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Abstract.

Since 2009, the Greenhouse gases Observing SATellite (GOSAT) performs radiance measurements in the near-infrared
(NIR) and shortwave-infrared (SWIR) spectral region. From February 2019 onward, data from GOSAT-2 are also available.

We present first results from the application of the Fast atmOspheric traCe gAs retrieval (FOCAL) algorithm to derive

5 column-averaged dry-air mole fractions of carbon dioxide (XCO3) from GOSAT and GOSAT-2 radiances and their validation.

FOCAL has initially been developed for OCO-2 XCOs retrievals and allows simultaneous retrievals of several gases over both
land and ocean. Because FOCAL is accurate and numerically very fast it is currently considered as a candidate algorithm for
the forthcoming European anthropogenic CO2 Monitoring (CO2M) mission, to be launched in 2025.

We present the adaptation of FOCAL to GOSAT and discuss the changes made and GOSAT specific additions. This includes

10 particularly modifications in pre-processing (e.g. cloud detection) and post-processing (bias correction and filtering).
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A feature of the new application of FOCAL to GOSAT/GOSAT-2 is the independent use of both S and P polarisation
spectra in the retrieval. This is not possible for OCO-2, which measures only one polarisation direction. Additionally, we
make use of GOSAT’s wider spectral coverage compared to OCO-2 and derive not only XCOs, water vapour (H2O) and solar
induced fluorescence (SIF) but also methane (XCHy), with the potential for further atmospheric constituents and parameters
like semiheavy water vapour (HDO) and (in the case of GOSAT-2) also carbon monoxide (CO) total columns and possibly
nitrous oxide (XN5O).

Here, we concentrate on the new FOCAL XCO, data products. We describe the generation of the products as well as
applied filtering and bias correction procedures. GOSAT-FOCAL XCO; data have been produced for the time interval 2009
to 2019. Comparisons with other independent GOSAT data sets reveal an agreement of long-term temporal variations within
about 1 ppm over one decade; differences in seasonal variations of about 0.5 ppm are observed. Furthermore, we obtain a
meanregionat-station-to-station bias of the new GOSAT-FOCAL product to the ground based Total Carbon Column Observing
Network (TCCON) of 0.56 ppm with a mean scatter of 1.89 ppm.

The GOSAT-2-FOCAL XCOs product is generated in a similar way as the GOSAT-FOCAL product, but with adapted
settings. All GOSAT-2 data until end of 2019 have been processed. Because of this limited time interval, the GOSAT-2 results
are considered to be preliminary only, but first comparisons show that these data compare well with the GOSAT-FOCAL results

1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas in the context of global warming (e.g. IPCC, 2013). The amount
of COs in the atmosphere is primarily determined by natural and anthropogenic sources and sinks but our current understand-
ing of these sources and sinks has significant gaps (e.g., Ciais et al., 2014; Reuter et al., 2017a; Friedlingstein et al., 2019;
Janssens-Maenhout et al., 2020). Retrievals of column averaged carbon dioxide (XCO3) from the satellite sensors SCIA-
MACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999; Reuter et al., 2010, 2011), TANSO-FTS/GOSAT (Kuze
et al., 2016) and from the Orbiting Carbon Observatory-2 (OCO-2) satellite (Crisp et al., 2004; Eldering et al., 2017; O’Dell
et al., 2012, 2018) have been used in over a decade to obtain information on natural CO5 sources and sinks (e.g., Chevallier
et al., 2014; Chevallier, 2015; Reuter et al., 2014b, 2017a; Schneising et al., 2014; Basu et al., 2013; Houweling et al., 2015;
Kaminski et al., 2017; Liu et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer et al., 2019) and on anthropogenic CO,
emissions (e.g., Schneising et al., 2008, 2013; Reuter et al., 2014a, 2019a; Nassar et al., 2017; Schwandner et al., 2017; Miller
et al., 2019; Labzovskii et al., 2019; Wu et al., 2020; Zheng et al., 2020)

First satellite measurements of XCO9 were performed by the Scanning Imaging Absorption Spectrometer for Atmospheric
CHartographY (SCIAMACHY) instrument (Bovensmann et al., 1999; Gottwald and Bovensmann, 2011; Reuter et al., 2010,
2011) on the European environmental satellite ENVISAT launched in 2002 and operating until April 2012.

Whereas greenhouse gases were only one field of application among others of SCTAMACHY, later satellite missions focused

explicitly on these. In 2009, the Greenhouse gases Observing SATellite (GOSAT; Kuze et al., 2009, 2016) was launched,
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followed by the Orbiting Carbon Observatory-2 (OCO-2; Crisp et al., 2017; Eldering et al., 2017; O’Dell et al., 2012, 2018) in
2014. Furthermore, in 2016 the Chinese TanSat mission was launched; first results have been presented by Yang et al. (2018).
Follow-on instruments to GOSAT and OCO-2 (GOSAT-2; Suto et al., 2020) and (OCO-3; Eldering et al., 2019) are in orbit
since 2018 and 2019, respectively. The TanSat, GOSAT and OCO-2/3 instruments are still operating, and several different
retrieval algorithms have been developed to derive XCOg from their near-infrared (NIR) and short-wave infrared (SWIR)
spectra.

The main challenge for space-borne XCO2 measurements is the required accuracy of the resulting data products as the
atmospheric background of XCO; is high compared to the variability, which is typically less than a few percent (about 2%
seasonal cycle variations in the northern hemisphere in addition to an annual increase of about 0.5% per year, see e.g. Schneis-
ing et al., 2014; Buchwitz et al., 2018). Depending on the application, even higher accuracies are needed. An accurate XCOo
retrieval usually requires a complex retrieval method and large computational effort. This is no major problem for the number
of measurements provided by the GOSAT instruments, but even current OCO-2 retrievals require significantly larger compu-
tational effort. However, new missions with much higher spatial resolution and coverage are currently in preparation to answer
the challenging questions on CO- local and global sources and sinks in a changing climate, one amongst them is the forth-
coming European anthropogenic CO2 Monitoring (CO2M) mission (Kuhlmann et al., 2019; Janssens-Maenhout et al., 2020),
dramatically increasing the computational power needed for retrievals.

Three years ago, Reuter et al. (2017b, c) developed the Fast atmOspheric traCe gAs retrieval (FOCAL) and applied it to
OCO-2 data. To show the applicability of the FOCAL method not only to OCO-2 but also to other satellite sensors, we present
in this study a new application of FOCAL to GOSAT and also some first results from an application to GOSAT-2. GOSAT-
FOCAL has several advantages over GOSAT-BESD (Heymann et al., 2015), the currently used IUP GOSAT X€02-XCO,
retrieval, product (Heymann et al., 2015), which provides only XCO, data over land. However, FOCAL is able to retrieve not
only XCO but — depending on the used spectral ranges — also other atmospheric parameters like XCH,, HoO, HDO, CO and
N3O. In the present study we concentrate on XCOa, as this is the most important (and because of its high requirements on
accuracy possibly most challenging) anthropogenic greenhouse gas.

The manuscript is organised as follows: In Section 2 we list all data sets used in this study. The retrieval algorithm is
described in section 3. Sections 4 and 5 then show the results of the retrieval and the validation. Finally, the conclusions are

given in section 6.

2 Data sets used
2.1 GOSAT and GOSAT-2

The Greenhouse gases Observing SATellite (GOSAT; Kuze et al., 2009) was launched in January 2009 and is still in operation.
The Thermal And Near infrared Sensor for carbon Observation (TANSO) on-board GOSAT consists of a Cloud and Aerosol
Imager (TANSO-CAI) and a Fourier Transform Spectrometer (TANSO-FTS), which measures radiances in the NIR and SWIR

spectral region with S and P polarisation and in the thermal infrared spectral region without polarisation with a spectral resolu-



80

85

90

95

100

105

110

tion of 0.2 cm~!. The FOCAL retrieval uses as main input calibrated GOSAT L1B V220.220 spectra from the three NIR/SWIR
bands (around 0.76, 1.6 and 2.0 um) of TANSO FTS.

GOSAT-2 (Nakajima et al., 2017; Suto et al., 2020) was launched in October 2018 and comprises a similar instrumentation
as GOSAT. The GOSAT-2 FTS has the same spectral resolution but an extended spectral range for SIF and CO retrievals.

We use calibrated GOSAT-2 L1B NIR/SWIR data V101.101.

Both GOSAT and GOSAT-2 perform point measurements with a spatial resolution (footprint diameter) of about 10 km. For
both instruments, we use a tabulated instrumental line shape (ILS) with a kernel width of 15 cm~!. For GOSAT this has been
generated by a theoretical formula parameterising a “real-world” FTS instrument (see e.g. formula 5.21 in Davis et al., 2001) ,
which depends on the maximum optical path difference (MOPD, 42.5 cm for GOSAT) and the size of the instantaneous field
of view (IFOV, 15.8 mrad for GOSAT). The same formula has been used by Heymann et al. (2015). This ILS is symmetric and
the same for S and P polarisation.

For GOSAT-2, we use a preliminary tabulated ILS provided by JAXA and generated on 16 January 2020, which is different
for S and P polarisation and asymmetric, especially in the SWIR-1-NIR band. Meanwhile, this ILS has been officially released

and is available via the NIES web site.
2.2 Reference Spectra and External Databases

For the retrieval several reference spectra and databases are used.

The solar spectrum used in the forward model is based on a high resolution solar transmittance spectrum (O’Dell et al.,
2012) in combination with an ISS solar reference spectrum (Meftah et al., 2018). For the SIF retrieval we used a chlorophyll
fluorescence spectrum by Rascher et al. (2009), which has been scaled to 1.0 mW /m? /sr/nm at 760 nm.

We use tabulated cross sections at a 0.001 cm~! sampling based on HITRAN2016 (Gordon et al., 2017) and the absorption
cross section database ABSCO v5.0 (Benner et al., 2016; Devi et al., 2016) from the NASA (National Aeronautics and Space
Administration) ACOS/OCO-2 project.

Surface elevation, surface roughness and surface type are derived from the Global Multi-resolution Terrain Elevation Data
(GMTED2010; Danielson and Gesch, 2011) of the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence
Agency (NGA) at a spatial resolution of 0.025°. Meteorological information (pressure, temperature, water vapour profiles) is
obtained from ECMWF (European Centre for Medium-range Weather Forecasts) ERA 5 model data (Hersbach et al., 2020),
which are available every 1 hour on a 0.25° horizontal grid and on 137 altitude layers.

We use XCO», data from the CarbonTracker (CT) model CT2019 and CT-NRT v2020-1 (Jacobson et al., 2020a, b) and data
from the Total Carbon Column Observing Network (TCCON, see e.g. Wunch et al., 2011a) in the context of the bias correction
reference database (see section 2.3). TCCON data are also used for validation (see section 5). Table 1 lists the TCCON stations
which provided data for the present study.

XCOg a-priori profiles are derived using the 2018 version of the simple empirical CO5 model SECM (Reuter et al., 2012).
In the context of validation, we use the 2020 version of SECM. XCH, a-priori data are from the simple CHy climatological

model SC4C2018 developed and used by Schneising et al. (2019) and briefly described by Reuter et al. (2020).
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For CO4 we use the “synth” a-priori error covariance matrix described by Reuter et al. (2017b). For H,O, we use the same
error covariance matrix as Reuter et al. (2017b), but scaled by a factor of 5 to reduce the dependencies of the retrieval results
on the a-priori. For CHy, for convenience, we scale the COy matrix to result in an XCH, uncertainty of 45 ppb, which is

considered to be a reasonable estimate. Note that only the matrices are scaled, not the a-priori values.
2.3 The “true” reference database

Quality filtering and bias correction usually require the knowledge of a “true” (in this case XCQO-) value. For this, we do not
simply use model data as truth, as one aim of XCOs products is to improve models. Another method is to take ground-based
TCCON measurements as basis for a bias correction. However, although TCCON measurements are very accurate (estimated
1-0 precision is 0.4 ppm, see Wunch et al., 2010), they are only available at certain locations and are therefore more suited for
validation.

Our choice is therefore to use a data base generated from a combination of TCCON measurements and CarbonTracker (CT)
model data for a reference year (2018 for GOSAT, 2019 for GOSAT-2), which should on average reproduce large scale features
correctly.

This database is produced in the following way: As a first step, we determine from the CT data global daily 3D maps close
to 13:00 local time (i.e. GOSAT and GOSAT-2 equator crossing time). We reduce the altitude grid to five layers with the same
dry-air sub-columns, i.e. the same amount of particles, and interpolate the data from the native CT horizontal resolution of
3°x 2°to 0.5°x 0.5°. Then we determine from the TCCON data daity-for each day mean values (XCO2TC“ON) for 13h +
2 h local time. Next, we select collocated CT data and correct them for the TCCON averaging kernels, resulting in a TCCON
corrected CT value at the TCCON location (XCO, ™). The application of the averaging kernels corrects for different vertical
resolutions/sensitivities —(see e.g. Rodgers and Connor, 2003; Wunch et al., 2010). We look for contiguous regions where CT

XCO; data differ by less than 0.75 ppm from “*the CT value at the TCCON location; these data are then used for the “true’

database—reference database. The reference database therefore does not contain any TCCON data - it only contains CT data
which were confirmed by TCCON, but individual values may differ by up to 1.5 ppm. The choice of the 0.75 ppm ranges is
based on a trade-off between accuracy (agreement with TCCON) and spatial coverage of the database.

The result are daily maps containing COs data for five vertical sub-layer altitudes. The spatial coverage is usually not global
and varies from day to day. There are typically more data in the southern hemisphere during the second half of the year
compared to the first half of the year (see Fig. 1). When comparing with GOSAT or GOSAT-2 measurement results, the “true”
XCOsq is then computed from the CO;, layers of the traereference database, considering the retrieval’s averaging kernels.

Specifically, we use here for GOSAT CT2019 data in combination with TCCON GGG2014 (see Tab. 1) for 2018. For
GOSAT-2 we also use TCCON GGG2014 data, but need to rely on CT-NRT v2020-1 for 2019. Because the CT NRT data are
not yet available for the whole year 2019, the GOSAT-2 “true™reference database does not cover the whole year; there are
essentially no data after August 2019. This is a limiting factor for GOSAT-2, especially because this also means that data in the

southern hemisphere are less present in the 2019 database.
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2.4 GOSAT Level 2 Products

To assess the quality of the newly created GOSAT-FOCAL XCOs products, they have been compared with several other well-
established GOSAT Level 2 data sets (see section 5). The GOSAT BESD v01.04 product from IUP (Heymann et al., 2015) is a
near-real time product generated in the context of the Copernicus Atmospheric Monitoring Service (CAMS, https://atmosphere.
copernicus.eu/ (last access: 30-July-2020)) project. It is available from 2014 onward. The GOSAT RemoTeC v2.3.8 product
from SRON (Butz et al., 2011) and the full-physics GOSAT product from the University of Leicester v7.3 (Cogan et al., 2012)
were generated in the context of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/; last access: 30-
July-2020) and cover the GOSAT time series from 2009 until end of 2019. The recently released NASA GOSAT ACOS v9r
product (O’Dell et al., 2012, 2018; Kiel et al., 2019) is also available for the years 2009 to 2019. The operational GOSAT
XCOg product v02.95 (bias corrected) from NIES (Yoshida et al., 2013) currently ends in August 2020. The BESD product

contains only XCO4 data over land, all other products are available for water and land surfaces.

3 Retrieval Algorithm

The retrieval is performed in three main steps: Pre-processing, processing and post-processing. These are described in the

following sub-sections.
3.1 Pre-Processing

During pre-processing all required input data for the main processing step are collected. Furthermore, a first filtering of data is
performed to reduce processing time.
The pre-processing procedure is largely based on the pre-processing as present in the BESD GOSAT product (Heymann

et al., 2015). The sequence of pre-processing activities is as follows:

1. Extraction of measured spectra, geolocation and information on quality and measurement modes (e.g. gain, scan direc-
tion) from the GOSAT L1B product.

2. Estimation of instrument noise and cloud parameters.
3. Filtering for data quality, latitudes, solar zenith angle, signal-to-noise ratio and clouds (see Tab. 2 for settings).
4. Extraction of surface type, elevation and roughness derived from the surface database for each measurement.

5. Addition of corresponding meteorological information (pressure, temperature, dry-air column and water vapour profiles)
for the time and place of the measurements. This includes a correction for surface elevation, i.e. model profiles are

extended / cut according to the value from the surface database.
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6. Add a-priori gas profiles for each measurement (CO5 from SECM, CH,4 from SC4C, HyO from meteorology). For
GOSAT-2, also a-priori profiles for CO and N5O are added. The latter do not depend on geolocation; they are based on
the tropical reference atmosphere from Anderson et al. (1986), scaled to column average values of XCO = 0.1 ppm and
XN20 =330 ppb.

Because FOCAL is a fast algorithm and the number of GOSAT and GOSAT-2 measurements is much less than for OCO-2,
we chose to set the pre-processing filters relatively relaxed and to apply the quality filtering mostly in the post-processing. As

can be seen from Fig. 2 about two thirds of the measurements are filtered out during pre-processing.
3.1.1 Noise Estimate

Similar to Heymann et al. (2015) the spectral noise is initially assumed to be independent from wavenumber for each band. It
is estimated from the standard deviation of the real part of the “dark” off-band signal (i.e. the first 500 spectral points in each
band). In a later step (see Section 3.2.1) this noise will be modified to account for additional forward model errors and overall

scaling.
3.1.2 Cloud Filter

The cloud filtering is based on two physical properties of clouds: clouds are (usually) bright and clouds are high (higher than the
surface) so that little water vapour is above them. In the pre-processing these properties are described by two quantities: eleud
effective albedo and water vapour path—filter, These are derived for each spectrum as described in Heymann et al. (2015). The
eleud-effective albedo for each band is estimated from the mean reflectance L within a spectral range outside the absorption.

L is determined from the mean radiance I, the mean irradiance I and the solar zenith angle « via:
_ Il
" Ipcosa

e))

The specific wavenumber ranges and irradiance values used for filtering are given in Tab. 3.

The water vapour path-filter is determined from a spectral region with strong water vapour absorption in the SWIR-3 band
(see Tab. 3). Itis-given-by-This filter is defined as the ratio between the median radiance and the median of the estimated noise
in this spectral range.

A ground pixel is assumed to be cloudy if either the eloud-effective albedo in one of the bands or the water vapour path-filter

exceeds the thresholds given in Tab. 2.
3.2 Processing

The processing is based on the Fast atmOspheric traCe gAs retrieval. (FOCAL) algorithm which is described in detail in Reuter
et al. (2017¢). A first successful application of this algorithm to OCO-2 data is given in Reuter et al. (2017b). Therefore, we
only summarise the main features of the algorithm here and point out the differences to the OCO-2 application.

FOCAL appoximates-approximates modifications of the direct light path due to scattering in the atmosphere by a single

scattering layer, which is characterised by its height (pressure level), its optical thickness and an Angstrém parameter which
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describes the wavenumber dependence of scattering. The layer height is normalised to the surface pressure. Furthermore,
Lambertian scattering on the surface is considered. For atmospheric scattering processes an isotropic phase function is assumed.
With this approximation, the FOCAL forward model is essentially an analytical formula; it uses pre-calculated and tabulated
cross sections such that calculations can be performed considerably fast. The inversion of the forward model is based on
optimal estimation (Rodgers, 2000) and uses the Levenberg-Marquardt-Fletcher method (Fletcher, 1971) to minimise the cost
function.

The OCO-2 retrieval of Reuter et al. (2017b, c¢) uses four fit windows in the NIR (near-infrared) and SWIR spectral range to
derive the atmospheric parameters XCOg, water vapour and SIF. In contrast to OCO-2, GOSAT and GOSAT-2 cover a wider
spectral range and provide spectra in two polarisation directions referred to as S and P. Therefore, we treat in our retrieval
both polarisation directions as independent spectra opposed to the average of both as usually used in other GOSAT retrievals
(see e.g. Butz et al., 2011; Cogan et al., 2012; O’Dell et al., 2012). However, recently Kuze et al. (2020) presented a methane

retrieval for GOSAT based on an algorithm from Kikuchi et al. (2016), which also makes use of both polarisation directions.

We use both polarisation corrections mainly for the following reasons:
— In principle, information is lost when averaging S and P spectra.

— In general, the sensitivity of the instruments and therefore the calibration of the measured spectra is different for S and
P. For example, the measured ILS is given independently for S and P.

— S and P include different information on scattering, which can also be used in filtering and/or bias correction.

Furthermore, the FOCAL fitting windows (see Tab. 4) have been adapted to the specific GOSAT(-2) spectral bands such that
in addition also other atmospheric constituents and parameters like HDO and (in the case of GOSAT-2) also CO total columns
and possibly XN5O can be retrieved. This results in six fitting windows for GOSAT and eight windows for GOSAT-2 for each
polarisation. The retrieval is performed on a wavenumber axis.

Because of the large number of target gases and spectral bands the retrieval requires various state vector elements. These are
listed together with the fit windows, from which they are determined, and their a-priori values and uncertainty ranges in Tab. 5
for GOSAT and GOSAT-2.

For GOSAT, the retrieval determines CO5, CH4 and H2O on 5 layers with same number of air particles, from which then the
column average values XCO5, XCH,4 and XH>O are calculated. Furthermore, solar induced fluorescence (SIF) is determined
by scaling of a corresponding reference spectrum.

Instead of the HDO column, we fit a scaling factor for the relative abundance of HDO compared to H,O, § D, which is
defined as:

6D _ Rmeas

=——-1 2
Rvsmow

where Ryeas is the ratio of the measured HDO and HoO columns, Rysyow ( = 3.1152 x 10™%) is the corresponding value

for Vienna Standard Mean Ocean Water (VSMOW). § D is usually given in units of per-mill.
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0D = 0%o corresponds to HDO concentrations as in VSMOW, §D = —1000%o to no HDO. We assume the same profile
shape for HDO as for H,O. For GOSAT-2, we also fit scaling factors to (fixed) CO and N5 O profiles.

As mentioned above, atmospheric scattering is considered in FOCAL by a single scattering layer, which is described by
three parameters (height, optical depth and Angstrom coefficient). As scattering is different for S and P polarised light, we fit
two independent layers for S and P.

In addition, we determine in each fit window (independently for S and P) a polynomial background function describing the
surface albedo. For this we use second order polynomials except for the small SIF windows (no. 1) where a linear function is
sufficient.

The GOSAT data files only contain a fixed spectral axis. As e.g. described in Heymann et al. (2015), the spectral calibration
of GOSAT changes especially at the begin of the mission with time. This change can be corrected by a spectral scaling factor.
We determine this overall scaling factor by a spectral fit in the SIF window before the retrieval. So far, this spectral pre-fitting
seems to be unnecessary for GOSAT-2. In the retrieval, we then additionally consider for both GOSAT and GOSAT-2 possible
additional spectral shifts and squeezes in each fit window by corresponding state vector elements, but the influences of these

spectral changes on the results is rather small.
3.2.1 Noise Model

The noise N derived from the off-band signal is only an estimate. It does not consider a possible wavenumber dependence of
the noise within one spectral band. Furthermore, a potential error of the forward model needs to be considered. In the optimal
estimation method this can be achieved by including the forward model error in the measurement error covariance. For this,
we define a scaling factor s for the estimated noise and the quantity  F', which denotes the relative error of the forward model.
The forward model error is proportional to the continuum radiance outside the absorption I, which is estimated from the 0.99
percentile of the measured radiance at the edge of each fit window. The quantities § F' and s are determined using the approach

described in (Reuter et al., 2017b), i.e. by running the retrieval for a representative subset of data and then fitting the function
RSR(NSR)=+/(s NSR)?+0F? 3)

to binned values of the residual-to-signal ratio (RSR) as function of the noise-to-signal ratio (NSR). RSR is defined as the
standard deviation of the retrieved spectral residual in each fit window divided by the continuum signal I; NSR is the standard
deviation of the noise divided by I.

With the method described in Reuter et al. (2017¢) it is also possible to define a 2¢-outlier limit based on NSR and RSR
data, which will be used to filter out too noisy data during post-processing (see section 3.3). This is parameterised by a second

order polynomial as a function of the uncorrected NSR
fN(NSR)=ag+a; NSR+as NSR? )

which is added to the RSR function of Eq. (3). The coefficients a; are determined via a fit. To avoid extrapolation, fy is set to

the edge values outside the fitting range.
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In order to cover the varying signal over the year, we base the noise model fits on data from one day per month for one
reference year. For GOSAT, we take from December 2017 to November 2018 (as there are only few GOSAT data available in
December 2018). For GOSAT-2 we use data from February 2019 to December 2019. In the case of GOSAT-2 we further restrict
the input data for the noise model parameter fit to data over land because some of the data over water show an unexpected
behaviour (low RSR in case of large NSR), which needs further investigation. In this sense, the current GOSAT-2 noise model
is considered to be preliminary and may need some refinement in the future.

Fig. 4 shows as an example the noise model results for GOSAT and GOSAT-2 in the fit windows 2 (O2(A) band) and 6
(strong CO- absorption) for P polarisation. The orange line gives the fitted RSR function, the red line the outlier limit. The
derived values from the noise model for all fitting windows / polarisations are given in Tab. 6 and 7 for GOSAT and GOSAT-2.
The forward model errors 6 F' are on average slightly larger for GOSAT-2 than for GOSAT. In the SWIR, values similar to
OCO-2 are obtained, but in the NIR the OCO-2 §F is typically smaller (about 0.003). This indicates that for GOSAT and

GOSAT-2 instrumental/calibration effects seem to impact the radiance errors more in the NIR than in the SWIR.
3.3 Post-Processing

The purpose of post-processing is to filter out invalid data and to perform a bias correction for the products. The current

post-processing focuses on XCOs4. The post-processing is performed in several steps, namely:

1. Basic filtering based on physical knowledge.
2. Filtering out low quality data using parameters / limits determined using a random forest classifier.
3. Application of a bias correction using a random forest regressor.

4. Additional filtering out of data with too large bias correction.
These steps are described in the following subsections.
3.3.1 Basic filter

The basic filtering removes measurements where the retrieval does not converge or where the quality of the fit results is too low.
We consider this to be the case if the x? calculated over all fit windows is larger than 2 or if for at least one of the fit windows
the RSR outlier limits (see section 3.2.1) are exceeded. Furthermore, we apply some initial filters for nonphysical values on
the derived scattering parameters (i.e. layer height outside the atmosphere, Angstrém coefficient not within [1,5]-). Note that
all retrieved scattering parameters such as the Angstrém exponent can be considered “effective” parameters as they have to
account for not only cloud/aerosol scattering but also Rayleigh scattering (which has an Angstrém coefficient of 4). Because
Rayleigh scattering is always present and we filter out cloudy scenes. we usually get higher effective Angstrom coefficients
than those expected from clouds or aerosols only._
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We also limit the maximum allowed optical depth of the scattering layer to 0.02 to filter out too thick clouds or aerosol
amounts and use a maximum allowed XCO, error-posteriori uncertainty of 2 ppm. As described by Reuter et al. (2017c),
FOCAL simulates scattering only for an isotropic phase function. The prominent forward peak, usually existing for Mie
scattering phase functions of cloud and aerosol particles does basically not modify the lightpathlight path. As FOCAL’s optical
depths of the scattering layer do not include this forward peak, these optical depths are much smaller than optical depths
including a strong forward peak while having a similar influence on the light path modification (see discussion in the publication
of Reuter et al. (2017c)). The maximum value of 0.02 for the layer optical depth should therefore not be interpreted as e.g. an
aerosol optical depth.

The limits for the optical depth of the scattering layer and the XCO- error are somewhat arbitrary and actually result from
visual inspection of the retrieval results. However, they are only intended as a first rough quality filter to facilitate later filter and
bias correction methods, which will partly use the same parameters (see below). The detailed choice of these limits is therefore
considered uncritical for the final results.

The above mentioned filter parameters and limits (see Tab. 8) are applied to both land and water surfaces and are the same

for GOSAT and GOSAT-2, except for the RSR outlier limit which has been determined individually for each instrument. Figs.

2 and 3 show exemplary-how many data points are typically filtered out in this step. The different performance of the RSR
filters for both instruments indicates that the filtering for GOSAT-2 needs some further optimisation, which is planned for the
next version of the products.

3.3.2 Random forest filter

In the next step, data are filtered out based on their expected XCO- bias i.e. the difference to a “true” XCOs. Of course, this
true XCO4 value is normally not known. We therefore use the “trae™-XCO-, reference database (as described in section 2.3)
to train a random forest classifier (Pedregosa et al., 2011) to identify those variables which would remove — in combination
with a corresponding random forest database — a pre-described percentage p of data based on their XCO, bias. This is done
independently for data over land and water. Note that we are only interested here in the XCO4 bias on top of an overall global
bias as the latter will be handled via the bias correction.

This method is similar to the random forest filter used by Schneising et al. (2019) in the context of CH4 and CO retrieval.

Other approaches for data filtering used e.g. by Mandrake et al. (2013) and Reuter et al. (2017b) identify the best variables b
minimisation of local XCO», variability in the retrieved products. However, all methods essentially serve the same purpose, i.e.
to derive a reproducible filtering procedure which does not solely rely on expert knowledge.

We determine the list of relevant variables and the random forest database for the filtering in the following way: We use
the (uncorrected) results of the retrieval for the reference and apply the basic filtering as described in section 3.3.1. Then, the
subset of these data is selected which has a corresponding “true” value in the reference database. For these data we determine
the XCO3, bias (measurement - reference XCO3) and subtract the menthly-global-median-global median for land and water of
this bias. We then sort the data according to this bias and flag those p percent of data with the highest absolute bias values as
“bad”.
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For GOSAT, this results in a total number of 54317 data points over land and 109414 over water. These numbers are smaller
for GOSAT-2 (land: 10625, water: 40459). The random forest classifier is then trained by using randomly 90% of these data

as input. The training is done in two iterations: First, with a complete set of possible input variables (“features”) and output

variables (“estimators”); then, using only a reduced set consisting of the 10 best features/estimators, i.e. those with highest

random forest score (relevance) of the first run)—. This relevance is a quantity which describes the relative importance of each
feature for the filtering. Relevances are normalised such that the sum of all relevances is 1. The random forest classifier then

decides for each measurement based on these 10 variables if it is filtered out or not.

The initial list of possible features/estimators includes essentially all quantities available after the retrieval, including viewing
angles, surface properties and continuum signal for each fit window. Furthermore, the retrieved values of the state vector
elements and their errors are included in this list as well as averaging kernels for the profiles. We explicitly exclude the
geolocation of the measurement (latitude, longitude) and the retrieved values (but not the errors) for the data products we are
interested in, i.e. the gases and SIF. This is to avoid e.g. the filtering out of certain geographical regions or removing all points

with high XCOs, values.

Note that in glint mode over ocean, the inclusion of information about the viewing geometry as possible features bears the
risk that the random forest procedure may infer the geolocation from a combination of these.

However, we include as possible filter variable the gradient of the retrieved CO4 profile (i.e. the difference between the two
lowermost layers) as this has shown to be a suitable quantity.

The original number of candidate variables presented to the random forest classifier is quite high (193 for GOSAT and 246
for GOSAT-2) as can be seen from Figs. 5 and 6 (top left plots), but there are only few with a high relevance.

The ten best variables selected partly differ for land and water surface (as shown in the middle and left top panels), but they
usually comprise scattering parameters, polynomial coefficients, spectral corrections and some XCO- related parameters.

The other 10% of the input data are used to test the performance of the classifier. The results from this test and other cross-
validation activities indicate, that the random forest classification is — depending on surface — only accurate in about two thirds
of the cases. This accuracy is defined as the fraction of correctly classified samples. This means that the filtering also removes
possibly valid data points and does not remove all possibly bad ones. However, we do not expect a perfect classification,
because it is not possible to describe all inter-dependencies via the set of input features. Note that the performance of the filter
is similar for both the training and the test data sets. This indicates that there are no problems with over-fitting,

To obtain a high quality of the remaining XCO4 data, we therefore need to filter out quite a large percentage of data (and
perform an additional filtering at a later time, see below). For future data products further investigations are planned to improve
the performance of the classifier, e.g. by providing additional features from combination of existing ones (like the already used
CO4 gradient). The percentage p of data to be filtered out is usually a trade-off between data quality and remaining amount of
data. In the present case a 50% limit has been selected. Actually, as can be seen from Figs. 2 and 3, the relative amount of data

filtered out via the random forest classifier is not exactly 50% of the data remaining after the previous filters.

3.3.3 Bias correction and filtering
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set. Different data products use different methods to define this “truth”. In many cases, ground based TCCON measurements
are taken as reference for the “true” XCOy, like in the GOSAT BESD product (Heymann et al., 2015), the SRON products
(Guerlet et al., 2013), the product from the University of Leicester (Cogan et al., 2012) and also the operational GOSAT product
from NIES (Inoue et al., 2016). The bias correction of the NASA ACOS OCO-2 product is quite complex (O’Dell et al., 2018;
Kiel et al., 2019); it uses as reference a modification of the “Southern Hemisphere Approximation” introduced by Wunch
etal. (2011b). The ACOS products takes multi-model mean data as reference and derives corrections from data in the southern

hemisphere below 20°S where CO, is assumed to be quite uniform on small areas. A similar “‘small area approximation” is
also used by Reuter et al. (2017¢) to correct FOCAL OCO-2 data. This correction method is not possible for GOSAT and

GOSAT-2 data because of their sparse sampling. We therefore follow a different approach here.

For the bias correction we use as input the same data set as for the random forest filter, but with this random forest filter
applied. 50% of the resulting data set is then used to train a random forest regressor (see also Schneising et al., 2019), which
aims to minimise the “true” XCO3 bias, i.e. the difference to the reference database value without global median subtracted)-,
as function of the specified features. To create the bias correction database and the corresponding list of best features we again
run the training twice, first with the full list (the same as for the filter) and then with the top ten features. Again, we use different
corrections for land and water. The resulting parameters and their performance are shown in the bottom panels of Figs. 5 and

6. The bias correction selects similar best features as the filter, but not exactly the same quantities in the same sequence.

The actual number of features/variables to be used

for both filtering and bias correction is a trade-off between many variables (explaining all relations with a risk for over-fitting
and high computational effort) and few variables (no over-fitting, but maybe missing some relations). Considering ten features
for the bias correction is more than other algorithms typically use, but this is appropriate in our case because we take into
account the different relevance of these parameters, which drops off rapidly within the first ten variables (see top panels of

Figs. 5 and 6).
The validity of this choice is confirmed by the application of the bias correction to the training data set and the other 50% of

the input data, which shows a comparable reduction of the XCO scatter;-whieh-. This is an indication for a good performance

(e.g. no over-fitting) of the regressor.

During application of the bias correction, the random forest regressor estimates the XCO» bias based on the values of the

input variables. This bias is then subtracted from the retrieved value.
Currently, there is only a bias correction for XCOs, but in principle this method is applicable also to other quantities

depending on the availability of a corresponding “trae”reference database.
After the bias correction there are still a few outliers left in the XCO; data. These are filtered out by an additional filter on

the derived-XCO, bias derived via the random forest classifier. The limits for this filter are the global median bias for test data

13



405

410

415

420

425

430

set +2 ppm. the median bias is different for land and water surfaces and also for GOSAT and GOSAT-2. The actual limits are
given in Tab. 9. The value 2 ppm is estimated from visual inspection of the data. Figs. 2 and 3 show that typically less than

1-2% of the remaining data (less than 0.1% of all) are affected by this last filter.

The spatial variability of the finally derived bias correction (see Fig. 7) is typically below 1 ppm, but as mentioned above
there is a systematic difference between land and water data of about of 1 — 1.5 ppm (see Tab. 9).

4 Results

The FOCAL retrieval has been applied to all GOSAT and GOSAT-2 measurements until end of 2019. On average, FOCAL
needs 22 s with 6 iterations for the processing of one GOSAT ground pixel. For GOSAT-2 numbers are slightly larger (28 s/7
iterations) because of the additional fit windows and state vector elements. All performance values are given for a single core
of an Intel Xeon E5-2667v3 CPU (3.2 GHz). These numbers are actually about one magnitude larger than the ones given
in Reuter et al. (2017b, c) for the FOCAL application to OCO-2. This is because we use for GOSAT(-2) separate S and P
polarisation spectra and more retrieved variables, which requires more and larger fit windows. For each of these fit windows
and parameters, weighting functions have to be calculated, which involves a convolution with the ILS. This convolution is
the most time consuming part of the FOCAL retrieval. This is even more relevant for GOSAT(-2), because the FTS ILS is in
principle sinc-shaped, i.e. it has a sharp peak in the centre but wide wings, which requires a large kernel width (in our case
15cm ™! for the convolution.

The left plots of Figs. 8 and 9 show examples for measured and fitted nadir mode radiance spectra for GOSAT and GOSAT-
2 over land in the different fitting windows for P polarisation. Since the difference between measured and modelled spectra
is small and thus hard to see, we show in Figs—2?-to-22-these figures on the right side the corresponding residuals and the
estimated noise. The results for S polarisation look similar and are therefore not shown here. The residuals are on the order
of magnitude of the noise, which is slightly higher for P polarisation than for S polarisation. Some small spectral structures
are visible in the residuals, they appear more clearly in the smoothed residuals (convoluted with a 21 pixel boxcar), e.g. for
GOSAT and GOSAT-2 in the O5(A) band (window 2), and some broadband oscillations in window 4 and 5 for GOSAT-2.
These features are present in both S and P polarisations and occur also in other measurements, so they seem systematic. A
reduction of these features could pessibly-further improve future products.

In Fig. 10 some statistical information about the GOSAT-FOCAL data products is given. A time series for the number of valid
data is given in the top plot. In the recent years, about 5-6% of the available measurements could be transferred to valid XCO
data. The number of valid data points increases from 2009 to 2019. This is mainly due to an increase in the data over water,
which is mestlikely-related to optimisations in GOSAT operations (better use of glint geometry) over water. As expected, the
mean global XCOs shown in the middle plot increases with time. Global mean values over water are typically slightly higher

than over land:

. The observed XCO, variability (standard deviation, bottom plot) is
larger over landwhieh-. Part of this variability is attributed to influences of surface elevation and to different scattering pathways
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between the land and water measurements. For GOSAT-2, only retrieved data from 2019 are available so far. The total amount
of available measurements is about 2.8 million, compared to about 3.5 million GOSAT measurements in 2019. Only about 3%
of the GOSAT-2 data remain after all filtering / post-processing, which is roughly half of the corresponding number for GOSAT
(but similar to the first year of GOSAT). As can be seen from Fig. 3 more GOSAT-2 data are filtered out due to failed or bad
convergence and by the RSR outlier limits than for GOSAT (Fig. 2). Future improvements of the GOSAT-2 calibration or the
noise model eould-pessibly-are considered to help here.

For further analyses, we have generated monthly maps on a 5°x 5°grid. Example plots for the months April and August
2019 (begin/end of the growing season) are shown in Fig. 11 for GOSAT and in Fig. 12 for GOSAT-2. The data are not filtered
for low amounts of input data in the grid points, which may-explain-explains some individual outliers in the plots. Overall,
the spatial patterns observed by GOSAT and GOSAT-2 look reasonable. The north—-south gradient in XCOs is visible with
different sign in April and August for both instruments. The spatial coverage of the GOSAT-2 data is lower than for GOSAT,
because more data are filtered out (see above). This seems-to-affeet-affects especially regions like the northern part of Africa.

5 Verification and Validation

For the verification and validation of the GOSAT and GOSAT-2 FOCAL products we perform a comparison with various

reference data sets (see section 2), namely:

The GOSAT BESD v01.04 product from IUP (referred to as “BESD” later).

The GOSAT ACOS vOr product from NASA (referred to as “ACOS” later).

The GOSAT UoL_FP v7.3 product from the University of Leicester (referred to as “UoL” later).

The GOSAT RemoTeC v2.3.8 product from SRON (referred to as “SRON” later).

The GOSAT operational product v02.95 (bias corrected) from NIES (referred to as “NIES” later).

Collocated TCCON GGG2014 data (referred to as “TCCON?” later).

For the comparisons, all data have been adjusted using the same a-priori (SECM2020).

Since all GOSAT products use different retrieval and filter methods, they do not contain the same number of data (see
Fig. 13). Currently, the NASA ACOS product has the largest number of valid data points, followed by the new GOSAT-FOCAL
product with about 20% less data.

5.1 Direct comparisons

There are enough common measurement points included in the different GOSAT products to perform a direct comparison.
Figure 14 shows exemplary-as an example a comparison between the GOSAT-FOCAL data for the year 2018 with the corre-
sponding ACOS, BESD, SRON, NIES and UoL products. For each plot we only use data where both data sets have a valid
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XCOg, value. For these data we performed a linear regression using the Orthogonal Distance Regression (ODR) method (see
e.g. Boggs et al., 1987). Unlike common linear regression, ODR considers uncertainties for both axes (data sets) by minimising
the orthogonal distances between the model curve and the data points. The ODR results are shown by the red line and its label.
Number of collocations and median/mean and standard deviations of the differences are given in the titles.

Overall, the data scatter around the 1:1 line in a similar way for all comparisons. ODR slopes vary between the data sets
from 0.84 (for FOCAL vs. ACOS) up to 1.08 (for FOCAL vs. BESD). Most collocations are available for the ACOS data set
because this has the largest number of valid data. Mean and median differences are quite similar and reach from -0.17 ppm
(comparison to BESD) to 0.67 ppm (comparison with UoL). The scatter (standard deviation of the differences) reaches from

1.4 ppm (ACOS, NIES) to 1.8 ppm (BESD).
5.2 TCCON comparisons

The TCCON network provides high-quality XCO (and other) data which are currently considered to be the main reference
for greenhouse gas data obtained from satellite measurements. Therefore we compared the different GOSAT data sets with
collocated TCCON measurements from 2009 to the end of 2018. BESD data are not included, because they do not cover the

complete time interval. Collocation criteria are:

— Maximum time difference of 2 h.
— Maximum spatial distance of satellite measurement from TCCON station 500 km.

— Maximum surface elevation difference between satellite measurement and TCCON station 250 m.

In addition to these criteria we also consider in the validation only stations / TCCON data sets, which have at least 50
collocations for all algorithms. This improves the comparability of regional and seasonal biases. As a consequence, not all
stations listed in Tab. 1 contribute to the validation.

The comparison procedure is the same as used by Reuter et al. (2020) and described by Reuter et al. (2019b). In summary,
for each TCCON site, the time series of satellite minus TCCON differences are computed under consideration of the averaging
kernels, i.e. different vertical sensitivities. The resulting time series are fitted with a trend model, which includes an offset term,
a slope term, and a sine term for seasonal fluctuations. The offset term is considered the station bias and the station scatter is
computed from the standard deviation of the fit residual. Results for the GOSAT time series at the TCCON stations are shown
in Fig. 2215. Overall, the temporal variations of XCO3 are well reproduced by all data.

Figure 22-16 shows as a summary of the GOSAT TCCON comparisons the derived bias and scatter for the different stations
and products. The new GOSAT-FOCAL product compares well with the other data sets. Its differences to TCCON have a
station to station bias (the standard deviation of the station bias) of 0.56 ppm and a mean scatter (RMS scatter per station) of
1.89 ppm. The seasonal component of the bias has a station to station average standard deviation of 0.37 ppm. Overall, the
ACOS product performs best in this comparison.

Note that the biases shown in Fig. 22-16 correspond essentially to a bias anomaly since a global-bias-the mean bias over all

stations was removed from all products. Therefore This is because for most applications this mean bias is not relevant since most
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information is contained in gradients. Subtracting a mean bias also facilitates a comparison of different bias patterns between
0.64 ppm (for NIES). Because of the subtracted mean bias different signs of biases for different products could be coincidental.
However, the biases of FOCAL and ACOS are consistent with the biases found by Reuter et al. (2020).

In Figs. 17 and 18 we show results from a preliminary comparison of the new GOSAT-2 FOCAL data with TCCON. These
results are considered less reliable, because they are based on a data set which covers less than a year. There are sufficient
collocations for only seven TCCON stations, and some of them comprise only a few months of data, which limits the fit
of our trend model. The mean scatter of the GOSAT-2 data is 1.86 ppm and therefore similar as the one for GOSAT. The
stations Orleans and Reunion Island (where only few data are available) and the station Pasadena, which also showed larger

discrepancies to the GOSAT products (see Fi

and improved GOSAT-2 data will be available.
Via the TCCON comparison it is also possible to validate the reported precision of the FOCAL data products (i.e. the

16). We are confident that the station-to-station bias will improve when more

specified XCQO; error). The basic idea is to estimate the “true” precision from the variability of the XCO- bias relative to
trend-corrected, collocated TCCON data. For this purpose, we define 20 bins with increasing reported XCO3 uncertainty and
compute the corresponding true precision from the scatter relative to TCCON (i.e., the fit residual mentioned above).

The corresponding scatter plot is shown in Fig. 19. We use the fitted linear curve to correct the reported uncertainty of the
GOSAT-FOCAL data. After the correction, all data scatter around the 1:1 line (dashed).

A similar correction will be performed for the GOSAT-2 FOCAL product as soon as sufficient data (GOSAT-2 as well as
TCCON) are available, which is currently not yet the case.

5.3 Time series

To investigate the temporal behaviour of the FOCAL XCO,, data sets, we performed comparisons based on monthly data from
2009 to 2019, which were spatially gridded to 5°x 5°(examples are shown in Figs. 11 and 12). Similar data sets have been
generated for the SRON, UoL, ACOS and NIES GOSAT products. We also produced a corresponding gridded GOSAT-BESD
data set; since these are near-real-time (NRT) data only, there are no GOSAT BESD data before 2014 available (when the NRT
processing started). GOSAT-2 data start in February 2019.

We then selected for each combination of GOSAT-FOCAL XCO and a correlative data set grid points where the standard
error of the mean is less than 1.6 ppm (as a basic quality filter, similar as done by Reuter et al., 2020). These data were then

averaged over different latitudinal ranges, namely:
— Global (90°S — 90°N)
— Northern hemisphere (25°N — 90°N)

— Tropics (25°S — 25°N)
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— Southern hemisphere (25°S — 90°S)

Figure 20 shows the results of these comparisons. The left plots display time series of the different data sets, the right plots
the difference between the GOSAT-FOCAL XCO- and the reference data. All data products reproduce the overall increase
of XCO2 with time as well as the seasonal variations. On average, FOCAL data are typically about 0.5 ppm higher than the
other data sets (except for BESD). This is-mestdikely-related to the choice of the “true” XCO; for the bias correction. There
are long-term changes in the order of 1 ppm over the complete time series, which differ for each data set. For example, the
GOSAT-FOCAL data show in the tropics relative to SRON a higher value at the start of the time series, but both data sets
agree at the end. On the other hand, the average difference to the UoL data in the northern hemisphere is negative during the
first years, but increases to an almost constant small positive offset below about 0.5 ppm. There is not much difference in the
temporal behaviour between the GOSAT-FOCAL and the ACOS and NIES time series. The seasonal shapes also differ slightly
with amplitudes of about 0.5 ppm with somewhat larger differences in the southern hemisphere where seasonal variations are
generally smaller.

Overall, the agreement within the GOSAT data sets is broadly consistent with the systematic regional and seasonal biases
derived from the TCCON validation, especially considering that all gridded data sets are based on a different spatial and
temporal sampling. Also, the FOCAL products for GOSAT and GOSAT-2 seem to agree quite well, but more GOSAT-2 data

is needed to confirm this.

6 Conclusions

Based on the FOCAL retrieval method a new XCQO- data set for GOSAT and a first XCO, data set for GOSAT-2 have been gen-
erated, making use of both measured polarisation directions. The GOSAT-FOCAL data set compares well with corresponding
data from other currently available GOSAT retrieval algorithms, i.e. the RemoTec product from SRON, the UoL FP product,
the NASA ACOS product, the NIES product and the BESD product from IUP. All data sets use different filtering and bias cor-
rection schemes and therefore comprise also a different number and sampling of data. The GOSAT-FOCAL product performs
well in this context and has almost as many valid data as the ACOS product. Based on gridded data, differences in long-term
variations of all data sets in the order of 1 ppm per decade are observed. Also, seasonal variations differ by about 0.5 ppm.

Comparisons with ground-based TCCON data reveal for the GOSAT-FOCAL product an overall station to station bias of
0.56 ppm and a mean scatter of 1.89 ppm. These values are comparable to and in some cases even better than those of the
already existing GOSAT products of which some have less valid data.

The first GOSAT-2 results using the FOCAL method are also quite promising, but further investigations, longer time series
and more correlative data sets are required for a quantitative assessment of the GOSAT-2-FOCAL data quality.

Overall, the FOCAL method has proven to be computationally fast and to produce XCOx results with similar accuracy
as other, typically more time consuming, retrieval algorithms. This is the case not only when applied to OCO-2 but also for
GOSAT and GOSAT-2. FOCAL is therefore considered to be a good candidate algorithm for future satellite sensors producing

large amounts of data, like the forthcoming European anthropogenic CO2 Monitoring (CO2M) mission.
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Figure 1. XCO, from the GOSAT-FOCAL reference database. The black markers show locations of TCCON stations. a) 2018-04-01. b
2018-10-01.
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Total no. of measurements: 286116; Valid data: 16656
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Figure 2. Example for GOSAT data filtering during the different processing steps (April 2019). Filters are listed in sequential order from top
to bottom on the vertical axis. Numbers in the horizontal bars denote the percentage of remaining data after this filter was applied. Orange:
Total number of measurements before filtering. Yellow: Pre-processing filters. Blue: Step 1 post-processing filters (convergence and noise).

Green: Random forest post-processing filter. Light blue: Additional post-processing filters.
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Total no. of measurements: 169896; Valid data: 6265

All Data
quality—‘

Sza-

latitude -

cloud_albedo-

water_vapour_path 1
snr-
conv
RSR_1s
RSR 2s
RSR_3s
RSR_4s
RSR_5s
RSR_6s
RSR_7s
RSR_8s
RSR_1p
RSR_2p
RSR_3p
RSR_4p
RSR_5p
RSR_6p
RSR_7p
RSR_8p
pre_sca_s; 13.0%
pre_sca_p- 11.5%
ang_sca_s-, 9.7%
ang_sca_p- 9.0%
tau_sca_0_s- 7.1%
tau_sca_0_p- 6.9%
xco2_err- 6:5%
random_forest - 3.7%
xco2_bias- 3.7%

37.7%
36.9%

73.4%
70.9%
61.9%

93.7%

o——

Figure 3. Same as Fig. 2, but for GOSAT-2.
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Random Forest Filter: All 193 Variables Random Forest Bias Corr.: All 193 Variables
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Figure 5. Random forest results for GOSAT. Left (a—c): Results from random forest filter. Right (d—f): Results from random forest bias
correction. Top: Normalised relevance (score) of all filter variables. Middle/bottom: Selected variables and their relevance for land/water

surface.
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Random Forest Filter: All 246 Variables
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Figure 6. As Fig. 5, but for GOSAT-2.
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a) GOSAT XCO2_BIAS 2019
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Figure 7. Gridded GOSAT (a) and GOSAT-2 (b) XCOx bias correction for 2019,
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Figure 8. Example for a single GOSAT measurement (S-P polarisation): Left: Measured (red) and retrieved (green) spectra in the different

fit windows; because of the good agreement the red curve is essentially barely visible below the green curve. Right: Corresponding residuals
1). Red: Estimated noise
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Figure 9. Same as Fig. 22-8, but for GOSAT-2.
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Figure 10. Statistics for valid GOSAT measurements (after pre- and post-processing filtering) for each year. Blue: Measurements over water.
Green: Measurements over land. Red: All data. a) Number of valid measurements, incl. percentage of all originally available measurements.

b) Global mean XCOs. ¢) Corresponding standard deviation.
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Figure 11. Example for gridded GOSAT XCO- data. a) April 2019. b) August 2019.
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Figure 12. Example for gridded GOSAT-2 XCO., data. a) April 2019. b) August 2019.
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Figure 13. Number of valid XCO3 data points in the different GOSAT products from 2009 to 2019.
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Figure 14. Comparison of GOSAT-FOCAL data (x axis) from 2018 with other GOSAT data (y axis). The colour of the data points corresponds
to the density of data points at that location (normalised to a maximum value of 1). The dashed line corresponds to perfect agreement. The
red line shows the result of a linear fit using the Orthogonal Distance Regression (ODR) method. The total number of collocated data as well
as median, mean and standard deviation of the XCO differences between the two data sets are given in the title of the sub-plots. a) FOCAL

vs. ACOS b) FOCAL vs. BESD. c) FOCAL vs. NIES. d) FOCAL vs. SRON. e) FOCAL vs. UoL.
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Figure 15. Time series of collocated GOSAT data at various TCCON sites for different data products including the new GOSAT-FOCAL

data set.
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Figure 16. Overview of TCCON validation results for GOSAT.
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Figure 17. Time series of collocated FOCAL GOSAT2 data at various TCCON sites.
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Figure 18. Overview of TCCON validation results for the GOSAT-2 FOCAL product.
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Figure 19. Comparisons of the (binned) original XCO3 errors (reported precision without correction) of the GOSAT-FOCAL product with

estimated errors based on collocated TCCON data (true precision).
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Figure 20. Gridded monthly mean time series of different GOSAT XCO2 products. Left: Time series of mean XCO, for four different
regions (from top to bottom: Global, northern hemisphere, tropics, southern hemisphere). Right: Corresponding differences to the GOSAT-

FOCAL product.
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Table 1. TCCON stations used in this study.

Site Lon. (deg) Lat.(deg) Elev.(km) Reference(s)
Ascension Island (SH) -14.33 -7.92 0.01 Feist et al. (2014)
Bialystok (PL) 23.03 53.23 0.18 Deutscher et al. (2019)
Bremen (DE) 8.85 53.10 0.04 Notholt et al. (2019a)
Burgos (PH) 120.65 18.53 0.04 Morino et al. (2018b)
Darwin (AU) 130.89 -12.42 0.03 Griffith et al. (2014a)
Edwards (US) -117.88 34.96 0.70 Iraci et al. (2016a)
East Trout Lake (CA) -104.99 54.35 0.50 Waunch et al. (2017)
Eureka (CA) -86.42 80.05 0.61 Strong et al. (2019)
Four Corners (US) -108.48 36.80 1.64 Dubey et al. (2014)
Garmisch-Partenkirchen (DE) 11.06 47.48 0.74 Sussmann and Rettinger (2018a)
Hefei (CN) 117.17 31.90 0.04 Liu et al. (2018)
Indianapolis (US) -86.00 39.86 0.27 Iraci et al. (2016b)
Izana (ES) -16.50 28.30 2.37 Blumenstock et al. (2017)
Karlsruhe (DE) 8.43 49.10 0.11 Hase et al. (2014)
Lamont (US) -97.49 36.60 0.32 Wennberg et al. (2016)
Lauder (NZ) 169.68 -45.04 0.37 Sherlock et al. (2014a, b)
Pollard et al. (2019)
Ny Alesund (NO) 11.90 78.90 0.02 Notholt et al. (2019b)
Orleans (FR) 2.11 47.97 0.13 Warneke et al. (2019)
Paris (FR) 2.36 48.85 0.06 Te et al. (2014)
Park Falls (US) -90.27 45.95 0.44 Wennberg et al. (2017)
Pasadena (US) -118.13 34.13 0.21 Wennberg et al. (2014)
Reunion Island (FR) 55.49 -20.90 0.09 De Maziere et al. (2017)
Rikubetsu (JP) 143.77 43.46 0.36 Morino et al. (2017)
Saga (JP) 130.29 33.24 0.01 Kawakami et al. (2014)
Sodankyla (FI) 26.63 67.37 0.18 Kivi et al. (2014)
Tsukuba (JP) 140.12 36.05 0.03 Morino et al. (2018a)
Wollongong (AU) 150.88 -34.41 0.03 Griffith et al. (2014b)
Zugspitze (DE) 10.98 47.42 2.96 Sussmann and Rettinger (2018b)




Table 2. Pre-processing filter limits.

Filter Value
GOSAT quality flag “good” or “poor”
GOSAT-2 quality flag “good”, “fair” or “poor”
Maximum solar zenith angle 70°
Maximum latitude 70°
Minimum SNR 10
Maximum eloud-effective albedo 0.7
Maximum water vapour path-filter 4.0

Table 3. Parameters for cloud filtering.

Effective Albedo

GOSAT Band  Waveno. Range (cm™')  Irradiance (W /cm?/s/cm ™)

SWIR-1 13190-13210 7.4e-6

SWIR-2 6267-6279 6.0e-6

SWIR-3 48004810 4.3e-6
Water Vapour Filter

GOSAT Band  Waveno. Range (cm™1)

SWIR-3 5176-5193

Table 4. Definition of GOSAT/GOSAT-2 spectral fit windows (same for S and P). Windows 7 and 8 are only available for GOSAT-2.

No. Primary target Waveno. range (cm~ ')  Considered gases

1 SIF 13170 — 13220 O2

2 O, 12930 - 13170 02

3 HDO 6337 — 6410 COq, H20, HDO, CH4

4 CO2 6161 — 6297 COg, H20, HDO, CH4

5 CH4 5945 - 6135 COg, H20, HDO, CH4

6 CO2 4801 — 4907 COq, H,0, HDO

7 N2O 4364 — 4449 N20, H20, HDO, CH4
CO 4228 — 4328 CO, H20, HDO, CH4
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Table 5. State vector elements and related retrieval settings. A-priori values are also used as first guess. “Fit windows” lists the spectral

windows (see Tab. 4) from which the element is determined. “all” means that an element is determined from all fit windows of the specified

polarisation. “each” means that a corresponding element is fitted in each fit window. A-priori values labelled as “PP” are taken from pre-

processing; “est.” denotes that they have been estimated from the background signal

Element Fit windows  A-priori  A-priori uncertainty =~ Comment
Gases
co2_lay 3,4,5,6 (S&P) PP 10.0 COxq profile (5 layers), in ppm
ch4_lay 3,4,5 (S&P) PP 0.045 CHy profile (5 layers), in ppm
h2o0_lay 3,4,5,6 (S&P) PP 5.0 H2O profile (5 layers), in ppm
sif_fac 1 (S&P) 0. 5. SIF spectrum scaling factor
delta_d 3,4,5,6 (S&P) -200. 1000. & D profile scaling factor
n2o_scl 7 (S&P) 1. 0.1 N> O profile scaling factor, only GOSAT-2
co_scl 8 (S&P) 1. 1.0 CO profile scaling factor, only GOSAT-2
Scattering parameters
pre_sca_s all S 0.2 1. Layer height (pressure), S
tau_sca_0_s all S 0.01 0.1 Optical depth, S
ang_sca_s all S 4.0 1. /f\ngstrém coefficient, S
pre_sca_p all P 0.2 1. Layer height (pressure), P
tau_sca_0O_p all P 0.01 0.1 Optical depth, P
ang_sca_p allP 4.0 1. Angstrém coefficient, P
Polynomial coefficients (surface albedo)
polyO each est. 0.01 estimated surface albedo
polyl each 0.2 0.1
poly2 each 0.1 0.1 not in SIF window (1)
Spectral corrections
wav_shi each 0.0 0.1 Wavenumber shift
wav_squ each 0.0 0.001 Wavenumber squeeze
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Table 6. Parameters of GOSAT noise model.

Fit window S oF ao ay as NSR range
S polarisation
1 1.12 2.17e-03  9.369¢-05 1.613e-01  -9.185e-01  0.003-0.049
2 1.07  5.50e-03 1.183e-03  2.557e-02  1.107e+00 0.003-0.047
3 1.14 3.61e-03 5.241e-04 1.251e-01 -6.776e-01  0.003-0.043
4 1.07 3.37e-03 5.480e-04  7.250e-02 3.716e-02  0.003-0.041
5 1.07 3.58e-03 8.836e-04  3.433e-02 8.853e-01  0.003-0.047
6 1.00 7.12e-03  1.680e-03  -9.060e-03  1.190e+00 0.001-0.047
P polarisation
1 1.13  2.42e¢-03 5.961e-04  8.736e-02 6.867e-01  0.003-0.049
2 1.05 7.50e-03 3.177e-03  -1.109e-01 2.711e+00 0.003-0.049
3 1.21  3.17e-03  4.909e-04  1.226e-01 5.539¢-02  0.003-0.037
4 1.09 3.33e-03 6.725¢-04 4.661e-02 1.002e+00  0.003-0.035
5 1.04 3.58e-03 6.457e-04  5.710e-02 2.663e-01  0.003-0.039
6 1.00 6.96e-03 1.488e-03 -9.996e-04 1.262¢+00 0.003-0.049
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Table 7. Parameters of GOSAT-2 noise model.

Fit window s oF ao a1 as NSR range
S polarisation
1 090 3.65e-03 5.895e-04 2.314e-01 -1.524e+01 0.003-0.009
2 094 521e-03 1.143e-03  1.352e-02  4.058e+00  0.003-0.009
3 1.20  3.14e-03 3.972e-04 2.756e-01  7.753e+00  0.001-0.009
4 1.08 5.25e-03 2.491e-04 2.683e-01  -4.440e-01  0.001-0.007
5 1.06  4.04e-03 2.184e-04 4.112e-01  -2.730e+01  0.001-0.007
6 1.01  4.73e-03 6.001e-04  4.469e-01  -2.822e+01 0.001-0.011
7 1.16  7.53e-03 1.289e-03  3.984e-01 -1.377e+01 0.001-0.009
8 1.11  9.34e-03  9.305e-04  5.126e-01  -2.263e+01  0.003-0.017
P polarisation
1 096 2.83e-03 8.010e-05 2.856e-01  -9.105e+00 0.003-0.017
2 097 6.08e-03 2.258e-03 -1.191e-01  6.365e+00  0.003-0.015
3 1.19  3.20e-03 6.571e-04  9.767e-02  1.049¢+01  0.001-0.011
4 1.10  5.25e-03 3.868e-04  2.064e-01  -1.886e+00 0.001-0.009
5 1.08 4.17e-03  6.688e-05 4.935e-01  -3.445e+01 0.001-0.009
6 1.02  4.68e-03 1.181e-03  1.123e-01 1.245e+00  0.001-0.015
7 1.01 7.11e-03  1.907e-03 -3.405e-02  1.012e+01  0.003-0.015
8 1.10  9.52e-03 2.093e-03  1.632e-01 -2.418e+00 0.003-0.021
Table 8. Basic filter parameters.
Filter Range for valid data

Good convergence

RSR (each fit window, S&P)

x*<2

below outlier limit

Scattering layer height (S&P) Oto1l
Angstr()’m coefficient (S&P) 1to5
Scattering layer optical depth (S&P) 0t0 0.02
XCOx error 0to 2.0 ppm
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Table 9. Bias filter limits.

Filter Range for valid data
GOSAT land -6.9 to -2.9 ppm
GOSAT water -8.1to -4.1 ppm
GOSAT-2 land -4.0 to 0.0 ppm

GOSAT-2 water -5.5to-1.5 ppm
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