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Abstract. Satellite aerosol products such as the Dark Target (DT) produced from the MODerate resolution Imaging 

Spectroradiometer (MODIS), are useful for monitoring the progress of air pollution. Unfortunately, the DT often fails to 

retrieve during the heaviest aerosol events as well as the more moderate events in winter. Some literatures attribute this lack 

of retrieval to cloud mask. However, we found this lack of retrieval is mainly traced to thresholds used for masking of inland 

water and snow. Modifications to these two masks greatly increase 50% of the retrievals of aerosol optical depth at 0.55 µm 15 

(AOD) greater than 1.0. The “extra” high AOD retrievals tend to be biased when compared with ground-based sunphotometer 

(AERONET). Reducing bias in new retrievals requires two additional steps. One is an update to the assumed aerosol optical 

properties (aerosol model) – the haze in this region is both less absorbing and lower in altitude than what is assumed in the 

global algorithm. The second is accounting for the scale height of the aerosol, specifically that the heavy aerosol events in the 

region are much closer to the surface than what is assumed by the global DT algorithm. The resulting combination of modified 20 

masking thresholds, new aerosol model, and lower aerosol layer scale height was applied to three months of MODIS 

observations (Jan-March 2013) over eastern China. After these two additional steps are implemented, the significant increase 

in new retrievals introduces no overall bias at high AOD regime but does degrade other overall validation statistics. We also 

find that the research algorithm is able to identify additional pollution events that AERONET instruments may not, due to 

different spatial sampling. Mean AOD retrieved from the research algorithm increases from 0.11 to 0.18 compared to values 25 

calculated from the operational DT algorithm during January to March of 2013 over the study area. But near Beijing where 

the severe pollution occurs, the new algorithm increases AOD by as much as 3.0 for each 0.5° grid box, over the previous 

operational algorithm values.  
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1 Introduction 30 

Because of rapid economic development and urbanization, eastern China, especially surrounding the Beijing area, has a large 

aerosol emission and complex aerosol composition. The resulting large aerosol loading creates serious air quality and public 

health problems (Zhang et al., 2012, Huang et al., 2014). Air quality issues in this region produce significant social economic 

impact due to the high density and continuous increase of the population and energy consumption. For example, Beijing alone 

had 12 million residents in 1998, with the number increasing rapidly to 21.51 million by the end of 2014 (Beijing Municipal 35 

Statistics Bureau). Studies show that the annual number of “haze days” over the North China Plain, defined as a day with a 

visibility < 3 km (QX/T 113‐2010), increased from 1980 and steeply increased since 2001 (Chen et al., 2015, Ding et al., 

2014). In January 2013, eastern China experienced their worst ever severe haze/fog event. This event was marked by extremely 

high level of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm), long duration (70% of the days in 

January exceeding the Chinese air quality standard of PM2.5 = 75 μg/m3), extended spatial coverage (~1.3 million km2), which 40 

affected ~800 million people (Renhe., 2014, Huang et al., 2014). During this episode, Beijing’s hourly PM2.5 exceeded 600 

μg/m3, which is nearly 60 times higher than the World Health Organization’s (WHO) ‘good’ standard (WHO, 2006). 

To try and mitigate this severe pollution, the Chinese government launched an air pollution control program in 1998. More 

drastic measures were taken during the 2008 Beijing Olympics (Chen et al., 2013) and also after the severe haze events of 

January 2013. Specifically, after the 2013 event, the Chinese State Council released the 5-year Clean Air Action Plan aiming 45 

to reduce annual PM2.5 to less than 60 μg/m3 by 2017 (Huang et al., 2014). To assess this achievement, the aerosol monitoring 

network was expanded quickly. While ground-based sites were added, there began a huge effort to utilize satellite aerosol 

products. 

Even though satellite aerosol products represent a total-column optical measurement (aerosol optical depth – AOD) and not 

the PM2.5 measurements required for air quality concerns, the birds-eye vantage of the satellite has been shown to be useful. 50 

The Dark Target (DT) aerosol products on the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard 

both Terra and Aqua satellites has become a popular dataset used in studies of Chinese aerosol (Christopher and Zhang, 2002; 

Li et al., 2004; Yu et al., 2004; Quaas et al., 2008; Zhang et al., 2012; Costantino et al., 2013; Luo et al., 2014; Bellouin et al., 

2020; ). However, the DT products miss aerosol retrievals over eastern China, especially during wintertime. Many studies have 

discussed this issue (Yan et al., 2016, Bilal et al., 2014, 2015, Wei et al., 2019, Li et al., 2012, Zhang et al., 2020, Chen et al., 55 

2017). Some attributed the problem of lack of retrieval to an overly aggressive cloud mask, which is not what we found in this 

study. Most of these studies tried to solve the missing data problem by using extra ancillary data or by developing a new 

algorithm (Yan et al., 2016, Li et al., 2012, Wei et al., 2019). Some of these methods are only applicable over a very small 

region, such as near the Beijing-Tianjing-Hebei area (Bilal et al., 2015). We mention these studies here, not as an endorsement, 

but only to point out that identification of the problem of missing retrievals in China has received wide-spread notice in the 60 

published literature. None of these methods can provide real time AOD, consistent with the DT products. Near real time data 

is critical in terms of air quality forecasting and policy making, and the desire to be consistent with the DT product ties local 



3 
 

characterization to a global standard. Due to the importance of satellite aerosol products for air quality and aerosol forecasting, 

our goal is to provide a more comprehensive near real time DT AOD map over China.  

The main problem with the current DT product for China is lack of retrievals. Even when the scene should be acceptable for 65 

an aerosol retrieval, the current operational algorithm fails to return a result. We will show in this paper why there are so many 

missing retrievals, and we will present a regionally specific research algorithm that remedies the problem. By bringing back 

these missing retrievals, new bias is introduced. We then fine tune the algorithm to reduce the bias. There are always trade-

offs in developing aerosol retrieval algorithms. In our case the priorities will be increased number of retrievals at high AOD 

and minimal overall bias against ground truth. However, to achieve these goals, root mean square error (RMSE) will increase. 70 

Thus, overall accuracy will be degraded, but product availability will increase, and no long-term biases will be introduced. 

The advantage of this regional research algorithm is that it is built within the structure of the DT algorithm so that 

implementation into the global operational system will be less onerous. However, implementation into the operational system 

is beyond the scope of this paper. In Section 2, we describe the data that will be used in this study, and in Section 3 we illustrate 

the problem with the current operational algorithm with two case studies. This is followed by a presentation of a new research 75 

algorithm for China that (a) increases retrieval coverage in the region and (b) makes other adjustments so that high accuracy 

can be maintained as coverage is increased (Section 4). The new research algorithm is validated in Section 5, and in Section 6 

we use the new algorithm to characterize an extreme pollution event. Section 7 summarizes and presents the conclusions. 

2 Description of Data Products 

2.1 MODIS Dark Target aerosol products and algorithm 80 

The MODIS Dark Target algorithm, based on a lookup table (LUT) method, uses three wavelengths from 0.47 to 2.1μm to 

retrieve aerosol properties over dark (vegetated and dark-soiled) land surfaces (Levy et al., 2007ab, 2013; Remer et al., 2020). 

The basics of the over-land algorithm are as follows: 1) consolidate higher spatial resolution (e.g. 500 meter and 1 km) 

calibrated reflectance and radiance observations (known as Level 1B ‘pixels’) into 10 km retrieval ‘boxes’. 2) apply various 

filters to remove (‘mask’) clouds, cloud shadows, snow and ice, inland water, and any pixels that represent conditions that are 85 

not suitable for retrieval (Remer et al., 2005). 3) assign the aerosol model (optical and physical properties) that are most likely 

representative of a given season and location, 4) assume reflectance properties of the surface using an empirically derived 

equation, 5) search the pre-calculated LUTs simulating the observations of different loadings of the assumed aerosol type, 6) 

report the total aerosol loading (AOD) that combined with the surface reflectance, provides the best match with the observed 

spectral reflectance, and finally 7) assign quality assurance and other diagnostics to the retrieval product. In a global sense, the 90 

generalized aerosol retrieval, along with strict quality assurance (e.g. QA confidence values = 3) has been shown to provide 

accurate retrievals and reasonable coverage over most conditions. For global retrievals over land, Expected Errors tend to be 

on the order of Δτ = ±(0.05 + 0.15τ).  
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Although generally appropriate on a global scale, the thresholds for filtering/masking in step 2 can be too weak or too strong 

for particular regions. If too strong, they will falsely mask out legitimate aerosol retrievals. For land surfaces with vegetation, 95 

there is a strong absorption of radiation in the shortwave infrared (SWIR) by liquid water, and therefore the land surface 

parameterization is based on the assumption that liquid water in the leaves of vegetation is correlated with the pigments in 

those leaves that absorb radiation in the visible (blue and red wavelengths) during photosynthesis. However, liquid water not 

in vegetative structures (such as inland water) will also absorb SWIR wavelengths, confuse the algorithm and therefore must 

be masked. While designed to monitor the health of green vegetation (Tucker, 1979), the Normalized Difference Vegetation 100 

Index (NDVI) can also be used to detect inland water. As defined as Eq. (1): 

	NDVI = 	 (ρ!.#$-ρ!.%%) (ρ!.#$ + ρ!.%%)
.   (1). 

where r is the reflectance at TOA at 0.87 (NIR) and 0.66 µm (Red) bands. 

The aerosol algorithm uses NDVI in an inverse fashion to exclude nonvegetative scenes that might have a thin layer of water 

on the surface, such as melting snow or swamps. Scenes with near very low values of NDVI (say < 0.1) include inland water, 105 

cloud edges, and arid regions such as deserts. Therefore, NDVI is an overall powerful tool that masks out many other conditions 

that are not optimal for applying the DT algorithm. The problem is that by increasing reflectance more in the red band than in 

the NIR band, heavy loadings of fine-dominated aerosol types (as are found in eastern China) can also depress the values of 

NDVI (Yang et al., 2020).  

Analogous to the NDVI, we can define a difference index for detecting snow. A Normalized Difference Snow Index (NDSI) 110 

is similar to the NDVI used for the inland water mask, but as described in Li et al. (2005) it is based on different wavelengths, 

given as Eq. (2)  

NDSI = 	 (ρ!.#$-ρ&.'() (ρ!.#$ + ρ&.'()
.   (2). 

where r is the reflectance at TOA at 0.87 (NIR) and 1.24 µm. This NDSI relies on the strong absorption and reflectance 

features of snow and ice, and in tandem with a brightness temperature threshold (e.g. 11 µm channel), is used to mask out 115 

snow/ice. The operational DT algorithm considers pixels with NDSI > 0.01 and 11 µm channel brightness temperature less 

than 285K to be snow, melting snow, or contaminated pixels near snow edges. Note that the temperature threshold is above 

the freezing level, which is a cautious approach to include regions where snow is in the process of melting and may be above 

freezing. 

Overall, both the inland water (NDVI) and snow/ice (NDSI + temperature) filters are designed to optimize the balance between 120 

accuracy and availability of aerosol retrievals, on a global basis, but may not be ideal for a specific region such as China, where 

light to heavy pollution conditions occur year-round and particularly during the winter season.  

The LUT used in the DT retrieval algorithm is calculated from prescribed aerosol models. The prescribed models depend on 

season and region, and are based on global categorizing of Aerosol Robotic Network (AERONET) inversion products 

(Dubovik and King, 2000) as described in Levy et al., (2007). In operation, the aerosol model assumed for most of China and 125 
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for most seasons is the ‘moderately absorbing’ model having single scattering albedo, ω0, at 0.55 μm, around 0.90. During the 

summer and fall along China’s coastal belt, as for a small region around Taiwan in all seasons, the ‘weakly-absorbing’ (ω0 ∼ 

0.95) model is used instead. These models were assigned to China for the version of the algorithm that went into production 

in 2005 (Collection 5), and while re-evaluated for Collection 6 that began in 2013, they were not adjusted. However, with the 

continued development of China’s industry and urbanization as well as their “clean air” movement after 2008, the aerosol 130 

composition may have changed significantly enough to warrant an update of aerosol model selection.  

In addition to the aerosol models being prescribed, the LUTs are calculated assuming a vertical profile for the aerosol. Except 

for coarse dust aerosol, all fine-dominated aerosol types (including the moderate and weakly absorbing types used for China), 

are assumed to have a scale height (H) of 2.0 km. In fact, pollution aerosol in China, especially during the winter months, tends 

to form under extremely stable conditions. Studies (Tang et al., 2015, Li et al., 2015, Luan et al., 2018; Liu et al., 2015) indicate 135 

that scale heights for the haze can be significantly less than 1.0 km, which due to multiply scattering interactions with the 

molecular atmosphere, lead to errors in the LUTs assumed to simulate satellite observations.  

The combination of less than ideal filtering for inland water and snow/ice, of changing aerosol composition in the last two 

decades, and wrong assumptions of aerosol scale height, lead to systematic errors in both coverage and accuracy over China.  

2.2 Other MODIS aerosol products 140 

DT is not the only algorithm that makes use of MODIS observations to derive aerosol properties. There are two additional 

AOD algorithms, known as “Deep Blue” (DB) and “Multi-Angle Implementation of Atmospheric Correction” (MAIAC) Since 

each algorithm uses different criteria for filtering and masking, makes different assumptions regarding aerosol optical 

properties and surface reflectance, and uses different techniques for fitting spectral observations, we can examine them and 

their products to inform possible solutions to the China retrievals outside of AERONET’s coverage.  145 

The DB algorithm, as its name indicates, uses observations in the “Deep Blue” or near-ultraviolet (NUV) part of the spectrum 

(~0.412 µm) in addition to observations in the visible blue (0.466 μm) and red wavelengths (Hsu et al., 2006). DB bands can 

capture the aerosol signals due to that carbonaceous aerosol types have strong absorption in shorter wavelengths and desert 

surfaces have weaker reflectance in these wavelengths. For MODIS, the DB product has the same spatial resolution (10 x 10 

km) as the DT product, and has reported uncertainties (for highest quality assurance) defined by Eq. (3): 150 

Δτ = ±([0.086 + 0.56𝜏)*] [1 𝜇!⁄ + 1 𝜇⁄ ]⁄ ) (3) 

where µ0 and µ are the cosine of the solar and view zenith angles, respectively (Sayer et al., 2013). For heavy smoke including 

pollution if very optically dense, DB developed a smoke detection scheme based on Lambertian equivalent reflectivity (Dave 

and Mateer, 1967) at 0.412 µm, 0.488 µm and 0.672 µm, as well as brightness temperature at 11 µm. Once the aerosol is 

classified as smoke, the cloud mask is relaxed to ensure good retrieval spatial coverage and the spatial variability threshold is 155 

also relaxed when assigned the data quality (Hsu et al., 2019).  
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The MAIAC algorithm, uses time series (up to 16 days) analysis to exploit multangular information of atmosphere and land 

surface in order to derive semi-empirical bidirectional reflectance functions of surface (Lyapustin et al., 2014, 2018). The 

algorithm utilizes the fact that the surface is more static than the atmosphere components such as clouds or aerosols during a 

short time span. With a more accurate description of surface characteristics, MAIAC has better ability to retrieve very optically 160 

thick aerosol plumes (Mhawish et al., 2019). However, data gaps still exist in cloud free region due to terrain or high surface 

albedo issues (Bi et al, 2019). MAIAC produces a product with the much finer spatial resolution of 1 km and has a reported 

bulk uncertainty of 66% of retrievals within ±0.05 ± 0.1𝐴𝑂𝐷 (Lyapustin et al., 2018). The MAIAC atmospheric product 

(MCD19A2) is not stored in a traditional format of MODIS granule (e.g. retrievals along the native swath), but uses the MODIS 

Sinusoidal grid instead (Stackpole, 1994). All granules are regraded into a 1 km sinusoidal map and the overpass time, based 165 

on the granule ID, is stored in the product. Although there are slight differences between the time stamp and the granule ID 

(personal communication with Dr. Yujie Wang), which becomes apparent when comparing the three MODIS aerosol products 

in case studies. The differences will not statistically affect the comparison in our region of interest. 

2.3 AERONET sun and sky aerosol products 

The AErosol RObotic NETwork (AERONET) is a global aerosol-monitoring network that is commonly used as a benchmark 170 

for validating satellite-retrieved AOD and to study the aerosol properties globally (Holben et al., 1998; Levy et al., 2013; 

Remer et al., 2005; Sayer et al., 2013; Zhang and Reid, 2006, Shi et al., 2011, 2013; Giles et al., 2019). AERONET provides 

two aerosol products. One measures aerosol attenuation through direct sun measurements, which provides spectral aerosol 

optical depth every 3 or 15 minutes (Holben et al., 1998). The most current version of this product is the version 3 product 

(Giles et al., 2019), which changes the cloud screening procedures from the older version and includes more AOD observations 175 

that are higher than 1.0 (Eck et al., 2018; Eck et al., 2019). This change is critical to evaluate satellite performance over regions 

with high AOD loading. The new version product also has better cirrus filters and more accurate quality control procedures. 

The uncertainty in AOD from version 3 remains the same as previous versions, which is ~0.01 in the visible and near-infrared 

and ~0.02 at ultraviolet (UV) wavelengths (Eck et al., 1999). 

In addition, AERONET instruments measure sky radiance and provide inversion products that contain aerosol microphysical 180 

and optical properties, such as particle size distribution, complex refractive index, and phase function (Dubovik and King, 

2000; Dubovik et al., 2002; 2006). The new version 3 inversion products contain both traditional almucantar mode sky 

measurements and the new hybrid mode sky measurements. The almucantar mode is a series of measurements of the sky with 

changing azimuthal angles from 0o to ± 180o and a fixed solar elevation angle (Holben et al., 1998). Almucantar mode can 

only measure aerosol properties when the solar zenith angle (SZA: the complement of the solar elevation angle) is greater than 185 

50°. That is when there is a sufficient range of scattering angles for high retrieval accuracy (Holben et al., 2006). This angle 

limitation is associated with the aerosol diurnal cycle, which means that there will be no aerosol properties derived during the 

middle of the day. The hybrid scan, which changes in both azimuthal and zenith angle directions simultaneously, can provide 

robust retrievals for measurements up to 25° SZA (Sinyuk et al., 2020). Because the hybrid scan is only available with the new 
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CIMEL Model-T, the availability of hybrid measurements is limited, as compared with almucantar measurements. In our study, 190 

there are three sites that provide the hybrid scan: Beijing-CAMS, Beijing_PKU, and Yanqihu. 

 

During this process, we used all available version 3 level 2 AOD and inversion products over China following QA procedures 

and recommendations found in Holben et al., (2006) to acquire a new aerosol model for the Beijing region as well as using 

AERONET data for validation purposes. 195 

3. Case studies of high and low aerosol loading scenarios over the Beijing area 

While the DT algorithm has been a proven success as a global product, there continue to be regions where the algorithm under 

performs, and one of those regions is China. Many studies find that the algorithm frequently fails to retrieve in situations. But 

we find there is no physical reason to prevent retrieval. These situations occur both in high and low AOD situations. We present 

two case studies to illustrate the problem. 200 

3.1 An intense high AOD pollution event on October 9th 2013 

Figure 1 illustrates a heavily polluted condition over East Asia, which is common over this region. Figure 1a is the MODIS 

‘true-color’ reflectance image from 25° to 45° latitude and 105° to 145° longitude. Significant pollution aerosol plumes, 

appearing gray, cover Beijing (latitude 39.9oN longitude 116.4o E) and its surrounding regions and extend towards the 

southwest all the way to the edge of the image. Clear patterns of variation in pollution can be found within the plume. Figure 205 

1b is the MODIS DT AOD for all available retrievals, including retrievals meant for only qualitative imagery (QA = 0 to 3). 

The AOD gradually increases from very low loading outside of the plume to close to 1.0 at the edge of the pollution. However, 

there is no AOD retrieved at the thickest part of the plume. Two nearby AERONET sites, Xianghe and Beijing reported AOD 

at 0.5 μm from 2 to 3 and above 3, respectively. Figure 1c shows the MODIS DB AOD for all available DB retrievals (QA = 

0 to 3). DB has retrieved similar AOD as compared with the DT product but has filled the DT data gap with mostly AOD of 210 

3.0. This is the upper boundary for AOD in the DB retrieval as the AOD within the thickest part of the plume has very limited 

dynamic range and does not reflect the variation of AOD that is shown in Figure 1a. Figure 1d shows the all available MODIS 

MAIAC AOD. MAIAC product shows 1km resolution AOD and the majority of the region reports AOD around 1.5 to 2.0, 

which is lower than what DB reports. Over two small regions, AOD reaches 3.0 and above. We also checked the OMI UV AI, 

which showed that the pollution plume was not very absorbing in the UV part of the spectrum. Figure 1 demonstrates that all 215 

of the MODIS retrieval algorithms have trouble detecting and/or retrieving the heavy pollution. However, they appear to fail 

for different reasons. 

A natural hypothesis is that the aerosol retrieval fails because it confuses a heavy aerosol plume with a cloud like many studies 

suggested (Mhawish et al., 2019, Bi et al., 2019, Tao et al., 2015, Yan et al., 2016, ). The DT algorithm, however, provides 

both a cloud fraction estimate as well as a quality assurance cascade to help determine the point in which the retrieval fails. 220 

Near the center of the plume where the pollution is heaviest (Figure 1d), the cloud fraction in the MODIS DT aerosol product 
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is almost 0, which indicates that an overly aggressive cloud masking is not the major reason these aerosols are not retrieved. 

Instead, it is the NDVI map (Figure 1e) which explains why the retrieval fails. Here the NDVI values are less than 0.1 which 

used for inland water mask, denoted by the dark blue to purple at where the thickest pollution occurs. These values are below 

the threshold of the inland water mask, which triggers the mask in operational procedures and prohibits retrieval there. This 225 

case study illustrates the problem of not being able to retrieve AOD over high optical depth pollution scenarios and its impact.  

3.2 A low AOD pollution event on December 13th 2018 

In addition to not retrieving high aerosol loading, it is also common for DT to miss moderate to low AOD cases during winter. 

Figure 2 shows a typical moderate aerosol loading day (e.g AOD < 0.5) over East Asia on December 13th 2018. Figure 2a to 

2c are similar to those from Figure 1a to 1c, except this time DB only shows the best quality AOD (QA = 3). The reason that 230 

we show only the best quality DB AOD here is that there are sporadic very high AODs scattered in the lower part of the 

granule, which is clearly contaminated AOD by clouds or other artifacts. Figure 2d and 2f are NDSI value and the brightness 

temperature of 11 μm, respectively. Both are used in the DT algorithm for masking out snow. Figure 2a shows a thick cloud 

deck covering the lower part of the granule, aerosol loading is low to moderate over East Asia, which is sufficiently diffuse to 

allow characterization of the surface cover. There are a couple tiny spots with visual evidence of snow or frozen ponds in 235 

eastern China, marked using arrows (yellow or red depending on the background image colors), as well as at the top of the 

image. From NASA Worldview (https://worldview.earthdata.nasa.gov) we can see that two days before the case study, a 

snowstorm passed over the North China Plain, leaving snow on the ground that could be seen also on the day before the case 

study. The sequence of events suggests strongly that the day of the case study would continue to have patches of snow left on 

the ground, even if the snow patches were not explicitly discernible at MODIS resolution. The ground temperature on this day 240 

is above freezing but not too high, thus the snow melting is not very rapid. The nearby AERONET site Xuzhou-CUMT reported 

AOD at 0.5 μm of 0.3 to 0.6. Figure 2b shows that aerosol loading over this region is around 0.2 to 0.4 over land. Higher AOD, 

around 0.7, is retrieved over the coastal ocean; however, AOD above the adjacent land is not retrieved. Figure 2c and 2d show 

that the MODIS DB and MAIAC algorithm retrieved AOD over most of eastern China. However, the two products are not 

agreeing with each other in data coverage and AOD magnitude over some regions and there is still missing data coverage from 245 

both products. Note that the visually identified snow patches are all removed from both products.  

We checked cloud and inland water masks, and these filters are not masking the pollution plumes in the DT product in this 

winter case study. Figure 2e shows the snow mask NDSI, the white colour is when NDSI > 0.2, which is mostly snow overland 

or water surfaces. The algorithm uses NDSI > 0.01 (purple colour) as the threshold, combined with temperature, to mask out 

snow. The snow features show in white at center, but the snow edges are a combination of noisy colour pixels from red to blue. 250 

Essentially any non-black colour in Fig. 2e will be masked out, given that the corresponding temperature is sufficiently cold. 

Note the relatively high values of NDSI where the arrows (red or yellow depends on the background) point to a snow feature, 

as defined by visual inspection in Figure 2a. The problem arises in the large area identified as snow by the mask (within the 

yellow circle) that is not confirmed from visual inspection in Figure 2a. This large area of misidentified snow differs from the 
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identified snow features in that the NDSI ranges between 0.01 and 0.10, with no spatial connectivity to very snowy surfaces 255 

with NDSI > 0.10. Also, the region in the yellow circle is about 4 degrees warmer than the identified snow features that connect 

to the major snow fields. The yellow circle temperature is about 277 K, while the identified features are closer to 273 K (Figure 

2f). Figure 2 illustrates how the snow mask can falsely mask out moderate to low aerosol loading over winter in China. This 

is a major reason that DT misses large areas of retrievals over this region during this season. 

4 Research algorithm for eastern China and a new regional aerosol model 260 

4.1 Increasing data coverage by the DT algorithm in China 

Based on the case studies, we targeted two major causes of missing aerosol retrievals over winter-time China: inland water 

mask and snow mask. We then developed a method that can “rescue” the missing retrievals by altering these masks. Previous 

studies had shown that when NDVI values are between -0.02 to 0.1, the observed scenes can be coastal areas, surface with 

standing water, arid/desert surfaces, aerosols near cloud edges, and optically thick aerosol plumes (Shi 2018). While we do 265 

not want to lose thick aerosol plumes, some of these situations are undesirable for an aerosol retrieval, and we use the NDVI 

test to mask those scenes. Thus, simply relaxing the NDVI threshold to below 0.1 will likely cause artifacts in retrieved AOD. 

We need another means to separate desirable from undesirable surface features other than a conservative threshold of NDVI. 

Reflectance at 2.13 μm is less affected by aerosol and strongly absorbed by water. According to this character, Yang et al., 

2020 modify the inland water mask method for the haze conditions by simply adding additional filter ρ2.13<0.08 but remaining 270 

the NDVI threshold unchanged. The haze aerosol has been successfully retrieved from a MODIS-like sensor MERSI (Medium 

Resolution Spectral Imager) onboard Chinese Fengyun-3D satellite.  

The goal of this paper then is to develop new masking procedures also targeting coastal and semi-arid surfaces, and then relax 

the NDVI thresholds. We start with reflectance at 2.13 μm and NDVIswir which use the reflectance at TOA at 1.24 and 2.13 

µm as shown in Eq. (4).  275 

	NDVI+,-. =	
(ρ&.'(-ρ'.&/)

(ρ&.'( + ρ'.&/)
.  (4). 

A pixel was determined to be inland water when conditions in Eq. (5) are met:  

When 𝑁𝐷𝑉𝐼 < 	−0.02 

or  

when −0.02 < 	𝑁𝐷𝑉𝐼 < 0.1: 280 

 ρ'.&/ < 	0.08 or ρ'.&/ > 	0.25 or	𝑁𝐷𝑉𝐼0123 < 0.1   5). 

where r is the reflectance at TOA at 1.24 and 2.13 µm. Empirical investigation determined that NDVI < -0.02 is absolute 

water, when NDVI between -0.02 and 0.1, ρ'.&/ < 	0.08 identifies undesirable coastal regions (Yang et al., 2020), and ρ'.&/ >

	0.25 or NDVIswir < 0.1 identifies semi-arid areas. Pixels within the -0.02 to 0.1 NDVI range, and not caught by these additional 

filters, are likely due to heavy aerosol loading and should be retained for retrieval.  285 
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Snow mask was modified as well to ensure low to moderate aerosol loading can be retrieved. From the case study in Section 

3.2 we know that NDSI cannot be modified due to snow edge scenes; however, we can relax the BT11 from 285 K to 278 K to 

exclude false snow detections when NDSI > 0.01. Again, the surprisingly warm temperature threshold was previously chosen 

to filter out tropical high-altitude snow. To avoid artifacts when temperature is relatively warm and NDSI is very high we 

exclude pixels with NDSI > 0.2 and BT11 < 285 K. We tested this change based on Li et al., (2005) and over global mid to 290 

high latitudes and the results suggest that we can apply this new temperature threshold outside of our study region. 

4.2 Maintaining accuracy for high AOD retrievals 

4.2.1 Research algorithm regional aerosol model 

These modifications of the inland water and snow masks will increase the data coverage of the DT aerosol retrievals in both 

thick and thin pollution during winter over East China. There is a potential for a large number of new retrievals, especially at 295 

the high AOD end. Because poor assumptions in aerosol optical models are amplified in higher aerosol loading situations, we 

expect that adding new high AOD retrievals will damage the overall accuracy of the product, even if no artifacts are introduced 

by the change in masking. As we mentioned in Section 2.1, over eastern China, the predetermined regional aerosol models are 

either moderate absorbing or non-absorbing depending on the region and season (Levy et al., 2007a). These analyses were 

done more than ten years ago. Now that we may be introducing many additional high AOD retrievals, it is important to revisit 300 

the aerosol model choice for our study region (Ichoku et al., 2003), especially since the aerosol environment is undergoing 

rapid change and there are expanded data sets available to inform the analyses. We develop a local aerosol model by using 

AERONET (version3, level 2) derived size distribution and complex refractive index from 24 sites, grouped into three clusters 

and then separated into summer and winter season. See Figure 3. The grouping into geographical clusters fails to identify 

sufficient reason to produce individual subarea aerosol models.  Instead, in the end we will group all three clusters into one to 305 

construct a “regional” aerosol model, applicable to all of eastern China.  

Figure 4 shows three volume size distributions of 22 particle radii sorted as a function of AOD0.675 into bins of 0-0.2, 0.2-0.4, 

0.4-0.7, 0.7-1.0, 1.0-1.5, 1.5-2.0, 2.0-3.0, and above 3.0 with the mean of each bin plotted. Figure 4 includes all seasons. Most 

bins have hundreds to thousands of data points. There is a systematic relationship between particle size distribution and AOD, 

with fine particle median effective radius (rv) increasing with increasing AOD0.675. This relationship appears in all three clusters 310 

when ignoring the last AOD bin, which Figure 4b and c only have 15 and 1 data points within these two last bins. The size 

distribution from Figure 4a and 4b are very similar, especially over the fine mode aerosol regime. The fine mode size 

distribution of cluster 3 is slightly larger than the other clusters, probably because cluster 3 is warmer and more humid, which 

leads to larger particle from swelling effects. Note that there is only one data points in cluster 3 within the highest AOD bin.  

There are more coarse mode particles in cluster 1 than cluster 2, which could be due to more dust particles in springtime, or 315 

coagulation of soot particles in winter from public heating over the northern part of China. None of the differences between 

clusters is sufficiently robust to require maintaining separate aerosol models for the research algorithm. To further investigate 
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differences in the aerosol model between winter and summer, we plotted volume size distributions from April to September 

(summer) and from October to March (winter) over cluster 1 (Figure 5). Figure 5 shows that there is not much difference 

between the two time periods. The fine mode size distribution is slightly skewed to the right in Figure 5a than that from the 320 

Figure 5b, but this is hardly perceptible. As for coarse mode, Figure 5a has a slightly different shape with a barely noticeable 

larger amount of coarse mode than Figure 5b, perhaps due to transported dust in spring. Note that although in Fig 5b the size 

distribution of AOD > 3 (black line) is higher than Fig. 5a over coarse mode region, we refrain from drawing sweeping 

conclusions about the size distribution of these very heavy aerosol events because the number of data points in this AOD bin 

are 5 to 10 times smaller than the rest of the AOD bins. Based on the analysis of these plots, we decided to use one averaged 325 

size distribution to represent the bimodal pollution aerosol model over northern to eastern China, summer and winter. Note 

that this fine-dominated pollution model will include the coarse mode, as seen in Figures 4 and 5. During the retrieval, it will 

be mixed with another bimodal model representing an aerosol dominated by dust (Levy et al. 2007a, b).  

Figure 6 shows the spectral dependence of the real and imaginary parts of the refractive index for all inversions and sorted as 

a function of AOD0.675. Because the AERONET inversion does not report a complex refractive for each inverted size 330 

distribution, to increase the sample size in each AOD bin, we only use 3 AOD bins (0.4-1.0, 1.0-2.0, 2.0-4.0). Based on the 

AERONET teams’ recommendation, only AERONET refractive index values, with corresponding AOD0.44 larger than 0.4 are 

used to generate the model (Holben et al., 2006). Figure 6 shows, there is no systematic relationship between the real part of 

the refractive index and AOD in this data set. The variability in each AOD bin exceeds the differences between the bins. There 

is a slight separation between low AOD bin vs. high AOD bin in the imaginary part of the refractive index. Thus, we use a 335 

single mean value for the real part of the refractive index and a parametric equation based on AOD for the imaginary part of 

the refractive index in our regional aerosol model. The real part of refractive index is interpolated to 0.55 μm linearly, while 

the imaginary part of the refractive index is interpolated using logarithms from 0.44 μm and 0.675 μm (Lee et al., 2017). 

Table 1 shows the comparison between the fine modes of the operational models that are used over the China region and the 

newly generated aerosol model. The coarse modes remain the same as the operational models (Levy et al., 2007b). The 340 

calculated natural logarithm of the standard deviation of the radius (s) and the volume of particles per cross section of the 

atmospheric column (V0) don’t change much from the operational non-absorbing model. And our sensitivity studies show that 

changes in these two parameters are not the major factors in changing the output AOD. Thus, these two parameters remain the 

same. The new modal radius is very similar to what has been used operationally over part of coastal China during Fall and 

Spring seasons, namely the “non-absorbing model” in Table 1. However, we are extending the same size distribution to a 345 

larger area of China over winter. The differences in the imaginary part of the refractive index show that when compared with 

the non-absorbing model, the new model is slightly more absorbing in the low AOD range but less absorbing when AOD > 

~2. When compared with the operational moderate absorbing model, the regional model is more absorbing when AOD < 0.5 

but are less absorbing when AOD is greater than this value. Overall, the new aerosol model is in between the operational non-

absorbing aerosol model and moderate absorbing model when aerosol loading is moderate. Also notice that the moderate 350 

absorbing aerosol model shows increased absorption with increasing AOD, which is opposite to the non-absorbing model as 
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well as to the regional model. This indicates that with increase of aerosol loading, the absorption decreases in this region. 

These differences, especially due to the differences in absorption can introduce a retrieval bias in AOD on the order of one.  
Table 1: Optical properties of the aerosol model used by the operational DT algorithm over China and the regional model 
generated in this study using AERONET inversion products. Real and imaginary refractive index is a spectrally dependent 355 
quantity. Values in this table are for 0.55 µm. 
 

Model rv, µm s V0, µm3/µm2 
Real part of 
Refractive 

Index 

Imaginary part of 
Refractive Index 

Non-
absorbing 0.043t + 0.160 0.1529t + 

0.364 0.1718t0.821 1.42 0.0015t-0.007 

Moderate 
absorbing 0.020t + 0.145 0.1365t + 

0.374 0.1642t0.775 1.43 -0.002t-0.008 

Regional 0.046t + 0.11 0.1529t + 
0.364 0.1718t0.821 1.49 0.0033t-0.011 

 

4.2.2 Aerosol layer scale height 

Other than creating a new model, we also adjusted the aerosol layer height assumption when generating the LUT. In the 360 

operational algorithm, the LUT is calculated using an aerosol layer scale height of 2.0 km. Over China, when high loading of 

pollution accumulates there is usually a high-pressure synoptic system, which suppress the aerosol layer vertical height (Zhao 

et al., 2013). Many field measurements reported the planetary boundary layer height during pollution episodes near the Beijing 

area to be only 800-1000 meters (Tang et al., 2015, Li et al., 2015, Luan et al., 2018). A 4-year climatology of CALIOP aerosol 

layer height over wintertime China is also around 1.0 -1.3 km over northeastern China (Liu et al., 2015). Thus, the scale height 365 

of the pollution layer in China is set to be around 0.5 km, which means that 80% of the aerosols are within 1 km of the surface. 

This new assumed height is much lower than the operational value of 2 km, but we know that heavily polluted conditions 

increase the atmosphere stability and reduce the boundary layer height (Petäjä et al., 2016, Miao et al., 2017). 

The DT algorithm has never changed aerosol scale height in the two decades of its operational history. The value is hard-wired 

into the LUT calculation, as are other assumptions such as particle size distribution, refractive indices and shape. Unlike aerosol 370 

retrieval algorithms that make use of measurements in the UV part of the spectrum (Torres et al., 2012), the DT algorithm 

relies only on visible and SWIR wavelengths, which are less sensitive to variations in scale height than the UV-dependent 

algorithms. Besides, aerosol layer height is variable on short temporal and spatial scales, making adjustments to the global 

constant value difficult to implement operationally. However, differences in aerosol layer height can impact retrieved AOD 

especially for more absorbing aerosols. Figure 7 illustrates of how much change to expect in AOD if aerosol scale height 375 

changes from 2 km to 0.5 km using the moderate absorbing model. The blue and red curves denote the calculated reflectance 

at TOA for a range of AODs, with blue representing aerosol at 0.5 km scale height and red for 2.0 km scale height. For a 

measured reflectance of 0.3, the AOD for the 0.5 km scale height would be 2.5, while for the 2.0 km scale height it would be 

3.0. For a measured reflectance of 0.27, the AODs would be 1.8 and 2.0, respectively. Figure 7 shows for an aerosol model 
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whose single scattering albedo is 0.92, when AOD is around 2 to 3, the percentage differences in TOA reflectance between 380 

the two scale heights is ~ 3-5%, which leads to AOD changes of ~8-15%. Similarly, for the non-absorbing model (SSA = 

0.95), the changes in AOD is around 4-7% when AOD is 2 to 3. Those are significant changes that require consideration and 

might be addressed for our specific region of interest as we develop a regional aerosol model for this research algorithm. We 

note that even adjusting the aerosol scale height for our specific region in certain conditions may improve retrievals in those 

conditions but make things worse at other times, as aerosol layer height varies temporally. We choose to optimize for high 385 

AOD conditions, accepting the possibility that biases may be introduced when AOD is low.  

Using the regional pollution model with reduced aerosol scale height of 0.5 km and the algorithm with modified masking, we 

re-produce cases 3.1 and 3.2, as shown in Figure 8. Figure 8 a-c are for case study 3.1 (9 October 2013) where Figure 8a shows 

the MODIS operational DT AOD with applied quality assurance (QA) equal to the highest value (=3), Figure 8b shows the 

AOD produced by the regional research algorithm with QA=3, and Figure 8c gives the differences in AOD (Figure 8b minus 390 

8a). The red-blue color scale is the AOD differences, with the extra data coverage in Figure 8b highlighted in green. Comparing 

Figure 8b with Figure 8a, AOD are retrieved now at the center of the plume, where the operational DT has failed to retrieve. 

The AOD values change from 1.0 near the edge of the plume to ~5 at the center. The pattern of the plume fits what we see 

from the RGB image (Figure 1a). The difference plot shows that with the aerosol model and scale height change, the change 

in AOD is mostly less than 0.1, most of which is increasing AOD. The increase in AOD is mostly due to the aerosol model 395 

change while the decreasing AOD is probably due to the aerosol scale height change. Figure 8 d-f are similar to Figure 8 a-c 

but for case 3.2 (13 December 2018). Figure 8e has much increased data coverage over eastern China with AOD values less 

than 1.0. Figure 2 shows these areas have no cloud or snow cover, and aerosol loading is generally less than 1.0, which fits 

what the new algorithm has retrieved. The difference plot mostly shows larger amounts of new pixels which are not retrieved 

in the operational algorithm. The change in AOD is mostly positive, and less than 0.06. The reason for the large area of no 400 

data over the northern part of China is due to the surface being bright in the 2.1µm reflectance, which causes the retrieved 

AOD to be assigned to a lower QA value, and thus was not shown in Figure 8d and 8e where QA is required to be equal to 3.  

5 Validation of the research AOD for January to March 2013  

The research algorithm is applied to MODIS radiances in a region bounded by 100° E to 130° E and 20° to 42° N, during 

January to March 2013. The resulting AOD are evaluated against AERONET AODs and inter-compared with AODs from the 405 

operational DT product. Spatiotemporal collocations of MODIS retrievals within 0.3° Lat/Lon of the AERONET site location 

and AERONET observations within 30 minutes of the satellite overpass times are used to collocate the two data sets. Figure 9 

shows the scatter plot of MODIS versus AERONET AODs for (1) the operational DT product and AOD retrieved using 

modified masks with the operational LUT, (2) the research version of the MODIS AOD using the new LUT and the modified 

masks (referred to as the research algorithm hereafter) and AOD retrieved using modified masks with the operational LUT.  410 

All error statistics are shown in Table 2. Figure 9a shows that the MODIS DT product correlates well with AERONET data 
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with largest percentage of collocations falling within the global expected error (EE). However, we can see there is limited 

number of data greater than 2.0 that are reported when collocated with AERONET. Comparing the effect of the new masking 

(Figure 9a red dots) with the operational data, the biggest change is that the number of AOD collocations at AOD > 1 increased 

almost 50%, although these increases in high AOD also introduces an overall high bias, increases the root mean square error 415 

(RMSE) and reduces the percentage of data within the EE. The high bias drops to less than 0.10 for high AOD and the overall 

RMSE is reduced in research AOD in Figure 9b, which uses the new LUT. However, the model change also leads to additional 

low bias at low AOD when compared with the operational product, which is linked to optimizing the scale height change for 

heavy aerosol loading. The overall bias is very small for the research algorithm, partially because there are both high biases 

and low biases within the newly added high AOD, which leads to a mean bias of almost zero, and the RMSE remains higher 420 

than the operational DT algorithm even after the new LUT is implemented. The new research algorithm is not more accurate 

than the operational DT, but it is less biased at high AOD and the data coverage has increased, especially over the high AOD 

regime. The change in error statistics, especially the increased scattering, is a trade-off to the increase in data coverage, which 

is the main goal of this study.  

 425 

Table 2 Statistics of validation between Operational DT AOD, AOD using the operational LUT but with new masks 

(New Mask), and Research AOD against AERONET during January, February, and March 2013 over China. Numbers 

in parentheses are the statistics for AERONET AOD > 1.  

 % within EE N R2 Mean Bias RMSE Slope Offset 

Operational DT 40.91 66(19) 0.754 0.003 (-0.196) 0.286 0.75 0.151 

New Mask DT 30.34 88(28) 0.700 0.161 (0.260) 0.517 1.01 0.098 

Research DT 33.71 89(30) 0.701 0.076 (0.097) 0.450 0.96 0.081 
 

We analyse the satellite-AERONET bias of the DT and research AOD as a function of AERONET AOD and show the results 430 

in Figure 10. In Figure 10, AOD is binned every 47 pixels. When AERONET AOD is less than 1.0, there is small bias between 

all MODIS products and the AERONET AOD. When AERONET AOD is greater than 1.0, the negative bias in the DT AOD 

grows to around -0.1 and then to -0.3 when AERONET is around 2.0. The mean negative bias in the operational AOD at 

AERONET AOD0.55 > 1.0 is partially due to the generic aerosol model used in the operational algorithm that is more absorbing 

than the heavy pollution generated in wintertime over eastern China. The AOD retrieved with the operational LUT but modified 435 

filters include more collocations at high AOD, which leads to larger positive bias. The research product maintains an absolute 

mean bias against AERONET of 0.01 or less across the entire range of AERONET AODs and shows very good agreement at 

the very highest AODs (AOD0.55 > 2.). The very small mean bias is partially due to cancellation effects of overestimation and 

underestimation of research AODs as shown in Figure 9b. The standard deviation of the bias can be large even when the mean 
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bias is low. The regional aerosol model we use represents the fine mode aerosol over the majority of China except the west 440 

and center-northern part of China, where other aerosol types, such as dust, can occur.  

The new research algorithm increases data coverage temporally and spatially. A daily averaged AOD time series at the Xianghe 

AERONET site and the MODIS operational and research aerosol product is shown in Figure 11. The Xianghe site is located 

near Beijing, where many heavy pollution episodes occur. Thus, the AOD time series over this site show the most significant 

differences in data coverage between the DT AOD and the research AOD. The time series covers from January to March 2013. 445 

When AERONET observes AOD < 0.5, both the operational DT and research products capture the AOD equally well. 

However, when AERONET observes AOD > 1., the operational product fails to retrieve the AOD while the research product 

obtains a lot more AOD values over these days. Part of the discrepancies between the ground based and satellite measurements 

are due to sampling differences as well as ground conditions such as snow cover or melting snow. For example, AERONET 

AOD around 2.7 at Julian day of 15 is reduced to around 1.0 if we restrain the AERONET observation time to 30 mins before 450 

or after the MODIS passing time. Similarly, the overestimation of research AOD above 3 between Julian day of 75 and 80 is 

much smaller if we use the collocated data set instead of the daily average.  

To further investigate the ability of using the DT research product to identify the pollution events, we calculated the 

AERONET-identified pollution day using three AERONET sites, Beijing, Beijing-CAMS, and XiangHe. As long as there are 

two observed AERONET AOD > 1.0 within one day, that day is considered a polluted day. The number of polluted days 455 

identified at these three sites between January and March 2013 are: 19, 16, and 23, for Beijing, Beijing-CAMS, and XiangHe, 

respectively. There are also sampling differences between the three AERONET sites even though they are within 1° latitude 

and longitude of each other. Between Beijing and Beijing_CAM, there are 10 identified days in common. Between Beijing 

(Beijing_CAM) and XiangHe, there are 14 (12) identified days in common. Among all three sites, there are only 7 days that 

are commonly considered polluted day. Identified pollution event days are listed in Table 3. 460 

The research product identified a total of 39 polluted days, of which 22 days were also identified as polluted by at least one of 

the three AERONET sites. There were 17 days when the research product identified a polluted day but AERONET did not, 

and 7 days when AERONET observed AOD > 1.0 but the research algorithm did not capture the event. It is easy to understand 

when AERONET identified a polluted day, but the research retrieval did not, because the AERONET observation time can be 

different from MODIS overpass time. The polluted scene can be cloud covered at over pass, but be captured by AERONET 465 

before or after, or the scene can significantly change between two observing times. It is more difficult to understand how the 

research algorithm could identify a pollution event on 17 days when all three AERONET stations do not report AOD > 1 at 

their quality-assured level (level 2). To begin we note that one of the three AERONET stations (Beijing-CAM5) was down for 

maintenance for more than a month during this time (T. Eck Short Comment in Interactive Discussion). Then, to confirm 

polluted days that the satellite identified but the operating AERONET stations did not, we visually compared each day using 470 

RGB images and MODIS DB and MAIAC AOD retrievals, as well as nearby over ocean AOD retrievals as a reference. Among 

these 17 days, 12 days have pollution present visually (with retrieval over cloud free/snow free land or ocean). Within these 

12 days, analyses show two different scenarios lead to the discrepancies between AERONET and the research AOD.  Scenario 
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1 includes the majority of the 12 days. In these days, AERONET Level 2 (V3) report AOD at 0.55 µm < 1, (0.50 to 0.90). 

Possible reasons for the differences can be (1) sampling differences, especially when an obvious gradient of AOD exists or (2) 475 

the uncertainty within the research product (see Figure 9).  Scenario 2 consists of five days.  These are days where there was 

no Level 2 AERONET AOD with AOD550 > 1, however there were L1 data. Eck et al. (2018) found that for the Xianghe site 

15% of high AOD days (AOD500 > 1) never made it from L1 to L2. The 5 days that were identified by the satellite as pollution 

events but could not be confirmed by visual inspection were overcast with clouds (day 36, 41, 45, 49, and 61). In these five 

cases we expect that cloud effects in the MODIS product that do not appear in the AERONET data are causing the AOD to 480 

exceed the AOD = 1.0 threshold. We note that none of the five days in question have AOD over visually identified snow 

patches. Overall, we are happy with the ability of using the DT research product to identify pollution events, which can 

complement sparse ground observations. 
Table 3 AERONET and DT research product identified days with pollution events from January to March 2013 over the Beijing 

area (37-40 N and 115-118 N). 485 

Months Beijing Beijing_CAM XiangHe Research 

Day of Year 

11,14,19,27,28,42,4

4,47,52,65,66,67,68,

70,73,74,75,76,80 

11,14,15,19,22,27,2

8,73,74,75,76,80,84,

85,88,89 

7,10,15,18,19,21,27,

42,44,47,66,67,68,7

0,73,74,75,76,80,84,

85,88,89 

7,10,11,12,13,15,19,

22,36,40,41,44,45,47

,49,51,52,54,55,57,5

8,61,64,65,66,67,68,

70,73,74,75,76,78,80

,82,85,86,88,89 

6 Characterization of the 2013 winter China pollution situation 

With the research algorithm able to make many more additional retrievals and produce a better representation of the aerosol 

during winter, we examine the aerosol situation over China from January to March 2013 and investigate how the new results 

differ from the operational in characterizing this situation. Figure 12 shows the AOD distribution change from operational DT 

AOD to research AOD in log-scale. The red is the research AOD and the blue is the operational AOD. The histogram shows 490 

that when AOD is less than 1.0, the number of AOD retrievals increase about 40%. When AOD is greater than 1.0, and 

especially greater than 2.0, the increase in number of retrievals is much larger. The number between AOD 1.0 to 2.0 increased 

130% while after that the number of data points tripled (342%). In the negative AOD bin the number of data points is slightly 

increased due to that the total number of retrievals increased 56%.  

Monthly mean domain-averaged AOD statistics are shown in Table 4 for both MODIS aerosol retrievals over land. The 495 

operational DT product shows similar averaged AOD values around 0.58 and number of retrieved pixels around 18K in January 

and February. Both the DT AOD value and number of retrieved pixels increased in March. Compared to the DT AOD, the 
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research AOD is higher and the difference is largest in January (~0.17 in AOD) and smallest in March (~0.11). The same 

patterns can be found in the number of pixels, the increment is about 40K in January and 12K in March. This means that many 

more heavy pollution episodes occur, and possibly were missed by the operational DT algorithm, in January than in the other 500 

two months. There is a reduction in research AOD in February, which could be caused by increasing the number of retrieved 

AOD smaller than 0.5, or by lowering the aerosol scale height without adding new retrievals. February is also associated with 

a decrease in the number of retrievals from the numbers seen in January, which could be caused by increased snow or cloud 

cover in February 2013. 

Table 4 Domain-averaged (25° to 40° N and 105° to 120° E) monthly mean MODIS-derived AOD with QA=3 at 0.55 µm over land 505 
for the operational (DT) and research (Res) algorithms and the number of valid retrievals in 2013. 

Months DT Land AOD Res Land AOD DT Land # pixels Res Land # pixels 

January 0.561 0.732 18541 64070 

February 0.584 0.704 18589 36610 

March 0.662 0.778 80064 92674 

 

Figure 13 shows the spatial distribution of averaged AOD from the research product and the operational product at 0.5° 

resolution over the study domain from January to March 2013 with at least 3 data points per month per grid. The upper row is 

the operational DT AOD and the lower row is the research AOD with three columns representing January to March. The 510 

research product shows much more intense aerosol loading over eastern China with more data coverage north of 35° N, than 

does the operational DT algorithm. The differences between the monthly DT and research AOD distribution are shown in 

Figure 14 (upper panels) along with the number of pixel differences (lower panels). Grid boxes with AOD differences greater 

than 1.0 are found closer to Beijing and its surrounding area. Such large differences are found in 10%, 17%, and 5% of the 

total land grid boxes in January, February, and March correspondingly within the domain. Near the Beijing area (~40o N, 515 

~116.5o E), differences in gridded AOD can be above 3.0 in March. There is a large number of additional retrievals in the area 

south of Beijing, bounded by 30° to 35° N and 110° to 120° E, where for each grid the research algorithm produces more than 

100 new data points in January and around 40 to 60 in February and March. Although not shown in this paper, we also see 

increments in the number of data points over northern India and the islands of Japan in January and February. So even though 

the research algorithm was developed and tested only for China, from the magnitude of increased AOD in these places, there 520 

is indication that heavily polluted cases also may be missed over these regions. Non-Chinese locations will require separate 

validation analysis and would likely benefit from an evaluation and adjustment to the aerosol model used in the LUT. For 

example, the strong decrease in AOD over southern China seen in Fig. 14 has not been validated and may indicate the local 

nature of the aerosol model or assumption of aerosol scale height in the research algorithm developed for the Beijing area. 

Another promising development seen in in Figures 13 and 14 is that there is no increase in the number of data points or 525 

significantly increased AOD over coastal regions or over arid and semi-arid area in northern and western China (part of these 
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area is shown here). This indicates that the changes we made to the masking algorithms have not allowed improper surface 

types to be retrieved.  

7 Summary and Conclusions 

The MODIS DT algorithm misses many retrievals over eastern China during the wintertime when compared with ground-530 

based measurements. Two conditions can lead to missing retrievals, one is during heavy pollution events, and another is in 

low to moderate aerosol loading when the snow mask is mistakenly invoked. Other than missing retrievals, there is also 

improvement that can be made to more accurately represent aerosols over this region. Other satellite aerosol products also 

have trouble representing the scale of the aerosol loading over the study period and domain.  

To improve the data coverage without damaging the retrieval accuracy, we adjust the pixel selection routines, specifically the 535 

inland water mask and the snow mask. Then we use AERONET version 3 inversion products to first evaluate the aerosol 

models used operationally in China and then develop an aerosol model specifically for this region. The inland water mask is 

relaxed to allow for very high AOD, but then used in combination with the reflectance at 2.13 μm to eliminate artifacts from 

coastal and brighter surfaces. The snow mask is also modified to include scenes currently misclassified as snow by lowering 

the threshold of surface temperature during snow cover and snow melting conditions. These measures increase the number of 540 

retrievals in our domain by 50% and double the number of retrievals with AOD greater than 1.0. The higher the AOD, the 

more sensitive the retrieval will be to the aerosol model. After adding so many new high AOD retrievals, we find that a new 

aerosol model is needed, which we develop from local AERONET inversion products. The new aerosol model has absorption 

in between the non-absorbing and moderate absorbing models that were used in the operational model. The assumed aerosol 

layer height was also lowered in the new LUT to match the aerosol vertical distribution over the study region. The combination 545 

of new aerosol model and lowered scale heigh reduces high bias for retrievals at high AOD but also introduces low bias at low 

AOD. That low bias may be accentuated as the algorithm is applied beyond the local Beijing area, or when aerosol conditions 

change temporally in the local Beijing area. This is the first time that aerosol layer scale height has been adjusted in the DT 

retrieval, since the at-launch algorithm 20 years ago, and suggests there could be sensitivity to aerosol layer scale height in 

other regions with heavy aerosol loading.  550 

We validated the research product from January to March 2013 using AERONET version 3 level 2 AOD. With the large 

number of new AOD retrievals, particularly new high AODs, the RMSE increased and the percentage within the expected 

error (EE) was reduced; however, the overall bias at AOD > 1 was reduced to half (0.097). The research product captures a lot 

more high-aerosol-loading days that were observed by AERONET and can be used effectively in identifying pollution events. 

The new research algorithm is not more accurate than the operational DT, but the data coverage has increased without adding 555 

significant bias, especially over the high AOD regime. The ability to now retrieve these optically thick pollution events alters 

our understanding of the aerosol system in this region. Statistical analyses illustrate the increase of the regional aerosol 

distribution during wintertime over eastern China, including a very large increment in AOD over Beijing. Using the new 

algorithm, the monthly-regionally averaged over-land AOD0.55 over the domain increases by 0.11 to 0.18 over values calculated 
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from the operational DT products during January to March of 2013, with the largest increment happening in January. But near 560 

Beijing where the severe pollution occurs, the new algorithm increases AOD0.55 by as much as 3.0 for each 0.5° grid box, over 

the previous operational algorithm values.  

The large area of missing data and the magnitude of missing AOD will heavily alter our understanding of the severity of these 

pollution events, influence regional radiative balance, and impact the air quality community. Being able to bring back these 

missing data especially in a near real time manner can significantly influence the aerosol and air quality modeling and 565 

forecasting studies as well as any decision making that rely on instantaneous satellite aerosol data. Being able to include these 

rare but important heavy aerosol events in the DT products is critical to preparing the DT product to be more suitable for a 

wider range of applications. There is also potential to apply the research algorithm globally especially over regions that high 

aerosol loading events (e.g. large-scale wildfires or severe air pollutions) frequently occur, such as western U.S and Indian. 

The modification of inland water mask and snow mask have been lightly tested globally. Results show that inland water mask 570 

change introduced differences in retrieved AOD over coastal and arid/semiarid region and snow mask works well on the 

selected scenes globally including tropical high mountain regions. However, tests with longer time span are needed before we 

can commit these changes globally.  

8 Data Availability 

The MODIS level1B reflectance (DOI: 10.5067/MODIS/MYD021KM.061) () and Dark Target level2 aerosol data (DOI: 575 

10.5067/MODIS/MOD04_L2.061) can be accessed via LAADS DAAC (https://ladsweb.modaps.eosdis.nasa.gov/).  The 

AERONET direct sun measurements data used in this study is available via AERONET website (https://aeronet.gsfc.nasa.gov/) 

(Giles et al., 2019). The DOI of the data is https://doi.org/10.5194/amt-12-169-2019.  
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Figure 1 A case study of a pollution event over eastern China on 9 October, 2013. a) MODIS Aqua RGB image, b) MODIS Dark 
Target (DT) AOD at .0.55 µm for all available retrievals (QA = 0 to 3), c) MODIS Deep Blue (DB) AOD at 0.55 µm, for all available 
DB retrievals (QA = 0 to 3) d) MODIS MAIAC AOD e) MODIS DT Cloud Fraction , a diagnostic of the MODIS aerosol product, f) 785 
Normalized Difference vegetation index, used as the inland water mask by the DT algorithm . The yellow star represents the 
AERONET site Xianghe.  
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Figure 2 A case study of a pollution over Eastern China on 13 December 2018. a) RGB image, b) MODIS DT all available AOD (QA 
= 0 to 3), c) MODIS DB AOD with QA=3, d) MODIS MAIAC all available AOD, e) MODIS DT NDSI used for snow masking, f) 11 790 
μm brightness temperature. The yellow star represents the AERONET site XuZhou-CUMT. Arrows point at the snow patch 
locations in RGB, NDSI, and BT images, and yellow circle encompasses the problem region.  
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Figure 3 Clusters of AERONET sites that are used in this study to generate the regional aerosol model. Cluster 1 includes: Beijing, 795 
Beijing-CAMS, Beijing-RADI, Beijing_PKU, Lingshan_Mountain, Liangning, PKU_PEK, XiangHe, Xinglong, Yufa_PEK, and 
Yanqihu. Cluster 2 includes: Hefei, NUIST, Shouxian, Hangzhou-ZFU, Qiandaohu, Hangzhou_City, Taihu. Cluster 3 includes: 
Hong_Kong_Hok_Tsui, Hong_Kong_PolyU, Hong_Kong_Sheung, Kaiping, Zhongshan, Zhongshan_Univ. The background map is 
from Google map.  

   800 
Figure 4: Size distribution as a function of AERONET AOD at 0.675 μm, generated from the AERONET inversion products at three 
clusters illustrated in Figure 3 using all available data records. Other than the last AOD bin, which is AOD > 3, the number of 
retrievals within each AOD bin are between hundreds to thousands. There are 263, 15, and 1 data points in the highest AOD bin for 
cluster 1, 2, and 3, respectively. The error bars represent the standard deviation within each size bin 

Ó Google 
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 805 

 
Figure 5: Size distribution as a function of AERONET AOD at 0.675 μm, generated from the AERONET inversion products at 
cluster 1 illustrated in Figure 3 using all available data records, a) is from April to September, b) is from October to March. The 
error bars represent the standard deviation within each size bin. 
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Figure 6 The real (top set of curves and left axis) and imaginary (lower set of curves and right axis) parts of refractive index as a 
function of AOD at 0.675 μm calculated from the AERONET inversion product at cluster 1. The error bars represent the standard 
deviation within each wavelength.  
 815 

 
Figure 7 Top-of-atmosphere reflectance at 0.47 μm corresponding to AOD at 0.55 μm using the moderate absorbing model for the 
specific geometry of solar zenith angle = 36°, view zenith angle = 54°, relative azimuth angle = 120° and scattering angle = 135.5°. 
The red and blue lines are the calculated TOA reflectance at aerosol scale heights of 2.0 and 0.5 km, respectively. The black and 
purple dashed lines are the differences between the red and blue line and the percentage differences. The light green horizontal line 820 
segments indicate TOA reflectance when AOD are 2 and 3 using scale height of 2.0 km. The corresponding dark green vertical lines 
are corresponding AOD using scale height of 0.5 km.  
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Figure 8 a) to c) AOD images for the case study over Eastern China on 9 October, 2013: a) operational DT AOD at 0.55 µm with QA 825 
= 3, b) Research AOD at 0.55 µm with QA = 3 using altered thresholds on the NDVI test, snow test, and a new regional aerosol model 
with new aerosol scale height. c) The differences between the research AOD (panel b) and the DT AOD (panel a). d) to f) are for a 
case study of moderate pollution over Eastern China on 13 December 2018. The increased research AOD data coverage is shown in 
green.  

 830 
Figure 9 Comparisons of the MODIS DT AOD at 0.55 µm against collocated AERONET observations during January, February, 
and March 2013 over China. Three datasets are used operational DT AOD (Operational DT), an intermediate AOD retrieved using 
the same LUT as the operational DT but with modified masking (New Mask), and AOD retrieved with the full regional research 
algorithm (Research). a) Operational DT AOD overlay on New Mask AOD, b) Research AOD overlay on New Mask AOD.  
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Figure 10 Bias between MODIS and AERONET over land AOD at 0.55 µm as function of AERONET AOD at 0.55 µm. Black 
represents the operational DT AOD, blue represents the AOD using the operational LUT but with new masks, and red represents 
the research AOD. The dots are the mean bias within each AERONET AOD bin, and the bars represent the standard deviation of 
the bias.  

 840 
Figure 11 Time series of daily averaged AERONET observations of AOD at 0.55 µm (in grey) as a function of Julian Day in 2013, 
and the corresponding daily operational MODIS DT (in blue) and research (in red) AOD over the Xianghe AERONET site.  
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Figure 12 The histogram of MODIS AOD over the study region from January to March 2013 in a logarithmic scale. The red is the 
research AOD, the blue is the operational AOD.  845 

 

 

Figure 13 Spatial distribution of averaged AOD from the operational product (upper row) and the research product (lower row) at 
0.5° resolution over the study domain from January to March 2013. 
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Figure 14 Spatial distribution of AOD differences (upper row) and number of data points differences (lower row) between the 
operational product and the research product (research minus operational) at 0.5° resolution over the study domain from January 
to March 2013. 


