
Responses to Reviewer 2 
 
We thank the reviewer for their comments and questions. Our responses are formatted as  
follows: 
 
The reviewer’s comment/question (numbered) is written in black italic text. 
 

Our responses are written in normal black text (indented). 
 
The revised text as it appears in the manuscript is written in normal blue text (indented),  
with relevant changes underlined. 

 
Line numbers refer to the edited manuscript. We have also provided a tracked-changes  
document, but that has different line numbers. 
  



My first comment (and very important one) here is that this paper has nothing to do with 
atmospheric measurement techniques and therefore its exact home is GMD and not AMT. 
Specifically, no “new” measurements are collected or discussed as part of this paper or for that 
matter no new measurement techniques are also suggested as part of this paper. [Outside the 
scope of the Journal] 
 

Thank you for your comment. Our paper concerns the interpretation of observations to 
infer secondary quantities (e.g., emissions). Other similar papers have been published by 
AMT in the past (e.g., Varon et al. 2018, Alden et al. 2018). 

 
The authors suggest two new techniques for reducing the cost of computing the Jacobian i.e., 
reduced rank and reduced dimension methods. First, these are not the only way to reduce the 
computational size of the problem.  
 
(1) The generally accepted solution to reduce the size of the problem is the one suggested in the 
paper: “Measuring information content from observation for data assimilation: relative entropy 
versus Shannon entropy difference” and I would suggest the authors to review this paper. Thus, I 
would like to see the techniques suggested in this paper in comparison to those mentioned in the 
paper mentioned above. Note, these issues are nothing new and have been dealt with since 1974. 
(see paper the information content of remote measurements of atmospheric temperature by 
satellite infra-red radiometry and optimum radiometer configurations.). Eventually, it is the 
question of the information content of the observations and not reducing the size of the Jacobian 
or the information content as expressed through an Averaging Kernel. I would like to see the 
difference in the answer as received from the method described in Xu’s paper in comparison to 
what is shown in this paper.  
 

Thank you for your suggestion. Xu (2007) describes the dependence of two measures of 
information content (the Shannon and relative entropy differences) on optimal reductions 
in the dimension of the observation vector. We clarified the dependence of the 
computational cost on the dimension of the state vector. We also added references to Xu 
et al. (2007) to the introduction and to our discussion of measures of information content. 

 
When 𝑚 ≫ 𝑛, as for inversions of satellite observations, the Jacobian can be constructed 
column-wise by conducting n + 1 CTM simulations to perturb each of the state vector 
elements 𝑥! and obtain the corresponding column 𝜕𝐲 𝜕𝑥"⁄ . (L58 – L60) 

 
Several methods have been proposed to decrease the computational cost of high-
resolution analytical inversions by optimally reducing the dimension or rank of the 
observations or state vector. Approaches that reduce the dimension of the observation 
vector (e.g., Xu, 2007) reduce the computational cost of solving the inversion but not of 
constructing the Jacobian matrix. Approaches that decrease the dimension of the state 
vector lower the cost of both computations. (L82 – L85) 

 
The fraction of information content explained by the first i columns of 𝚪∗ is the sum of 
the i largest eigenvalues divided by the total DOFS (Bousserez and Henze, 2018). The 



eigenvalues can also be related to other measures of information content, including the 
Shannon and relative entropy differences (Rodgers, 2000; Xu, 2007). (L178 – L181) 

 
(2) Please also look at the paper “Stable Signal Recovery from Incomplete and Inaccurate 
Measurements from Candes, Romberg and Terence Tao” to understand the mathematical theory 
behind it. For application in atmospheric inversions see: A sparse reconstruction method for the 
estimation of multi-resolution emission fields via atmospheric inversion  
 

Thanks for your comment. We added a citation to Ray et al. (2015) (A sparse 
reconstruction method). 

 
Other approaches that decreased the dimension of the state vector assumed knowledge of 
the Jacobian matrix (e.g., Rigby et al., 2011; Thompson and Stohl, 2014; Ray et al., 2015; 
Lunt et al., 2016; Liu et al., 2017). (L91 – L93) 

 
(3) Following with the previous discussion if you have prior information, then you can aggregate 
grids where you do not have any chances of encountering methane fluxes without doing a two-
step inversion. What is the point of solving for methane fluxes in the deserts of Nevada, Utah and 
Arizona (see Figure 2 in paper; you have regular grid) unless you expect deserts of Nevada to be 
big sources of methane emissions? For example, if you do this exercise globally then you would 
not be solving for methane fluxes in Sahara Desert (no unique information is provided by 
multitude of observations, even if theoretically a satellite can collect thousands of them). Hence 
even if the trace of the averaging kernel might show that you can better resolve fluxes in the 
Sahara Desert solving for these fluxes would be just meaningless implying that you can  
aggregate your grid.  
 

Thank you for your comment. We have clarified that the averaging kernel sensitivities are 
low in areas known to have low emissions. The reduced-dimension method therefore 
functionally considers both the distribution of prior emissions and the observational 
density to generate a multiscale grid. 

 
A can be calculated as 𝐀 = 𝐈 − 𝐒/𝐒$%& or equivalently as  
 

𝐀 =	𝐒$𝐊'(𝐊𝐒$𝐊' + 𝐒()%&𝐊. (4) 
 
Equation (4) expresses the dependence of the averaging kernel matrix on the forward 
model and both error covariance matrices. The diagonal elements of A are commonly 
referred to as the averaging kernel sensitivities. They are highest in highly observed 
locations with uncertain, high emissions and lowest in poorly observed areas or in regions 
known to have low emissions. (L131 – L139) 

 
(4) Please also remember that once you go from coarser resolution to finer resolution your 
posterior variance of the inverse problem is guaranteed to increase. Hence, please explain or 
mathematically show how does the reduction in posterior variance translate from coarser 
resolution to finer resolution (not in terms of R i.e., correlation). Can an upper bound be found 
and does it have spatial structure i.e., what has happened to the error you obtained from the 



inversion (second part of equation 2)? Furthermore, what has happened to the trace of the 
averaging kernel. How has it distributed your trace at finer resolution? 

 
Thank you for your comment. We aren’t sure what you mean to ask here because we go 
from finer resolution to coarser resolution, not vice versa. We believe your question may 
be answered by the bottom row of Figure 3, which shows the distribution of the trace of 
the averaging kernel (the averaging kernel sensitivities) in each of the proposed methods. 
We believe that this may also answer your question about the distribution of the posterior 
error, since the averaging kernel is a measure of the relative reduction in error from the 
prior to the posterior: 𝐀 = 𝐈 − 𝐒/𝐒$%&. 

 
 


