
Responses to Reviewers 
 
We thank the reviewers for their comments and questions. Our responses are formatted as  
follows: 
 
The reviewer’s comment/question (numbered) is written in black italic text. 
 

Our responses are written in normal black text (indented). 
 
The revised text as it appears in the manuscript is written in normal blue text (indented),  
with relevant changes underlined. 

 
Line numbers refer to the edited manuscript. We have also provided a tracked-changes  
document, but that has different line numbers. 
  



Responses to Reviewer 1 
 
This is a well written paper. Nonetheless, there does not seem to be so much added value 
compared to previous publications on this topic. However, this is a nice illustration of this 
difficult set of ideas (reduction of the control space) and, which, to me, is very welcome and 
useful. Among possible improvements, I would list:  

• Although it is rather fair as it is, the bibliography and references should be given more 
attention, be more complete and ultimately improved. Several key references that predate 
those cited in the manuscript, should be mentioned first. 

• A couple of algorithms (in a proper algorithmic environment – typically a pseudocode) 
could be provided for both methods described in the manuscript. 

• Because this work’s objective is the improvement in efficiency and to decrease the 
inversion’s computational cost, the use of parallelism and modern computer architecture 
should be discussed. 

Overall, I believe the manuscript only requires minor revisions but that they should be very 
carefully addressed. 
 

Thank you for these comments. We responded to these points in the individual responses 
below. 

 
1. l.14: "be orders of magnitude lower than its coverage suggests": Although I fully agree with 
the authors, the phrasing seems a bit excessive. 
 
 We changed “orders of magnitude” to “significantly.” 
 

The information content of satellite data may be much lower than its coverage would 
suggest…. (L15 – L16) 

 
2. l.42: "The solution is generally obtained by minimizing a Bayesian cost function...": 
Rigorously speaking, there is no such thing as a "Bayesian cost function"; I would suggest: "The 
solution is generally obtained in a Bayesian framework by minimizing a cost function..." for 
instance.  
 
 Thanks for this suggestion; we’ve changed the text per your suggestion. 
 

The solution is generally obtained in a Bayesian framework by minimizing a cost 
function…. (L44 – L45) 

 
3. l.46: "Methods of estimating the error exist (Bousserez and Henze, 2018; Evensen, 2009), but 
these approaches are computationally expensive, incomplete, and rarely applied in practice.": 
there are many earlier papers dealing with errors, including posterior errors, with objective 
estimation. For instance, among our own contributions: Koohkan and Bocquet (2012); Koohkan 
et al. (2013). 
 



Thanks for this comment. We added a reference to Chevallier et al. (2007), Meirink et al. 
(2008), and Koohkan et al. (2013). We did not find a description of posterior error 
estimation in Koohkan and Bocquet (2012).  
 
Methods of estimating the error exist (e.g. Chevallier et al., 2007; Meirink et al., 2008; 
Koohkan et al., 2013), but these approaches are computationally expensive, incomplete, 
and rarely applied in practice. (L49 – L50) 

 
4. l.81-82: "Bocquet et al. (2011) defined a method to find the optimal multiscale grid from an 
array of all allowable grids, but this requires a large computational investment.": ok, agreed, 
but solutions had been proposed (and tested with success!) in the companion paper (Bocquet and 
Wu, 2011), see for instance Section 3. 
 

Thanks for your comment. We now cite Bayesian Design of Control Space Part I and 
Part II and more accurately describe the computational needs and optimality criteria of 
the methods proposed in those works. 
 
Bocquet et al. (2011) and Bocquet and Wu (2011) defined a method to select a multiscale 
grid from a limited array of allowable grids that preserve resolution where the 
observations have the highest information content. (L87 – L89) 

 
5. l.84-87: "were subjective and did not consider the information content of the forward model or 
the observations. Reduced-rank methods (Bousserez and Henze, 2018; Spantini et al., 2015) 
generate an approximation of the posterior solution at the original dimension n by solving the 
inversion in the directions of highest information content. Spantini et al. (2015) assumed 
knowledge of the Jacobian matrix.": Absolutely but so does Bocquet et al. (2011), albeit in the 
physical space rather in a spectral space.  
  
 See our response to comment 4. 
 
6. l.78-89: There are other key papers in reduction methods applied to source inverse modelling 
in atmospheric chemistry that should be mentioned. Those are based on reversible-jump 
MCMCs. I can think of Lunt et al. (2016); Liu et al. (2017).  
 

Thank you for your comment. We have added a citation to Rigby et al. (2011), Thompson 
and Stohl (2014), Ray et al. (2015), Lunt et al. (2016), and Liu et al. (2017). 
 
Other approaches that decreased the dimension of the state vector assumed knowledge of 
the Jacobian matrix (e.g., Rigby et al., 2011; Thompson and Stohl, 2014; Ray et al., 2015; 
Lunt et al., 2016; Liu et al., 2017). (L91 – L93) 
 

7. l.91: "that minimize" −→ "that minimizes"  
 

We write “Here we present two methods … that maximize the information content.” We 
believe this is correct grammar, but we have modified the sentence for clarity.  
 



Here we present two methods to construct the Jacobian matrix for a native n-dimensional 
state vector and maximize the information content of the inverse analysis using k < n 
forward model simulations. (L99 – L100) 

 
8. The introduction is concise but very well written. However, the references chosen in the 
introduction mostly refer to the authors’ works. I am fine with additionally citing your own 
papers and recent/fresh contributions to the field, but you should at least cite the seminal or key 
papers for each main idea. For instance: l. 44- 45: "This minimum is typically found using a 
numerical (variational) method, often employing the adjoint of the CTM to compute the cost 
function gradient (Henze et al., 2007)." : Citing Henze et al. (2007) is fine assuming you do not 
forget typically earlier works such as Elbern and Schmidt (2001); Quélo et al. (2005) and studies 
by Greg Carmichael et al. 
 

Thank you for this comment. We added a citation to Daescu et al. (2000), Elbern and 
Schmidt (2001), and Quélo et al. (2005) to the Henze et al. (2007) citation. We also 
added citations to other works as described in comments 3 and 6. 
 
This minimum is typically found using a numerical (variational) method, often 
employing the adjoint of the CTM to compute the cost function gradient (e.g., Daescu et 
al., 2000; Elbern and Schmidt, 2001; Quélo et al., 2005; Henze et al., 2007). (L46 – L48) 

 
9. l.101: "of Jacobian matrix construction." −→ "of the Jacobian matrix construction."  
 
 Changed. 
 

This section presents the reduced-dimension and reduced-rank methods of constructing 
the Jacobian matrix. (L109) 

 
10. l.107: the notation (A lower index) for the prior is very confusing, since in the literature it 
very often points to the Analysis, i.e. the posterior. I understand that this is the one used by Clive 
Rodgers (Rodgers, 2000) or in the 1D retrieval community, but this is not the one used by the 
large majority. Moreover, it is also conflicting with the dedicated notation A for the averaging 
kernel (which does not refer to the prior but to the posterior). I would strongly suggest to change 
notation to make the manuscript easier and less confusing to read.  
 

Thank you for this comment. While we recognize the benefits of the other notation 
commonly used in inversion discussions, we follow the notation of Rodgers (2000) and 
other analytical inversions that optimize methane emissions (i.e. Zhang et al. (2021), 
Maasakkers et al. (2021, 2019), Sheng et al. (2018), Fraser et al. (2014), etc.) for the sake 
of consistency and comparability. 

 
11. l.116: Same issue with K which is universally used as the Kalman gain matrix (Kalman, 
1960), including in the geophysical inverse problems and data assimilation literature.  
 
 See our response to comment 10. 
 



12. l.120; Equations (2, 3): you forgot the punctuation of the equations. Please check the whole 
manuscript and its equations.  
 

Thank you for catching this. We corrected this mistake by adding a comma to the end of 
equation (2) and a period to the end of equation (3). We also added commas to the end of 
equations (5), (7), (11), and (12). 

 
13. l.172-175: "We will refer to the rate at which the information content accumulates as the 
number of eigenvectors increases as the information content spectrum.": More simply put, the 
spectrum is the ordered list of the eigenvalues.  
 
 Thanks for this suggestion. We’ve modified the language. 
 

We will refer to the ordered list of the eigenvalues as the information content spectrum. 
(L181 – L182) 

 
14. l.229-231: I understood the point on clustering. Yet, it seems a bit vague to me. You could be 
more specific.  
 

Thanks for this comment. We’ve clarified the details of this method in an algorithm, per 
your suggestion in comment 16.  

 
15. l.240-242: Again, this passage is not so clear and could be improved, although I guess I 
roughly understood.  
 

See our response to comment 14.  
 
16. Sections 2.4 and 2.5: I believe you could/should add a pseudo-code to each algorithm. The 
text is rather (though not entirely) clear and adding an algorithm would really help/reassure the 
reader. Obviously, these are the key sections of the manuscript, so that it’s worth investing time 
and (manuscript) space in such algorithms.  
 

Thank you for this suggestion. We’ve provided algorithms (below) describing the two 
methods (we didn’t underline these additions for the sake of readability). We also added 
references to these algorithms to the text. 

 
We apply this approach beginning with our initial estimate 𝐊(") (Section 2.3) in a two-
step update that iteratively improves the multiscale grid. Algorithm 1 describes this 
process in detail. (L245 – L246) 

 
Algorithm 1: Reduced-dimension Jacobian matrix construction 
Given a native-resolution state vector with dimension 𝑛, a state vector encompassing the 
entire domain with dimension 𝑛$% = 1, and 𝐀(") and 𝐀$%

(")  the 𝑛 × 𝑛 and 1 × 1 initial 
estimates of the averaging kernel matrix, respectively, and an initial cluster size of one 
native-resolution grid cell: 



1: Add the 𝐽 clusters with the highest diagonal values of 𝐀(") to the state vector and 
update its dimension 𝑛$% = 𝑛$% + 𝐽; 
2: Perturb in the forward model those 𝐽 clusters and the background cluster to generate 
the 𝑚 × 𝑛$% reduced-dimension Jacobian matrix 𝐊$%

(&) and the corresponding 𝑛$% × 𝑛$% 
averaging kernel matrix 𝐀$%

(&) ; 

3: If the difference in DOFS per cluster ΔDPC =
'()𝐀!"

($) +

,!"
−

'()𝐀!"
(&) +

,!"-.
< ε, where ε is a set 

threshold, increase the cluster size (e.g., by aggregating together non-allocated, native-
resolution grid cells using K-means clustering); 
4: Let 𝐀$%

(") = 𝐀$%
(&) 	and repeat steps 1 to 4 until all native-resolution grid cells are 

allocated to the state vector; 
5: Disaggregate the clusters with the largest increase in the diagonal values from 𝐀(") to 
𝐀$%
(&)  as measured on the multiscale grid and update the state vector dimension 𝑛$%; 

6: Perturb in the forward model the disaggregated grid cells to generate the final 𝑚 × 𝑛$% 
reduced-dimension Jacobian matrix 𝐊$%

(/).  
(L255 – L267) 
 
In an inverse system without a known Jacobian matrix, the reduced-rank Jacobian matrix 
approximation can be constructed in a two-step update that iteratively improves the 
patterns of information content used as perturbations. Algorithm 2 describes this process 
in detail. (L288 – L290) 
 
Algorithm 2: Reduced-rank Jacobian matrix construction 
Given a native-resolution state vector with dimension 𝑛, 𝐀(") an 𝑛 × 𝑛 initial estimate of 
the averaging kernel matrix, and 𝐒0 the 𝑛 × 𝑛 prior error covariance matrix: 
1: Complete the eigendecomposition of the 𝑛 × 𝑛 matrix 𝐐(") = 𝐒0

-& /⁄ 𝐀(")𝐒0
& /⁄ =

𝐖(")𝚺(")𝐖(")'; 

2: Select 𝑘 so that 1 −
'()𝚺'

(&)+

'(3𝚺(&)4
< ε where 𝚺5

(") is the 𝑘 × 𝑘 subset of 𝚺(") containing the 

largest diagonal values and ε is a set threshold; or, select 𝑘 so that the 𝑘th eigenvector has 

a signal-to-noise ratio SNR5 = : 6'
(&)

&-6'
(&) > ~1, where σ5

(") is the 𝑘th largest diagonal 

value of 𝚺("); 
3: Form the 𝑛 × 𝑘 matrix 𝚪∗(") =	𝐒0

& /⁄ 𝐖5
(") where 𝐖5

(") is a matrix of the first 𝑘 
columns of 𝐖(") as ranked by the diagonal values of 𝚺("); 
4: Perturb in the forward model the columns of 𝚪∗(") to generate the 𝑚 × 𝑘 reduced-
dimension Jacobian matrix 𝐊8

(&); 
5: Form the 𝑚 × 𝑛 reduced-rank Jacobian matrix 𝐊9

(&) = 𝐊8
(&)𝚪("), where 𝚪(") =

𝐖5
(")'𝐒0

-& /⁄ , and the corresponding 𝑛 × 𝑛 reduced-rank averaging kernel matrix 𝐀9
(&); 

6: Let 𝐀(") = 𝐀9
(&) and repeat steps 1 to 5 to generate the final 𝑚 × 𝑛 reduced-rank 

Jacobian matrix 𝐊9
(/). 



(L305 – L316) 
 
17. l.261: This was first proposed and proven in Bocquet et al. (2011), section 2.4. 
 
 Thank you for this comment. We added a reference to Bocquet et al. (2011). 
 

Bousserez and Henze (2018), following Bocquet et al. (2011), show that the reduced-
dimension Jacobian matrix 𝐊8 is given by 𝐊8 = 𝐊𝚪∗ and the reduced-rank Jacobian 
matrix 𝐊9 by 𝐊9 = 𝐊𝚷 = 𝐊𝚪∗𝚪. (L284 – L285) 

 
18. l.337-344: The results for the reduced-dimension solution are somehow underwhelming; the 
resulting DOFS are quite low. Do you have a explanation for this? Or did I miss something? 
 

Thank you for this question. We found and fixed a problem with how we calculated the 
error covariance at reduced-dimension, which increased the DOFS slightly. We’ve also 
clarified the dependence of DOFS on the dimension of the state vector. 
 
The reduced-dimension solution generates fewer DOFS (95) than the native-resolution 
solution (198) because the DOFS depend on the dimension of the state vector. When 
comparing the DOFS per cluster, a dimension-independent measure, the reduced-
dimension solution generates more than twice the value of the native-resolution solution 
(0.22 compared to 0.09), reflecting the consolidation of information content. (L383 – 
L386) 

 
19. You did not discuss at all the impact of time as you considered a static mesh for the emission. 
Can you discuss briefly the approximation that such assumption entails?  
 

Thanks for asking. We clarified that these methods can be applied to temporally-resolved 
state vectors in the introduction to the methods section. 

 
For the purposes of illustration, we take the state vector to be a gridded field of static 
emissions, but the methods apply to temporally variable emissions and more generally to 
any state vector. (L113 – L114) 

 
20. You did not discuss the patterns provided by the eigenvectors (main modes of the DOFS). Is 
it worth discussing this point?  
 

Thanks for asking. As you note, the eigenvectors are the main modes of the DOFS. As a 
result, we find that the leading eigenvectors show little information that is not expressed 
in the averaging kernel sensitivities. As a result, we discuss the averaging kernel 
sensitivities directly rather than providing a separate discussion of the patterns. 

 
21. l.425-426: You might want to have a look at solutions proposed in the meteorological data 
assimilation community to efficiently compute the Jacobian in high dimension, for instance 
Frolov et al. (2018).  
 



Thank you for this recommendation. We looked through the work of Frolov and Bishop 
and believe that the ensemble-based approaches are not applicable to the case considered 
here, which assumes the use of a deterministic chemical transport model.  

 
22. I believe you should discuss parallelism of your algorithms and codes. Your paper is targeted 
at more efficient techniques – which will also depend on how well you are able to exploit 
parallelism. Please add a thorough discussion on the subject. 
 

Thank you for this comment. We added statements detailing the parallelization used in 
each method and comparing the parallelization potential of each method.  
 
 [The resulting multiscale grid] has dimension 434 and the corresponding reduced-
dimension Jacobian matrix 𝐊$%

(/) required 446 forward model simulations across 17 
parallelized batches.... (L371 – L373) 
 
The resulting Jacobian matrix 𝐊9

(/) has rank ≈431 and required 522 forward model 
simulations across two parallelized batches. (L397 – L398) 
 
The reduced-dimension and reduced-rank methods reproduce the native-resolution 
inversion with a factor of at least four reduction in total computational cost. The reduced-
dimension method generates lower DOFS but higher DOFS per state vector element due 
to the clustering of grid cells. The resulting posterior solution is exact on the multiscale 
grid and provides better spatial coverage than the reduced-rank method at lower 
resolution. The reduced-rank method generates a higher-DOFS, higher-resolution 
approximation where the averaging kernel sensitivities are large. While the calculation of 
large Jacobian matrices can take advantage of parallel computing environments 
(Maasakkers et al., 2019), the iterative nature of both methods proposed here puts some 
limit on parallelization. The limit is greater for the reduced-dimension method, which 
requires an iteration for each cluster size added to the state vector. The reduced-rank 
method requires only two iterations. In both cases, these limitations may not be 
meaningful because the native-resolution Jacobian matrix is rarely generated in a fully 
parallel environment in practice. (L453 – L462) 

 
  



Responses to Reviewer 2 
 
My first comment (and very important one) here is that this paper has nothing to do with 
atmospheric measurement techniques and therefore its exact home is GMD and not AMT. 
Specifically, no “new” measurements are collected or discussed as part of this paper or for that 
matter no new measurement techniques are also suggested as part of this paper. [Outside the 
scope of the Journal] 
 

Thank you for your comment. Our paper concerns the interpretation of observations to 
infer secondary quantities (e.g., emissions). Other similar papers have been published by 
AMT in the past (e.g., Varon et al. 2018, Alden et al. 2018). 

 
The authors suggest two new techniques for reducing the cost of computing the Jacobian i.e., 
reduced rank and reduced dimension methods. First, these are not the only way to reduce the 
computational size of the problem.  
 
(1) The generally accepted solution to reduce the size of the problem is the one suggested in the 
paper: “Measuring information content from observation for data assimilation: relative entropy 
versus Shannon entropy difference” and I would suggest the authors to review this paper. Thus, I 
would like to see the techniques suggested in this paper in comparison to those mentioned in the 
paper mentioned above. Note, these issues are nothing new and have been dealt with since 1974. 
(see paper the information content of remote measurements of atmospheric temperature by 
satellite infra-red radiometry and optimum radiometer configurations.). Eventually, it is the 
question of the information content of the observations and not reducing the size of the Jacobian 
or the information content as expressed through an Averaging Kernel. I would like to see the 
difference in the answer as received from the method described in Xu’s paper in comparison to 
what is shown in this paper.  
 

Thank you for your suggestion. Xu (2007) describes the dependence of two measures of 
information content (the Shannon and relative entropy differences) on optimal reductions 
in the dimension of the observation vector. We clarified the dependence of the 
computational cost on the dimension of the state vector. We also added references to Xu 
et al. (2007) to the introduction and to our discussion of measures of information content. 

 
When 𝑚 ≫ 𝑛, as for inversions of satellite observations, the Jacobian can be constructed 
column-wise by conducting n + 1 CTM simulations to perturb each of the state vector 
elements 𝑥: and obtain the corresponding column 𝜕𝐲 𝜕𝑥;⁄ . (L58 – L60) 

 
Several methods have been proposed to decrease the computational cost of high-
resolution analytical inversions by optimally reducing the dimension or rank of the 
observations or state vector. Approaches that reduce the dimension of the observation 
vector (e.g., Xu, 2007) reduce the computational cost of solving the inversion but not of 
constructing the Jacobian matrix. Approaches that decrease the dimension of the state 
vector lower the cost of both computations. (L82 – L85) 

 



The fraction of information content explained by the first i columns of 𝚪∗ is the sum of 
the i largest eigenvalues divided by the total DOFS (Bousserez and Henze, 2018). The 
eigenvalues can also be related to other measures of information content, including the 
Shannon and relative entropy differences (Rodgers, 2000; Xu, 2007). (L178 – L181) 

 
(2) Please also look at the paper “Stable Signal Recovery from Incomplete and Inaccurate 
Measurements from Candes, Romberg and Terence Tao” to understand the mathematical theory 
behind it. For application in atmospheric inversions see: A sparse reconstruction method for the 
estimation of multi-resolution emission fields via atmospheric inversion  
 

Thanks for your comment. We added a citation to Ray et al. (2015) (A sparse 
reconstruction method). 

 
Other approaches that decreased the dimension of the state vector assumed knowledge of 
the Jacobian matrix (e.g., Rigby et al., 2011; Thompson and Stohl, 2014; Ray et al., 2015; 
Lunt et al., 2016; Liu et al., 2017). (L91 – L93) 

 
(3) Following with the previous discussion if you have prior information, then you can aggregate 
grids where you do not have any chances of encountering methane fluxes without doing a two-
step inversion. What is the point of solving for methane fluxes in the deserts of Nevada, Utah and 
Arizona (see Figure 2 in paper; you have regular grid) unless you expect deserts of Nevada to be 
big sources of methane emissions? For example, if you do this exercise globally then you would 
not be solving for methane fluxes in Sahara Desert (no unique information is provided by 
multitude of observations, even if theoretically a satellite can collect thousands of them). Hence 
even if the trace of the averaging kernel might show that you can better resolve fluxes in the 
Sahara Desert solving for these fluxes would be just meaningless implying that you can  
aggregate your grid.  
 

Thank you for your comment. We have clarified that the averaging kernel sensitivities are 
low in areas known to have low emissions. The reduced-dimension method therefore 
functionally considers both the distribution of prior emissions and the observational 
density to generate a multiscale grid. 

 
A can be calculated as 𝐀 = 𝐈 − 𝐒I𝐒0-& or equivalently as  
 

𝐀 =	𝐒0𝐊'(𝐊𝐒0𝐊' + 𝐒<)-&𝐊. (4) 
 
Equation (4) expresses the dependence of the averaging kernel matrix on the forward 
model and both error covariance matrices. The diagonal elements of A are commonly 
referred to as the averaging kernel sensitivities. They are highest in highly observed 
locations with uncertain, high emissions and lowest in poorly observed areas or in regions 
known to have low emissions. (L131 – L139) 

 
(4) Please also remember that once you go from coarser resolution to finer resolution your 
posterior variance of the inverse problem is guaranteed to increase. Hence, please explain or 
mathematically show how does the reduction in posterior variance translate from coarser 



resolution to finer resolution (not in terms of R i.e., correlation). Can an upper bound be found 
and does it have spatial structure i.e., what has happened to the error you obtained from the 
inversion (second part of equation 2)? Furthermore, what has happened to the trace of the 
averaging kernel. How has it distributed your trace at finer resolution? 

 
Thank you for your comment. We aren’t sure what you mean to ask here because we go 
from finer resolution to coarser resolution, not vice versa. We believe your question may 
be answered by the bottom row of Figure 3, which shows the distribution of the trace of 
the averaging kernel (the averaging kernel sensitivities) in each of the proposed methods. 
We believe that this may also answer your question about the distribution of the posterior 
error, since the averaging kernel is a measure of the relative reduction in error from the 
prior to the posterior: 𝐀 = 𝐈 − 𝐒I𝐒0-&. 


