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Abstract. Global high-resolution observations of atmospheric composition from satellites can greatly improve our 

understanding of surface emissions through inverse analyses. Variational inverse methods can optimize surface emissions at 

any resolution but do not readily quantify the error and information content of the posterior solution. The information 15 

content of satellite data may be much lower than its coverage would suggest because of failed retrievals, instrument noise, 

and error correlations that propagate through the inversion. Analytical solution of the inverse problem provides closed-form 

characterization of posterior error statistics and information content but requires the construction of the Jacobian matrix that 

relates emissions to atmospheric concentrations. Building the Jacobian matrix is computationally expensive at high 

resolution because it involves perturbing each emission element, typically individual grid cells, in the atmospheric transport 20 

model used as forward model for the inversion. We propose and analyze two methods, reduced-dimension and reduced-rank, 

to construct the Jacobian matrix at greatly decreased computational cost while retaining information content. Both methods 

are two-step iterative procedures that begin from an initial native-resolution estimate of the Jacobian matrix constructed at no 

computational cost by assuming that atmospheric concentrations are most sensitive to local emissions. The reduced-

dimension method uses this estimate to construct a Jacobian matrix on a multiscale grid that maintains high resolution in 25 

areas with high information content and aggregates grid cells elsewhere. The reduced-rank method constructs the Jacobian 

matrix at native resolution by perturbing the leading patterns of information content given by the initial estimate. We 

demonstrate both methods in an analytical Bayesian inversion of GOSAT methane satellite data with augmented information 

content over North America in July 2009. We show that both methods reproduce the results of the native-resolution 

inversion while achieving a factor of four improvement in computational performance. The reduced-dimension method 30 

produces an exact solution at lower spatial resolution while the reduced-rank method solves the inversion at native resolution 

in areas of high information content and defaults to the prior estimate elsewhere. 
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1 Introduction 

Satellite observations of atmospheric composition provide a powerful resource to improve our knowledge of emissions 

(Streets et al., 2013). However, the inverse analyses used to infer emissions from observed atmospheric concentrations are 35 

subject to large errors from the measurements and from the inversion procedure. Conducting inverse analyses of satellite 

data to quantify emissions at high resolution is of considerable interest but may be limited by data quality in ways that are 

difficult to quantify and that may compromise the results. Here we present two methods to conduct high-resolution 

inversions of satellite observations that optimize the information content of the observations while providing full error 

statistics and minimizing computational cost. 40 

 

Inverse analyses infer emissions by fitting the observed atmospheric concentrations to a chemical transport model (CTM) 

that simulates atmospheric concentrations as a function of emissions (Brasseur and Jacob, 2017). The CTM represents the 

forward model for the inverse problem. The solution is generally obtained in a Bayesian framework by minimizing a cost 

function regularized by a prior emissions estimate. The optimal (posterior) emissions estimate corresponds to the minimum 45 

of the cost function. This minimum is typically found using a numerical (variational) method, often employing the adjoint of 

the CTM to compute the cost function gradient (e.g., Daescu et al., 2000; Elbern and Schmidt, 2001; Quélo et al., 2005; 

Henze et al., 2007). However, the numerical solution provides no explicit characterization of the solution’s error or 

information content. Methods of estimating the error exist (e.g., Chevallier et al., 2007; Meirink et al., 2008; Koohkan et al., 

2013), but these approaches are computationally expensive, incomplete, and rarely applied in practice. 50 

 

In the common case where the observed atmospheric concentrations depend linearly on emissions and the error statistics can 

be assumed to be normally or log-normally distributed, the Bayesian optimization problem has an analytical solution 

including closed-form expressions for the posterior emissions estimate, its error statistics, and its information content 

(Rodgers, 2000; Maasakkers et al., 2019). The analytical solution requires explicit construction of the Jacobian matrix of the 55 

forward model, 𝐊 = 𝜕𝐲 𝜕𝐱⁄ ∈ ℝ!×# , which represents the sensitivity of the simulated concentrations 𝐲 ∈ ℝ!  to the 

emission state vector 𝐱 ∈ ℝ# (Brasseur and Jacob, 2017). The elements of y are individual observations and the elements of 

x are the emissions optimized by the inversion, often grid cells in a two-dimensional emissions field. When 𝑚 ≫ 𝑛, as for 

inversions of satellite observations, the Jacobian can be constructed column-wise by conducting n + 1 CTM simulations to 

perturb each of the state vector elements 𝑥$  and obtain the corresponding column 𝜕𝐲 𝜕𝑥%⁄ . Even on massively parallel 60 

computing clusters, the computational cost of conducting these simulations can limit the size of the state vector x and 

therefore the resolution at which inversions are conducted (Turner and Jacob, 2015). However, once the Jacobian matrix is 

constructed, inversions can be conducted at essentially no additional computational cost, allowing study of the solution’s 

sensitivity to changes in the specification of inversion parameters, error statistics, prior assumptions, and the number and 

type of observations. 65 
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An illustrative example is the inversion of satellite observations to infer methane emissions. Methane is an important 

greenhouse gas but the spatial and temporal distribution of emissions is highly uncertain (Saunois et al., 2019). Satellite 

observations of atmospheric methane columns can inform emission estimates (Jacob et al., 2016). This was first shown with 

data from the SCIAMACHY satellite instrument (2003 – 2012) with nadir pixel resolution of 30 x 60 km2 (Bergamaschi et 70 

al., 2009, 2013; Houweling et al., 2014; Wecht et al., 2014). More recent inversions used observations from the TANSO-

FTS instrument aboard the GOSAT satellite (2009 – present) with 10-km diameter pixels approximately 250 km apart along- 

and cross-track (Monteil et al., 2013; Alexe et al., 2015; Turner et al., 2015; Maasakkers et al., 2019). The Tropospheric 

Monitoring Instrument (TROPOMI) aboard the Sentinel-5 precursor satellite, launched in October 2017, now provides daily, 

global retrievals of atmospheric methane columns at 5.5 x 7 km2 nadir pixel resolution, increasing coverage by orders of 75 

magnitude relative to GOSAT (Veefkind et al., 2012). However, TROPOMI’s methane retrieval has only a ~3% success rate 

for daytime scenes limited by dark surfaces (water), clouds, high aerosol loadings, and variable surface albedo and 

topography, resulting in heterogeneously distributed observations (Hu et al., 2018; Hasekamp et al., 2019). Inversions of 

TROPOMI data must attempt to capture the high resolution and density of observations where appropriate while recognizing 

the limitations in information content resulting from data sparsity and observational errors. 80 

 

Several methods have been proposed to decrease the computational cost of high-resolution analytical inversions by optimally 

reducing the dimension or rank of the observations or state vector. Approaches that decrease the dimension of the 

observation vector (e.g., Xu, 2007) reduce the computational cost of solving the inversion but not of constructing the 

Jacobian matrix. Approaches that decrease the dimension of the state vector lower the cost of both computations. Reduced-85 

dimension methods solve inversions on a multiscale emission grid of dimension k < n for which the construction of the 

Jacobian matrix 𝐊 ∈ ℝ!×& is computationally tractable. Bocquet et al. (2011) and Bocquet and Wu (2011) defined a method 

to select a multiscale grid from a limited array of allowable grids that preserve resolution where the observations have the 

highest information content. Turner and Jacob (2015) used prior emissions information to group together similar grid cells 

using a Gaussian mixture model, but the criteria used to define similarity were subjective and did not consider the 90 

information content of the forward model or the observations. Other approaches that decreased the dimension of the state 

vector assumed knowledge of the Jacobian matrix (e.g., Rigby et al., 2011; Thompson and Stohl, 2014; Ray et al., 2015; 

Lunt et al., 2016; Liu et al., 2017). Reduced-rank methods generate an approximation of the posterior solution at the original 

dimension n by solving the inversion in the directions of highest information content. The reduced-rank method proposed by 

Spantini et al. (2015) assumed knowledge of the Jacobian matrix. Bousserez and Henze (2018) and Miller et al. (2020) 95 

avoided explicit construction of the Jacobian matrix by estimating the directions of highest information content, but their 

approach is effective only if a small number of directions explain most of the information content. 
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Here we present two methods to construct the Jacobian matrix for a native n-dimensional state vector and maximize the 

information content of the inverse analysis using k < n forward model simulations. The reduced-dimension method generates 100 

a multiscale grid that preserves native resolution where information content is highest and aggregates grid cells elsewhere. 

The resulting reduced-dimension Jacobian matrix 𝐊'( ∈ ℝ!×&  solves the inversion exactly on the multiscale grid. The 

reduced-rank method constructs a Jacobian matrix 𝐊) ∈ ℝ!×# along the dominant patterns of information content in the 

system, allowing the approximation of the inverse solution at native resolution. In both cases, a low-cost initial estimate of 

the Jacobian matrix is updated using k forward model simulations where k is selected by the user based on the information 105 

content of the observing system and the available computational resources. We demonstrate both methods in a 1-month 

inversion of satellite data. 

2 Methods 

This section presents the reduced-dimension and reduced-rank methods of constructing the Jacobian matrix. Following a 

review of the standard analytical inverse framework (Section 2.1), we describe optimal reductions in both dimension and 110 

rank for an inverse system with a known native-resolution Jacobian matrix 𝐊 ∈ ℝ!×# (Section 2.2). We then present a two-

step approach to approximate an initially unknown Jacobian matrix using reductions in dimension and rank (Sections 2.3 

through 2.5). For the purposes of illustration, we take the state vector to be a gridded field of static emissions, but the 

methods apply to temporally variable emissions and more generally to any state vector. 

2.1 Analytical solution to the inverse problem 115 

The optimal estimate 𝐱. of a state vector x given a prior estimate xA, observation vector y, and normal error statistics given by 

prior and observational error covariance matrices SA and SO, respectively, is obtained by the minimization of the Bayesian 

scalar cost function 	𝒥(𝐱) (Brasseur and Jacob, 2017): 

 

𝒥(𝐱) = (𝐱 − 𝐱*)+𝐒*,-(𝐱 − 𝐱*) +	6𝐲 − 𝐅(𝐱)8
+𝐒𝐎,-6𝐲 − 𝐅(𝐱)8. (1) 120 

 

Here F(x) represents the forward model that simulates the observations y given x. In our application, the forward model is a 

CTM. The observational error covariance matrix SO includes errors from both the measurement and the forward model, 

which collectively form the observing system. If the forward model is linear so that F(x) = Kx + c, where 𝐊 = 𝜕𝐲 𝜕𝐱⁄  is the 

Jacobian matrix calculated by finite difference (see Introduction) and c is a constant, then an analytical solution to the cost 125 

function minimum exists that yields both the posterior estimate 𝐱. and its error covariance matrix 𝐒;: 

 

𝐱. = 𝐱* + 𝐒*𝐊+(𝐊𝐒*𝐊+ + 𝐒/),-(𝐲 − 𝐊𝐱*) = 𝐱* + 𝐒;𝐊+𝐒/,-(𝐲 − 𝐊𝐱*), (2)
𝐒; = (𝐊+𝐒/,-𝐊+ 𝐒*,-),-. (3)
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Comparison of 𝐒; and 𝐒* defines the information content of the observing system, quantified by the averaging kernel matrix 130 

𝐀 = 𝜕𝐱. 𝜕𝐱⁄  that represents the sensitivity of the posterior emissions estimate 𝐱. to the true state x. A can be calculated as 𝐀 =

𝐈 − 𝐒;𝐒*,- or equivalently as  

 

𝐀 =	𝐒*𝐊+(𝐊𝐒*𝐊+ + 𝐒/),-𝐊. (4) 

 135 

Equation (4) expresses the dependence of the averaging kernel matrix on the forward model and both error covariance 

matrices. The diagonal elements of A are commonly referred to as the averaging kernel sensitivities. They are highest in 

highly observed locations with uncertain, high emissions and lowest in poorly observed areas or in regions known to have 

low emissions. The sum of the sensitivities, or the trace of A, measures the number of pieces of information that can be 

independently quantified by the observing system, known as the degrees of freedom for signal or DOFS (Rodgers, 2000). 140 

2.2 Optimal reductions in dimension and rank of inverse systems 

We first consider the problem of optimally reducing the dimension and rank of an inverse system as described in Section 2.1 

with a known Jacobian matrix 𝐊 ∈ ℝ!×#. Figure 1 illustrates dimension and rank reductions for an emission grid over North 

America. The top left panel represents the original n-dimensional state space, i.e., the native-resolution grid. A linear 

transformation	𝚪 ∈ ℝ&×# reduces the dimension of the state space from n to k. This transformation may reduce dimension 145 

discretely, as in the case of grid cell aggregation (top right panel), or non-discretely, in which case the k state vector 

components are themselves n-dimensional vectors (bottom right panel). A second linear transformation 𝚪∗ ∈ ℝ#×& restores 

the dimension of the state space from k back to the original n. The resulting space, depicted in the bottom left, is a low-rank 

approximation of the original state space. The matrix 𝚷 = 𝚪∗𝚪 transforms the original state space to the low-rank subspace. 

The inverse problem can be solved in any of these four spaces, although the eigenvector corrections generated in the non-150 

discrete reduced-dimension space (bottom right panel) would be difficult to interpret. 

 

We wish to define matrices 𝚪 and 𝚪∗ that minimize the information loss associated with reducing the dimension or rank of 

the state vector. Bousserez and Henze (2018) show that the projection 𝚷 that maximizes the probability of restoring the 

original full dimension state vector x given the reduced dimension state vector 𝚪𝐱 is given by 𝚷 = 𝐒*
- 1⁄ 𝐔𝐔+𝐒𝐀

,- 1⁄  where 155 

𝐔 = 𝐒*
- 1⁄ 𝚪(𝚪𝐒*𝚪+),- 1⁄ . For a projection of this form, they show that information loss is minimized by maximizing 

DOFS𝚷 = Tr(𝐀)) = Tr6𝐔+𝐒*
,- 1⁄ 𝐀𝐒*

- 1⁄ 𝐔8 where 𝐀)  and A are the reduced-rank and native-resolution averaging kernel 

matrices, respectively. Defining 

 

𝐐 =	𝐒*
,- 1⁄ 𝐀𝐒*

- 1⁄ = 𝐖𝚺𝐖+, (5) 160 
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Figure 1. Dimension and rank reductions of a gridded emissions field. The linear transformation matrix 𝚪 reduces the dimension 
of the original state space (upper left) either discretely by aggregating grid cells to generate a multiscale grid (upper right) or non-
discretely by projecting along the patterns given by the rows of 𝚪 (lower right, with positive values in red and negative in blue). 
The reverse transformation 𝚪∗ restores the dimension but not the rank, producing a low-rank subspace of the original state space 165 
(lower right). The projection 𝚷 = 𝚪∗𝚪 reduces rank but not dimension. 

where the columns of W are the eigenvectors of 𝐐 and 𝚺 is a diagonal matrix of the corresponding eigenvalues ranked in 

descending order, Bousserez and Henze (2018) show that Tr(𝐀)) is maximized for a rank-k subspace when 𝐔 = 𝐖& where 

𝐖& is the matrix of the first k columns of W. The corresponding optimal projection is then 

 170 

𝚷 = 𝐒*
- 1⁄ 𝐖&𝐖&

+𝐒𝐀
,- 1⁄ . (6) 

 

This projection applies a dimension-reducing transformation 𝚪 followed by a dimension-restoring transformation 𝚪∗: 

 

𝚪	 = 𝐖&
+𝐒𝐀

,- 1⁄ , (7)
𝚪∗ = 𝐒*

- 1⁄ 𝐖& . (8)
 175 
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The columns of 𝚪∗ give an eigenvector basis for the averaging kernel matrix while the diagonal of 𝚺 give its eigenvalues, 

together defining the dominant patterns of information content. The fraction of information content explained by the first i 

columns of 𝚪∗  is the sum of the i largest eigenvalues divided by the total DOFS (Bousserez and Henze, 2018). The 

eigenvalues can also be related to other measures of information content, including the Shannon and relative entropy 180 

differences (Rodgers, 2000; Xu, 2007). We will refer to the ordered list of the eigenvalues as the information content 

spectrum. On the basis of this spectrum, we can select k so that most of the information content is explained by the first k 

eigenvectors. Alternatively, we can select k so that all eigenvectors have a sufficiently large signal-to-noise ratio. The signal-

to-noise ratio SNR of the 𝑖 th eigenvector is given by the 𝑖 th singular value of the pre-whitened Jacobian matrix 	𝐊T =

𝐒/
,- 1⁄ 𝐊𝐒*

- 1⁄  and is calculated as  185 

 

SNR$ = U
σ$

1 − σ$
, (9) 

 

where σ$ is the 𝑖th ordered eigenvalue of 𝐐 (Rodgers, 2000). 

2.3 Approximating the Jacobian matrix 190 

Section 2.2 described optimal reductions in dimension and rank of a state vector assuming knowledge of the native-

resolution Jacobian matrix K. However, the n + 1 forward model simulations needed to construct K may be prohibitively 

expensive. Here we present a two-step approach to construct a reduced-dimension or reduced-rank Jacobian matrix at much 

lower computational cost. We start from a low-cost, native-resolution estimate 𝐊(6)  (see below) and calculate the 

corresponding averaging kernel matrix 𝐀(6). In the reduced-dimension method, we use 𝐀(6) to construct a multiscale grid 195 

that maintains resolution in the areas of highest information content (top right panel of Figure 1). We generate the updated, 

reduced-dimension Jacobian matrix 𝐊'(
(-) ∈ ℝ!×& on the resulting grid using the forward model. In the reduced-rank method, 

we construct 𝐊𝚷
(-) ∈ ℝ!×# on the basis of the k dominant eigenvectors of 𝐀(6) by perturbing those patterns in the forward 

model, generating an approximation of the Jacobian matrix in a reduced-rank state space (bottom left panel of Figure 1). In 

both methods, the updated Jacobian matrix improves the estimate of the averaging kernel matrix and its eigenvectors by 200 

incorporating information content from the forward model. We use either 𝐊'(
(-)  or 𝐊)

(-)  to conduct a second update and 

construct the final Jacobian matrix. 

 

In our demonstration case, we generate an initial estimate of the native-resolution Jacobian matrix 𝐊(6)  at no cost by 

assuming that a local perturbation of methane emissions Δ𝑥  [kg m-2 s-1] produces local dry column mixing ratio 205 
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enhancements Δ𝑦  [mol mol-1] as determined by a simple column mass balance dependent on local wind speed and 

parameterized turbulent diffusion. We construct 𝐊(6) column-wise by assuming that observation i responds to emissions in 

grid cell j as 

 

Δ𝑦$ = 𝛼$8
𝑀9%:

𝑀;<!

𝐿𝑔
𝑈𝑝Δ𝑥8 	

(10) 210 

 

so that the elements 𝑘$8
(6) of 𝐊(6) are given by 

 

𝑘$8
(6) =

∂𝑦%
𝜕𝑥8

= 𝛼$8
𝑀9%:

𝑀;<!

𝐿𝑔
𝑈𝑝 ,

(11) 

 215 

where 𝛼$8 ∈ [0, 1] is a dimensionless coefficient providing a crude parameterization of turbulent diffusion, 𝑀9%:	and 𝑀;<! 

are the molecular weights of dry air and methane, respectively, L is a ventilation length scale taken as the square root of the 

grid cell area, g is gravitational acceleration, U is the local wind speed taken here as 5 km h-1, and p is the surface pressure. 

We assume 𝛼$8 = 0.4 for observations in grid cell j and distribute the remaining mass over the three concentric rings 

surrounding that cell with 𝛼$8 = 0.3/8, 0.2/16, and 0.1/24 from the inner to outer ring. Including a representation of turbulent 220 

diffusion increases the spatial coverage of the dominant patterns of information content; the exact form of the 

parameterization (e.g., the number of rings used or the values of 𝛼$8) is unimportant.  

 

The reduced-dimension and reduced-rank methods rely on characterizing the dominant patterns of information content of the 

observing system using the initial estimate of the averaging kernel matrix 𝐀(6) corresponding to 𝐊(6). 𝐀(6) can provide a 225 

good approximation of A even if the initial estimate of the Jacobian matrix 𝐊(6) is crude because the averaging kernel matrix 

depends strongly on the specified prior and observational error covariance matrices 𝐒* and 𝐒/ (Eq. (4)) and because, by 

assuming that observed concentrations are most sensitive to local emissions, 𝐊(6) generates the highest information content 

where the observations are densest. This information content structure can then be refined by a two-step update. 

2.4 Constructing the reduced-dimension Jacobian matrix 230 

In an inverse system with a known native-resolution Jacobian matrix K, a reduced-dimension Jacobian matrix 𝐊'( can be 

constructed on a multiscale grid that maintains native resolution where information content is highest and aggregates grid 

cells elsewhere (top right panel of Figure 1). We refer to the state vector elements of this multiscale grid as clusters. An 

optimal multiscale grid maximizes the total DOFS and the averaging kernel sensitivities of each state vector element, 

referred to here as the DOFS per cluster. To construct this grid, we first define the state vector as a single element 235 
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encompassing the inversion domain. We then add the native-resolution grid cells with the highest averaging kernel 

sensitivities to the state vector one-by-one, removing them from the original state vector element. For each new element 𝑥$, 

we calculate the corresponding Jacobian matrix column 𝜕𝐲 𝜕𝑥$⁄  and the resulting increase in DOFS. When the DOFS 

stabilize, we add instead clusters of two or more native-resolution grid cells and repeat this procedure. Clusters can be 

generated by, for example, K-means clustering, which aggregates spatially proximate grid cells. We repeat this process, 240 

increasing cluster size, until all native-resolution grid cells are allocated to the multiscale grid and the corresponding 

reduced-dimension Jacobian matrix 𝐊'( is constructed. The DOFS convergence criteria and the sequence of cluster sizes 

can be selected to achieve the desired state vector dimension. 

 

We apply this approach beginning with our initial estimate 𝐊(6) (Section 2.3) in a two-step update that iteratively improves 245 

the multiscale grid. Algorithm 1 describes this process in detail. Briefly, the information content for the initial multiscale 

grid is given by 𝐀(6), which we use to identify the grid cells with the highest information content and construct a multiscale 

grid as described above. We compute the corresponding reduced-dimension Jacobian matrix 𝐊'(
(-), introducing information 

content from the forward model. We identify the state vector elements where the forward model contributes the most 

information content by comparing the sensitivities given by the updated reduced-dimension averaging kernel matrix 𝐀'(
(-)  to 250 

the sensitivities given by 𝐀(6). We disaggregate the clusters with the largest differences and update the reduced-dimension 

Jacobian, generating 𝐊'(
(1). Convergence is rapid and we find no need for further iteration. The analytical inversion can then 

be solved exactly on the multiscale grid using 𝐊'(
(1). 

 
Algorithm 1: Reduced-dimension Jacobian matrix construction 255 
Given a native-resolution state vector with dimension 𝑛, a state vector encompassing the entire domain with dimension 𝑛"# = 1, and 𝐀(%) 

and 𝐀"#
(%)  the 𝑛 × 𝑛 and 1 × 1 initial estimates of the averaging kernel matrix, respectively, and an initial cluster size of one native-

resolution grid cell: 

1: Add the 𝐽 clusters with the highest diagonal values of 𝐀(%) to the state vector and update its dimension 𝑛"# = 𝑛"# + 𝐽; 

2: Perturb in the forward model those 𝐽 clusters and the background cluster to generate the 𝑚× 𝑛"# reduced-dimension Jacobian matrix 260 

𝐊"#
(') and the corresponding 𝑛"# × 𝑛"# averaging kernel matrix 𝐀"#

(') ; 

3: If the difference in DOFS per cluster ΔDPC =
()*𝐀!"

($) ,

-!"
−

()*𝐀!"
(&) ,

-!"./
< ε, where ε is a set threshold, increase the cluster size (e.g., by 

aggregating together non-allocated, native-resolution grid cells using K-means clustering); 

4: Let 𝐀"#
(%) = 𝐀"#

(') 	and repeat steps 1 to 4 until all native-resolution grid cells are allocated to the state vector; 

5: Disaggregate the clusters with the largest increase in the diagonal values from 𝐀(%) to 𝐀"#
(')  as measured on the multiscale grid and 265 

update the state vector dimension 𝑛"#; 

6: Perturb in the forward model the disaggregated grid cells to generate the final 𝑚× 𝑛"# reduced-dimension Jacobian matrix 𝐊"#
(0). 
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2.5 Constructing the reduced-rank Jacobian matrix 

In an inverse system with a known native-resolution Jacobian matrix K, a reduced-rank approximation of the Jacobian 

matrix 𝐊)  can be constructed by calculating the linear relationship between emissions and observations for the most 270 

important patterns of information content rather than for individual or aggregate grid cells. A low-rank Jacobian corresponds 

to the state space shown in the bottom left panel of Figure 1. We showed in Section 2.2 that the leading patterns of 

information content are given by the columns of the dimension-restoring transformation 𝚪∗ (Eq. (8)). For any selected value 

of k, the k leading patterns span a rank-k, dimension-n subspace of the original information content space. A Jacobian matrix 

can be constructed within this space by calculating the model response to perturbations of these patterns. The response of the 275 

forward model F to the jth normalized eigenvector 𝛄8∗ ∈ ℝ#, given by the jth column of 𝚪∗, is  

 

𝐲8 =
𝐅6𝐱* + 𝛽𝛄8∗8 − 𝐅(𝐱*)

𝛽 , (12) 

 

where 𝛽 is any scalar sufficiently large to ensure numerical stability. The model responses 𝐲8 , 𝑗 ∈ {1,… , 𝑘} form the columns 280 

of the matrix 𝐊= ∈ ℝ!	×	&, which is the Jacobian matrix for an inverse system with a reduced-dimension state space spanned 

by the first k eigenvectors of the information content, illustrated by the bottom right panel of Figure 1. This reduced-

dimension Jacobian must be transformed to the original state dimension to enable physical interpretation of the posterior 

results. Bousserez and Henze (2018), following Bocquet et al. (2011), show that the reduced-dimension Jacobian matrix 𝐊= 

is given by 𝐊= = 𝐊𝚪∗ and the reduced-rank Jacobian matrix 𝐊) by 𝐊) = 𝐊𝚷 = 𝐊𝚪∗𝚪. Thus, the reduced-rank Jacobian can 285 

be calculated from the reduced-dimension Jacobian by 𝐊) =	𝐊=𝚪. The resulting Jacobian has dimension 𝑚× 𝑛 and rank 𝑘. 

 

In an inverse system without a known Jacobian matrix, the reduced-rank Jacobian matrix approximation can be constructed 

in a two-step update that iteratively improves the patterns of information content used as perturbations. Algorithm 2 

describes this process in detail. Briefly, we use the initial estimate of the Jacobian matrix 𝐊(6) (Section 2.3) to calculate the 290 

corresponding averaging kernel matrix 𝐀(6) and the matrix of its eigenvectors 𝚪∗(6). When calculating 𝚪∗(6), we select the 

𝑘(6) eigenvectors that have a signal-to-noise ratio greater than some threshold. We use the signal-to-noise criterion, which is 

stricter than the information content criterion, to account for the errors in the initial estimate of the information content. We 

compute the forward model response to each of the eigenvectors using Eq. (12) and transform the resulting reduced-

dimension Jacobian 𝐊=
(-)  to the full-dimension state space with 𝐊)

(-) =	𝐊=
(-)𝚪(6) . We calculate the associated averaging 295 

kernel matrix 𝐀)
(-) and the matrix of its eigenvectors 𝚪)∗

(-). Because 𝐊)
(-) is a reduced-rank approximation, its spectrum of 

information content is discontinuous at 𝑘(6). We therefore use the spectrum of information content associated with the initial, 

full-rank estimate 𝐀(6) to select the rank 𝑘(-) of the second update and calculate 𝚪)∗
(-). We use the 𝑘(-) eigenvectors that 
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span most of the information content from the initial estimate and construct an updated reduced-rank Jacobian matrix 

approximation 𝐊)
(1)	as above. The resulting Jacobian matrix 𝐊)

(1) is a rank ≈ 𝑘(-) approximation that accurately quantifies 300 

the forward model where the observing system has high information content and loses accuracy in areas with lower 

information content where the observations are least able to constrain emissions. The resulting posterior solution is accurate 

in areas with high information content and defaults to the prior estimate elsewhere. 
 

Algorithm 2: Reduced-rank Jacobian matrix construction 305 
Given a native-resolution state vector with dimension 𝑛, 𝐀(%) an 𝑛 × 𝑛 initial estimate of the averaging kernel matrix, and 𝐒1 the 𝑛 × 𝑛 

prior error covariance matrix: 

1: Complete the eigendecomposition of the 𝑛 × 𝑛 matrix 𝐐(%) = 𝐒1
.' 0⁄ 𝐀(%)𝐒1

' 0⁄ = 𝐖(%)𝚺(%)𝐖(%)(; 

2: Select 𝑘 so that 1 −
()*𝚺'

(&),

()4𝚺(&)5
< ε where 𝚺6

(%) is the 𝑘 × 𝑘 subset of 𝚺(%) containing the largest diagonal values and ε is a set threshold; or, 

select 𝑘 so that the 𝑘th eigenvector has a signal-to-noise ratio SNR6 = < 7'
(&)

'.7'
(&) > ~1, where σ6

(%) is the 𝑘th largest diagonal value of 𝚺(%); 310 

3: Form the 𝑛 × 𝑘 matrix 𝚪∗(%) =	𝐒1
' 0⁄ 𝐖6

(%) where 𝐖6
(%) is a matrix of the first 𝑘 columns of 𝐖(%) as ranked by the diagonal values of 

𝚺(%); 

4: Perturb in the forward model the columns of 𝚪∗(%) to generate the 𝑚× 𝑘 reduced-dimension Jacobian matrix 𝐊8
('); 

5: Form the 𝑚× 𝑛 reduced-rank Jacobian matrix 𝐊9
(') = 𝐊8

(')𝚪(%), where 𝚪(%) = 𝐖6
(%)(𝐒1

.' 0⁄ , and the corresponding 𝑛 × 𝑛 reduced-rank 

averaging kernel matrix 𝐀9
('); 315 

6: Let 𝐀(%) = 𝐀9
(') and repeat steps 1 to 5 to generate the final 𝑚× 𝑛 reduced-rank Jacobian matrix 𝐊9

(0). 

3 Results and discussion 

We demonstrate the reduced-dimension and reduced-rank Jacobian matrix construction methods in an analytical Bayesian 

inversion of atmospheric methane columns observed by the GOSAT satellite over North America in July 2009. Although 

TROPOMI now provides higher density observations, using GOSAT allows us to use the inversion framework of 320 

Maasakkers (2019). We construct a “native-resolution” inverse system at 1º x 1.25º grid cell resolution (n = 2098, top left 

panel of Figure 1) against which we compare our reduced-dimension and reduced-rank methods. To demonstrate the 

applicability of the methods to higher-information observing systems such as TROPOMI, we artificially increase the 

information content of the GOSAT data by introducing an amplification factor 𝜆 > 1 to the cost function that increases the 

weight of the observational terms: 325 

 

𝒥(𝐱) = (𝐱 − 𝐱*)+𝐒*,-(𝐱 − 𝐱*) + 𝜆6𝐲 − 𝐅(𝐱)8
+𝐒𝐎,-6𝐲 − 𝐅(𝐱)8. (13) 
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The amplification factor functionally decreases the observational error covariance, increasing the DOFS. We set 𝜆 = 5, 

which increases the native-resolution DOFS from 82 to 198. Because of noise in the GOSAT data, this results in an overfit 330 

solution that is irrelevant in our demonstration. 

 

We use the nested North American GEOS-Chem CTM version 12.4.0 as forward model to simulate atmospheric methane 

column concentrations at 1º x 1.25º resolution for July 2009. The 2098 1º x 1.25º grid cells constitute our native-resolution 

state vector. The model is driven with MERRA-2 meteorological fields (Bosilovich et al., 2016) from the NASA Global 335 

Modeling and Assimilation Office. We use boundary conditions and initial conditions from a global posterior GEOS-Chem 

4º x 5º simulation from Maasakkers et al. (2019). The GOSAT observations are from the University of Leicester version 7 

CH4 proxy retrieval over land (Parker et al., 2011; Parker et al., 2015; ESA CCI GHG project team, 2018) for July 2009. 

Prior emissions and observational error covariances are as described in Maasakkers et al. (2019). We assume uniform 

relative prior errors of 50%. The demonstration is sufficiently coarse-resolution and short that the native-resolution Jacobian 340 

matrix K can be explicitly computed with 2099 model runs. After constructing K, we use it as the forward model in lieu of 

additional GEOS-Chem simulations. 

 

Figure 2 (top left panel) shows the native-resolution averaging kernel sensitivities, i.e., the diagonal elements of the native-

resolution averaging kernel matrix A. As discussed in Section 2.3, the structure of the averaging kernel matrix is largely 345 

determined by the prior error covariance matrix 𝐒* and by the observation density as reflected in both the observational 

covariance matrix 𝐒/  and the Jacobian matrix K. This is apparent in the bottom panels of Figure 2, which show the 

distribution of the prior error standard deviations (left) and observation density (right). The absolute errors on the prior 

emissions estimate are largest for wetlands along the southeastern coast of the U.S. (Bloom et al., 2017). The variability in 

the observation density is driven by sampling frequency and retrieval success (Parker et al., 2015). 350 

 

Figure 2 (top right panel) also shows the initial estimate of averaging kernel sensitivities of 𝐀(6)	derived from the initial 

estimate of the Jacobian matrix 𝐊(6) constructed as described in Section 2.3. No forward model simulations were conducted 

to construct this initial estimate, yet the patterns of information content reproduce those given by the native-resolution 

averaging kernel matrix A because of the strong dependence on the prior error standard deviations and the observation 355 

density. A has a smoother structure than 𝐀(6) because of the effect of long-range transport in the CTM, but this has little 

effect on the leading patterns of information content. 
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Figure 2. Averaging kernel sensitivities for the demonstration inversion of GOSAT observations with enhanced information 360 
content for July 2009. The top panels show the sensitivities given by the diagonal elements of the averaging kernel matrix A of the 
native-resolution inversion (left) and of the initial estimate of the averaging kernel matrix 𝐀(𝟎)  (right). The DOFS for each 
averaging kernel matrix are inset in the corresponding panel. The lower left panel shows the error standard deviations on the 
prior emissions estimate given by the square roots of the diagonal elements of SA. The lower right panel shows the GOSAT 
observation density. 365 

For this demonstration, we aim to reduce the number of forward model runs needed to construct the Jacobian matrix by at 

least a factor of four relative to the native-resolution inversion, from 2099 to ≈525 simulations. We first apply the reduced-

dimension method to construct a Jacobian matrix on a multiscale grid generated with K-means clustering following Section 

2.4. The resulting initial multiscale grid and reduced-dimension Jacobian matrix 𝐊'(
(-) constrain 380 clusters and required 381 

model simulations. We disaggregate 11 clusters with a sensitivity increase greater than 0.6, adding 65 native-resolution grid 370 

cells and model simulations. The resulting multiscale grid is shown in the top right panel of Figure 1. It has dimension 434 

and the corresponding reduced-dimension Jacobian matrix 𝐊'(
(1)  required 446 forward model simulations across 17 

parallelized batches, representing a factor of five decrease in computational cost relative to the native-resolution solution. 

The grid has 137 native-resolution grid cells and clusters of between 2 and 55 grid cells. 

 375 
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Figure 3. Results from the demonstration inversion at native-resolution compared to the reduced-dimension and reduced-rank 
methods. The figure shows the posterior scaling factors and averaging kernel sensitivities with respect to the prior emissions 
estimate for each inversion. The degrees of freedom for signal (DOFS) give the number of pieces of information that the inversion 
can independently constrain.  380 

Figure 3 shows the posterior emission scaling factors relative to the prior estimate (top) and averaging kernel sensitivities 

(bottom) for the reduced-dimension solution (center column) compared to the native-resolution solution (left column). Both 

solutions are exact on the grids used. The reduced-dimension solution generates fewer DOFS (95) than the native-resolution 

solution (198) because the DOFS depend on the dimension of the state vector. When comparing the DOFS per cluster, a 

dimension-independent measure, the reduced-dimension solution produces more than twice the value of the native-resolution 385 

solution (0.22 compared to 0.09), reflecting the consolidation of information content. This is reflected in the reduced-

dimension averaging kernel sensitivities, which are more uniform than the native-resolution values. The reduced-dimension 

posterior scaling factors exhibit less variability than the native-resolution solution, which exhibits checkerboard patterns 

resulting in part from the overfit of the posterior solution to observational noise. The posterior scaling factors agree on 

regional scales. 390 

 

We next apply the reduced-rank method (Section 2.5) to construct a reduced-rank approximation of the Jacobian matrix. We 

calculate the dominant eigenvectors of the initial averaging kernel matrix estimate 𝐀(6), requiring that the signal-to-noise 

ratio of all eigenvectors be greater than 1.25. This yields 𝑘(6) = 90 eigenvectors, which account for 43% of the initial-

estimate DOFS. We perturb these eigenvectors in the forward model and construct the reduced-rank Jacobian matrix 𝐊)
(-). 395 

We then calculate the averaging kernel matrix 𝐀)
(-) and its dominant eigenvectors, defining 𝑘(-) = 431 by requiring that the 

improved eigenvectors capture 97% of the information content defined by 𝐀)
(6). The resulting Jacobian matrix 𝐊)

(1) has rank 
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≈431 and required 522 forward model simulations across two parallelized batches. We solve the inversion with 𝐊)
(1) and 

find 137 DOFS compared to the 198 DOFS generated in the native-resolution inversion, achieving 69% of the DOFS at a 

quarter of the computational cost. 400 

 

The DOFS of the reduced-rank inversion are only moderately sensitive to the first- and second-update thresholds, with a 

stronger dependence on the number of model runs conducted in the second update. Figure 4 shows the reduced-rank DOFS 

as a function of the number of first- and second-update forward model runs. Among all possible partitions of 522 total model 

runs (dashed line), our update scheme (starred) nearly maximizes the DOFS, but the DOFS has only moderate sensitivity to 405 

the choice of partition. Using a signal-to-noise ratio threshold of 0.75 or 1.75 instead of 1.25 (dots), decreases the reduced-

rank DOFS by 7%. Lowering the signal-to-noise ratio threshold increases the number of eigenvectors drawn from 𝐀(6), 

which increases the effect of errors in the initial Jacobian matrix estimate 𝐊(6). Increasing the threshold fails to exploit the 

information content of 𝐀(6). More generally, applying a signal-to-noise ratio threshold of 1.25 in the first update maximizes 

the DOFS regardless of the number of model runs conducted in the second update. We show the DOFS generated by these 410 

optimal configurations as a function of the total number of forward model runs in the top panel of Figure 4. After only 300 

simulations, the optimal reduced-rank inversion generates 101 DOFS, achieving half of the native-resolution DOFS at 14% 

of the computational cost. 

 

We solve the inversion (Eqs. (2) – (4)) using the reduced-rank Jacobian matrix 𝐊)
(1) and compare the posterior to the native-415 

resolution solution. Figure 3 (right column) shows the distribution of the reduced-rank posterior scaling factors (top) and 

averaging kernel sensitivities (bottom) compared to the native-resolution inversion (left column). Because 𝐊)
(1)  was 

constructed on the basis of the dominant patterns of information content, it solves for the posterior scaling factors accurately 

in the areas of highest information content and defaults to the prior value (a scaling factor of one) elsewhere. As a result of 

the exclusion of grid cells with low native-resolution information content, the reduced-rank DOFS (137) are lower than 420 

native-resolution DOFS (198). However, in grid cells with large averaging kernel sensitivities, the reduced-rank inversion 

preserves most information content. 755 grid cells have reduced-rank averaging kernel sensitivities greater than 0.01 and 

generate 136 DOFS, amounting to 83% of the 163 DOFS generated by the same grid cells in the native-resolution inversion.  

 

Figure 5 shows a statistical comparison of the reduced-rank and native-resolution inversion results for grid cells with a 425 

reduced-rank averaging kernel sensitivity above 0.01. None of the reduced-rank quantities exhibit significant bias, as shown 

by comparison to the 1:1 line. The elements of the reduced-rank Jacobian matrix 𝐊)
(1) correspond closely with those of the 

native-resolution Jacobian matrix K (correlation coefficient R = 0.97). The strong correlation of the averaging kernel 

sensitivities (R = 0.93) confirms that the reduced-rank inversion accurately identifies the native-resolution grid cells with the  

 430 
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Figure 4. The sensitivity of the reduced-rank inversion DOFS to the number of forward model runs. The bottom panel shows the 
sensitivity of the DOFS to the partitioning of model runs between the first (x-axis) and second (y-axis) update. The lines represent 
the total number of simulations. Our inversion uses a signal-to-noise ratio of 1.25 for the first update and an information content 
threshold of 97% for the second update (star), requiring 522 forward model runs and generating 137 DOFS, accounting for 69% 435 
of the native-resolution DOFS at a quarter of the computational expense. Using a signal-to-noise ratio of 0.75 or 1.75 with the same 
total number of model simulations (dots) does not substantially decrease the DOFS. The top panel shows the DOFS as a function of 
the total number of model runs for all optimal first- and second-update partitions. 

highest information content. The posterior errors and scaling factors agree well in these grid cells. The posterior error 

standard deviations correlate strongly (R = 0.94) due in part to the common contribution of the prior and observational error 440 

covariance matrices (Eq. (3)). The outlier reduced-rank standard deviations tend to be larger than the native-resolution 

values, reflecting the error introduced by discarding information content. The posterior scaling factors also agree well but the  
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Figure 5. Comparison statistics between the reduced-rank and native-resolution inversions for the grid cells with reduced-rank 445 
averaging kernel sensitivity greater than 0.01. Individual panels compare binned counts for Jacobian matrix elements [ppb], 
posterior scaling factors [dimensionless], posterior error standard deviations [dimensionless], and averaging kernel sensitivities 
[dimensionless]. Correlation coefficients are inset and the 1:1 line (dotted) is shown. 

correlation coefficient is smaller (R = 0.84) because of the smaller dynamical range and the propagation of errors from the 

posterior error covariance and Jacobian matrices (Eq. (2)). Negative scaling factors reflect the overfit from artificially 450 

increasing the information content but are of no consequence for our demonstration. 

 

The reduced-dimension and reduced-rank methods reproduce the native-resolution inversion with a factor of at least four 

reduction in total computational cost. The reduced-dimension method generates lower DOFS but higher DOFS per state 

vector element due to the clustering of grid cells. The resulting posterior solution is exact on the multiscale grid and provides 455 
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better spatial coverage than the reduced-rank method at lower resolution. The reduced-rank method generates a higher-

DOFS, higher-resolution approximation where the averaging kernel sensitivities are large. While the calculation of large 

Jacobian matrices can take advantage of parallel computing environments (Maasakkers et al., 2019), the iterative nature of 

both methods proposed here puts some limit on parallelization. The limit is greater for the reduced-dimension method, which 

requires an iteration for each cluster size added to the state vector. The reduced-rank method requires only two iterations. In 460 

both cases, these limitations may not be meaningful because the native-resolution Jacobian matrix is rarely generated in a 

fully parallel environment in practice. 

4 Conclusions 

We proposed two methods to conduct analytical high-resolution inversions of satellite observations of atmospheric 

composition to infer emissions while maximizing information content and minimizing computational cost. The 465 

computational cost of analytical inversions is driven by the construction of the Jacobian matrix, which expresses the 

sensitivity of the observed concentrations to emissions. The Jacobian matrix is constructed numerically by conducting 

perturbation simulations with a chemical transport model (CTM) that serves as forward model for the inversion. Our 

methods exploit the dominant patterns of information content in the observing system to build the Jacobian matrix. The 

reduced-dimension method constructs the Jacobian matrix on a multiscale grid that aggregates grid cells where information 470 

content is lowest. The reduced-rank method approximates the Jacobian matrix using the dominant patterns of information 

content, discarding the weaker patterns. Beyond the atmospheric application presented here, both methods can be applied 

more generally to the problem of efficient numerical approximation of high-dimension Jacobian matrices. 

 

Both methods use a two-step update to improve an initial, no-cost estimate of the Jacobian matrix and the corresponding 475 

averaging kernel matrix. The initial estimate of the Jacobian matrix is constructed here by assuming that observed 

atmospheric concentrations are most sensitive to local emissions. Because the averaging kernel matrix has a strong 

dependence on the prior error covariance matrix and observation density, this initial estimate can accurately quantify the fine 

structure of information content. The reduced-dimension method uses the initial estimate of the averaging kernel matrix to 

generate a multiscale grid that maintains native resolution where information content is highest and consolidates grid cells 480 

elsewhere. The forward model is used to build the Jacobian matrix on this grid, and the resulting reduced-dimension 

averaging kernel matrix is compared to the initial estimate to identify the state vector elements where the forward model 

contributed the most information content. These elements are disaggregated to generate a second and final update. The 

reduced-rank method uses the initial estimate of the averaging kernel matrix to identify the dominant patterns of information 

content. These patterns are perturbed in the forward model, generating a first update of the Jacobian matrix. This update 485 

serves as the basis for a second and final update. In both methods, rapid convergence occurs after two updates. 
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We applied both methods in a demonstration inversion of GOSAT column methane observations over North America for 

July 2009 with artificially enhanced information content. We compared the results to a native-resolution inversion 

optimizing emissions on a 1º x 1.25º grid. Both methods successfully approximated the native-resolution results and 490 

decreased total computational cost by a factor of at least four. The reduced-dimension method produced only 50% of the 

native-resolution information content as measured by the degrees of freedom for signal (DOFS) due to spatial averaging but 

generated twice the DOFS per state vector element and avoided the correlated errors found in the native-resolution inversion. 

The reduced-rank method retained 70% of the native-resolution DOFS by solving the inversion accurately in the grid cells 

with the highest information content and defaulting to the prior emissions estimate elsewhere. In sensitivity tests, the 495 

reduced-rank method retained 50% of the native-resolution DOFS while decreasing computational cost by a factor of seven.  
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