of the boundary layer with sufficient SNR to be detected.  The lidar beam also attenuates considerably when it 

encounters clouds or fog due to increased atmospheric scattering or attenuation.  In Figure 6, it can also be seen that lack of 380 

aerosols limits the Doppler lidars’ ability to measure above the boundary layer height during peak convective periods.  During 

nighttime conditions, vertical velocity variance is low and is not effective in estimating zi.  In this study, the lowest range-gate 

is used as the stable boundary layer height from the lidar as a first guess.  As mentioned earlier, nocturnal conditions during 

summer months are dominated by southerly winds where in the nocturnal boundary layer is capped by a low-level jet 

(Krishnamurthy et al., 2020).  During these conditions, the RF model shows near constant zi which is observed to be well 385 

correlated with radiosonde zi (just below the LLJ height). 
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 390 

Figure 6: Boundary layer height estimates at the SGP central facility on June 20, 2019 from Tucker method (Tucker et al., 2009), 

RF model zi, radiosondes zi (Sivaraman et al., 2013), cloud base height estimates from lidar (Newsom et al., 2019), and the background 

colours represent vertical velocity variance measurements from Doppler lidar. 

 

In Figure 7, the effectiveness of the RF model can clearly be observed.  At 0300 hours and 0600 hours UTC, during 395 

stable nocturnal conditions, the RF model matches the radiosonde estimates very well.  At 0900 hours UTC, a possible 

nocturnal convection initiation event results in high vertical velocity variance for several hours (Reif et al., 2017). Convection 

initiation refers to the process in which an air parcel is successfully lifted to its level of free convection and produces a 

precipitating updraft (Markowski and Richardson, 2010).  The RF model is observed to detect that burst of convection and 

provide coherent boundary layer heights past 1200 UTC until daytime transition at ~1400 UTC.  The correlation between RF 400 

model and radiosonde zi estimates is very high.  Therefore, various atmospheric interaction effects are aptly characterized by 

the parameters in the RF model.  Hourly averaged zi and daily maximum zi averaged for each season in 2019 from Tucker 

method, RF model, and radiosondes are shown in Figure 8a.  Although, the number of samples between the radiosondes and 

RF model estimates are vastly different, the generic trend in the hourly and seasonal boundary layer height variability is well 

captured by the RF model.  Although the Tucker method captures the average boundary layer height trend, it shows a clear 405 

bias in convective boundary layer height estimates compared to radiosonde and RF model derived zi values.  As observed 

earlier from the time series analysis, a standard bias correction would not always improve zi estimates from the Tucker method.  

Daily daytime maximum zi estimates averaged over four seasons in 2019 from all three methods are shown in Figure 8b.  

Summer months (May through August) show high boundary layer heights.  During these months, the peak convective period 

occurs during the daytime at around 2000 hours UTC, and the average boundary layer height as observed from the RF model 410 

is ~2100 m above ground level, which correlates well with radiosondes released during the same time period.  During winter 

and fall months, the peak convective period does not always occur at 2000 hours UTC and therefore the maximum zi estimates 
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from radiosondes do not coincide with RF estimates.  The Tucker method invariably underestimates maximum zi during all 

seasons. 

 415 

 
Figure 7:  As in Fig. 6, but for June 22, 2019. 
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Figure 8:  a) Hourly averaged zi estimates at SGP central facility for 2019 from RF, Tucker method, and radiosondes.  Total number 420 

of samples (N) for each dataset is also shown in the legend. b) Daily daytime maximum zi estimates for four seasons (DJF, MAM, 

JJA, SON) from RF, radiosonde, and Tucker method.  The bars in both plots represent one standard deviation. 

 

4.2 Input Feature Importance 

All the input features within the RF model explain approximately 82% of the total variance in the data.  Table 4 425 

provides the unbiased predictor importance estimates, which is computed by permuting or shuffling a variable in the model 

and estimating its mean square error (Breiman, 2001).  If a predictor is significant in prediction, then permuting its values will 

affect the model error and vice versa.  However, if two input variables are highly correlated (as is expected when testing 
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atmospheric forcing), it is highly unlikely that the reported importance values will accurately represent each variable’s 

significance (Breiman, 2001).  Based on this analysis, the most important parameter is the initial zi guess from the Tucker 430 

method.  This provides a very good first guess to the RF model, especially during convective conditions.  Although the RF 

model is sensitive to the initial guess from the Tucker method, it is observed to be robust enough to ignore uneven spikes in zi 

estimates due to noise in the lidar vertical velocity variance data (Figure 7).  The second most important feature observed to 

have high correlation with zi estimate is the hour of the day.  A clear diurnal pattern in zi, i.e., higher values in the daytime and 

near constant values during the nighttime, estimates are observed at SGP.  Therefore, hour of the day can effectively classify 435 

the data, which is beneficial in the RF bagging process.  Relative humidity also shows higher importance (> 5%), where drier 

conditions are observed to have higher correlations with boundary layer height.  Deep convection and larger zi is generally a 

consequence of greater sensible heat flux and lower latent heat flux, which are primarily due to higher surface temperature and 

lower relative humidity.  Based on an evaluation of zi over Europe, it was also observed that relative humidity had a strong 

negative correlation with zi, and surface temperature had a positive correlation (Zhang et al., 2013).  Other features such as 440 

lidar attenuated backscatter, surface air temperature, Monin-Obukhov length, soil temperature, surface wind direction, and 

TKE all are observed to be important for accurately characterizing the boundary layer height at SGP.  Other surface features 

such as surface friction velocity, sensible heat flux, longwave radiation, etc., have lower correlations with zi within the RF 

model framework.  Therefore, the model can be reduced to the list of parameters defined in Table 4 for optimal estimation of 

the boundary layer height at SGP.   445 

 

Table 4: Key parameter/feature unbiased importance estimates during all conditions 

Parameters/Features % Importance 

Tucker method zi 58.67% 

Hour of the day 10.05% 

Surface Relative Humidity 6.82% 

Attenuated Backscatter 2.90% 

Surface Air Temperature 2.77% 

Monin-Obukhov Length 2.77% 

Soil Temperature 1.92% 

Surface Wind Direction 1.78% 

Turbulence Kinetic Energy 1.32% 

Others < 11% 

 

To assess the key features during nighttime, a similar RF model was built by conditionally sampling nighttime data.  

During nighttime, the key parameters that affect the RF model predictions are shown in Table 5.  It is interesting to note that 450 

the key features deemed important during nighttime are significantly different compared to all conditions, and the percent 

importance is more evenly distributed across many features.  This result alludes to the fact that nocturnal stable boundary 

layers are indeed complex to model and several processes are at play (Fernando and Weil, 2010).  Monin-Obukhov length is 
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observed to have the highest impact on the nighttime RF model estimates and is consistent with theory on stable boundary 

layers (Zilitinkevich, 1972, Zilitinkevich and Baklanov, 2002).  Although nighttime zi initial guesses are generally a constant 455 

(lowest lidar range-gate if no high vertical velocity variance is observed), the initial guess has shown to be effective in adjusting 

the RF model zi estimates.  Other local parameters such as soil temperature, surface air temperature, dew point temperature, 

longwave radiation and turbulence kinetic energy are observed to be correlated with nighttime zi estimates.  One of the stable 

boundary layer models by Brost and Wyngaard 1978 is given by: 

 460 

𝑧𝑖 = 0.4 (
𝑢∗𝐿

|𝑓|
)

1/2

               (4) 

 

Where 𝑢∗ is the friction velocity, L is the Monin-Obukhov length, and f is the Coriolis parameter.  As shown in Table 5, the 

nighttime parameters deemed important by the RF model include both Monin-Obukhov length and friction velocity.  As 

discussed earlier, the dominant feature of nocturnal boundary layer at SGP is the presence of the LLJ.  The turbulence 465 

production at SGP is not only influenced by surface characteristics but also heavily influenced by the presence of the LLJ.  A 

preliminary comparison with the above model to RF model zi estimates at SGP was very poor, as the radiosondes (from all 

three methods) invariably pick up the nocturnal LLJ at SGP as the height of the boundary layer.  Although the height of the 

nocturnal boundary layer height could be debatable at SGP, the premise of this paper is to show the effectiveness of the RF 

model in tracking and detecting the boundary layer height and the input boundary layer height provided to the model.  Further 470 

research needs to be conducted on providing widely acceptable nocturnal boundary layer height at SGP, and a trained RF 

model can provide continuous boundary layer height estimates even in nocturnal conditions with acceptable levels of accuracy. 

 

Table 5: Key parameter/feature unbiased importance estimates during nighttime conditions 

Parameters/Features % Importance 

Monin-Obukhov Length 19.12% 

Tucker Method zi 11.49% 

Soil Temperature 7.81% 

Surface Air Temperature 7.56% 

Dew Point Temperature 6.31% 

Longwave Radiation 6.24% 

Turbulence Kinetic Energy 5.21% 

Net radiation 4.72% 

Surface wind speed 4.28% 

Surface wind direction 3.76% 

Lidar Dissipation rate variance 3.54% 

Surface friction velocity 3.45% 

Cloud base height 3.40% 

Shortwave radiation 3.26% 
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Others < 10% 

 475 

The partial dependence of key features on zi during all conditions is shown in Figure 9.  Partial dependence estimates show the 

marginal effect of features on the predicted outcome of an ML model.  Therefore, a higher partial dependence estimate 

corresponds to higher sensitivity to the predicted outcome, in our case the boundary layer height and vice versa.  From Figure 

9, we see that RF model zi is sensitive to warmer soil temperatures, lower relative humidity conditions, daytime hours, higher 

zi from Tucker method, northerly wind directions, and stable atmospheric conditions.  Most of these conditions would mimic 480 

dry convective conditions, with increased turbulence activity within the boundary layer.  Monin-Obukhov length is observed 

to effectively categorize the training data into stable and unstable atmospheric conditions, with high partial dependence 

estimates during stable boundary layer conditions.  Similar relationships can be derived for other parameters.  It is important 

to note that the parameters shown to be important with respect to the RF model are features that successfully aid in the RF 

bagging process.  Santenello et al., 2007 and Tang et al., 2018 showed parameters such as soil moisture and evaporative flux 485 

to be key variables in warm seasons, in a 2-parameteric regression framework, to affect boundary layer properties.  Within the 

RF model, although those parameters are deemed important, soil temperature, lidar backscatter, and relative humidity were 

shown to have a higher impact on boundary layer height at each site.   

In this research, the input features into the RF model are standard atmospheric parameters (such as wind speed, 

temperature etc.).  An alternate approach to this effort would be to provide several non-dimensional inputs (such as Bulk 490 

Richardson number, Froud Number, etc) as inputs because they capture multiple dimensions of the data with a single variable 

(Vassallo et al., 2020).  Because non-dimensional scaling is a common approach in atmospheric fluid dynamics to detect 

patterns in the data, a similar approach would provide the RF model with various relations and be helpful in classifying the 

data better.  But further research needs to be conducted in defining the key nondimensional parameters that affect zi and is a 

part of future work. 495 
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Figure 9: RF partial dependence during all conditions from a) Tucker method zi, b) relative humidity c) hour of the day, d) Monin-

Obukhov Length, e) surface wind direction, and f) soil temperature to boundary layer height at the central facility.  High dependence 500 
shows more sensitivity of the RF model to the bin of feature values. 

 

5 Normalized vertical velocity variance profiles 

Within a convective boundary layer, vertical velocity variance profiles are often scaled by the convective velocity scale (w*), 

which is a function of zi (Lenschow et al., 1980) for analysis.  Therefore, any error in zi estimates can result in altering the 505 

vertical velocity variance profiles.  Herein, we attempt to estimate the effect of zi on normalized vertical velocity variance 

profiles and convective velocity estimates, often used to compare results in boundary-layer studies and in the functional 

relationships used in atmospheric models.  The convective velocity scale is given as 
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𝑤∗ =  [
𝑔𝑧𝑖𝑤′𝜃′̅̅ ̅̅ ̅̅ ̅

𝜃
]

1/3

           (5) 

 510 

where, g is the gravitational constant, 𝜃 is potential temperature, and 𝑤′𝜃′̅̅ ̅̅ ̅̅  is heat flux.  The heat flux is obtained from the 

surface Eddy Covariance system at SGP C1 (Cook 2016) and potential temperature is measured at 4-m.  An uncertainty in zi 

will cause a non-linear effect in the convective velocity scale estimates.  Assuming the uncertainty in zi can be given as 𝑧𝑖
′,  

and the mean is given as 𝑧�̅�.  The error caused in the convective velocity scale due to uncertainty in zi can be formulated as 

shown below: 515 

 

𝑤∗ =  [
𝑔(𝑧�̅�+ 𝑧𝑖

′)𝑤′𝜃′̅̅ ̅̅ ̅̅ ̅

𝜃
]

1/3

           (6) 

This can also be written as 

 

𝑤∗ =  [
𝑔𝑧�̅�𝑤′𝜃′̅̅ ̅̅ ̅̅ ̅

𝜃
]

1/3

(1 + 
𝑧𝑖

′

𝑧�̅�
)

1/3

          (7) 520 

 

Therefore, the convective velocity scale error due to uncertainty in zi can be estimated using the term  (1 + 𝑥 )1/3, where 𝑥 =

 
𝑧𝑖

′

𝑧�̅�
.  Based on observations at SGP C1, zi from Tucker method is observed to be negatively biased to radiosonde estimates.  The 

ratio, (
zi

′

zi̅
), is calculated using the median error between Tucker method and RF model zi by the median zi using the RF model.  

The ratio is calculated to be approximately -0.28 for data from 2016 to 2019.  This would result in an uncertainty of 525 

approximately 10% in the convective velocity estimates when Tucker method zi values are used in the calculations.  Although 

this is an average, during certain conditions (e.g., during transition time periods) the effect of poor characterization of zi can 

be even larger.  Figure 10 shows average vertical velocity variance profiles during convective time periods at SGP from 2015 

to 2019 using zi estimates from Tucker method and RF model.  Higher zi values result in lower scaled vertical velocity variance 

estimates.  Differences in variance profiles are observed to be smaller during daytime transition (1500 hours UTC or 0900 530 

hours local time), as the Tucker method generally provides reliable zi estimates.  While during peak convective conditions 

(2000 hours UTC) and evening transition (2300 hours UTC), as observed earlier, the Tucker method zi estimates tend to diverge 

from radiosonde zi depending on the scenario and are negatively biased.  Overall, the error introduced in the scaled vertical 

velocity variance profiles due to Tucker method zi are above 15%. 

As per definition, the turbulence at the top of the boundary layer is expected to be near zero, except during cloudy 535 

conditions.  As shown in Figure 10, during morning transition periods, when the lidar does measure above the boundary layer, 

the scaled vertical velocity variance profiles do converge to zero.  In contrast, during peak convective conditions the scaled 

profiles do not converge to zero and are observed to have an offset of generally around 0.1 at zi (also observed in Lareau et al., 
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2018).  This could be due to higher uncertainty in lidar vertical velocity variance estimates near zi, ineffective filtering of the 

lidar false alarm rates (Bouquet et al., 2016), uncertainty in surface in situ measurements, and the possibility of residual 540 

turbulence above the boundary layer during downdrafts/updrafts. 

 

 
Figure 10: Average normalized vertical velocity variance profiles during convection periods [1500 UTC to 2300 UTC (a-i)] at SGP 

from 2015 to 2019 versus non-dimensional height using Tucker method and RF model estimated zi.  Appropriate zi (RF model or 545 

Tucker method) was used in both X and Y axis scaling. 
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6 Case Study: Preliminary Model Comparisons 

We expect the RF model zi outputs to be developed into a VAP that will be easily accessible and can be used by 

researchers across the community.  Therefore, the motivation for this case study is to provide a preliminary comparison 550 

between model estimated zi and the RF model zi.  These types of comparisons will help understand the impact of boundary-

layer properties on model physics and guide further in improving parameterizations used to represent boundary-layer 

turbulence. 

The surface and sub-surface layer measurements are key for understanding land-atmosphere interactions.  Land–

atmosphere interactions drive Earth’s surface water and energy budgets.  They can alter clouds and precipitation around a 555 

region, affect the growth of the planetary boundary layer height, and influence the persistence of extremes such as droughts.  

In view to better understand land-atmosphere interactions, a field campaign, Holistic Interactions of Shallow Clouds, Aerosols 

and Land Ecosystems (HI-SCALE), was conducted at the SGP site in Oklahoma (Fast et al., 2019).  The field campaign was 

conducted from April to September of 2016, with two four-week intensive observational periods in May and September.  

Simulations were conducted on select clear sky days during the HI-SCALE filed campaign.  Two simulations using different 560 

modelling systems were performed: Energy Exascale Earth System Model (E3SM; Golaz et al., 2019) Atmosphere Model 

version 1 (EAMv1; Rasch et al. 2019), and a LES model.  The Weather Research Forecasting (Skamarock et al. 2008) LES is 

set up in the same way as that used in operational LASSO (Gustafson et al., 2017, 2020).  The Weather Research Forecasting 

model version used is v3.7.  The model horizontal domain is square, doubly periodic, and 25.6 km wide with a 100-m horizontal 

grid spacing.  The model top is set at 14.8 km above the surface.  There are 226 vertical levels with a vertical grid spacing of 565 

~30 m in the lowest 5 km. The model is run for 15 hours for each case day starting at 6 AM. The Rapid Radiation Transfer 

Model for Global Climate Models parameterization is used for shortwave and longwave radiation (Clough et al. 2005; Iacono 

et al. 2008; Mlawer et al. 1997). The Thompson parameterization is used for microphysics (Thompson et al. 2004; 2008). The 

Deardorff 1.5-order turbulent kinetic energy approach is used for subgrid-scale parameterization (Deardorff 1980). The model 

is initialized with ARM sounding from the SGP site (ARM user facility, 2001). The surface sensible and latent heat fluxes are 570 

horizontally uniform and prescribed from the ARM constrained variational analysis data product (ARM user facility, 2004). 

The large-scale forcing is also taken from the ARM variational analysis data product.  Due to high computational expense, the 

LES model was run for three days while EAMv1 model was run for the entire duration of the HISCALE campaign.  The 

EAMv1 model is run in the standard coarse-resolution configuration with ~ 1-degree horizontal grid spacing and 72 vertical 

levels and a physics timestep of 30 minutes and a cloud and turbulence timestep of 5 minutes.  In these models, zi was estimated 575 

using resolved vertical velocity variance estimates from the LES or the parameterized vertical velocity estimate from the Cloud 

Layers Unified by Binormals (CLUBB) boundary-layer parameterization applied in E3SM (Golaz et al., 2002; Larson and 

Golaz, 2005; Bogenshutz et al., 2013; Larson, 2017), and like the Tucker method a low threshold was used to estimate the 

depth of the convective boundary layer.  Estimates of boundary-layer height from E3SM and LASSO were not made during 

nocturnal conditions. The LASSO simulations extend only from approximately sunrise to sunset so nocturnal estimates of the 580 
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boundary-layer height are not possible. The E3SM simulations generally have too much nighttime turbulence, making 

estimates of the boundary-layer height unreliable at night. 

Figure 11 shows Doppler lidar vertical velocity variance measurements for three days during the HI-SCALE 

campaign (September 10 – 12, 2016) and boundary layer height estimates from RF model, radiosondes, LASSO, and E3SM.  

Because the RF model provides zi estimates at a much finer temporal resolution than radiosondes, these estimates are ideal for 585 

comparing with models and assessing areas where model performance can be improved.  Therefore, in this preliminary 

comparison, the primary motivation is to see if we can identify areas where the models diverge significantly by using near 

continuous accurate zi values from the RF model.  Due to computational expense, we could evaluate only three days of model 

results, but further research is needed in performing a thorough evaluation. 

September 10th was relatively calm with northerly winds and no clouds were observed during daytime.  September 590 

11 and 12 had southerly winds and clear sky conditions during both daytime and nighttime.  Daytime maximum surface air 

temperature is observed to increase progressively from September 10 to 12, and as mentioned earlier higher air temperature 

results in deeper planetary boundary layer due to increased convection (see Figure 11). 

Overall, the LES model compares better to RF estimates, while EAMv1 is observed to underestimate zi.  Due to the 

coarse resolution of EAMv1, ~ 100 km, zi estimates are averaged over a large domain and do not generally capture the fine 595 

scale variability.  Although the LES model is observed to pick up morning transition, it diverges from observations during 

evening transitional periods and does not capture the decay of turbulence accurately.  During peak convective conditions, when 

the vertical velocity variance is large, the LES is observed to correlate very well with the RF model and radiosonde zi.  Although 

EAMv1 is observed to mostly underestimate zi compared to RF model estimates, occasionally the model captures the peak 

convective trends.  Like the LES model zi, the EAMv1 also is not observed to capture evening decay of turbulence accurately 600 

but is observed to not track the early morning transition at SGP as well.  Such systematic differences between the model and 

data are crucial for targeting future research directions.  Further study is needed to evaluate the reasons why models tend to 

deviate during early morning and/or evening transition periods. 
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 605 
Figure 11: Vertical velocity variance (𝛔𝐰

𝟐 ) estimates from Doppler lidar for three days [September 10, 11, and 12, 2016] with zi 

estimates from a) RF model (red solid line), b) radiosondes (yellow circles), c) LASSO model (black dashed line), and d) E3SM model 

(green dashed line). 

 

6 Summary 610 

This study used a range of near surface, sub-surface and Doppler lidar parameters to predict boundary layer heights 

at the ARM SGP site using an RF model.  The RF model was trained using several years of data, and the model was validated 

with radiosonde estimates of boundary layer height.  Because the Tucker method is observed to be low biased during peak 

convective periods due to low SNR of the Doppler lidars as the boundary layer deepens, the RF model corrects for the bias.  

Seasonal and diurnal variations of zi as observed from radiosondes correlate well with RF model zi.  During convective 615 

boundary layer conditions, the mean absolute error of boundary layer height estimated by the RF model is reduced by almost 

50% compared to the Tucker method.  Significant improvement was also observed during clear sky, and cloudy conditions.  

Nocturnal estimates from the RF model were not well correlated with radiosonde measurements, mostly due to near constant 

estimates of nocturnal boundary layer height at SGP (due to the presence of the LLJ).  Moreover, valuable information on the 

impact of surface parameters on nocturnal zi estimates by the RF model provides avenues for further research in accurately 620 

estimating stable boundary layer heights at SGP.  The key variables that have shown to have the largest impact on the RF 

model predictions are the initial guess of the boundary layer height from the Tucker method, hour of day, surface relative 

humidity, soil temperature, and attenuated backscatter (aerosol loading).  During nocturnal conditions, several parameters, 

such as the Monin-Obukhov length, soil temperature, and surface air temperature influence the RF model estimates.  These 
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parameters are aligned with theoretical parameterization schemes used to estimate boundary layer heights.  The RF model used 625 

in this study explains around 82% of the variance in the data at SGP C1.   

Uncertainty in convective boundary layer heights results in more than 10% difference in convective velocity scale 

estimates when the Tucker method is used.  The uncertainty results in more than 15% error in scaled velocity variance 

estimates, which are commonly used in atmospheric models.  Limited comparison between microscale model zi estimates to 

RF model and radiosonde zi values show increased correlation during heightened land-air interaction events.  Large-eddy 630 

simulation estimates are observed to match the convective zi variability as estimated by the RF model while the global model 

performance is variable.  Neither models capture the evening transitional decay of turbulence accurately. 

There are a number of ways to expand on the research presented here. Future will could focus on improved data 

imputation models to better handle missing data, a RF model zi uncertainty framework using individual RF tree predictions, 

and finally a study of the effect of near-by wind farms and surface heterogeneity have on the boundary layer height. 635 

Appendix A 

The range availability of the ARM SGP C1 Doppler lidars used in this study is provided below.  Figure A1 shows the height 

range and data availability at SGP C1 for vertical stare scans and Figure A2 for processed VAD scans.  The lidar range is 

consistent across multiple years of operation.  The availability of data from the scanning Doppler lidars at SGP C1 is 

significantly reduced for altitudes greater 1 km (60% availability), which could limit its ability to reach the top of the boundary 640 

layer during all conditions. 

 
Figure A1: ARM SGP C1 Doppler lidar range availability versus range from vertical stares from 2016 to 2019 after SNR filtering 

(threshold of 1.008 dB). 

 645 
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Figure A2: ARM SGP C1 Doppler lidar wind speed profile range availability versus range using processed VAD scans from 2016 to 

2019 after SNR filtering (threshold of 1.008 dB). 

 

Appendix B 650 

The RF model develops several regression trees by regrouping the data based on several input features.  Figure A1 below 

shows one of the trees developed by the model used in this article.  The leaf nodes are the zi estimates from radiosondes and 

the split nodes represent the surface and lidar data shown in Table 1.  MATLAB built-in functions were used for the 

development of the RF model. 

 655 
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Figure B1: A sample regression tree developed by the RF model.  Zi is the Tucker method boundary layer height estimate, SNR is 

signal to noise ratio, NRAD is the normal radiation, RH is relative humidity, SWD is surface wind direction, Hour is hour of the 

day.  The black circles represent the split nodes and the cyan circles represent the leaf nodes developed for this regression tree (aka 660 

boundary layer height estimates from radiosondes). 

 

Acknowledgements 

The authors would like to acknowledge the support of Atmospheric Radiation Measurement (ARM) User Facility and the 

Atmospheric System Research (ASR) program for this research.  The authors thank the ARM staff, instrument mentors for 665 

providing processed data, and guidance on the data archive.  The authors also thank Dr. Duli Chand (PNNL), Dr. Joe Hardin 

(PNNL) and Dr. Christina Kumler (NOAA) for helpful discussions and comments on the manuscript. The Pacific Northwest 

National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. 

 

Data Availability 670 

All data used in this article are publicly available data on the ARM webpage. (https://adc.arm.gov/discovery/#/).  Appropriate 

labels and manual citations for all the data used are provided in the manuscript. 

 

Author Contribution 

RK and RN conceptualized the concept, RK, RN, and DDT were involved in the development of the algorithm, RK did the 675 

data processing and analysis of the RF algorithm, surface stations, lidar and radiosonde results, HX performed the large-eddy 

simulation runs, PM performed the E3SM runs, LB calculated the boundary layer height from model outputs, RK wrote the 

manuscript with contributions from all authors. 

 

https://adc.arm.gov/discovery/#/


32 

 

Competing interests 680 

The authors declare no competing interests. 

 

  



33 

 

References 

Ackerman, T.P., Cress, T.S., Ferrell, W.R., Mather, J.H. and Turner, D.D., 2016. The programmatic maturation of 685 

the ARM Program. Meteorological Monographs, 57, pp.3-1.  

Arruda-Moreira, G., Guerrero-Rascado, J.L., Benavent Oltra, J.A., Ortiz-Amezcua, P., Román, R., Bedoya-

Velásquez, A.E., Bravo-Aranda, J.A., Olmo Reyes, F.J., Landulfo, E., and Alados Arboledas, L., 2019. Analyzing the turbulent 

planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer. 

Atmospheric measurement techniques. 12(8), 4261–4276. 690 

Atmospheric Radiation Measurement (ARM) User Facility. 2001. Updated hourly. Balloon-Borne Sounding System 

(SONDEWNPN). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by E. Keeler, M. Ritsche, R. 

Coulter, J. Kyrouac, and D. Holdridge. ARM Data Center. doi:10.5439/1021460. 

Atmospheric Radiation Measurement (ARM) User Facility. 2004. Constrained Variational Analysis 

(60VARANARUC). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by C. Tao and S. Xie. ARM 695 

Data Center. doi:10.5439/1647300. 

Banakh, V. A., Smalikho, I. N., and Falits, A. V. 2021. Estimation of the height of the turbulent mixing layer from 

data of Doppler lidar measurements using conical scanning by a probe beam. Atmospheric Measurement Techniques, 14(2), 

1511-1524. 

Berg, L.K., Riihimaki, L.D., Qian, Y., Yan, H., and Huang, M. 2015. The low-level jet over the southern Great Plains 700 

determined from observations and reanalyses and its impact on moisture transport. Journal of Climate, 28(17), pp.6682-6706. 

Berg, L.K., Newsom, R.K. and Turner, D.D. 2017. Year-long vertical velocity statistics derived from Doppler lidar 

data for the continental convective boundary layer. Journal of Applied Meteorology and Climatology, 56(9), pp.2441-2454.  

Bianco, L., and Wilczak, J. M. 2002. Convective boundary layer depth: Improved measurement by Doppler radar 

wind profiler using fuzzy logic methods. Journal of Atmospheric and Oceanic Technology, 19(11), 1745-1758. 705 

Bodini, N. and Optis, M. 2020. The importance of round-robin validation when assessing machine-learning-based 

vertical extrapolation of wind speeds. Wind Energy Science, 5(2), pp.489-501. 

Bonin, T. A., Carroll, B. J., Hardesty, R. M., Brewer, W. A., Hajny, K., Salmon, O. E., and Shepson, P. B. 2018. 

Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach. Journal 

of Atmospheric and Oceanic Technology, 35(3), 473-490. 710 

Boquet, M., Royer, P., Cariou, J. P., Machta, M., & Valla, M. (2016). Simulation of Doppler lidar measurement range 

and data availability. Journal of Atmospheric and Oceanic Technology, 33(5), 977-987. 

Breiman, L. 2001. Random Forests. Machine Learning, 45 (1), pp. 5-32. 

Brooks, I.M. 2003. Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter 

profiles. Journal of Atmospheric and Oceanic Technology, 20(8), pp.1092-1105. 715 

Brost, R.A. and Wyngaard, J.C. 1978. A model study of the stably stratified planetary boundary layer. Journal of the 

Atmospheric Sciences, 35(8), pp.1427-1440. 

Cadeddu, M.P., D.D. Turner, and J.C. Liljegren. 2009. A neural network for real-time retrievals of PWV and LWP 

from Arctic millimeter-wave ground-based observations.  IEEE Trans. Geosci. Remote Sens., 47, 1887-1900. 

Campbell, J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D. Spinhirne, V.S. Scott, and I.H. Hwang. 2002. 720 

Full-time, eye-safe cloud and aerosol lidar observations at Atmospheric Radiation Measurement program sites: Instruments 

and data processing.  J. Atmos. Oceanic Technol., 19, 431-442. 

Champagne, F.H., Friehe, C.A., LaRue, J.C., and Wynagaard, J.C., 1977. Flux measurements, flux estimation 

techniques, and fine-scale turbulence measurements in the unstable surface layer over land. Journal of the atmospheric 

sciences, 34(3), pp.515-530. 725 



34 

 

Chen, Y., Zhang, S., Zhang, W., Peng, J. and Cai, Y. 2019. Multifactor spatio-temporal correlation model based on a 

combination of convolutional neural network and long short-term memory neural network for wind speed forecasting. Energy 

Conversion and Management, 185, pp.783-799. 

Clough, SA, MW Shephard, E Mlawer, JS Delamere, M Iacono, K Cady-Pereira, S Boukabara, and PD Brown. 2005. 

Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantative Spectroscopy and Radiative 730 

Transfer 91: 233–244. 

Cohn, S.A. and Angevine, W.M. 2000. Boundary layer height and entrainment zone thickness measured by lidars and 

wind-profiling radars. Journal of Applied Meteorology, 39(8), pp.1233-1247. 

Cook, D.R. 2018. Eddy correlation flux measurement system (ECOR) instrument handbook (No. DOE/SC-ARM-

TR-052). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 735 

Cook, D.R. 2018. Soil Temperature and Moisture Profile (STAMP) System Instrument Handbook (No. DOE/SC-

ARM-TR-186). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 

Cook, D.R., and Sullivan, R.C. 2019. Surface Energy Balance System (SEBS) Instrument Handbook (No. DOE/SC-

ARM-TR-092). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 

Deardorff, JW. 1980. Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer 740 

Meteorology 18: 495–527, doi:10.1007/Bf00119502. 

Emeis, S., Schäfer, K., and Münkel, C. 2008. Surface-based remote sensing of the mixing-layer height–a review. 

Meteorologische Zeitschrift, 17(5), pp.621-630. 

Fast, J.D., Berg, L.K., Alexander, L., Bell, D., D’Ambro, E., Hubbe, J., Kuang, C., Liu, J., Long, C., Matthews, A. , 

and Mei, F. 2019. Overview of the HI-SCALE field campaign: A new perspective on shallow convective clouds. Bulletin of 745 

the American Meteorological Society, 100(5), pp.821-840. 

Fernando, H.J.S. and Weil, J.C. 2010. Whither the stable boundary layer? A shift in the research agenda. Bulletin of 

the American Meteorological Society, 91(11), pp.1475-1484. 

Gagne II, D.J., Haupt, S.E., Nychka, D.W., and Thompson, G. 2019. Interpretable deep learning for spatial analysis 

of severe hailstorms. Monthly Weather Review, 147(8), pp.2827-2845, https://doi.org/10.1175/MWR-D-18-0316.1 750 

Golaz, J.C., Larson, V.E., and Cotton, W.R., 2002. A PDF-based model for boundary layer clouds. Part I: Method 

and model description. Journal of the atmospheric sciences, 59(24), pp.3540-3551. 

Grant, A.L.M. 1997. An observational study of the evening transition boundary‐layer. Quarterly Journal of the Royal 

Meteorological Society, 123(539), pp.657-677. 

Gustafson, WI, AM Vogelmann, X Cheng, S Endo, B Krishna, Z Li, T Toto, and H Xiao. 2017. 755 

“Recommendations for Implementation of the LASSO Workflow.” Ed. by R. Stafford, DOE Atmospheric Radiation 

Measurement Climate Research Facility. DOE/SC-ARM-17-031, doi:10.2172/1406259. 

Gustafson Jr, W.I., Vogelmann, A.M., Li, Z., Cheng, X., Dumas, K.K., Endo, S., Johnson, K.L., Krishna, B., Fairless, 

T., and Xiao, H. 2020. The Large-Eddy Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation 

and Observation (LASSO) Activity for Continental Shallow Convection. Bulletin of the American Meteorological 760 

Society, 101(4), pp. E462-E479. 

Han, C., Brdar, S., and Kollet, S. 2019. Response of Convective Boundary Layer and Shallow Cumulus to Soil 

Moisture Heterogeneity: A Large‐Eddy Simulation Study. Journal of advances in modeling earth systems, 11(12), pp.4305-

4322. 

Hastie, T., Tibshirani, R., and Friedman, J., 2009. The elements of statistical learning: data mining, inference, and 765 

prediction. Springer Science & Business Media. 

Heffter, J.L. 1980, January. Transport layer depth calculations. In Bulletin of the American Meteorological 

Society (Vol. 61, No. 1, pp. 97-97). 45 BEACON ST, BOSTON, MA 02108-3693: AMER METEOROLOGICAL SOC. 

https://doi.org/10.1175/MWR-D-18-0316.1


35 

 

Hennemuth, B. and Lammert, A., 2006. Determination of the atmospheric boundary layer height from radiosonde 

and lidar backscatter. Boundary-Layer Meteorology, 120(1), pp.181-200. 770 

Iacono, MJ, JS Delamere, EJ Mlawer, MW Shephard, SA Clough, and WD Collins. 2008. "Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative transfer models." Journal of Geophysical Research 113: D13103, 

doi:10.1029/2008jd009944. 

Karlsson, J., Svensson, G., Cardoso, S., Teixeira, J., and Paradise, S. 2010. Subtropical cloud-regime transitions: 

Boundary layer depth and cloud-top height evolution in models and observations. Journal of applied meteorology and 775 

climatology, 49(9), pp.1845-1858. 

Knuteson, R. O., and coauthors. 2004.  Atmospheric Emitted Radiance Interferometer.  Part II:  Instrument 

performance.  J. Atmos. Oceanic Technol., 21, 1777-1789 

Krishnamurthy, R., Choukulkar, A., Calhoun, R., Fine, J., Oliver, A., & Barr, K. S. (2013). Coherent Doppler lidar 

for wind farm characterization. Wind Energy, 16(2), 189-206. 780 

Krishnamurthy, R., Newsom, R. K., Chand, D., and Shaw, W.J. (2020). Boundary Layer Climatology at ARM 

Southern Great Plains, PNNL-, Richland, WA: Pacific Northwest National Laboratory. 

Lareau, N.P., Zhang, Y., and Klein, S.A. 2018. Observed boundary layer controls on shallow cumulus at the ARM 

Southern Great Plains site. Journal of the Atmospheric Sciences, 75(7), pp.2235-2255. 

Lareau, N.P. 2020. Subcloud and Cloud-Base Latent Heat Fluxes during Shallow Cumulus Convection. Journal of 785 

the Atmospheric Sciences, 77(3), 1081-1100. 

LeMone, M.A., Angevine, W.M., Bretherton, C.S., Chen, F., Dudhia, J., Fedorovich, E., Katsaros, K.B., Lenschow, 

D.H., Mahrt, L., Patton, E.G., and Sun, J. 2018. 100 years of progress in boundary layer meteorology. Meteorological 

Monographs, 59, pp.9-1. 

Lenschow, D.H., Wyngaard, J.C., and Pennell, W.T. 1980. Mean-field and second-moment budgets in a baroclinic, 790 

convective boundary layer. Journal of the Atmospheric Sciences, 37(6), pp.1313-1326. 

Lenschow, D.H., Wulfmeyer, V., and Senff, C., 2000. Measuring second-through fourth-order moments in noisy 

data. Journal of Atmospheric and Oceanic technology, 17(10), pp.1330-1347. 

Lenschow, D.H., Lothon, M., Mayor, S.D., Sullivan, P.P., and Canut, G., 2012. A comparison of higher-order vertical 

velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Boundary-795 

layer meteorology, 143(1), pp.107-123. 

Liu, S. and Liang, X.Z. 2010. Observed diurnal cycle climatology of planetary boundary layer height. Journal of 

Climate, 23(21), pp.5790-5809. 

Markowski, P. and Richardson, Y. 2010. Organization of isolated convection. Mesoscale meteorology in 

midlatitudes, pp.201-244. 800 

Mather, J.H. and Voyles, J.W. 2013. The ARM Climate Research Facility: A review of structure and 

capabilities. Bulletin of the American Meteorological Society, 94(3), pp.377-392. 

Mather J, H Goss, and R Jundt. 2018. 2017 Annual Report. Ed. by Rolanda Jundt, ARM Climate Research Facility. 

DOE/SC-ARM-17-038. 

McCord, R., and Voyles, J.W. 2016. The ARM data system and archive. The Atmospheric Radiation Measurement 805 

Program: The First 20 Years, Meteor. Monograph. Amer. Meteor. Soc. 57, 11.1-11.15. 

McGovern, A., Elmore, K.L., Gagne, D.J., Haupt, S.E., Karstens, C.D., Lagerquist, R., Smith, T., and Williams, J.K. 

2017. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bulletin of the American 

Meteorological Society, 98(10), pp.2073-2090. 

McNicholas, C. and Turner, D.D. 2014. Characterizing the convective boundary layer turbulence with a High Spectral 810 

Resolution Lidar. Journal of Geophysical Research: Atmospheres, 119(22), pp.12-910. 



36 

 

Mlawer, EJ, SJ Taubman, PD Brown, MJ Iacono, and SA Clough. 1997. "Radiative transfer for inhomogeneous 

atmospheres: RRTM, a validated correlated-k model for the longwave." Journal of Geophysical Research 102: 16663–16682, 

doi:10.1029/97jd00237. 

Newsom, R.K., Turner, D.D., Mielke, B., Clayton, M., Ferrare, R., and Sivaraman, C. 2009. Simultaneous analog and 815 

photon counting detection for Raman lidar. Applied optics, 48(20), pp.3903-3914. 

Newsom, R.K., Sivaraman, C., Shippert, T.R., and Riihimaki, L.D. 2019a. Doppler Lidar WIND Value-Added 

Product (No. DOE/SC-ARM/TR-148). DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United 

States). 

Newsom, R.K., Sivaraman, C., Shippert, T R., and Riihimaki, L.D. 2019b. Doppler Lidar Vertical Velocity Statistics 820 

Value-Added Product (No. DOE/SC-ARM/TR-149). DOE Office of Science Atmospheric Radiation Measurement (ARM) 

Program (United States). 

Newsom, R.K. and Krishnamurthy, R. 2020. Doppler lidar (DL) handbook (No. DOE/SC-ARM/TR-101). DOE 

Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 

Pearson, G., F. Davies, and C. Collier. 2009. An analysis of the performance of the UFAM pulsed Doppler lidar for 825 

observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240-250, doi:10.1175/2008JTECH1128.1 

Ramasamy, P., Chandel, S.S., and Yadav, A.K. 2015. Wind speed prediction in the mountainous region of India using 

an artificial neural network model. Renewable Energy, 80, pp.338-347. 

Rasch, P.J., Xie, S., Ma, P.L., Lin, W., Wang, H., Tang, Q., Burrows, S.M., Caldwell, P., Zhang, K., Easter, R.C., 

and Cameron‐Smith, P. 2019. An overview of the atmospheric component of the Energy Exascale Earth System Model. Journal 830 

of Advances in Modeling Earth Systems, 11(8), pp.2377-2411. 

Reif, D.W. and Bluestein, H.B. 2017. A 20-year climatology of nocturnal convection initiation over the central and 

southern Great Plains during the warm season. Monthly Weather Review, 145(5), pp.1615-1639. 

Ritsche, M. T., and Prell, J. 2011. ARM Surface Meteorology Systems (MET) Handbook, DOE/SC-ARM/TR-086. 

DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States). 835 

Santanello Jr, J.A., Friedl, M.A., and Kustas, W.P. 2005. An empirical investigation of convective planetary boundary 

layer evolution and its relationship with the land surface. Journal of Applied Meteorology, 44(6), pp.917-932. 

Santanello Jr, J.A., Friedl, M.A., and Ek, M.B. 2007. Convective planetary boundary layer interactions with the land 

surface at diurnal time scales: Diagnostics and feedbacks. Journal of Hydrometeorology, 8(5), pp.1082-1097. 

Schween, J. H., Hirsikko, A., Löhnert, U., and Crewell, S. 2014. Mixing-layer height retrieval with ceilometer and 840 

Doppler lidar: from case studies to long-term assessment. Atmospheric Measurement Techniques, 7(11), 3685-3704. 

Seibert, P., Beyrich, F., Gryning, S.E., Joffre, S., Rasmussen, A., and Tercier, P. 2000. Review and intercomparison 

of operational methods for the determination of the mixing height. Atmospheric environment, 34(7), pp.1001-1027. 

Sisterson, D.L, Peppler, R.A., Cress, T.S., Lamb, P.J., and Turner, D.D. 2016. The ARM Southern Great Plains (SGP) 

site. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monograph. Amer. Meteor. Soc. 57, 6.1-845 

6.14, DOI:10.1175/AMSMONOGRAPHS-D-16-0004.1 

Shukla, K. K., Phanikumar, D. V., Newsom, R. K., Kumar, K. N., Ratnam, M. V., Naja, M., and Singh, N. 2014. 

Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar. Journal of 

Atmospheric and Solar-Terrestrial Physics, 109, 48-53. 

Sivaraman, C., McFarlane, S., Chapman, E., Jensen, M., Toto, T., Liu, S., and Fischer, M. 2013. Planetary Boundary 850 

Layer (PBL) Height Value Added Product (VAP): Radiosonde Retrievals. Department of Energy Office of Science 

Atmospheric Radiation Measurement (ARM) Program (United States). 

Solheim, F., Godwin, J.R., Westwater, E.R., Han, Y., Keihm, S.J., Marsh, K., and Ware, R. 1998. Radiometric 

profiling of temperature, water vapor, and cloud liquid water using various inversion methods. Radio Sci., 33, 393-404 



37 

 

Sørensen, J.H., Rasmussen, A., Ellermann, T., and Lyck, E. 1998. Mesoscale influence on long-range transport—855 

evidence from ETEX modelling and observations. Atmospheric Environment, 32(24), pp.4207-4217. 

Sawyer, V. and Li, Z. 2013. Detection, variations and intercomparison of the planetary boundary layer depth from 

radiosonde, lidar and infrared spectrometer. Atmospheric Environment, 79, pp.518-528. 

Skamarock, WC, JB Klemp, J Dudhia, DO Gill, DM Barker, MG Duda, W Wang, and JG Powers. 2008. A description 

of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, National Center for Atmospheric 860 

Research, 113 pp. doi:10.5065/D68S4MVH. 

Summa, D., Di Girolamo, P., Stelitano, D., and Cacciani, M., 2013. Characterization of the planetary boundary layer 

height and structure by Raman lidar: comparison of different approaches. Atmospheric Measurement Techniques, 6(12). 

Sunny Lim, K.S., Riihimaki, L.D., Shi, Y., Flynn, D., Kleiss, J.M., Berg, L.K., Gustafson Jr, W.I., Zhang, Y., and 

Johnson, K.L. 2019. Long-term retrievals of cloud type and fair-weather shallow cumulus events at the ARM SGP site. Journal 865 

of Atmospheric and Oceanic Technology, 36(10), pp.2031-2043. 

Tang, Q., Xie, S., Zhang, Y., Phillips, T.J., Santanello, J.A., Cook, D.R., Riihimaki, L.D., and Gaustad, K.L. 2018. 

Heterogeneity in warm‐season land‐atmosphere coupling over the US Southern Great Plains. Journal of Geophysical Research: 

Atmospheres, 123(15), pp.7867-7882. 

Tang, S., Xie, S., Zhang, Y., and Cook, D.R. 2019. The QCECOR Value-Added Product: Quality-Controlled Eddy 870 

Correlation Flux Measurements (No. DOE/SC-ARM-TR-223). DOE Office of Science Atmospheric Radiation Measurement 

(ARM) Program (United States). 

Teixeira, J. and Cheinet, S. 2004. A simple mixing length formulation for the eddy-diffusivity parameterization of 

dry convection. Boundary-layer meteorology, 110(3), pp.435-453. 

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series 875 

B (Methodological), 58(1), pp.267-288. 

Thompson, G, RM Rasmussen, and K Manning, 2004. Explicit forecasts of winter precipitation using an improved 

bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review 132: 519–542. 

Thompson, G, PR Field, RM Rasmussen, and WD Hall. 2008. Explicit forecasts of winter precipitation using an 

improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review 136: 880 

5095–5115. 

Träumner, K., Kottmeier, C., Corsmeier, U., and Wieser, A. 2011. Convective boundary-layer entrainment: Short 

review and progress using Doppler lidar. Boundary-layer meteorology, 141(3), 369-391. 

Tucker, S.C., Senff, C.J., Weickmann, A.M., Brewer, W.A., Banta, R.M., Sandberg, S.P., Law, D.C., and Hardesty, 

R.M., 2009. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. Journal of Atmospheric 885 

and Oceanic Technology, 26(4), pp.673-688. 

Turner, D.D., Wulfmeyer, V., Berg, L.K., and Schween, J.H. 2014. Water vapor turbulence profiles in stationary 

continental convective mixed layers. Journal of Geophysical Research: Atmospheres, 119(19), pp.11-151. 

Turner, D.D., Goldsmith, J.E.M., and Ferrare, R.A. 2016. Development and applications of the ARM Raman lidar.  

The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monograph, 57, Amer. Meteor. Soc., 18.1-890 

18.15. 

Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, D. 2013. Evolution of planetary 

boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11(1), pp.34-40. 

Vakkari, V., O'Connor, E. J., Nisantzi, A., Mamouri, R. E., and Hadjimitsis, D. G. 2015. Low-level mixing height 

detection in coastal locations with a scanning Doppler lidar. Atmospheric Measurement Techniques, 8(4), 1875-1885. 895 

Vassallo, D., Krishnamurthy, R., and Fernando, H.J. 2020. Decreasing wind speed extrapolation error via domain-

specific feature extraction and selection. Wind Energy Science, 5(3), pp.959-975. 



38 

 

Vassallo, D., Krishnamurthy, R., & Fernando, H. J. (2021). Utilizing physics-based input features within a machine 

learning model to predict wind speed forecasting error. Wind Energy Science, 6(1), 295-309. 

von Engeln, A. and Teixeira, J. 2013. A planetary boundary layer height climatology derived from ECMWF reanalysis 900 

data. Journal of Climate, 26(17), pp.6575-6590. 

Weckworth, T.M., Spuler, S., and Turner, D.D. 2020. Micropulse Differential Absorption Lidar (MPD) Network 

Demonstration Field Campaign Report (No. DOE/SC-ARM-20-002). ARM Data Center, Oak Ridge National Laboratory 

(ORNL), Oak Ridge, TN (United States). 

Wharton, S. and Lundquist, J.K. 2012. Assessing atmospheric stability and its impacts on rotor‐disk wind 905 

characteristics at an onshore wind farm. Wind Energy, 15(4), 525-546. 

Wood, R. and Bretherton, C.S. 2004. Boundary layer depth, entrainment, and decoupling in the cloud-capped 

subtropical and tropical marine boundary layer. Journal of climate, 17(18), pp.3576-3588. 

Xie, SC, RT Cederwall, and MH Zhang. 2004. Developing long-term single-column model/cloud system-resolving 

model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. 910 

Journal of Geophysical Research 109: D01104. 

Yoo, W., Mayberry, R., Bae, S., Singh, K., He, Q. P., & Lillard Jr, J. W. (2014). A study of effects of multicollinearity 

in the multivariable analysis. International journal of applied science and technology, 4(5), 9. 

Zhang, Y., Seidel, D.J., and Zhang, S. 2013. Trends in planetary boundary layer height over Europe. Journal of 

climate, 26(24), pp.10071-10076. 915 

Zilitinkevich, S.S. 1972. On the determination of the height of the Ekman boundary layer. Boundary-Layer 

Meteorology, 3(2), pp.141-145. 

Zilitinkevich, S. and Baklanov, A. 2002. Calculation of the height of the stable boundary layer in practical 

applications. Boundary-Layer Meteorology, 105(3), pp.389-409. 


