
XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL
algorithm

by S. Noël et al.

MS No.: amt-2020-453

Authors’ Response

Reply to referee 1
We thank the referee for the review and the constructive comments. They will be considered in the revised
version of the paper. In the following, the original reviewer comments are given in italics, our answer in
normal font and the proposed updated text for the revised version of the manuscript in bold font.

Answers to General comments:
1. Overall, I found this paper useful and interesting, and will serve as an important reference. The

subject matter is important, the layout of the paper is logical, the reasoning sound, and the results
are generally laid out well. However, there are a number of problems that need to be addressed.
While details of the retrieval, filtering, and bias correction were presented in a straightforward way,
it was quite dry with little learned. Especially in the part about the random forest filter, which
was used for both filtering and bias correction, but with little attempt on the part of the authors to
explain the relevance of the features identified. The same goes for the prefilters, where it appeared
that thresholds were drawn somewhat out of thin air for some of the parameters. It would have
been useful if the authors had shown even a couple example plots of some of the prefilters and how
thresholds were determined.

Regarding random forest filtering, the relevance of the different features is determined by the random
forest method and shown in Figs. 7 and 8. A physical explanation of these relevances is not possible
– this is a general problem of this method. Therefore we think that plotting individual maps of
parameters is not helpful here.

There is indeed no well defined procedure to define the prefilters, this is essentially based on “sci-
entific knowledge”, e.g. trying to set (in a physical sense) reasonable limits for some parameters.
Therefore – as written in the paper – the choice of the XCO2 error limit or the maximum optical
depths of the scattering layer is somewhat arbitrary and essentially based on trying out different
values and looking at the resulting scatter of the data after filtering. It is therefore not possible to
show e.g. a single example map of one of these parameters from which the limits can be derived. or
justified.

We are aware of this problem, and for future product versions we will try to improve the filtering
method.

2. There were 25 figures in this paper, and in my opinion, many more than are useful, especially some
of the earlier plots. I suggest the authors try to remove some panels in some plots, or some plots
altogether, to show representative plots. For instance, all the noise model coefficients are given in
Tables 6 & 7. Therefore, the authors can reduce Figs 3-6 to probably a single 2 or 4 panel plot (e.g.,
Fit Windows 2 & 3 for both GOSAT and GOSAT-2, P-polarization only). The same goes for Figs
9-12 (a single one would do) and Figs 13-16 (again, a single one would do, and not all bands are
necessary). Plots are in the paper to explain findings, not to exhaustively present ever detail of the
study, especially if some plots or features of plots are never discussed in the main body of the paper.
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We agree and will combine / remove plots to reduce the number of plots accordingly. For the noise
model we will show windows 2P (O2 band) and 6P (strong CO2 band) for both GOSAT and GOSAT-
2 in one figure. Spectra and residuals will be combined into one plot, and we will only show P
polarisation, so there will be one plot for GOSAT and one for GOSAT-2.

3. Finally, it appeared that many important previous works by other authors are never referenced, or
included in the reference section but never cited in the main body. In general, referencing needs to
be much improved in this work.

We will include additional references as suggested by the referee and also check existing references.

4. Therefore, I recommend publication of this manuscript after a major revision to fix the issues with the
burdensome # of plots and problems with referencing, as well as addressing all the specific concerns
raised below.

See below for our answers to the specific comments.

Answers to Specific comments:
1. Section 2.3: This is a unique approach to a truth database to my knowledge – it needs more informa-

tion (plots, etc) on how big this contiguous regions are / how much the TCCON data are expanded
through this approach. A map of a month or a season of data density would fulfill this, and I think be
very interesting for readers. Otherwise, it’s not clear how much this really expands over just using
TCCON directly.

We will add an example map of the true database.

2. Section 2.3: Secondly, you say the requirement for contiguous regions, but you never say how close
the ak-corrected CT value at the TCCON location & time has to agree with TCCON itself. Is that
also 0.75 ppm? You imply this but never say – please correct this.

The contents of the “true” database is not selected based on a 0.75 ppm maximum difference to
TCCON data but to a subset of CT data at TCCON locations. This subset has been selected as
having a maximum difference of 0.75 ppm between the ak-corrected CT value at the location of the
station and the TCCON value.

The “true” database therefore contains only CarbonTracker data, which are confirmed by TCCON
measurements but may differ by up to 1.5 ppm from the TCCON value. This is explicitly stated in
the manuscript at the end of this section:

“Please note that the “true” database does not contain any TCCON data - it only contains CT data
which were confirmed by TCCON, but individual values may differ by up to 1.5 ppm.”

We will clarify this in the text.

We also decided to rename the “true database” to “reference database” to indicate that the content
is not necessarily the (essentially unknown) “true” XCO2 at a certain time and place but only an
estimate which should on average reproduce large scale features correctly.

3. Section 3.1: Your terms “cloud albedo” and “water vapor path” are neither. These terms already
have definitions in use by the community, and they are not how you define them. I suggest you rename
“cloud albedo” to “effective albedo” or “effective scene albedo”. Note you will screen out some
bright desert scenes with your albedo filter, though probably not many. It looks like your 1.98 µm
filter is doing most of the work. Regarding “water vapour path”, it’s nothing of the sort. It’s more
like an SNRwv(wv=“water vapour”), or SNR 1.93 (since this band is roughly at 1.93 µm). Low
SNRwv= clear, high SNRwv= cirrus present. So please rename it to something else.

We agree that the nomenclature we used here is misleading. We will therefore replace “cloud albedo”
by “effective albedo” and will rename “water vapour path” to “water vapour filter” to clarify this.
The albedo filter may indeed remove scenes with very high surface albedo, but this seems to be
uncritical in our case as we still have data over deserts after cloud filtering.
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4. Section 3.2 – Please MOTIVATE why you use both polarisations separately. Do you believe you
obtain more information than if you averaged them together, or do you believe you cannot accurately
average because certain instrument properties (such as ILS) are different for the two polarisations,
and they themselves cannot be averaged together?

We use both polarisation corrections mainly for the following reasons:

• In principle, information is lost when averaging S and P spectra.

• In general, the sensitivity of the instruments and therefore the calibration of the measured spec-
tra is different for S and P. For example, as mentioned by the referee, the measured ILS is given
independently for S and P.

• S and P include different information on scattering, which can also be used for filtering and/or
bias correction.

We will mention this in the paper.

5. Section 3.2.1 Near line 263, you talk about the “NIR”, but early in the paper you refer to ALL the
bands you use as “SWIR”. I realize most scientists label the O2A band as NIR and everything past
1 micron as SWIR. Can you please go through the paper and ensure consistency between NIR and
SWIR labels throughout?

We will harmonise the use of “NIR” and “SWIR” in the revised version of the paper.

6. Section 3.2.1 – Way too many plots, as I said in the general comments. As a rule of thumb, try not to
overwhelm readers with a bunch of plots that all look essentially the same. Each panel of each plot
should contribute to the story you are telling.

We agree and will remove / combine figures as suggested.

7. Section 3.3.1 – In general, your “basic filter” through the RSR filters (I’m looking at your figures
1-2 for this information) really does seem basic for GOSAT, as it filters out only 8 percent of the
data (35.0%–>27.2%), and most of that comes from convergence. However, for GOSAT-2 not only
do twice as many soundings fail to converge as for GOSAT, but the window 5 RSR also accounts
for many failed soundings (5% for GOSAT-2, versus 0.3% for GOSAT, if I am counting right). Can
you please comment on why this may be happening for GOSAT-2? Window 5 is the methane band I
think. You may wish to split things out separately as land versus ocean – you may find very different
behaviors for the two categories. In any event, please devote a few words in this section as to why
this is happening. And please do say how differently the filters act on land vs. ocean. Actually,
looking at this further, I think it is the “broadband oscillation” in the fit residuals you mention for
GOSAT-2 that may be causing the problem. Are those oscillations really correlated with retrieved
XCO2 quality? If not, you may wish to loosen that constraint for GOSAT-2, to save more soundings.

We use the term “basic filter” for all post-processing filters applied before the random forest filter.
Indeed, the number of data removed by the RSR filter is much larger for GOSAT-2 than for GOSAT.
We assume that this is mainly related to the GOSAT-2 calibration which e.g. currently does not
consider remaining polarisation sensitivities to the U (45◦) component of incoming light, which
especially affects band 2 and may be the reasons for the broadband features in window 5.

Furthermore, as explained in the paper, there seem to be some problems with the noise of GOSAT-2
data over water, which is why we base our GOSAT-2 noise model on land data only. This is also
why we cannot provide separate RSR filters for land and ocean for GOSAT-2. For GOSAT different
RSR filters are not necessary as there is no discrepancy in the land/ocean noise data. This is why
we apply the same convergence / RSR filters for land and water (but later split the filtering and bias
correction).

We rely on the calibrated spectra given in the data product and thus cannot quantify the real impact of
the deficiencies in the calibration on the retrieval results. We therefore prefer not to add speculations
about possible reasons to the paper.

3



However, the different performance of the filters indicates that the filtering for GOSAT-2 needs some
further optimisation, which is planned for the next version of the products.

We will mention the latter in the paper.

8. Secton 3.3.2 Near line 295, please also reference Mandrake et al (2013, AMT, “Semi-autonomous
sounding selection for OCO-2”), who did something similar for OCO-2.

We will add this reference.

9. Section 3.3.2, near line 310. I’m nearly certain that for water, SAA, VAA, SZA, VZA will be correlated
with latitude. Because the orbit is sun-synchronous and you’re looking to the glint spot over water,
I’m willing to bet that any machine learning algorithm or even a simple correlation analysis can
probably figure out where you are based on those quantities (or even only one or two of them). I
suggest you be exceedingly careful in including those quantities. Please include a comment to this
affect in the paper.

We agree that for water / glint there are specific relations between viewing geometry and geolocation
and will mention this in the paper.

10. Section 3.3.2 – can you state how many training soundings total there were for GOSAT and GOSAT-
2, for each of land and water? I wonder if your training set is general enough to avoid over-fitting.
Also, please define “Relevance” as you use it in Figure 7 & 8.

The number of soundings used for the random forest filter are:

• GOSAT land: 54317

• GOSAT water: 109414

• GOSAT-2 land: 10625

• GOSAT-2 water: 40459

From these, we use 90% for training and 10% for testing, so this should be sufficient for 10 parame-
ters. We think that over-fitting is not a problem here, because as mentioned in the paper we only get
accurate filter results in two thirds of the cases (for both training and test data sets). This would not
be the case for over-fitting where the training set would have a much better performance than the test
data set.

“Relevance” is a quantity coming out of the random forest method which describes the relative
importance of each feature for the filtering. Relevances are normalised such that the sum of all
relevances is 1.

We will include this information in the paper.

11. Section 3.3.3 – This community did XCO2 bias correction long before OCO-2. Can you please
reference earlier works on the subject? (The earliest I know of is Wunch et al., 2011, ACP “A
method for evaluating bias...”; I believe there are similar references for GOSAT for the UoL retrieval,
the NIES retrieval, and the RemoTeC retrieval). Are you really using 10 parameters in your bias
correction? This is way more than most groups usually use (which is typically 1-4; as I remember,
Reuter et al.(2017) didn’t use any in their OCO-2/FOCAL paper). Be careful – there could almost
certainly be overfitting here. So my comment is 10 parameters simply doesn’t seem to be justified
based on past experience and the published methods of nearly all other retrievals for the last 10
years. Therefore, your using 10 parameters requires more justification than simply “this is what
came out of the random forest algorithm”.

We will add additional references to other bias correction methods.

The choice of filter parameters is mainly based on the output of the random forest method, which
associates to all possible parameters a relevance value (shown e.g. in the top of Fig. 7 for GOSAT).
As explained above, this relevance value describes the relative importance of a suggested feature
for the filtering or regression. As can be seen from this figure, the relevance drops off quite rapidly

4



after a few variables. The number of variables to be used is then a trade-off between many variables
(explaining all relations with a risk for over-fitting and high computational effort) and few variables
(no over-fitting, but maybe missing some relations). We decided to use 10 variables as a good
compromise, and since we do not seem to have problems with over-fitting (see answer to previous
comment) this seems justified. Note that even if we would include too many non-relevant parameters,
this would be no major problem as most filtering is done by the relevant parameters.

We will include this explanation in the paper.

12. Section 4, nearly line 378. Just a comment. The higher XCO2 variability over land has long been
seen. I highly doubt this is due solely to surface variability. I think it is also caused by different
scattering pathways that are not present over water. In particular, photons scattered downward by
the atmosphere can be reflected off the surface back into the beam accepted by the sensor; this
mechanism doesn’t happen over water, so there are more ways for atmospheric scattering to degrade
a retrieval. But that’s mainly just a hypothesis.

Thank you for the information. We agree that surface variability may not be the only reason for the
higher XCO2 variability over land. We will adapt the text accordingly and take your comment into
account.

13. Section 5 – page 13. Please include appropriate references for each of these algorithms here. Also
you say for the validation of the GOSAT and GOSAT-2 FOCAL products, but really these compar-
isons to the other products are just for GOSAT only. You may wish to state upfront here that the
vast majority of the presented validation is only for GOSAT. Only subsection 5.3 mentions GOSAT-2,
and it only appears in a single validation figure (25). In fact, this paper is really begging for some
basic comparison plots of GOSAT and GOSAT-2 to TCCON, to see how well your algorithm works
on GOSAT-2 as compared to GOSAT. Can you please add something to that effect?

Detailed references for all products are already given in Section 2.4. Indeed, most comparisons are
done for GOSAT, except for the time series (section 5.3).

We did not include a comparison of GOSAT-2 with TCCON because of the limited amount of the
GOSAT-2 data. We will add this in the revised version but note also that the results are probably not
representative.

14. Line 438 – I do not understand this statement about a “bias anomaly”. Please be more clear about
what you did here. Did you subtract some kind of mean bias with respect to TCCON from each
algorithm? Please don’t! Or if you did, you have to state somewhere what number you subtracted
off each algorithm. If ACOS is high by 1 ppm relative to TCCON and you simply subtracted that
off before making plots, it’s critical to state that somewhere. It would be much better simply to NOT
subtract off that bias, unless you can throughly justify why you did.

We subtracted for each algorithm the mean of the bias for all stations. This is because for most appli-
cations this mean bias is not relevant since most information is contained in gradients. Subtracting a
mean bias also facilitates a comparison of different bias patterns between the algorithms.

The subtracted mean station bias is actually small (0.17 – 0.64 ppm). We will mention this in the
paper.

15. Section 5.2 end, L445 – Even if you don’t have “sufficient data” for full seasonal cycle fits for
all GOSAT-2 data vs. TCCON, you’ve got enough to make some basic plots. Please do so – the
community is really interested in them. If not, there isn’t a lot of point in including GOSAT-2 in this
paper at all.

As mentioned above, we will include some plots for GOSAT-2 vs. TCCON.

16. References: It looks like you have way more references in the Reference section of the paper, than you
actually reference in the main body of the paper. A rule of papers: you MUST cite each reference in
your references section somewhere in the main body of the paper. Please make sure this is the case.
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We will check the references, but actually all entries in the References section are cited in the paper.
However, the references for the used TCCON data are only listed in Table 1, maybe this is why the
referee misses them in the main text.

Answers to Technical/Grammatical comments:
1. 47: Tansat, GOSAT, and OCO-2/3 instruments The Tansat, GOSAT, and OCO-2/3 instruments

Will be corrected.

2. L280: XCO2 error is ambiguous. Suggest you change this to “XCO2 posterior uncertainty” or
something more clear that it is the posterior error estimate from the OE itself, and not some error as
compared to TCCON or something.

Agreed, will be changed.

3. L292: Remove the word “exemplary”. This isn’t really an example, I assume this is a full indication
of what is happening.

Indeed, “exemplary” may not be the correct term here. However, the figures only show an example
for one month of data (as written in the caption). We will rephrase this sentence:

Figs. 1 and 2 show how many data points are typically filtered out in this step.
Note: The numbering of figures above refers to the current paper, it will change in the revised version.
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Reply to referee 2
We thank the referee for the detailed review. The comments will be considered in the revised version of the
paper. In the following, the original reviewer comments are given in italics, our answer in normal font and
the proposed updated text for the revised version of the manuscript in bold font.

Answers to major comments:
1. Section 2.3 “True database”

(a) It remains unclear whether the actual TCCON measurements are used or not in the procedure.
My current understanding is that the “valid” simulations are those where the total column,
computed with an homogeneous weighting and the same with the TCCON averaging kernel,
differ by less than 0.75 ppm. If my understanding is correct, then (i) I do not understand why
this is a valid criterium to select the most accurate simulation data and (ii) there is no need
to compute the “daily mean” TCCON. If my understanding is incorrect, the description needs
some re-writing.
For the “true” database we first determine a set of daily TCCON data for each station. These
TCCON data are an average over all measurements within 13 h ± 2 h local time of one day at
one station. This is no daily mean as it is only a 4 h average (we’ll clarify this in the paper).
From this, we get one value per day and station. We then select collocated CarbonTracker (CT)
data for each day and station, apply the TCCON averaging kernels to them and compute XCO2.
This ak-corrected CT XCO2 is then compared with the corresponding TCCON XCO2. For all
days where both values agree within ± 0.75 ppm, we define contiguous regions around each
station where the CT XCO2 data deviate less than 0.75 ppm from the CT value at the station.
The CT data inside these regions are then inserted into the database.
The “true” database therefore contains only CT data, which are confirmed by TCCON mea-
surements but may differ by up to 1.5 ppm from the TCCON value. This is explicitly stated in
the manuscript at the end of this section:
“Please note that the “true” database does not contain any TCCON data - it only contains CT
data which were confirmed by TCCON, but individual values may differ by up to 1.5 ppm.”
The choice of the 0.75 ppm ranges is based on a trade-off between accuracy (agreement with
TCCON) and spatial coverage of the database.
We will update the section about the “true” database for clarification.

(b) Line 138-139 “which were confirmed by TCCON” is really unclear, especially since it is said
above that there is “more data in the Southern hemisphere” that is notably poor in TCCON
coverage. How can such data be confirmed by TCCON.
As explained above, “confirmed by TCCON” means that all CarbonTracker data used in the
“true” reference database agree within 1.5 ppm with TCCON. This essentially defines an area
around each used TCCON station where CarbonTracker data are compliant with this criterion.
The spatial coverage of the “true” database varies from day to day depending on how many data
agree with TCCON. This of course also limits the spatial coverage of the “true” database (e.g.
there are less data in the southern hemisphere), but nevertheless all data in the “true” database
fulfil the criterion and are therefore confirmed by TCCON.
The sentence “There are typically more data in the southern hemisphere during the second half
of the year” just means that there are more data during the second half of the year compared to
the first half of the year, not more data in the south than in the north. We will clarify this in the
text and also show example maps from the “true” data base to illustrate this.

(c) As a consequence, it is really unclear why the database build as described, can be considered
as a truth.
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For the XCO2 bias correction we have to assume some kind of “truth”, and we think our choice
to use a subset of CarbonTracker data which is confirmed by measurements is a valid one. We
hope that with the explanations given above this is now clearer.
We also decided to rename the “true database” to “reference database” to indicate that the
content is not necessarily the (essentially unknown) “true” XCO2 at a certain time and place
but only an estimate which should on average reproduce large scale features correctly.

2. Section 3.1.2 Cloud Filter

It is said that the Cloud Filter is based on the fact that clouds are bright (OK) and higher in the
atmosphere so that there is little water vapour above them. Then, one my expect that, when the
water vapor estimate is low, a cloud presence is suspected. Yet the description of the test indicates
that a cloud is detected when the water vapor estimates is **larger** than a threshold. This is
inconsistent.

The referee is completely right. The term “water vapour path” which we use to name one of the filter
criteria for cloudiness is misleading. As written in the manuscript, this filter is defined as the ratio
between the median radiance and the median of the estimated noise, i.e. it is indeed high in case of
low water vapour content and vice versa.

We will rename “water vapour path” to “water vapour filter” to clarify this.

3. Section 3.3.2 Random Forest Filter

(a) The difference between the estimate and the “true” reference database is used. It is said that
the difference is subtracted by the global monthly mean bias. This assumes that the global
mean bias of the reference is zero which is a strong assumption.
As written in the manuscript, for the filtering we are not interested in a potential global bias of
the data. The main purpose of the random forest filter is to reduce the scatter in the XCO2 data.
This is why we subtract the global median of the bias before filtering. It is indeed the global
median for land and water, not the monthly global median, which is subtracted – this will be
corrected in the paper. This essentially makes the filtering independent from a global bias.
For the bias correction, however, we assume that our reference (the “true” database) is on
average the “truth”, i.e. large scale features are well reproduced. This is indeed a strong
assumption, but this is how a bias correction works, and we think we made a reasonable choice
for the reference.

(b) This section lacks a quantitative discussion: What are the mean values of the differences to the
“true” reference dataset. What is the order of magnitude of the bias correction? Does it has
some spatial patterns. In the case of ACOS, the bias correction is similar to the signal which is
an important information. Is it the same here?
Note that this section is not about the bias correction, it is about filtering of data. The bias cor-
rection is addressed in the following section, which also gives some quantitative information.
Finally, we only use data where the estimated bias is within ± 2 ppm around the global mean
bias, which is different for land and water (see Table 9). The scatter (global standard deviation)
of the estimated bias is below 1 ppm.
We will add this information in the paper and also maps of the bias correction for GOSAT and
GOSAT-2 such that spatial patterns can be identified.

(c) It is then said (line 321) that the random forest classification is accurate in about two thirds of
the cases. How is this evaluated? How can one decide whether it is accurate or not?
The accuracy is estimated from the performance of the filter for the training and the test data
sets (for which we know the truth). It is defined as the fraction of correctly classified samples.
We will explain this in the updated paper.

4. Figures
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(a) There is certainly no need for Figure 3 to 6. A couple of examples would be sufficient rather
than the 28 pannels that indicate similar behaviors (and differences that are not commented).
We agree and will replace Figs. 3 to 6 by a single one showing only an example of the noise
plots for GOSAT and GOSAT-2 (two fit windows each).

(b) Figure 9 to 12 provide no usefull information. Figure 13 to 16 could be limited to a few exam-
ples rather than the 30 pannels. I strongly recomment to combine figure 9 and 13 so that one
can identify whether the fine scale structures of the residuals correspond to absorption lines
We agree and will replace these figures by two figures (one for GOSAT and one for GOSAT-2)
which will show both spectra and residuals in one plot for only one polarisation direction as
indeed results for S and P are very similar.

5. Section 4; Results

This section contains several hypothetical statements “likely”, “most likely”, “which may explain”...
that deserve investigations

We agree that some of our formulations are too cautious. We will check the text and update it
accordingly.

Answers to other comments:
1. Abstract : Line 21 “regional bias”.

There is no demonstration that TCCON is representative of a region, neither that the bias at the
TCCON location is the same over a region.

With “regional bias” we refer to the “station-to-station bias” which is a measure for the variability of
the bias between different stations and thus regions. For clarification, we will use the term “station-
to-station bias” in the abstract.

2. Section 2.2; line 111-112

Why a factor of 5 for H2O “to reduce dependencies on the a-priori” but not the same factor for the
CO2

The natural variability of H2O is much higher than for CO2, therefore we use a stronger a-priori
constraint for CO2 than for H2O.

3. Line 117 “very accurate”. Please quantify.

The estimated accuracy of TCCON XCO2 measurements is 0.4 ppm (1 sigma). We will specify this
in the text and add a reference.

4. Line 124 : “daily mean”.

I understand the mean is over 4 hours. How can this be considered a daily men ?

Yes, the mean is indeed over 4 hours (13±2 h LT), we will correct this:

Then we determine from the TCCON data for each day mean values (XCOTCCON
2 ) for 13 h

± 2 h local time.

5. Line 188 : “It is given by the ratio between the median radiance and the median of the estimated
noise in this spectral range”. Unclear.

This is the definition of the “water vapour path” filter, see also above. We will reformulate this:

This filter is defined as the ratio between the median radiance and the median of the estimated
noise in this spectral range.

6. Line 278 : The case is rejected when the Angstrom coefficient is outside of the range [1 – 5]. This
is strange. Clouds and aerosols can have Anstrom coefficients that are close to zero. Conversely,
values larger than 2 have never been reported to my knowledge.
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The FOCAL forward model considers only a single Lambertian scattering layer to describe all scat-
tering effects. All retrieved scattering parameters such as Ångström exponent can be considered “ef-
fective” parameters as they have to account for not only cloud/aerosol scattering but also Rayleigh
scattering (which has an Ångström coefficient of 4). Because Rayleigh scattering is always present
and we filter out cloudy scenes, we usually get higher effective Ångström coefficients than those
expected from clouds or aerosols only. We will clarify this in the text.

7. Line 335: “But with this filter applied”. Which filter ?

The random forest filter, will be clarified:

For the bias correction we use as input the same data set as for the random forest filter, but
with this random forest filter applied.

8. Line 343 : What is the order of magnitude of the bias correction?

This is explained in the following text; values are given in Table 9. We will also add maps of the bias
correction, see our answer to the major comments.

9. Line 349: “On the derived XCO2 bias”.

What bias is that? Is it before or after the correction? The paragraph indicates it is after correction,
but then how can it be evaluated?

This is the bias estimated via the random forest classifier. We will clarify this:

These are filtered out by an additional filter on the XCO2 bias derived via the random forest
classifier.
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List of changes
Changes according to the comments mentioned above have been made in the revised manuscript. Es-
pecially, some figures have been removed or combined and some have been added. Therefore, figure
numbering has changed. The changes are marked in the attached version of the revised manuscript.
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Abstract.

Since 2009, the Greenhouse gases Observing SATellite (GOSAT) performs radiance measurements in the
:::::::::::
near-infrared

:::::
(NIR)

:::
and

:
shortwave-infrared (SWIR) spectral region. From February 2019 onward, data from GOSAT-2 are also available.

We present first results from the application of the Fast atmOspheric traCe gAs retrieval (FOCAL) algorithm to derive

column-averaged dry-air mole fractions of carbon dioxide (XCO2) from GOSAT and GOSAT-2 radiances and their validation.5

FOCAL has initially been developed for OCO-2 XCO2 retrievals and allows simultaneous retrievals of several gases over both

land and ocean. Because FOCAL is accurate and numerically very fast it is currently considered as a candidate algorithm for

the forthcoming European anthropogenic CO2 Monitoring (CO2M) mission, to be launched in 2025.

We present the adaptation of FOCAL to GOSAT and discuss the changes made and GOSAT specific additions. This includes

particularly modifications in pre-processing (e.g. cloud detection) and post-processing (bias correction and filtering).10
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A feature of the new application of FOCAL to GOSAT/GOSAT-2 is the independent use of both S and P polarisation

spectra in the retrieval. This is not possible for OCO-2, which measures only one polarisation direction. Additionally, we

make use of GOSAT’s wider spectral coverage compared to OCO-2 and derive not only XCO2, water vapour (H2O) and solar

induced fluorescence (SIF) but also methane (XCH4), with the potential for further atmospheric constituents and parameters

like semiheavy water vapour (HDO) and (in the case of GOSAT-2) also carbon monoxide (CO) total columns and possibly15

nitrous oxide (XN2O).

Here, we concentrate on the new FOCAL XCO2 data products. We describe the generation of the products as well as

applied filtering and bias correction procedures. GOSAT-FOCAL XCO2 data have been produced for the time interval 2009

to 2019. Comparisons with other independent GOSAT data sets reveal an agreement of long-term temporal variations within

about 1 ppm over one decade; differences in seasonal variations of about 0.5ppm are observed. Furthermore, we obtain a20

mean regional
:::::::::::::
station-to-station

:
bias of the new GOSAT-FOCAL product to the ground based Total Carbon Column Observing

Network (TCCON) of 0.56 ppm with a mean scatter of 1.89ppm.

The GOSAT-2-FOCAL XCO2 product is generated in a similar way as the GOSAT-FOCAL product, but with adapted

settings. All GOSAT-2 data until end of 2019 have been processed. Because of this limited time interval, the GOSAT-2 results

are considered to be preliminary only, but first comparisons show that these data compare well with the GOSAT-FOCAL results25

:::
and

::::
also

:::::::
TCCON.

1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas in the context of global warming (e.g. IPCC, 2013). The amount

of CO2 in the atmosphere is primarily determined by natural and anthropogenic sources and sinks but our current understand-

ing of these sources and sinks has significant gaps (e.g., Ciais et al., 2014; Reuter et al., 2017a; Friedlingstein et al., 2019;30

Janssens-Maenhout et al., 2020). Retrievals of column averaged carbon dioxide (XCO2) from the satellite sensors SCIA-

MACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999; Reuter et al., 2010, 2011), TANSO-FTS/GOSAT (Kuze

et al., 2016) and from the Orbiting Carbon Observatory-2 (OCO-2) satellite (Crisp et al., 2004; Eldering et al., 2017; O’Dell

et al., 2012, 2018) have been used in over a decade to obtain information on natural CO2 sources and sinks (e.g., Chevallier

et al., 2014; Chevallier, 2015; Reuter et al., 2014b, 2017a; Schneising et al., 2014; Basu et al., 2013; Houweling et al., 2015;35

Kaminski et al., 2017; Liu et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer et al., 2019) and on anthropogenic CO2

emissions (e.g., Schneising et al., 2008, 2013; Reuter et al., 2014a, 2019a; Nassar et al., 2017; Schwandner et al., 2017; Miller

et al., 2019; Labzovskii et al., 2019; Wu et al., 2020; Zheng et al., 2020)

First satellite measurements of XCO2 were performed by the Scanning Imaging Absorption Spectrometer for Atmospheric

CHartographY (SCIAMACHY) instrument (Bovensmann et al., 1999; Gottwald and Bovensmann, 2011; Reuter et al., 2010,40

2011) on the European environmental satellite ENVISAT launched in 2002 and operating until April 2012.

Whereas greenhouse gases were only one field of application among others of SCIAMACHY, later satellite missions focused

explicitly on these. In 2009, the Greenhouse gases Observing SATellite (GOSAT; Kuze et al., 2009, 2016) was launched,
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followed by the Orbiting Carbon Observatory-2 (OCO-2; Crisp et al., 2017; Eldering et al., 2017; O’Dell et al., 2012, 2018) in

2014. Furthermore, in 2016 the Chinese TanSat mission was launched; first results have been presented by Yang et al. (2018).45

Follow-on instruments to GOSAT and OCO-2 (GOSAT-2; Suto et al., 2020) and (OCO-3; Eldering et al., 2019) are in orbit

since 2018 and 2019, respectively.
:::
The

:
TanSat, GOSAT and OCO-2/3 instruments are still operating, and several different

retrieval algorithms have been developed to derive XCO2 from their
::::::::::
near-infrared

:::::
(NIR)

::::
and

:
short-wave infrared (SWIR)

spectra.

The main challenge for space-borne XCO2 measurements is the required accuracy of the resulting data products as the50

atmospheric background of XCO2 is high compared to the variability, which is typically less than a few percent (about 2%

seasonal cycle variations in the northern hemisphere in addition to an annual increase of about 0.5% per year, see e.g. Schneis-

ing et al., 2014; Buchwitz et al., 2018). Depending on the application, even higher accuracies are needed. An accurate XCO2

retrieval usually requires a complex retrieval method and large computational effort. This is no major problem for the number

of measurements provided by the GOSAT instruments, but even current OCO-2 retrievals require significantly larger compu-55

tational effort. However, new missions with much higher spatial resolution and coverage are currently in preparation to answer

the challenging questions on CO2 local and global sources and sinks in a changing climate, one amongst them is the forth-

coming European anthropogenic CO2 Monitoring (CO2M) mission (Kuhlmann et al., 2019; Janssens-Maenhout et al., 2020),

dramatically increasing the computational power needed for retrievals.

Three years ago, Reuter et al. (2017b, c) developed the Fast atmOspheric traCe gAs retrieval (FOCAL) and applied it to60

OCO-2 data. To show the applicability of the FOCAL method not only to OCO-2 but also to other satellite sensors, we present

in this study a new application of FOCAL to GOSAT and also some first results from an application to GOSAT-2. GOSAT-

FOCAL has several advantages over GOSAT-BESD (Heymann et al., 2015), the currently used IUP GOSAT XCO2 XCO2

retrieval, product (Heymann et al., 2015), which provides only XCO2 data over land. However, FOCAL is able to retrieve not

only XCO2 but – depending on the used spectral ranges – also other atmospheric parameters like XCH4, H2O, HDO, CO and65

N2O. In the present study we concentrate on XCO2, as this is the most important (and because of its high requirements on

accuracy possibly most challenging) anthropogenic greenhouse gas.

The manuscript is organised as follows: In Section 2 we list all data sets used in this study. The retrieval algorithm is

described in section 3. Sections 4 and 5 then show the results of the retrieval and the validation. Finally, the conclusions are

given in section 6.70

2 Data sets used

2.1 GOSAT and GOSAT-2

The Greenhouse gases Observing SATellite (GOSAT; Kuze et al., 2009) was launched in January 2009 and is still in operation.

The Thermal And Near infrared Sensor for carbon Observation (TANSO) on-board GOSAT consists of a Cloud and Aerosol

Imager (TANSO-CAI) and a Fourier Transform Spectrometer (TANSO-FTS), which measures radiances in the
::::
NIR

:::
and

:
SWIR75

spectral region with S and P polarisation and in the thermal infrared spectral region without polarisation with a spectral resolu-
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tion of 0.2 cm−1. The FOCAL retrieval uses as main input calibrated GOSAT L1B V220.220 spectra from the three
::::
NIR/SWIR

bands (around 0.76, 1.6 and 2.0 µm) of TANSO FTS.

GOSAT-2 (Nakajima et al., 2017; Suto et al., 2020) was launched in October 2018 and comprises a similar instrumentation

as GOSAT. The GOSAT-2 FTS has the same spectral resolution but an extended spectral range for SIF and CO retrievals.80

We use calibrated GOSAT-2 L1B
::::
NIR/SWIR data V101.101.

Both GOSAT and GOSAT-2 perform point measurements with a spatial resolution (footprint diameter) of about 10 km. For

both instruments, we use a tabulated instrumental line shape (ILS) with a kernel width of 15 cm−1. For GOSAT this has been

generated by a theoretical formula parameterising a “real-world” FTS instrument (see e.g. formula 5.21 in Davis et al., 2001) ,

which depends on the maximum optical path difference (MOPD, ±2.5 cm for GOSAT) and the size of the instantaneous field85

of view (IFOV, 15.8mrad for GOSAT). The same formula has been used by Heymann et al. (2015). This ILS is symmetric and

the same for S and P polarisation.

For GOSAT-2, we use a preliminary tabulated ILS provided by JAXA and generated on 16 January 2020, which is different

for S and P polarisation and asymmetric, especially in the SWIR-1
:::
NIR band. Meanwhile, this ILS has been officially released

and is available via the NIES web site.90

2.2 Reference Spectra and External Databases

For the retrieval several reference spectra and databases are used.

The solar spectrum used in the forward model is based on a high resolution solar transmittance spectrum (O’Dell et al.,

2012) in combination with an ISS solar reference spectrum (Meftah et al., 2018). For the SIF retrieval we used a chlorophyll

fluorescence spectrum by Rascher et al. (2009), which has been scaled to 1.0mW/m2/sr/nm at 760nm.95

We use tabulated cross sections at a 0.001 cm−1 sampling based on HITRAN2016 (Gordon et al., 2017) and the absorption

cross section database ABSCO v5.0 (Benner et al., 2016; Devi et al., 2016) from the NASA (National Aeronautics and Space

Administration) ACOS/OCO-2 project.

Surface elevation, surface roughness and surface type are derived from the Global Multi-resolution Terrain Elevation Data

(GMTED2010; Danielson and Gesch, 2011) of the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence100

Agency (NGA) at a spatial resolution of 0.025◦. Meteorological information (pressure, temperature, water vapour profiles) is

obtained from ECMWF (European Centre for Medium-range Weather Forecasts) ERA 5 model data (Hersbach et al., 2020),

which are available every 1 hour on a 0.25◦ horizontal grid and on 137 altitude layers.

We use XCO2 data from the CarbonTracker (CT) model CT2019 and CT-NRT v2020-1 (Jacobson et al., 2020a, b) and data

from the Total Carbon Column Observing Network (TCCON, see e.g. Wunch et al., 2011a) in the context of the bias correction105

:::::::
reference

:
database (see section 2.3). TCCON data are also used for validation (see section 5). Table 1 lists the TCCON stations

which provided data for the present study.

XCO2 a-priori profiles are derived using the 2018 version of the simple empirical CO2 model SECM (Reuter et al., 2012).

In the context of validation, we use the 2020 version of SECM. XCH4 a-priori data are from the simple CH4 climatological

model SC4C2018 developed and used by Schneising et al. (2019) and briefly described by Reuter et al. (2020).110
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For CO2 we use the “synth” a-priori error covariance matrix described by Reuter et al. (2017b). For H2O, we use the same

error covariance matrix as Reuter et al. (2017b), but scaled by a factor of 5 to reduce the dependencies of the retrieval results

on the a-priori. For CH4, for convenience, we scale the CO2 matrix to result in an XCH4 uncertainty of 45ppb, which is

considered to be a reasonable estimate. Note that only the matrices are scaled, not the a-priori values.

2.3 The “true”
::::::::
reference

:
database115

Quality filtering and bias correction usually require the knowledge of a “true” (in this case XCO2) value. For this, we do not

simply use model data as truth, as one aim of XCO2 products is to improve models. Another method is to take ground-based

TCCON measurements as basis for a bias correction. However, although TCCON measurements are very accurate (estimated

1-σ precision is 0.4 ppm, see Wunch et al., 2010), they are only available at certain locations and are therefore more suited for

validation.120

Our choice is therefore to use a data base generated from a combination of TCCON measurements and CarbonTracker (CT)

model data for a reference year (2018 for GOSAT, 2019 for GOSAT-2)
:
,
:::::
which

::::::
should

::
on

:::::::
average

::::::::
reproduce

:::::
large

::::
scale

:::::::
features

:::::::
correctly.

This database is produced in the following way: As a first step, we determine from the CT data global daily 3D maps close

to 13:00 local time (i.e. GOSAT and GOSAT-2 equator crossing time). We reduce the altitude grid to five layers with the same125

dry-air sub-columns, i.e. the same amount of particles, and interpolate the data from the native CT horizontal resolution of

3◦× 2◦to 0.5◦× 0.5◦. Then we determine from the TCCON data daily
::
for

::::
each

::::
day mean values (XCO2

TCCON) for 13 h ±
2 h local time. Next, we select collocated CT data and correct them for the TCCON averaging kernels, resulting in a TCCON

corrected CT value at the TCCON location (XCO2
CT). The application of the averaging kernels corrects for different vertical

resolutions/sensitivities . (see e.g. Rodgers and Connor, 2003; Wunch et al., 2010).
:
We look for contiguous regions where CT130

XCO2 data differ by less than 0.75ppm from CT
::
the

:::
CT

:::::
value

::
at

:::
the

:::::::
TCCON

:::::::
location; these data are then used for the “true”

database.
:::::::
reference

::::::::
database.

::::
The

::::::::
reference

::::::::
database

:::::::
therefore

:::::
does

:::
not

::::::
contain

::::
any

:::::::
TCCON

::::
data

:
-
::

it
::::
only

::::::::
contains

:::
CT

::::
data

:::::
which

::::
were

:::::::::
confirmed

:::
by

::::::::
TCCON,

:::
but

::::::::
individual

::::::
values

::::
may

:::::
differ

:::
by

::
up

::
to

::::::::
1.5 ppm.

::::
The

:::::
choice

:::
of

:::
the

::::
0.75 ppm

:::::
ranges

::
is

:::::
based

::
on

:
a
::::::::
trade-off

:::::::
between

::::::::
accuracy

:::::::::
(agreement

::::
with

::::::::
TCCON)

::::
and

:::::
spatial

::::::::
coverage

::
of

:::
the

::::::::
database.

The result are daily maps containing CO2 data for five vertical sub-layer altitudes. The spatial coverage is usually not global135

and varies from day to day. There are typically more data in the southern hemisphere during the second half of the year

::::::::
compared

::
to

:::
the

:::
first

::::
half

::
of

:::
the

::::
year

::::
(see

:::
Fig.

:::
1). When comparing with GOSAT or GOSAT-2 measurement results, the “true”

XCO2 is then computed from the CO2 layers of the true
:::::::
reference

:
database, considering the retrieval’s averaging kernels.

Specifically, we use here for GOSAT CT2019 data in combination with TCCON GGG2014 (see Tab. 1) for 2018. For

GOSAT-2 we also use TCCON GGG2014 data, but need to rely on CT-NRT v2020-1 for 2019. Because the CT NRT data are140

not yet available for the whole year 2019, the GOSAT-2 “true”
::::::::
reference database does not cover the whole year; there are

essentially no data after August 2019. This is a limiting factor for GOSAT-2, especially because this also means that data in the

southern hemisphere are less present in the 2019 database.
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Please note that the “true” database does not contain any TCCON data - it only contains CT data which were confirmed by

TCCON, but individual values may differ by up to 1.5 ppm. This is why a later validation with TCCON still makes sense.145

2.4 GOSAT Level 2 Products

To assess the quality of the newly created GOSAT-FOCAL XCO2 products, they have been compared with several other well-

established GOSAT Level 2 data sets (see section 5). The GOSAT BESD v01.04 product from IUP (Heymann et al., 2015) is a

near-real time product generated in the context of the Copernicus Atmospheric Monitoring Service (CAMS, https://atmosphere.

copernicus.eu/ (last access: 30-July-2020)) project. It is available from 2014 onward. The GOSAT RemoTeC v2.3.8 product150

from SRON (Butz et al., 2011) and the full-physics GOSAT product from the University of Leicester v7.3 (Cogan et al., 2012)

were generated in the context of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/; last access: 30-

July-2020) and cover the GOSAT time series from 2009 until end of 2019. The recently released NASA GOSAT ACOS v9r

product (O’Dell et al., 2012, 2018; Kiel et al., 2019) is also available for the years 2009 to 2019. The operational GOSAT

XCO2 product v02.95 (bias corrected) from NIES (Yoshida et al., 2013) currently ends in August 2020. The BESD product155

contains only XCO2 data over land, all other products are available for water and land surfaces.

3 Retrieval Algorithm

The retrieval is performed in three main steps: Pre-processing, processing and post-processing. These are described in the

following sub-sections.

3.1 Pre-Processing160

During pre-processing all required input data for the main processing step are collected. Furthermore, a first filtering of data is

performed to reduce processing time.

The pre-processing procedure is largely based on the pre-processing as present in the BESD GOSAT product (Heymann

et al., 2015). The sequence of pre-processing activities is as follows:

1. Extraction of measured spectra, geolocation and information on quality and measurement modes (e.g. gain, scan direc-165

tion) from the GOSAT L1B product.

2. Estimation of instrument noise and cloud parameters.

3. Filtering for data quality, latitudes, solar zenith angle, signal-to-noise ratio and clouds (see Tab. 2 for settings).

4. Extraction of surface type, elevation and roughness derived from the surface database for each measurement.

5. Addition of corresponding meteorological information (pressure, temperature, dry-air column and water vapour profiles)170

for the time and place of the measurements. This includes a correction for surface elevation, i.e. model profiles are

extended / cut according to the value from the surface database.
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6. Add a-priori gas profiles for each measurement (CO2 from SECM, CH4 from SC4C, H2O from meteorology). For

GOSAT-2, also a-priori profiles for CO and N2O are added. The latter do not depend on geolocation; they are based on

the tropical reference atmosphere from Anderson et al. (1986), scaled to column average values of XCO = 0.1 ppm and175

XN2O = 330ppb.

Because FOCAL is a fast algorithm and the number of GOSAT and GOSAT-2 measurements is much less than for OCO-2,

we chose to set the pre-processing filters relatively relaxed and to apply the quality filtering mostly in the post-processing. As

can be seen from Fig. 2 about two thirds of the measurements are filtered out during pre-processing.

3.1.1 Noise Estimate180

Similar to Heymann et al. (2015) the spectral noise is initially assumed to be independent from wavenumber for each band. It

is estimated from the standard deviation of the real part of the “dark” off-band signal (i.e. the first 500 spectral points in each

band). In a later step (see Section 3.2.1) this noise will be modified to account for additional forward model errors and overall

scaling.

3.1.2 Cloud Filter185

The cloud filtering is based on two physical properties of clouds: clouds are (usually) bright and clouds are high (higher than the

surface) so that little water vapour is above them. In the pre-processing these properties are described by two quantities: cloud

:::::::
effective albedo and water vapour path.

::::
filter.

:
These are derived for each spectrum as described in Heymann et al. (2015). The

cloud
:::::::
effective albedo for each band is estimated from the mean reflectance L within a spectral range outside the absorption.

L is determined from the mean radiance I , the mean irradiance I0 and the solar zenith angle α via:190

L=
πI

I0 cosα
(1)

The specific wavenumber ranges and irradiance values used for filtering are given in Tab. 3.

The water vapour path
:::
filter

:
is determined from a spectral region with strong water vapour absorption in the SWIR-3 band

(see Tab. 3). It is given by
::::
This

::::
filter

::
is

::::::
defined

::
as

:
the ratio between the median radiance and the median of the estimated noise

in this spectral range.195

A ground pixel is assumed to be cloudy if either the cloud
:::::::
effective

:
albedo in one of the bands or the water vapour path

::::
filter

exceeds the thresholds given in Tab. 2.

3.2 Processing

The processing is based on the Fast atmOspheric traCe gAs retrievaL (FOCAL) algorithm which is described in detail in Reuter

et al. (2017c). A first successful application of this algorithm to OCO-2 data is given in Reuter et al. (2017b). Therefore, we200

only summarise the main features of the algorithm here and point out the differences to the OCO-2 application.

FOCAL appoximates
:::::::::::
approximates modifications of the direct light path due to scattering in the atmosphere by a single

scattering layer, which is characterised by its height (pressure level), its optical thickness and an Ångström parameter which

7



describes the wavenumber dependence of scattering. The layer height is normalised to the surface pressure. Furthermore,

Lambertian scattering on the surface is considered. For atmospheric scattering processes an isotropic phase function is assumed.205

With this approximation, the FOCAL forward model is essentially an analytical formula; it uses pre-calculated and tabulated

cross sections such that calculations can be performed considerably fast. The inversion of the forward model is based on

optimal estimation (Rodgers, 2000) and uses the Levenberg-Marquardt-Fletcher method (Fletcher, 1971) to minimise the cost

function.

The OCO-2 retrieval of Reuter et al. (2017b, c) uses four fit windows in the NIR (near-infrared) and SWIR spectral range to210

derive the atmospheric parameters XCO2, water vapour and SIF. In contrast to OCO-2, GOSAT and GOSAT-2 cover a wider

spectral range and provide spectra in two polarisation directions referred to as S and P. Therefore, we treat in our retrieval

both polarisation directions as independent spectra opposed to the average of both as usually used in other GOSAT retrievals

(see e.g. Butz et al., 2011; Cogan et al., 2012; O’Dell et al., 2012). However, recently Kuze et al. (2020) presented a methane

retrieval for GOSAT based on an algorithm from Kikuchi et al. (2016), which also makes use of both polarisation directions.215

:::
We

:::
use

::::
both

::::::::::
polarisation

:::::::::
corrections

::::::
mainly

:::
for

:::
the

::::::::
following

:::::::
reasons:

:

–
::
In

::::::::
principle,

::::::::::
information

::
is

:::
lost

:::::
when

::::::::
averaging

::
S

:::
and

::
P

::::::
spectra.

:

–
::
In

:::::::
general,

:::
the

::::::::
sensitivity

:::
of

:::
the

:::::::::
instruments

::::
and

::::::::
therefore

:::
the

:::::::::
calibration

::
of

:::
the

::::::::
measured

::::::
spectra

::
is
::::::::
different

:::
for

:
S
::::
and

:
P.
::::
For

:::::::
example,

:::
the

::::::::
measured

::::
ILS

::
is

:::::
given

::::::::::::
independently

::
for

::
S
:::
and

::
P.
:

–
:
S
::::
and

:
P
:::::::
include

::::::::
different

::::::::::
information

::
on

:::::::::
scattering,

:::::
which

::::
can

:::
also

:::
be

::::
used

::
in

:::::::
filtering

:::::
and/or

::::
bias

:::::::::
correction.

:
220

Furthermore, the FOCAL fitting windows (see Tab. 4) have been adapted to the specific GOSAT(-2) spectral bands such that

in addition also other atmospheric constituents and parameters like HDO and (in the case of GOSAT-2) also CO total columns

and possibly XN2O can be retrieved. This results in six fitting windows for GOSAT and eight windows for GOSAT-2 for each

polarisation. The retrieval is performed on a wavenumber axis.

Because of the large number of target gases and spectral bands the retrieval requires various state vector elements. These are225

listed together with the fit windows, from which they are determined, and their a-priori values and uncertainty ranges in Tab. 5

for GOSAT and GOSAT-2.

For GOSAT, the retrieval determines CO2, CH4 and H2O on 5 layers with same number of air particles, from which then the

column average values XCO2, XCH4 and XH2O are calculated. Furthermore, solar induced fluorescence (SIF) is determined

by scaling of a corresponding reference spectrum.230

Instead of the HDO column, we fit a scaling factor for the relative abundance of HDO compared to H2O, δD, which is

defined as:

δD =
Rmeas

RVSMOW
− 1 (2)

where Rmeas is the ratio of the measured HDO and H2O columns, RVSMOW ( = 3.1152× 10−4) is the corresponding value

for Vienna Standard Mean Ocean Water (VSMOW). δD is usually given in units of per-mill.235
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δD = 0‰ corresponds to HDO concentrations as in VSMOW, δD =−1000‰ to no HDO. We assume the same profile

shape for HDO as for H2O. For GOSAT-2, we also fit scaling factors to (fixed) CO and N2O profiles.

As mentioned above, atmospheric scattering is considered in FOCAL by a single scattering layer, which is described by

three parameters (height, optical depth and Ångström coefficient). As scattering is different for S and P polarised light, we fit

two independent layers for S and P.240

In addition, we determine in each fit window (independently for S and P) a polynomial background function describing the

surface albedo. For this we use second order polynomials except for the small SIF windows (no. 1) where a linear function is

sufficient.

The GOSAT data files only contain a fixed spectral axis. As e.g. described in Heymann et al. (2015), the spectral calibration

of GOSAT changes especially at the begin of the mission with time. This change can be corrected by a spectral scaling factor.245

We determine this overall scaling factor by a spectral fit in the SIF window before the retrieval. So far, this spectral pre-fitting

seems to be unnecessary for GOSAT-2. In the retrieval, we then additionally consider for both GOSAT and GOSAT-2 possible

additional spectral shifts and squeezes in each fit window by corresponding state vector elements, but the influences of these

spectral changes on the results is rather small.

3.2.1 Noise Model250

The noise N derived from the off-band signal is only an estimate. It does not consider a possible wavenumber dependence of

the noise within one spectral band. Furthermore, a potential error of the forward model needs to be considered. In the optimal

estimation method this can be achieved by including the forward model error in the measurement error covariance. For this,

we define a scaling factor s for the estimated noise and the quantity δF , which denotes the relative error of the forward model.

The forward model error is proportional to the continuum radiance outside the absorption I , which is estimated from the 0.99255

percentile of the measured radiance at the edge of each fit window. The quantities δF and s are determined using the approach

described in (Reuter et al., 2017b), i.e. by running the retrieval for a representative subset of data and then fitting the function

RSR(NSR) =
√

(s NSR)2 + δF 2 (3)

to binned values of the residual-to-signal ratio (RSR) as function of the noise-to-signal ratio (NSR). RSR is defined as the

standard deviation of the retrieved spectral residual in each fit window divided by the continuum signal I; NSR is the standard260

deviation of the noise divided by I .

With the method described in Reuter et al. (2017c) it is also possible to define a 2σ-outlier limit based on NSR and RSR

data, which will be used to filter out too noisy data during post-processing (see section 3.3). This is parameterised by a second

order polynomial as a function of the uncorrected NSR

fN (NSR) = a0 + a1 NSR+ a2 NSR
2 (4)265

which is added to the RSR function of Eq. (3). The coefficients ai are determined via a fit. To avoid extrapolation, fN is set to

the edge values outside the fitting range.
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In order to cover the varying signal over the year, we base the noise model fits on data from one day per month for one

reference year. For GOSAT, we take from December 2017 to November 2018 (as there are only few GOSAT data available in

December 2018). For GOSAT-2 we use data from February 2019 to December 2019. In the case of GOSAT-2 we further restrict270

the input data for the noise model parameter fit to data over land because some of the data over water show an unexpected

behaviour (low RSR in case of large NSR), which needs further investigation. In this sense, the current GOSAT-2 noise model

is considered to be preliminary and may need some refinement in the future.

Figs. ?? to ?? show

:::
Fig.

::
4
:::::
shows

:::
as

::
an

::::::::
example the noise model results for GOSAT and GOSAT-2

::
in

:::
the

::
fit

::::::::
windows

:
2
::

(O2(A)
:::::
band)

:::
and

::
6275

::::::
(strong CO2 :::::::::

absorption)
:::
for

::
P

::::::::::
polarisation. The orange line gives the fitted RSR function, the red line the outlier limit. The

derived values from the noise model
:::
for

::
all

:::::
fitting

::::::::
windows

:
/
:::::::::::
polarisations are given in Tab. 6 and 7 for GOSAT and GOSAT-2.

The forward model errors δF are on average slightly larger for GOSAT-2 than for GOSAT. In the SWIR, values similar to

OCO-2 are obtained, but in the NIR the OCO-2 δF is typically smaller (about 0.003). This indicates that for GOSAT and

GOSAT-2 instrumental/calibration effects seem to impact the radiance errors more in the NIR than in the SWIR.280

3.3 Post-Processing

The purpose of post-processing is to filter out invalid data and to perform a bias correction for the products. The current

post-processing focuses on XCO2. The post-processing is performed in several steps, namely:

1. Basic filtering based on physical knowledge.

2. Filtering out low quality data using parameters / limits determined using a random forest classifier.285

3. Application of a bias correction using a random forest regressor.

4. Additional filtering out of data with too large bias correction.

These steps are described in the following subsections.

3.3.1 Basic filter

The basic filtering removes measurements where the retrieval does not converge or where the quality of the fit results is too low.290

We consider this to be the case if the χ2 calculated over all fit windows is larger than 2 or if for at least one of the fit windows

the RSR outlier limits (see section 3.2.1) are exceeded. Furthermore, we apply some initial filters for nonphysical values on

the derived scattering parameters (i.e. layer height outside the atmosphere, Ångström coefficient not within [1,5].
:
).

::::
Note

::::
that

::
all

::::::::
retrieved

::::::::
scattering

::::::::::
parameters

::::
such

::
as

:::
the

:::::::::
Ångström

::::::::
exponent

:::
can

:::
be

:::::::::
considered

:::::::::
“effective”

::::::::::
parameters

::
as

::::
they

:::::
have

::
to

::::::
account

:::
for

:::
not

::::
only

::::::::::::
cloud/aerosol

::::::::
scattering

:::
but

::::
also

::::::::
Rayleigh

::::::::
scattering

::::::
(which

:::
has

:::
an

:::::::::
Ångström

:::::::::
coefficient

::
of

::
4).

::::::::
Because295

:::::::
Rayleigh

:::::::::
scattering

::
is

::::::
always

::::::
present

::::
and

:::
we

::::
filter

:::
out

::::::
cloudy

:::::::
scenes,

:::
we

::::::
usually

:::
get

::::::
higher

:::::::
effective

:::::::::
Ångström

::::::::::
coefficients

:::
than

:::::
those

::::::::
expected

::::
from

::::::
clouds

::
or

:::::::
aerosols

::::
only.

:
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We also limit the maximum allowed optical depth of the scattering layer to 0.02 to filter out too thick clouds or aerosol

amounts and use a maximum allowed XCO2 error
::::::::
posteriori

::::::::::
uncertainty of 2ppm. As described by Reuter et al. (2017c),

FOCAL simulates scattering only for an isotropic phase function. The prominent forward peak, usually existing for Mie300

scattering phase functions of cloud and aerosol particles does basically not modify the lightpath
::::
light

:::
path. As FOCAL’s optical

depths of the scattering layer do not include this forward peak, these optical depths are much smaller than optical depths

including a strong forward peak while having a similar influence on the light path modification (see discussion in the publication

of Reuter et al. (2017c)). The maximum value of 0.02 for the layer optical depth should therefore not be interpreted as e.g. an

aerosol optical depth.305

The limits for the optical depth of the scattering layer and the XCO2 error are somewhat arbitrary and actually result from

visual inspection of the retrieval results. However, they are only intended as a first rough quality filter to facilitate later filter and

bias correction methods, which will partly use the same parameters (see below). The detailed choice of these limits is therefore

considered uncritical for the final results.

The above mentioned filter parameters and limits (see Tab. 8) are applied to both land and water surfaces and are the same310

for GOSAT and GOSAT-2, except for the RSR outlier limit which has been determined individually for each instrument. Figs.

2 and 3 show exemplary how many data points are
:::::::
typically

:
filtered out in this step.

:::
The

:::::::
different

:::::::::::
performance

::
of

:::
the

:::::
RSR

:::::
filters

::
for

:::::
both

:::::::::
instruments

::::::::
indicates

::::
that

:::
the

::::::
filtering

:::
for

:::::::::
GOSAT-2

:::::
needs

:::::
some

::::::
further

:::::::::::
optimisation,

:::::
which

::
is

:::::::
planned

:::
for

:::
the

:::
next

:::::::
version

::
of

:::
the

::::::::
products.

3.3.2 Random forest filter315

In the next step, data are filtered out based on their expected XCO2 bias i.e. the difference to a “true” XCO2. Of course, this

true XCO2 value is normally not known. We therefore use the “true” XCO2 reference database (as described in section 2.3)

to train a random forest classifier (Pedregosa et al., 2011) to identify those variables which would remove – in combination

with a corresponding random forest database – a pre-described percentage p of data based on their XCO2 bias. This is done

independently for data over land and water. Note that we are only interested here in the XCO2 bias on top of an overall global320

bias as the latter will be handled via the bias correction.

::::
This

::::::
method

::
is

::::::
similar

::
to

:::
the

:::::::
random

:::::
forest

::::
filter

:::::
used

::
by

:
Schneising et al. (2019)

::
in

:::
the

::::::
context

:::
of CH4 :::

and CO
:::::::
retrieval.

:::::
Other

:::::::::
approaches

:::
for

::::
data

:::::::
filtering

::::
used

:::
e.g.

:::
by Mandrake et al. (2013)

:::
and Reuter et al. (2017b)

::::::
identify

:::
the

::::
best

:::::::
variables

:::
by

:::::::::::
minimisation

::
of

::::
local XCO2::::::::

variability
::
in
:::
the

::::::::
retrieved

::::::::
products.

::::::::
However,

::
all

:::::::
methods

:::::::::
essentially

:::::
serve

:::
the

:::::
same

:::::::
purpose,

:::
i.e.

::
to

:::::
derive

:
a
:::::::::::
reproducible

:::::::
filtering

::::::::
procedure

::::::
which

::::
does

:::
not

:::::
solely

::::
rely

::
on

::::::
expert

:::::::::
knowledge.

:
325

We determine the list of relevant variables and the random forest database for the filtering in the following way: We use

the (uncorrected) results of the retrieval for the reference and apply the basic filtering as described in section 3.3.1. Then, the

subset of these data is selected which has a corresponding “true” value in the reference database. For these data we determine

the XCO2 bias (measurement - reference XCO2) and subtract the monthly global median
:::::
global

::::::
median

:::
for

::::
land

::::
and

:::::
water of

this bias. We then sort the data according to this bias and flag those p percent of data with the highest absolute bias values as330

“bad”.
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:::
For

:::::::
GOSAT,

:::
this

::::::
results

::
in

:
a
::::
total

:::::::
number

::
of

::::::
54317

:::
data

::::::
points

::::
over

::::
land

:::
and

:::::::
109414

::::
over

:::::
water.

:::::
These

:::::::
numbers

:::
are

:::::::
smaller

::
for

:::::::::
GOSAT-2

:::::
(land:

::::::
10625,

::::::
water:

:::::::
40459). The random forest classifier is then trained by using randomly 90% of these data

as input. The training is done in two iterations: First, with a complete set of possible input variables (“features”) and output

variables (“estimators”); then, using only a reduced set consisting of the 10 best features/estimators(,
:
i.e. those with highest335

random forest score
:::::::::
(relevance)

:
of the first run).

:
.
::::
This

::::::::
relevance

::
is

:
a
:::::::
quantity

:::::
which

::::::::
describes

:::
the

:::::::
relative

:::::::::
importance

:::
of

::::
each

::::::
feature

::
for

:::
the

::::::::
filtering.

:::::::::
Relevances

::::
are

:::::::::
normalised

::::
such

::::
that

:::
the

::::
sum

::
of

:::
all

::::::::
relevances

::
is
::
1.
:

The random forest classifier then

decides for each measurement based on these 10 variables if it is filtered out or not.

The initial list of possible features/estimators includes essentially all quantities available after the retrieval, including viewing

angles, surface properties and continuum signal for each fit window. Furthermore, the retrieved values of the state vector340

elements and their errors are included in this list as well as averaging kernels for the profiles. We explicitly exclude the

geolocation of the measurement (latitude, longitude) and the retrieved values (but not the errors) for the data products we are

interested in, i.e. the gases and SIF. This is to avoid e.g. the filtering out of certain geographical regions or removing all points

with high XCO2 values.

::::
Note

:::
that

:::
in

::::
glint

:::::
mode

::::
over

::::::
ocean,

:::
the

:::::::
inclusion

:::
of

::::::::::
information

:::::
about

:::
the

:::::::
viewing

::::::::
geometry

::
as

:::::::
possible

:::::::
features

:::::
bears

:::
the345

:::
risk

::::
that

:::
the

:::::::
random

:::::
forest

:::::::::
procedure

::::
may

::::
infer

:::
the

::::::::::
geolocation

::::
from

:
a
:::::::::::
combination

::
of

:::::
these.

:

However, we include as possible filter variable the gradient of the retrieved CO2 profile (i.e. the difference between the two

lowermost layers) as this has shown to be a suitable quantity.

The original number of candidate variables presented to the random forest classifier is quite high (193 for GOSAT and 246

for GOSAT-2) as can be seen from Figs. 5 and 6 (top left plots), but there are only few with a high relevance.350

The ten best variables selected partly differ for land and water surface (as shown in the middle and left top panels), but they

usually comprise scattering parameters, polynomial coefficients, spectral corrections and some XCO2 related parameters.

The other 10% of the input data are used to test the performance of the classifier. The results from this test and other cross-

validation activities indicate, that the random forest classification is – depending on surface – only accurate in about two thirds

of the cases. This
:::::::
accuracy

::
is
:::::::
defined

::
as

:::
the

:::::::
fraction

::
of

:::::::
correctly

::::::::
classified

::::::::
samples.

::::
This means that the filtering also removes355

possibly valid data points and does not remove all possibly bad ones. However, we do not expect a perfect classification,

because it is not possible to describe all inter-dependencies via the set of input features.
::::
Note

::::
that

:::
the

::::::::::
performance

:::
of

::
the

:::::
filter

:
is
::::::
similar

:::
for

::::
both

:::
the

:::::::
training

:::
and

:::
the

::::
test

:::
data

::::
sets.

::::
This

::::::::
indicates

::::
that

::::
there

:::
are

::
no

::::::::
problems

::::
with

::::::::::
over-fitting.

:

To obtain a high quality of the remaining XCO2 data, we therefore need to filter out quite a large percentage of data (and

perform an additional filtering at a later time, see below). For future data products further investigations are planned to improve360

the performance of the classifier, e.g. by providing additional features from combination of existing ones (like the already used

CO2 gradient). The percentage p of data to be filtered out is usually a trade-off between data quality and remaining amount of

data. In the present case a 50% limit has been selected. Actually, as can be seen from Figs. 2 and 3, the relative amount of data

filtered out via the random forest classifier is not exactly 50% of the data remaining after the previous filters.

3.3.3 Bias correction and filtering365
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use for OCO-2 XCO2 ::::::
retrieval

::::::::
methods

::::::
usually

:::::::
require a bias correction based on the “small area approximation” , which

assumes that the variation of
::
to

::
be

:::::::
applied

:::
to

:::
the

:::::
data.

::::
This

:::::::::
correction

::
is
:::::

often
::::::
based

::
on

:::::::::::
multi-linear

::::::::::
regressions

:::::
using

:::::::::
parameters

::::::::
identified

::::
from

:::::::::
correlation

:::::::
analyses

::
of

:::::::::
differences

::
to
:::
an

:::::::
assumed

:::::
“true”

:
XCO2 within a small area is small. This

::::
data

:::
set.

::::::::
Different

:::
data

::::::::
products

:::
use

::::::::
different

:::::::
methods

::
to

:::::
define

::::
this

:::::::
“truth”.

::
In

:::::
many

:::::
cases,

::::::
ground

:::::
based

::::::::
TCCON

::::::::::::
measurements

::
are

:::::
taken

:::
as

::::::::
reference

:::
for

:::
the

:::::
“true”

:
XCO2:

,
:::
like

:::
in

:::
the

:::::::
GOSAT

:::::
BESD

:::::::
product

:
(Heymann et al., 2015),

:::
the

::::::
SRON

::::::::
products370

(Guerlet et al., 2013)
:
,
:::
the

::::::
product

:::::
from

::
the

:::::::::
University

::
of

::::::::
Leicester (Cogan et al., 2012)

::
and

::::
also

:::
the

:::::::::
operational

:::::::
GOSAT

:::::::
product

::::
from

:::::
NIES (Inoue et al., 2016).

::::
The

:::
bias

:::::::::
correction

::
of

:::
the

::::::
NASA

::::::
ACOS

::::::
OCO-2

:::::::
product

:
is
:::::
quite

:::::::
complex

:
(O’Dell et al., 2018;

Kiel et al., 2019)
:
;
::
it

::::
uses

::
as

::::::::
reference

::
a
:::::::::::
modification

::
of

:::
the

:::::::::
“Southern

::::::::::
Hemisphere

::::::::::::::
Approximation”

::::::::::
introduced

::
by

:
Wunch

et al. (2011b).
::::
The

:::::
ACOS

::::::::
products

::::
takes

:::::::::::
multi-model

:::::
mean

:::
data

::
as
::::::::
reference

::::
and

::::::
derives

:::::::::
corrections

:::::
from

:::
data

::
in
:::
the

::::::::
southern

:::::::::
hemisphere

::::::
below

::
20◦

:
S
::::::
where CO2 :

is
::::::::
assumed

::
to

::
be

:::::
quite

:::::::
uniform

:::
on

::::
small

::::::
areas.

::
A

::::::
similar

::::::
“small

::::
area

:::::::::::::
approximation”

::
is375

:::
also

:::::
used

::
by

:
Reuter et al. (2017c)

:
to

::::::
correct

::::::::
FOCAL

::::::
OCO-2

:::::
data.

::::
This

:::::::::
correction

::::::
method

:
is not possible for GOSAT and

GOSAT-2
::::
data because of their sparse sampling. We therefore follow a different approach here.

For the bias correction we use as input the same data set as for the random forest filter, but with this
::::::
random

:::::
forest

:
filter

applied. 50% of the resulting data set is then used to train a random forest regressor (see also Schneising et al., 2019), which

aims to minimise the “true” XCO2 bias(
:
,
:::
i.e.

::
the

:::::::::
difference

::
to

:::
the

::::::::
reference

:::::::
database

:::::
value without global median subtracted)

:
,380

as function of the specified features. To create the bias correction database and the corresponding list of best features we again

run the training twice, first with the full list (the same as for the filter) and then with the top ten features. Again, we use different

corrections for land and water. The resulting parameters and their performance are shown in the bottom panels of Figs. 5 and

6. The bias correction selects similar best features as the filter, but not exactly the same quantities in the same sequence.

During application of the bias correction , the random forest regressor estimates the bias based on the values of the input385

variables . This bias is then subtracted from the retrieved value. Application
:::
The

:::::
actual

:::::::
number

::
of

::::::::::::::
features/variables

::
to

:::
be

::::
used

::
for

::::
both

:::::::
filtering

::::
and

:::
bias

:::::::::
correction

::
is

:
a
::::::::
trade-off

:::::::
between

:::::
many

::::::::
variables

:::::::::
(explaining

:::
all

:::::::
relations

::::
with

::
a
:::
risk

:::
for

::::::::::
over-fitting

:::
and

::::
high

::::::::::::
computational

:::::
effort)

::::
and

:::
few

::::::::
variables

:::
(no

::::::::::
over-fitting,

:::
but

::::::
maybe

::::::
missing

:::::
some

:::::::::
relations).

::::::::::
Considering

:::
ten

:::::::
features

::
for

:::
the

::::
bias

:::::::::
correction

::
is
:::::
more

::::
than

:::::
other

:::::::::
algorithms

::::::::
typically

::::
use,

:::
but

:::
this

::
is
::::::::::

appropriate
::
in
::::

our
::::
case

:::::::
because

:::
we

::::
take

::::
into

::::::
account

:::
the

::::::::
different

::::::::
relevance

::
of

:::::
these

::::::::::
parameters,

::::::
which

:::::
drops

:::
off

::::::
rapidly

::::::
within

:::
the

::::
first

:::
ten

::::::::
variables

:::
(see

::::
top

:::::
panels

:::
of390

::::
Figs.

:
5
::::
and

:::
6).

:

:::
The

:::::::
validity

::
of

:::
this

::::::
choice

::
is

::::::::
confirmed

:::
by

:::
the

:::::::::
application

:
of the bias correction to the training data set and the other 50% of

the input data,
::::::
which shows a comparable reduction of the XCO2 scatter, which

:
.
::::
This is an indication for a good performance

(e.g. no over-fitting) of the regressor.

::::::
During

:::::::::
application

::
of

:::
the

::::
bias

:::::::::
correction,

:::
the

:::::::
random

:::::
forest

::::::::
regressor

::::::::
estimates

:::
the

:
XCO2 :::

bias
:::::
based

:::
on

:::
the

:::::
values

:::
of

:::
the395

::::
input

::::::::
variables.

::::
This

::::
bias

::
is

::::
then

:::::::::
subtracted

::::
from

:::
the

:::::::
retrieved

::::::
value.

Currently, there is only a bias correction for XCO2, but in principle this method is applicable also to other quantities

depending on the availability of a corresponding “true”
:::::::
reference

:
database.

After the bias correction there are still a few outliers left in the XCO2 data. These are filtered out by an additional filter on

the derived XCO2 bias
::::::
derived

:::
via

:::
the

::::::
random

:::::
forest

::::::::
classifier. The limits for this filter are the global median bias for test data400
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set ±2 ppm. the median bias is different for land and water surfaces and also for GOSAT and GOSAT-2. The actual limits are

given in Tab. 9. The value 2 ppm is estimated from visual inspection of the data. Figs. 2 and 3 show that typically less than

1–2% of the remaining data (less than 0.1% of all) are affected by this last filter.

:::
The

::::::
spatial

:::::::::
variability

::
of

:::
the

::::::
finally

::::::
derived

::::
bias

:::::::::
correction

::::
(see

:::
Fig.

:::
7)

::
is

:::::::
typically

::::::
below

::
1 ppm

:
,
:::
but

::
as

:::::::::
mentioned

::::::
above

::::
there

::
is

:
a
:::::::::
systematic

:::::::::
difference

:::::::
between

::::
land

:::
and

:::::
water

::::
data

::
of

:::::
about

::
of

::
1

:
–
::::
1.5 ppm

:::
(see

::::
Tab.

:::
9).405

4 Results

The FOCAL retrieval has been applied to all GOSAT and GOSAT-2 measurements until end of 2019. On average, FOCAL

needs 22 s with 6 iterations for the processing of one GOSAT ground pixel. For GOSAT-2 numbers are slightly larger (28 s/7

iterations) because of the additional fit windows and state vector elements. All performance values are given for a single core

of an Intel Xeon E5-2667v3 CPU (3.2GHz). These numbers are actually about one magnitude larger than the ones given410

in Reuter et al. (2017b, c) for the FOCAL application to OCO-2. This is because we use for GOSAT(-2) separate S and P

polarisation spectra and more retrieved variables, which requires more and larger fit windows. For each of these fit windows

and parameters, weighting functions have to be calculated, which involves a convolution with the ILS. This convolution is

the most time consuming part of the FOCAL retrieval. This is even more relevant for GOSAT(-2), because the FTS ILS is in

principle sinc-shaped, i.e. it has a sharp peak in the centre but wide wings, which requires a large kernel width (in our case415

15 cm−1 for the convolution.

Figs. ?? to ??

:::
The

:::
left

:::::
plots

::
of

::::
Figs.

::
8

:::
and

::
9 show examples for measured and fitted nadir mode radiance spectra for GOSAT and GOSAT-

2 over land in the different fitting windows
::
for

::
P

::::::::::
polarisation. Since the difference between measured and modelled spectra

is small and thus hard to see, we show in Figs. ?? to ??
::::
these

::::::
figures

:::
on

:::
the

::::
right

::::
side

:
the corresponding residuals and the420

estimated noise. The
::::::
results

:::
for

:
S
::::::::::
polarisation

:::::
look

::::::
similar

:::
and

:::
are

::::::::
therefore

:::
not

::::::
shown

:::::
here.

:::
The

:
residuals are on the order

of magnitude of the noise, which is slightly higher for P polarisation than for S polarisation. Some small spectral structures

are visible in the residuals, they appear more clearly in the smoothed residuals (convoluted with a 21 pixel boxcar), e.g. for

GOSAT and GOSAT-2 in the O2(A) band (window 2), and some broadband oscillations in window 4 and 5 for GOSAT-2.

These features are present in both S and P polarisations and occur also in other measurements, so they seem systematic. A425

reduction of these features could possibly further improve future products.

In Fig. 10 some statistical information about the GOSAT-FOCAL data products is given. A time series for the number of valid

data is given in the top plot. In the recent years, about 5–6% of the available measurements could be transferred to valid XCO2

data. The number of valid data points increases from 2009 to 2019. This is mainly due to an increase in the data over water,

which is most likely related to optimisations in GOSAT operations (better use of glint geometry) over water. As expected, the430

mean global XCO2 shown in the middle plot increases with time. Global mean values over water are typically slightly higher

than over land; this is most likely a spatial sampling issue. The observed XCO2 variability (standard deviation, bottom plot) is

larger over landwhich .
::::
Part

::
of

:::
this

:::::::::
variability is attributed to influences of surface elevation

:::
and

::
to

::::::::
different

::::::::
scattering

::::::::
pathways
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:::::::
between

:::
the

::::
land

:::
and

:::::
water

::::::::::::
measurements. For GOSAT-2, only retrieved data from 2019 are available so far. The total amount

of available measurements is about 2.8 million, compared to about 3.5 million GOSAT measurements in 2019. Only about 3%435

of the GOSAT-2 data remain after all filtering / post-processing, which is roughly half of the corresponding number for GOSAT

(but similar to the first year of GOSAT). As can be seen from Fig. 3 more GOSAT-2 data are filtered out due to failed or bad

convergence and by the RSR outlier limits than for GOSAT (Fig. 2). Future improvements of the GOSAT-2 calibration or the

noise model could possibly
:::
are

:::::::::
considered

::
to help here.

For further analyses, we have generated monthly maps on a 5◦× 5◦grid. Example plots for the months April and August440

2019 (begin/end of the growing season) are shown in Fig. 11 for GOSAT and in Fig. 12 for GOSAT-2. The data are not filtered

for low amounts of input data in the grid points, which may explain
:::::::
explains

:
some individual outliers in the plots. Overall,

the spatial patterns observed by GOSAT and GOSAT-2 look reasonable. The north–south gradient in XCO2 is visible with

different sign in April and August for both instruments. The spatial coverage of the GOSAT-2 data is lower than for GOSAT,

because more data are filtered out (see above). This seems to affect
:::::
affects

:
especially regions like the northern part of Africa.445

5 Verification and Validation

For the verification and validation of the GOSAT and GOSAT-2 FOCAL products we perform a comparison with various

reference data sets (see section 2), namely:

– The GOSAT BESD v01.04 product from IUP (referred to as “BESD” later).

– The GOSAT ACOS v9r product from NASA (referred to as “ACOS” later).450

– The GOSAT UoL_FP v7.3 product from the University of Leicester (referred to as “UoL” later).

– The GOSAT RemoTeC v2.3.8 product from SRON (referred to as “SRON” later).

– The GOSAT operational product v02.95 (bias corrected) from NIES (referred to as “NIES” later).

– Collocated TCCON GGG2014 data (referred to as “TCCON” later).

For the comparisons, all data have been adjusted using the same a-priori (SECM2020).455

Since all GOSAT products use different retrieval and filter methods, they do not contain the same number of data (see

Fig. 13). Currently, the NASA ACOS product has the largest number of valid data points, followed by the new GOSAT-FOCAL

product with about 20% less data.

5.1 Direct comparisons

There are enough common measurement points included in the different GOSAT products to perform a direct comparison.460

Figure 14 shows exemplary
:
as
:::

an
:::::::
example

:
a comparison between the GOSAT-FOCAL data for the year 2018 with the corre-

sponding ACOS, BESD, SRON, NIES and UoL products. For each plot we only use data where both data sets have a valid
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XCO2 value. For these data we performed a linear regression using the Orthogonal Distance Regression (ODR) method (see

e.g. Boggs et al., 1987). Unlike common linear regression, ODR considers uncertainties for both axes (data sets) by minimising

the orthogonal distances between the model curve and the data points. The ODR results are shown by the red line and its label.465

Number of collocations and median/mean and standard deviations of the differences are given in the titles.

Overall, the data scatter around the 1:1 line in a similar way for all comparisons. ODR slopes vary between the data sets

from 0.84 (for FOCAL vs. ACOS) up to 1.08 (for FOCAL vs. BESD). Most collocations are available for the ACOS data set

because this has the largest number of valid data. Mean and median differences are quite similar and reach from -0.17 ppm

(comparison to BESD) to 0.67 ppm (comparison with UoL). The scatter (standard deviation of the differences) reaches from470

1.4 ppm (ACOS, NIES) to 1.8ppm (BESD).

5.2 TCCON comparisons

The TCCON network provides high-quality XCO2 (and other) data which are currently considered to be the main reference

for greenhouse gas data obtained from satellite measurements. Therefore we compared the different GOSAT data sets with

collocated TCCON measurements from 2009 to the end of 2018. BESD data are not included, because they do not cover the475

complete time interval. Collocation criteria are:

– Maximum time difference of 2h.

– Maximum spatial distance of satellite measurement from TCCON station 500 km.

– Maximum surface elevation difference between satellite measurement and TCCON station 250m.

In addition to these criteria we also consider in the validation only stations / TCCON data sets, which have at least 50480

collocations for all algorithms. This improves the comparability of regional and seasonal biases. As a consequence, not all

stations listed in Tab. 1 contribute to the validation.

The comparison procedure is the same as used by Reuter et al. (2020) and described by Reuter et al. (2019b). In summary,

for each TCCON site, the time series of satellite minus TCCON differences are computed under consideration of the averaging

kernels, i.e. different vertical sensitivities. The resulting time series are fitted with a trend model, which includes an offset term,485

a slope term, and a sine term for seasonal fluctuations. The offset term is considered the station bias and the station scatter is

computed from the standard deviation of the fit residual. Results for the
::::::
GOSAT

:
time series at the TCCON stations are shown

in Fig. ??
::
15. Overall, the temporal variations of XCO2 are well reproduced by all data.

Figure ??
::
16

:
shows as a summary of the

::::::
GOSAT

:
TCCON comparisons the derived bias and scatter for the different stations

and products. The new GOSAT-FOCAL product compares well with the other data sets. Its differences to TCCON have a490

station to station bias (the standard deviation of the station bias) of 0.56ppm and a mean scatter (RMS scatter per station) of

1.89ppm. The seasonal component of the bias has a station to station average standard deviation of 0.37 ppm. Overall, the

ACOS product performs best in this comparison.

Note that the biases shown in Fig. ??
::
16

:
correspond essentially to a bias anomaly since a global bias

:::
the

::::
mean

::::
bias

::::
over

:::
all

::::::
stations was removed from all products. Therefore

::::
This

:
is
:::::::
because

:::
for

::::
most

::::::::::
applications

:::
this

:::::
mean

::::
bias

:
is
:::
not

:::::::
relevant

::::
since

:::::
most495
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:::::::::
information

::
is
:::::::::
contained

::
in

::::::::
gradients.

::::::::::
Subtracting

:
a
:::::
mean

::::
bias

::::
also

::::::::
facilitates

:
a
::::::::::
comparison

:::
of

:::::::
different

::::
bias

:::::::
patterns

:::::::
between

::
the

::::::::::
algorithms.

::::
The

:::::::::
subtracted

:::::
mean

::::::
station

::::
bias

::
is

:::::::
actually

:::::
small;

:::
for

:::::::
GOSAT

::
it
:::::
varies

::::::::
between

::::
0.17ppm

:::
(for

::::::
ACOS)

::::
and

::::
0.64 ppm

:::
(for

::::::
NIES).

:::::::
Because

::
of

:::
the

:::::::::
subtracted

:::::
mean

:::
bias

:
different signs of biases for different products could be coincidental.

However, the biases of FOCAL and ACOS are consistent with the biases found by Reuter et al. (2020).

::
In

::::
Figs.

:::
17

:::
and

:::
18

::
we

:::::
show

::::::
results

::::
from

::
a

:::::::::
preliminary

::::::::::
comparison

::
of
:::
the

::::
new

:::::::::
GOSAT-2

:::::::
FOCAL

::::
data

::::
with

:::::::
TCCON.

::::::
These500

:::::
results

:::
are

::::::::::
considered

:::
less

:::::::
reliable,

:::::::
because

:::::
they

:::
are

:::::
based

:::
on

:
a
::::
data

:::
set

::::::
which

:::::
covers

::::
less

::::
than

::
a
::::
year.

::::::
There

:::
are

::::::::
sufficient

::::::::::
collocations

:::
for

::::
only

:::::
seven

::::::::
TCCON

:::::::
stations,

::::
and

:::::
some

::
of

:::::
them

::::::::
comprise

::::
only

::
a
::::
few

::::::
months

:::
of

::::
data,

::::::
which

:::::
limits

:::
the

:::
fit

::
of

:::
our

:::::
trend

::::::
model.

::::
The

:::::
mean

::::::
scatter

::
of

:::
the

:::::::::
GOSAT-2

::::
data

::
is

:::::
1.86ppm

:::
and

::::::::
therefore

::::::
similar

:::
as

:::
the

:::
one

:::
for

::::::::
GOSAT.

::::
The

::::::
derived

::::::::::::::
station-to-station

::::
bias

:::
for

::::::::
GOSAT-2

:::::::
FOCAL

::
is
:::::
1.14ppm.

::::
This

::::
high

:::::
value

::
is

::::::
mainly

::::
due

::
to

:::
the

:::::
biases

:::::::
derived

:::
for

:::
the

::::::
stations

:::::::
Orleans

:::
and

::::::::
Reunion

:::::
Island

::::::
(where

:::::
only

:::
few

::::
data

:::
are

:::::::::
available)

:::
and

:::
the

::::::
station

:::::::::
Pasadena,

:::::
which

::::
also

::::::
showed

::::::
larger505

:::::::::::
discrepancies

::
to

:::
the

:::::::
GOSAT

:::::::
products

::::
(see

::::
Fig,

::::
16).

:::
We

:::
are

::::::::
confident

:::
that

:::
the

:::::::::::::::
station-to-station

:::
bias

::::
will

:::::::
improve

:::::
when

:::::
more

:::
and

::::::::
improved

::::::::
GOSAT-2

::::
data

::::
will

::
be

::::::::
available.

:

Via the TCCON comparison it is also possible to validate the reported precision of the FOCAL data products (i.e. the

specified XCO2 error). The basic idea is to estimate the “true” precision from the variability of the XCO2 bias relative to

trend-corrected, collocated TCCON data. For this purpose, we define 20 bins with increasing reported XCO2 uncertainty and510

compute the corresponding true precision from the scatter relative to TCCON (i.e., the fit residual mentioned above).

The corresponding scatter plot is shown in Fig. 19. We use the fitted linear curve to correct the reported uncertainty of the

GOSAT-FOCAL data. After the correction, all data scatter around the 1:1 line (dashed).

A similar correction will be performed for the GOSAT-2 FOCAL product as soon as sufficient data (GOSAT-2 as well as

TCCON) are available, which is currently not yet the case.515

5.3 Time series

To investigate the temporal behaviour of the FOCAL XCO2 data sets, we performed comparisons based on monthly data from

2009 to 2019, which were spatially gridded to 5◦× 5◦(examples are shown in Figs. 11 and 12). Similar data sets have been

generated for the SRON, UoL, ACOS and NIES GOSAT products. We also produced a corresponding gridded GOSAT-BESD

data set; since these are near-real-time (NRT) data only, there are no GOSAT BESD data before 2014 available (when the NRT520

processing started). GOSAT-2 data start in February 2019.

We then selected for each combination of GOSAT-FOCAL XCO2 and a correlative data set grid points where the standard

error of the mean is less than 1.6ppm (as a basic quality filter, similar as done by Reuter et al., 2020). These data were then

averaged over different latitudinal ranges, namely:

– Global (90◦S – 90◦N)525

– Northern hemisphere (25◦N – 90◦N)

– Tropics (25◦S – 25◦N)
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– Southern hemisphere (25◦S – 90◦S)

Figure 20 shows the results of these comparisons. The left plots display time series of the different data sets, the right plots

the difference between the GOSAT-FOCAL XCO2 and the reference data. All data products reproduce the overall increase530

of XCO2 with time as well as the seasonal variations. On average, FOCAL data are typically about 0.5 ppm higher than the

other data sets (except for BESD). This is most likely related to the choice of the “true” XCO2 for the bias correction. There

are long-term changes in the order of 1 ppm over the complete time series, which differ for each data set. For example, the

GOSAT-FOCAL data show in the tropics relative to SRON a higher value at the start of the time series, but both data sets

agree at the end. On the other hand, the average difference to the UoL data in the northern hemisphere is negative during the535

first years, but increases to an almost constant small positive offset below about 0.5 ppm. There is not much difference in the

temporal behaviour between the GOSAT-FOCAL and the ACOS and NIES time series. The seasonal shapes also differ slightly

with amplitudes of about 0.5ppm with somewhat larger differences in the southern hemisphere where seasonal variations are

generally smaller.

Overall, the agreement within the GOSAT data sets is broadly consistent with the systematic regional and seasonal biases540

derived from the TCCON validation, especially considering that all gridded data sets are based on a different spatial and

temporal sampling. Also, the FOCAL products for GOSAT and GOSAT-2 seem to agree quite well, but more GOSAT-2 data

is needed to confirm this.

6 Conclusions

Based on the FOCAL retrieval method a new XCO2 data set for GOSAT and a first XCO2 data set for GOSAT-2 have been gen-545

erated, making use of both measured polarisation directions. The GOSAT-FOCAL data set compares well with corresponding

data from other currently available GOSAT retrieval algorithms, i.e. the RemoTec product from SRON, the UoL FP product,

the NASA ACOS product, the NIES product and the BESD product from IUP. All data sets use different filtering and bias cor-

rection schemes and therefore comprise also a different number and sampling of data. The GOSAT-FOCAL product performs

well in this context and has almost as many valid data as the ACOS product. Based on gridded data, differences in long-term550

variations of all data sets in the order of 1ppm per decade are observed. Also, seasonal variations differ by about 0.5ppm.

Comparisons with ground-based TCCON data reveal for the GOSAT-FOCAL product an overall station to station bias of

0.56ppm and a mean scatter of 1.89 ppm. These values are comparable to and in some cases even better than those of the

already existing GOSAT products of which some have less valid data.

The first GOSAT-2 results using the FOCAL method are also quite promising, but further investigations, longer time series555

and more correlative data sets are required for a quantitative assessment of the GOSAT-2-FOCAL data quality.

Overall, the FOCAL method has proven to be computationally fast and to produce XCO2 results with similar accuracy

as other, typically more time consuming, retrieval algorithms. This is the case not only when applied to OCO-2 but also for

GOSAT and GOSAT-2. FOCAL is therefore considered to be a good candidate algorithm for future satellite sensors producing

large amounts of data, like the forthcoming European anthropogenic CO2 Monitoring (CO2M) mission.560
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a)

b)

Figure 1. XCO2 ::::
from

::
the

:::::::::::::
GOSAT-FOCAL

:::::::
reference

:::::::
database.

::::
The

::::
black

:::::::
markers

::::
show

:::::::
locations

::
of

:::::::
TCCON

::::::
stations.

::
a)
::::::::::
2018-04-01.

::
b)

:::::::::
2018-10-01.

GOSAT noise model (S polarisation).

GOSAT noise model (P polarisation).
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Figure 2. Example for GOSAT data filtering during the different processing steps (April 2019). Filters are listed in sequential order from top

to bottom on the vertical axis. Numbers in the horizontal bars denote the percentage of remaining data after this filter was applied. Orange:

Total number of measurements before filtering. Yellow: Pre-processing filters. Blue: Step 1 post-processing filters (convergence and noise).

Green: Random forest post-processing filter. Light blue: Additional post-processing filters.
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Figure 5. Random forest results for GOSAT. Left (a–c): Results from random forest filter. Right (d–f): Results from random forest bias

correction. Top: Normalised relevance (score) of all filter variables. Middle/bottom: Selected variables and their relevance for land/water

surface.
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Figure 6. As Fig. 5, but for GOSAT-2.
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a)

b)

Figure 7.
::::::
Gridded

::::::
GOSAT

:::
(a)

:::
and

::::::::
GOSAT-2

::
(b)

:
XCO2 :::

bias
::::::::
correction

::
for

:::::
2019.
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Figure 8. Example for a single GOSAT measurement (S
:

P polarisation):
::::
Left: Measured (red) and retrieved (green) spectra in the different

fit windows; because of the good agreement the red curve is essentially barely visible below the green curve.
:::::
Right:

:::::::::::
Corresponding

:::::::
residuals

::::::::::
(measurement

:
-
:::
fit).

:::::
Light

::::
Blue:

::::::::::
Unsmoothed.

::::
Blue:

::::::::
Smoothed

::::
with

:
a
:::::
boxcar

::
of

:::::
width

::
21

::::::
spectral

:::::
pixels

::
(=

:::
4.2 cm−1

:
).
::::
Red:

:::::::
Estimated

:::::
noise

:::
error

:::::
range.

:
Radiance unit is W/cm2/cm−1/sr.
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Same as Fig. ?? but for P polarisation.

Same as Fig. ?? but for GOSAT-2 with two additional fit windows.

Same as Fig. ?? but for P polarisation.

GOSAT residuals (measurement - fit) for data from Fig. ?? (S polarisation). Green: Unsmoothed. Blue: Smoothed with a boxcar of width 21

spectral pixels (= 4.2 ). Red: Estimated noise error range. Radiance difference unit is .

Same as Fig. ?? but for P polarisation.

Same as Fig. ?? but for GOSAT-2.
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Figure 9. Same as Fig. ??
::
8, but for GOSAT-2.
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Figure 10. Statistics for valid GOSAT measurements (after pre- and post-processing filtering) for each year. Blue: Measurements over water.

Green: Measurements over land. Red: All data. a) Number of valid measurements, incl. percentage of all originally available measurements.

b) Global mean XCO2. c) Corresponding standard deviation.
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a)

b)

Figure 11. Example for gridded GOSAT XCO2 data. a) April 2019. b) August 2019.
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a)

b)

Figure 12. Example for gridded GOSAT-2 XCO2 data. a) April 2019. b) August 2019.
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Figure 13. Number of valid XCO2 data points in the different GOSAT products from 2009 to 2019.
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a) b)

c) d)

e)

Figure 14. Comparison of GOSAT-FOCAL data (x axis) from 2018 with other GOSAT data (y axis). The colour of the data points corresponds

to the density of data points at that location (normalised to a maximum value of 1). The dashed line corresponds to perfect agreement. The

red line shows the result of a linear fit using the Orthogonal Distance Regression (ODR) method. The total number of collocated data as well

as median, mean and standard deviation of the XCO2 differences between the two data sets are given in the title of the sub-plots. a) FOCAL

vs. ACOS b) FOCAL vs. BESD. c) FOCAL vs. NIES. d) FOCAL vs. SRON. e) FOCAL vs. UoL.
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Figure 15. Time series of collocated GOSAT data at various TCCON sites for different data products including the new GOSAT-FOCAL

data set.
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Figure 16. Overview of TCCON validation results
::
for

::::::
GOSAT.
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Figure 17.
::::
Time

:::::
series

:
of
::::::::

collocated
:::::::
FOCAL

:::::::
GOSAT-2

::::
data

:
at
::::::
various

:::::::
TCCON

::::
sites.
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Figure 18.
:::::::
Overview

::
of

:::::::
TCCON

:::::::
validation

:::::
results

:::
for

:::
the

:::::::
GOSAT-2

:::::::
FOCAL

::::::
product.

Figure 19. Comparisons of the (binned) original XCO2 errors (reported precision without correction) of the GOSAT-FOCAL product with

estimated errors based on collocated TCCON data (true precision).
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Figure 20. Gridded monthly mean time series of different GOSAT XCO2 products. Left: Time series of mean XCO2 for four different

regions (from top to bottom: Global, northern hemisphere, tropics, southern hemisphere). Right: Corresponding differences to the GOSAT-

FOCAL product.
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Table 1. TCCON stations used in this study.

Site Lon. (deg) Lat. (deg) Elev. (km) Reference(s)

Ascension Island (SH) -14.33 -7.92 0.01 Feist et al. (2014)

Bialystok (PL) 23.03 53.23 0.18 Deutscher et al. (2019)

Bremen (DE) 8.85 53.10 0.04 Notholt et al. (2019a)

Burgos (PH) 120.65 18.53 0.04 Morino et al. (2018b)

Darwin (AU) 130.89 -12.42 0.03 Griffith et al. (2014a)

Edwards (US) -117.88 34.96 0.70 Iraci et al. (2016a)

East Trout Lake (CA) -104.99 54.35 0.50 Wunch et al. (2017)

Eureka (CA) -86.42 80.05 0.61 Strong et al. (2019)

Four Corners (US) -108.48 36.80 1.64 Dubey et al. (2014)

Garmisch-Partenkirchen (DE) 11.06 47.48 0.74 Sussmann and Rettinger (2018a)

Hefei (CN) 117.17 31.90 0.04 Liu et al. (2018)

Indianapolis (US) -86.00 39.86 0.27 Iraci et al. (2016b)

Izaña (ES) -16.50 28.30 2.37 Blumenstock et al. (2017)

Karlsruhe (DE) 8.43 49.10 0.11 Hase et al. (2014)

Lamont (US) -97.49 36.60 0.32 Wennberg et al. (2016)

Lauder (NZ) 169.68 -45.04 0.37 Sherlock et al. (2014a, b)

Pollard et al. (2019)

Ny Ålesund (NO) 11.90 78.90 0.02 Notholt et al. (2019b)

Orleans (FR) 2.11 47.97 0.13 Warneke et al. (2019)

Paris (FR) 2.36 48.85 0.06 Te et al. (2014)

Park Falls (US) -90.27 45.95 0.44 Wennberg et al. (2017)

Pasadena (US) -118.13 34.13 0.21 Wennberg et al. (2014)

Reunion Island (FR) 55.49 -20.90 0.09 De Mazière et al. (2017)

Rikubetsu (JP) 143.77 43.46 0.36 Morino et al. (2017)

Saga (JP) 130.29 33.24 0.01 Kawakami et al. (2014)

Sodankylä (FI) 26.63 67.37 0.18 Kivi et al. (2014)

Tsukuba (JP) 140.12 36.05 0.03 Morino et al. (2018a)

Wollongong (AU) 150.88 -34.41 0.03 Griffith et al. (2014b)

Zugspitze (DE) 10.98 47.42 2.96 Sussmann and Rettinger (2018b)
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Table 2. Pre-processing filter limits.

Filter Value

GOSAT quality flag “good” or “poor”

GOSAT-2 quality flag “good”, “fair” or “poor”

Maximum solar zenith angle 70◦

Maximum latitude 70◦

Minimum SNR 10

Maximum cloud
::::::
effective albedo 0.7

Maximum water vapour path
:::

filter 4.0

Table 3. Parameters for cloud filtering.

Effective Albedo

GOSAT Band Waveno. Range (cm−1) Irradiance (W/cm2/s/cm−1)

SWIR-1 13190–13210 7.4e-6

SWIR-2 6267–6279 6.0e-6

SWIR-3 4800–4810 4.3e-6

Water Vapour Filter

GOSAT Band Waveno. Range (cm−1)

SWIR-3 5176–5193

Table 4. Definition of GOSAT/GOSAT-2 spectral fit windows (same for S and P). Windows 7 and 8 are only available for GOSAT-2.

No. Primary target Waveno. range (cm−1) Considered gases

1 SIF 13170 – 13220 O2

2 O2 12930 – 13170 O2

3 HDO 6337 – 6410 CO2, H2O, HDO, CH4

4 CO2 6161 – 6297 CO2, H2O, HDO, CH4

5 CH4 5945 – 6135 CO2, H2O, HDO, CH4

6 CO2 4801 – 4907 CO2, H2O, HDO

7 N2O 4364 – 4449 N2O, H2O, HDO, CH4

8 CO 4228 – 4328 CO , H2O, HDO, CH4
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Table 5. State vector elements and related retrieval settings. A-priori values are also used as first guess. “Fit windows” lists the spectral

windows (see Tab. 4) from which the element is determined. “all” means that an element is determined from all fit windows of the specified

polarisation. “each” means that a corresponding element is fitted in each fit window. A-priori values labelled as “PP” are taken from pre-

processing; “est.” denotes that they have been estimated from the background signal

Element Fit windows A-priori A-priori uncertainty Comment

Gases

co2_lay 3,4,5,6 (S&P) PP 10.0 CO2 profile (5 layers), in ppm

ch4_lay 3,4,5 (S&P) PP 0.045 CH4 profile (5 layers), in ppm

h2o_lay 3,4,5,6 (S&P) PP 5.0 H2O profile (5 layers), in ppm

sif_fac 1 (S&P) 0. 5. SIF spectrum scaling factor

delta_d 3,4,5,6 (S&P) -200. 1000. δD profile scaling factor

n2o_scl 7 (S&P) 1. 0.1 N2O profile scaling factor, only GOSAT-2

co_scl 8 (S&P) 1. 1.0 CO profile scaling factor, only GOSAT-2

Scattering parameters

pre_sca_s all S 0.2 1. Layer height (pressure), S

tau_sca_0_s all S 0.01 0.1 Optical depth, S

ang_sca_s all S 4.0 1. Ångström coefficient, S

pre_sca_p all P 0.2 1. Layer height (pressure), P

tau_sca_0_p all P 0.01 0.1 Optical depth, P

ang_sca_p all P 4.0 1. Ångström coefficient, P

Polynomial coefficients (surface albedo)

poly0 each est. 0.01 estimated surface albedo

poly1 each 0.2 0.1

poly2 each 0.1 0.1 not in SIF window (1)

Spectral corrections

wav_shi each 0.0 0.1 Wavenumber shift

wav_squ each 0.0 0.001 Wavenumber squeeze
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Table 6. Parameters of GOSAT noise model.

Fit window s δF a0 a1 a2 NSR range

S polarisation

1 1.12 2.17e-03 9.369e-05 1.613e-01 -9.185e-01 0.003–0.049

2 1.07 5.50e-03 1.183e-03 2.557e-02 1.107e+00 0.003–0.047

3 1.14 3.61e-03 5.241e-04 1.251e-01 -6.776e-01 0.003–0.043

4 1.07 3.37e-03 5.480e-04 7.250e-02 3.716e-02 0.003–0.041

5 1.07 3.58e-03 8.836e-04 3.433e-02 8.853e-01 0.003–0.047

6 1.00 7.12e-03 1.680e-03 -9.060e-03 1.190e+00 0.001–0.047

P polarisation

1 1.13 2.42e-03 5.961e-04 8.736e-02 6.867e-01 0.003–0.049

2 1.05 7.50e-03 3.177e-03 -1.109e-01 2.711e+00 0.003–0.049

3 1.21 3.17e-03 4.909e-04 1.226e-01 5.539e-02 0.003–0.037

4 1.09 3.33e-03 6.725e-04 4.661e-02 1.002e+00 0.003–0.035

5 1.04 3.58e-03 6.457e-04 5.710e-02 2.663e-01 0.003–0.039

6 1.00 6.96e-03 1.488e-03 -9.996e-04 1.262e+00 0.003–0.049
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Table 7. Parameters of GOSAT-2 noise model.

Fit window s δF a0 a1 a2 NSR range

S polarisation

1 0.90 3.65e-03 5.895e-04 2.314e-01 -1.524e+01 0.003–0.009

2 0.94 5.21e-03 1.143e-03 1.352e-02 4.058e+00 0.003–0.009

3 1.20 3.14e-03 3.972e-04 2.756e-01 7.753e+00 0.001–0.009

4 1.08 5.25e-03 2.491e-04 2.683e-01 -4.440e-01 0.001–0.007

5 1.06 4.04e-03 2.184e-04 4.112e-01 -2.730e+01 0.001–0.007

6 1.01 4.73e-03 6.001e-04 4.469e-01 -2.822e+01 0.001–0.011

7 1.16 7.53e-03 1.289e-03 3.984e-01 -1.377e+01 0.001–0.009

8 1.11 9.34e-03 9.305e-04 5.126e-01 -2.263e+01 0.003–0.017

P polarisation

1 0.96 2.83e-03 8.010e-05 2.856e-01 -9.105e+00 0.003–0.017

2 0.97 6.08e-03 2.258e-03 -1.191e-01 6.365e+00 0.003–0.015

3 1.19 3.20e-03 6.571e-04 9.767e-02 1.049e+01 0.001–0.011

4 1.10 5.25e-03 3.868e-04 2.064e-01 -1.886e+00 0.001–0.009

5 1.08 4.17e-03 6.688e-05 4.935e-01 -3.445e+01 0.001–0.009

6 1.02 4.68e-03 1.181e-03 1.123e-01 1.245e+00 0.001–0.015

7 1.01 7.11e-03 1.907e-03 -3.405e-02 1.012e+01 0.003–0.015

8 1.10 9.52e-03 2.093e-03 1.632e-01 -2.418e+00 0.003–0.021

Table 8. Basic filter parameters.

Filter Range for valid data

Good convergence χ2 ≤ 2

RSR (each fit window, S&P) below outlier limit

Scattering layer height (S&P) 0 to 1

Ångström coefficient (S&P) 1 to 5

Scattering layer optical depth (S&P) 0 to 0.02

XCO2 error 0 to 2.0ppm
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Table 9. Bias filter limits.

Filter Range for valid data

GOSAT land -6.9 to -2.9ppm

GOSAT water -8.1 to -4.1ppm

GOSAT-2 land -4.0 to 0.0ppm

GOSAT-2 water -5.5 to -1.5ppm
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