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Abstract. The development of ground based cloud radars offers a new capability to continuously monitor the fog
structure. Retrievals of fog microphysics is key for future process studies, data assimilation, or model evaluation,
and can be performed using a variational method. Both the one-dimensional variational retrieval method (1D-Var)
or direct 3D/4D-Var data assimilation techniques rely on the combination of cloud radar measurements and a
background profile weighted by their corresponding uncertainties to obtain the optimal solution for the atmospheric5

state. In order to prepare for the use of ground-based cloud radar measurements for future applications based
on variational approaches, the different sources of uncertainty due to instrumental, background, and the forward
operator errors need to be properly treated and accounted for.
This paper aims at preparing 1D-Var retrievals by analysing the errors associated with a background profile and

a forward operator during fog conditions. For this, the background was provided by a high-resolution numerical10

weather prediction model and the forward operator by a radar simulator.
Firstly, an instrumental dataset was taken from the SIRTA observatory near Paris, France for winter 2018-19

during which 31 fog events were observed. Statistics were calculated comparing cloud radar observations to those
simulated. It was found that the accuracy of simulations could be drastically improved by correcting for significant
spatio-temporal background errors. This was achieved by implementing a most resembling profile method in which15

an optimal model background profile is selected from a domain and time window around the observation location and
time. After selecting the background profiles with the best agreement with the observations, the standard deviation
of innovations (observations - simulations) was found to decrease significantly. Moreover, innovation statistics were
found to satisfy the conditions needed for future 1D-var retrievals (un-biased and normally distributed).
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1 Introduction

The presence of fog is an issue for many modes of transport due to its effect of reducing visibility. When seen at
airports, it can mean the grounding of flights, resulting in large economic costs due to delays and cancellations
(Gultepe et al., 2007). Reliable fog forecasts, however, can allow for the planning of flights around a fog event,
mitigating the impact it has. The development of high-resolution numerical weather prediction (NWP) models, with25

horizontal resolutions in the order of 1 km, and vertical resolutions in the order of 10m near the surface, offers the
possibility to represent fog events with fine spatial and temporal resolutions. However, fog events are generally still
poorly forecast with current NWP models (Steeneveld et al., 2015; Philip et al., 2016).
Fog is defined as the reduction of visibility below 1 km at the surface due to the presence of cloud droplets

(Glickman and Zenk, 2000), and is thus strictly a boundary layer phenomenon. The lack of accurate observations30

inside the boundary layer has in recent years become an increasingly discussed subject (NRC, 2009; Hu et al., 2019;
Wilczak et al., 2015), and might contribute to the sub-optimal performance of high-resolution NWP models when
forecasting boundary layer events, such as fog. Although traditional observation methods, such as radio soundings
and in-situ surface observations provide the most accurate information, the development of ground-based remote
sensing instruments offers measurements with a temporal resolution unmatched by traditional instruments. Thanks35

to these emerging technologies, new products have been designed making use of observations from lidars, ceilometers,
and visibility meters to aid fog nowcasting, giving fog alerts with an average of 10minutes to 50minutes before fog
formation (Haeffelin et al., 2016).
Recent developments in 95GHz cloud radars have made these instruments much more affordable (Delanoë et al.,

2016) allowing for cloud studies, including those on fog processes, to be performed with increased insight (Thies40

et al., 2010; Dupont et al., 2012; Wærsted et al., 2017). These have highlighted which physical processes are the
most important to improve in new models if fog characteristics are to be better represented. The assimilation of
cloud radar data into an operational NWP model to give better fog forecasts with longer lead times, however, is yet
to be developed.
A simple method for assimilating new observations into an NWP model is to first retrieve an atmospheric profile45

of a variable or set of variables, and to then assimilate this retrieved profile. Retrievals can be made through different
methods (statistical laws, optimal estimations (OE) (Maahn et al., 2020) using so-called one dimensional variational
(1D-Var) retrievals of state variables (Martinet et al., 2015)). This study focuses on the preparation of future OE
using 1D-Var data assimilation methods such as was performed in the work of Martinet et al. (2015, 2017) for
temperature and humidity profiles.50

The main goal of this work with respect to future OE retrievals is to use radar reflectivity observations in
combination with microwave radiometer brightness temperature observations to provide estimations of liquid water
content in addition to temperature and humidity. As radar reflectivity is also sensitive to the total cloud droplet
number concentration and the distribution of the droplets, it may also be possible to add parameters related to this
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to the set of retrieved variables in an OE algorithm. However, as a one moment microphysical scheme is currently55

used in the operational AROME model, and due to the added complexity of adding the droplet number concentration
number first 1D data assimilation experiments will focus only on the liquid water content retrieval.
These retrievals may then be used in a second step with a three/four dimensional variational data assimilation

(3D/4D-Var) scheme (Bauer et al., 2006; Janisková, 2015), or as a preliminary step towards direct variational data
assimilation of the cloud radar reflectivity (Fielding and Janiskova, 2020). In order to first perform the 1D-Var60

retrieval, observations should be combined with an ‘a priori’ profile, otherwise known as a ‘background’ profile.
Though this may be taken from climatological data, the more accurate the background profile, the more accurate
the final retrieval is likely to be (Rodgers, 2000). As commonly used in data assimilation, the background profile
considered in this study comes from a high-resolution NWP model—in this case the French convective-scale model
AROME (Seity et al., 2011), valid at the time and location of the retrieval. In this study, forecast terms (the length65

of time between the analysis and the predicted phenomena) of 10minutes to 180minutes were used, with a new
forecast being issued every 3 hours.
In the 1D-Var algorithm, a minimisation is performed on the difference between the background profile and

observations. This requires variables to be of the same type- in the case of remote sensing instruments this requires
either a ‘backward’ model, to transform the observation variables into those produced by the NWP model, or a70

‘forward’ model to transform the variables given by an NWP model to those made by the instrument. Due to
the ill-posed nature of transforming radar reflectivity measurements into LWC estimates (Atlas, 1954; Bohren and
Huffman, 2008; Maier et al., 2012), the forward model approach has been chosen in this study. The main advantage
of using a forward model compared to a backward model, when only cloud droplets as hydrometeors are considered,
arises from the ability to easily model attenuation from cloud droplets, water vapour, and dry air in the forward75

direction.
In order to make a 1D-Var retrieval, it is also necessary that the errors associated with the background and the

observations are properly modelled (Rodgers, 2000). For successful variational retrievals to be made, it is assumed
that i) the distribution of errors should follow a normal distribution and ii) that there should be no systematic bias in
the error distributions (Bouttier and Courtier, 2002). Background errors are due to inaccuracies in NWP forecasts.80

The forward model may contain errors as a result of the hypotheses needed to simulate the observations, such as
assumptions on the cloud droplet size distribution in the context of radar reflectivity. Observations errors are due
to calibration uncertainties (Toledo et al., 2020; De Angelis et al., 2017), instrumental drifts, and random noise.
The modelling of the errors associated with the background, the observations and the forward operator can be

difficult to specify for a given retrieval, owing to dependencies on the type of weather conditions observed, or85

the forecast term used as a background profile, for example. However, an improved knowledge of background and
observation errors is required before the assimilation of any new observation type. The aim of this work is thus to
investigate the types of systematic and random errors which may be present in the three sources of errors previously
mentioned focusing on newly developed 95 GHz cloud radar during fog conditions.
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This study has been performed using a dataset from the SIRTA observation site near Paris (Haeffelin et al., 2005)90

which hosts a 95GHz cloud radar, a ground-based microwave radiometer, and other remote sensing and in-situ
instruments making continuous measurements. Up to 3h forecasts from the AROME model were used in conjunction
with a radar simulator, also referred to as observation operator or forward operator, designed for airborne 95 GHz
cloud radar (Borderies et al., 2018).
In this article, firstly an overview is given of the fog events used in this study. The performance of the AROME95

model is then analysed by using a range of instruments to compare to the observed event. A method is then outlined
for the selection of a background profile which is expected to optimise future retrievals. Statistics are then presented
showing reflectivity innovations and the improvement gained through the profile selection method.

2 Dataset

2.1 SIRTA Observatory100

All observations for this study were made at SIRTA (Site Instrumental de Recherche par Télédétection Atmo-
sphérique) (Haeffelin et al. (2005)). Geographically, the site is located in the suburbs, about 20 km south of Paris,
on the campus of the École polytechnique in Palaiseau, which is a semi-urban environment with trees, fields, houses,
and some industrial buildings. The observatory sits on a relatively flat plateau at around 160m above sea level (asl).
The period between 01/11/2018 and 19/02/2019 was analysed due to the relatively high concentration of fog events105

seen throughout this period.

2.2 BASTA Cloud Radar

The cloud radar used in this study is a 95 GHz frequency-modulated continuous wave (FMCW) Doppler radar named
the Bistatic Radar System for Atmospheric Sounding (BASTA, Delanoë et al., 2016). The instrument is a product of
recent developments aimed at producing an inexpensive radar system to be used operationally. For this reason, the110

normally expensive high-powered pulsed transmitter has been replaced with a continuous transmitter with frequency
modulation, to allow for the backscatter power and the line of sight velocity from the targets—in this case cloud
droplets—to be determined. The benefit of using a cloud radar with a 95 GHz transmission frequency compared
to radars using lower frequencies is in the sensitivity to cloud droplets. Where the Rayleigh approximation is valid,
the power of the reflected radiation will be proportional to the sixth power of the radius of a spherical droplet and115

inversely proportional to the fourth power of the wavelength of light incident. Thus, for a given transmitted power,
radars operating at a higher frequency will have a greater sensitivity to smaller droplets. It does mean, however,
that when large particles such as rain, hail or graupel are encountered, the signal can become quickly attenuated
Kollias et al. (2007).
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For monostatic radars, the receiver must be switched off during the transmission of a pulse, meaning that signal120

backscattered close to the radar cannot be detected, and a minimum detectable range of over 100m is typical for
cloud radars sounding in a boundary layer mode (Liu et al. (2017)). The fact that BASTA has seperate receiving and
transmitting antennas (bistatic) thus allows the minimum measurement distance of the radar to be relatively small
compared to that of a monostatic radar. It is capable of making measurements as close as 40m above ground level,
though the minimum detectable measurement values are quite high at this distance (≈ −25dBZ for BASTA-SIRTA).125

This is due to the interaction between the antennas of the transmitter and receiver at close distances. The radar
operates in 3 different modes with vertical resolutions ranging from 12.5m to 100m and maximal measurement
distance from 12 km to 18 km respectively. For the BASTA-SIRTA, a three-second integration time is used, and the
three different modes are cycled through continuously. This therefore gives observations for each mode once every 9
seconds.130

The uncertainty associated with BASTA measurements will vary with usage and meteorological conditions. From
a comparison with radar reflectivity simulations with rain rates over 2mmh−1 the estimated uncertainty, providing
that the radome is not wet, is between 0.5 dB to 2.0 dB (Delanoë et al., 2016). A wet radome can affect readings by
up to 14 dB. Below 230 m, the far field approximation, which is used to give the radar reflectivity value, is not valid.
An overlap correction, derived using rain events is therefore used to correct for this effect (Delanoë et al., 2016).135

2.3 Other Instruments

In order to define fog events, the visibility at or near to surface height must be known. Though there has been work
done to classify the visibility from radar reflectivity (Li, 2015), which was done with a Plan Position Indicator (PPI)
scanning strategy, the lowest gates still suffered from quality issues due to ground clutter. The most reliable way
to measure the visibility is with a visibility metre. The visibility metre deployed at ground level at SIRTA is the140

Degreane Horizon DF320 visibility monitor. This is able to give the meteorological optical range from 5m to 70 km,
with a measurement error under 5 km of 10%.
Ground-based microwave radiometers also provide insight into the fog properties through liquid water path re-

trievals. The HATPRO microwave radiometer (Rose et al., 2005) operates in two spectral bands (22GHz to 31GHz
and 51GHz to 58GHz) in order to make retrievals of the temperature and humidity profiles, integrated liquid water,145

and water vapour contents providing information about the atmospheric stability. For this study, only the liquid
water path retrievals were used. These retrievals have an expected accuracy of 20 gm−2 (Crewell and Löhnert, 2003).

A ceilometer was used primarily for the classification of fog types. Low cloud whose base is descending is very
likely to be observed before an instance of cloud base lowering (CBL) fog. A Vaisala CL-31 ceilometer (Martucci
et al., 2010) was used to measure the cloud base height. This uses a pulse lidar to sense the cloud base and is capable150

of sensing up to three layers simultaneously with a range from 0 km to 7.6 km.
The wind speed, temperature, and rain rate at surface are also important parameters to sense when determining

the fog events and classifying them. The specifications for the instruments used in this study are noted in table 1.
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Table 1. Instruments used at SIRTA observatory

Instrument Name Measured Variable Units Measurement Uncertainty Measurement Range

CL31 Ceilometer Cloud Base Height m Greater of 1% or ±5m 7.5m to 7.5× 103 m

CMP22 Global Shortwave downwelling Wm−2 ±5Wm−2 0Wm−2 to 4000Wm−2

DF-320 Visibility Sensor Meteorological Optical Range m 10% (up to 5 km) 0m to 70× 103 m

Guilcor PT100 2m Temperature ◦C ±0.15◦C (at 0 ◦C) −200 ◦C to 700 ◦C

HATPRO Microwave
Radiometer

Liquid Water Path gm−2 ±20gm−2 n/a

PM Rain Gauge 3030 Precipitation Rate mmmin−1 ±8% 0mmh−1 to 240mmh−1

Vector A100R anemometer Wind Speed m s−1 ±0.1m s−1 (< 10m s−1) 0.2m s−1 to 70m s−1

Table 2. Parameterisation schemes in AROME model

Process Scheme Reference

Cloud microphysics ICE-3 Pinty and Jabouille (1998)

Long wave radiation RRTM Mlawer et al. (1997)

Short wave radiation Computations of Solar Heating Fouquart et al. (1980)

Surface fluxes SURFEX Masson et al. (2012)

Turbulence Turbulence Scheme for Mesoscale and Large Eddy Simulations Cuxart et al. (2000)

Urban features TEB Masson (2000)

2.4 The AROME Model

The NWP model used in this study is the French convective-scale model AROME (Seity et al., 2011). AROME has155

been used operationally since 2008, but has since then seen improvements in the horizontal resolution, from 2.5 km
to 1.3 km, and in the vertical resolution, which has advanced from 60 to 90 levels, with the first level starting 5 m
above the surface. Near the surface, the vertical levels are aligned with the topography which are then spaced so as
to follow isobars at the top of the model. The model covers a domain centred on France and encompassing most of
western Europe. A 3D-Var data assimilation cycle takes place once every hour.160

The model was developed from the Meso-NH research model (Lafore et al., 1998; Lac et al., 2018), and therefore
most of the model physics is resolved in the same way. A bulk one moment micro-physical scheme is used (ICE-3,
Pinty and Jabouille, 1998) which fixes the droplet number concentration over land and sea and specifies six species
of atmospheric water (graupel, ice, snow, rain, cloud liquid water over land, and cloud liquid water over sea). An
analysis of the parameters used in ICE-3 and their effect on the distribution shape is given in section 4. Table 2165

summarizes the parameterisation schemes relevant to fog processes with the corresponding references.
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2.5 The Forward Operator

The forward operator used to convert the parameters supplied by the AROME model into radar reflectivity was
developed by Borderies et al. (2018) and designed for vertically-pointing airborne W-band cloud radars. Input
variables include vertical profiles of pressure, temperature, humidity, and the content of five hydrometeor types170

(rain, graupel, snow, ice, and liquid cloud). From this, it simulates the reflectivity at the resolution of the input
profiles with attenuation taken into account for hydrometeors, and moist air. The Liebe (1985) model is used to
calculate attenuation by moist air. The reflectivity calculations are consistent with the ICE-3 bulk microphysical
scheme, which is operationally used in the AROME model. The sensitivity of the radar is also taken into account,
by limiting the minimum simulated reflectivity to the minimum observed reflectivity at each range gate.175

Two versions of the radar simulator were developed: the one used in this work employs the Mie approximation
(Wriedt, 2012) which models particles as spherical, and is a valid approximation for cloud liquid water droplets. A
version using a T-matrix method is also available for simulating reflectivity from hydrometeors with a more complex
shape.

3 Investigation into Background Errors During Fog Conditions180

1D-Var retrievals can be highly sensitive to the background profile as demonstrated by Ebell et al. (2017) in the
context of LWC retrievals from MWR and 35 GHz cloud radar synergy. Background profiles are commonly provided
by short-term forecasts from NWP models which are prone to errors of different nature, such as temporal and spatial
errors. This section aims at better understanding typical errors from the AROME background profiles during fog
conditions.185

3.1 Overview of the observed fog events

Fog can occur through several atmospheric processes, not all of which are modelled equally well. Philip et al. (2016)
has shown that the AROME model seems to succeed in predicting certain types of fog better than others. Notably,
CBL events are badly predicted compared to radiative fog. A simple fog classification based on the one described in
Tardif and Rasmussen (2007) was performed on the instrumental dataset after updates in the suggested thresholds190

chosen in the classification. These updates concerned the precision of the conditions and reflected some misleading
instrument readings. A total of 31 fog events were observed over the period, the numbers of each type are detailed
in table 3. In line with previous studies performed by (Philip et al., 2016; Dupont et al., 2016) and which looked
at fog events in Paris, and Román-Cascón et al. (2019), which examined fog events over a short period in January
2016 on the Spanish Northern Plateau, the majority of fog events were either cloud base lowering or radiative.195

Precipitation fog was the third most observed type, for which fog events were typically shorter than radiative or
cloud base lowering. The quality of AROME short term forecasts during these 31 fog events is investigated in the
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Table 3. Number of fog types observed at the SIRTA observation site between 01/11/2018 and 19/02/2019

Cloud-base lowering Precipitation Radiative Advection Unknown Total

14 4 10 0 3 31

next sections with a focus on spatial and temporal errors as well as typical fog parameters (duration, formation, and
dissipation times, thickness (or fog top height, here used interchangeably) and liquid water content).

3.2 AROME forecast skill scores during fog conditions200

In order to make a comparison between observed and modelled fog events, it is necessary to define an equivalent
definition of fog events from parameters inside the AROMEmodel. For this study, AROME forecasts were regenerated
with outputs produced with a temporal period of 10minutes, with forecast terms of 0minutes to 180minutes. The
forecasts were extracted for a 28km×28km domain centred on the SIRTA observatory site. Visibility in the AROME
model was diagnosed from a newly developed parameterisation based on the liquid water content profile according205

to Dombrowski-Etchevers et al. (2020), which has been used operationally to give a visibility output from the model
since July 2019.
A comparison of observed fog to fog predicted in the model- for the time and grid point corresponding to the

time and location of the observation- was carried out. Visibility measurements, taken from the DF-320 visibility
sensor, were averaged over a 10min period, and where visibility values of lower than 1 km where observed, this was210

considered as a fog ‘block’. The same threshold was used with visibility diagnosed from the model to define model
fog ‘blocks’. As model outputs were available with a temporal resolution of 10min, these were not averaged. The
accuracy of the model was then analysed by comparing each 10min block in the model against each block from the
averaged visibility. Observations where rain was sensed with the rain gauge and simulations in which rain was present
in the bottom layer were not considered as fog. The commonly used contingency table based on this comparison is215

shown in 4 where GD indicates cases of good fog detection, FA cases of false alarm, ND cases of missed fog events
by the model and CN correct negatives.
Based on this table, the frequency bias index (FBI), which assesses the over- or under-prediction of an event, and

critical success index (CSI) which assesses how well events are forecast, are calculated. These indices are defined in
equations (1) and (2). FBI scores can range from zero to infinity, where a perfect score is one, and less than one220

indicates an under-prediction of events and greater than one indicates an over-prediction. CSI scores can range from
zero to one, with the perfect score being one. The probability of detection (POD), the probability of an observed
event being forecast, and false alarm ratio (FAR) the probability of a fog forecast being incorrect are also given ((3)
and (4)).

FBI = GD+FA
GD+ND (1)225
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Table 4. Contingency table of fog profiles seen in the simulation and observations. Good detection (GD) occurs at the
intersection of fog simulated and observed, false alarm (FA) where fog is simulated but not observed, unpredicted (ND) where
fog is observed but not simulated, and correct negative (CN) where fog is neither predicted nor observed.

Fog Simulated

Yes No Total

Fog Observed Yes GD = 586 ND = 349 935

No FA = 902 CN = 13411 14313

Total 1488 13760 15248

CSI = GD
GD+ND+FA (2)

POD = GD
GD+ND (3)

FAR = FA
GD+FA (4)

Scores of FBI and CSI were found to be 1.59 and 0.32 respectively. The scores agree well with the work of Philip
et al. (2016) who calculated a score of 1.24 and 0.37 respectively as well as Martinet et al. (2020) who found scores230

of 1.77 and 0.35. The FBI score indicates that the model over-predicts the occurrence of fog with a large number of
false alarms and the CSI score means that 32% of events observed and/or predicted are correctly forecast by the
model. As the CSI "assumes that the times when an event was netiher expected nor observed are of no consequence"
Schaefer (1990), this can be a useful metric to consider. The POD is 63%, meaning that background profiles of
acceptable quality could be expected to be found at about this rate without any other selection method during fog235

events. With a 60% FAR, this also highlights how large errors are made when the closest AROME grid point (both
spatially and temporally) is used during fog-clear scene. The next section investigates how much spatio-temporal
variability affects fog forecast errors in the AROME model.

3.3 Spatial and Temporal Error Analysis

Spatial and temporal errors refer to modelled fog events which are spatially and/or temporally displaced from the240

true event. These types of errors were examined to quantify how they can affect the forecast scores.
Firstly, spatial errors were examined by looking at the thickness of the fog layer over the 28km× 28km domain

around the observation. The fog thickness was diagnosed from simulated reflectivity values and is explained in more
detail in section 3.4. Figure 1 shows an example of the development of a radiative fog event on 04/11/2018 which
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Figure 1. Fog top altitude above ground level in the AROME model during a radiative fog event. (a) in the formation phase
of the event at 02:20 UTC, (b) in the mature phase at 05:00 UTC, (c) mature phase at 06:40 UTC, (d) in the dissipation
phase at 10:20 UTC. The fog event ended at around 11:30 UTC in the model. The SIRTA site is marked by the red or blue
cross. Black contours represent the surface height.

persisted for around eight hours in the model and around 5 hours in the observations. The surface height is shown245

in black contours on the figures, with the higher surfaces in the top left of the map. In the formation stage of the
event, approximately half of the domain is covered by fog. The differences in fog thickness at this stage of the event
are around 100m for the AROME grid points already covered by fog. At 05:00 UTC, in the mature phase of the
event, the fog thicknesses have approximately the same variability as in the early formation stage, but almost all of
the AROME grid points have fog conditions. It may also be noted that the thickest fog layers occur where surface250

height is the lowest showing how fog top heights are related to the topography— a subject that is beyond the scope
of this work and has been widely discussed elsewhere (Müller et al., 2010; Ducongé et al., 2019). At 10:20 UTC,
shortly before the fog event ends, there is substantial variability of around 150m, and in several AROME grid points
the event has already dissipated. After 11:00 UTC, the fog layer lifts and disperses, and the modelled fog event ends
throughout the whole domain.255

The significant variability in simulated fog thickness indicates that during the formation and dissipation phases of
the fog event, increased value may be brought to the background accuracy by choosing a model profile which more
closely fits the observed atmospheric profile than the closest grid point. Figure 2 shows the observed and simulated
radar reflectivity profiles for the case on 04/11/2018 for two instances of fog recorded in the observations and fog
predicted by the simulation. In both cases, the model overestimates the fog thickness, however, this overestimation260

is lower in the mature phase compared to the dissipation phase (30m vs 80m).
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Figure 2. Observed and simulated radar reflectivity from the radiative fog event during the mature phase (a) and dissipation
phase (b). The black line shows the radar reflectivity measured with the BASTA cloud radar situated at SIRTA. The blue
line shows the simulated radar reflectivity from the AROME model forecast, valid at the same time and gridpoint as the
observation.

The temporal errors associated with fog forecasts were then examined. For each observed fog event, the corre-
sponding starting and ending time in the model space was found by looking over a 12 hour window (±6 hours)
around the observation. In the case that there were two events seen in the model within one observed event, the
closest start and end times corresponding to the observations were taken. Out of 31 fog events observed, 21 could be265

matched within the twelve hour window to a simulated event meaning that 10 observed events could not be matched
to a modelled event. The histograms in figure 3 show the distribution of hours for which fog was observed and
simulated and the temporal differences in the formation time, dissipation time and duration of fog events observed.
The diurnal cycle of fog events is generally well predicted by the model, with the majority of events taking place
between midnight and late morning time. It may be seen with formation and dissipation time differences that most270

fog events which occur in both the observations and simulations have start and end time differences of less than three
hours. The simulated events tend to form earlier (with a median of 25 minutes), and dissipate later (with a median
of 20 minutes) than the observed events. When all fog events observed and modelled are considered, modelled fog
events tend to have a shorter duration, with an average fog time length of 4 hours 53 minutes (4H53M) compared
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Figure 3. Top left to bottom right: Times at which fog was observed (brown bars) and simulated (red bars); duration of
fog events observed and simulated; fog formation time differences for matching events; fog dissipation time differences for
matching events (differences are positive where the fog forms/dissipates later in the observation).

to 6H03M for observed events, as many more short fog events were present in the model but not in the observations275

than vice versa. When only fog events present in the model and observation were compared, the mean duration of
the modelled events was longer (6H44M for modelled events compared to 6H12M for observed events).
It was found that the rate of formation between 10:00 UTC and 20:00 UTC (not shown in figure 3) was larger in

the observations than in the model, whilst between 00:00 UTC and 8:00 UTC the model had a greater susceptibility
to predict fog formation. This result indicates that the model over-predicts the rate of night fog and under-predicts280

the rate of afternoon fog, which could indicate that the radiation budget of the model could be improved.

3.4 Fog Property Error Analysis

In addition to spatial and temporal errors, the AROME background accuracy will depend on the capability of the
AROME model to reproduce the vertical structure of fog microphysical properties. A radar-microwave radiometer
combination enables the measurement of fog characteristics such as the layer thickness and the liquid water path of285

the fog layer. Analysis of a high resolution model’s accuracy in predicting these variables has not been extensively
carried out in previous work, as without these instruments a labour intensive method involving tethered balloons or
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Figure 4. Left panel: Histogram of differences in the fog top height observed with the cloud radar and simulated by the
AROME model (observation - simulation) when fog is both observed and simulated. Positive differences represent a larger
observed fog thickness than is simulated. Right panel: Liquid water path recorded on the microwave radiometer and predicted
in the AROME model for times at which both predict fog presence. All cases of fog in both model and observations without
restrictions are shown in grey. Red points show LWP values where the integrated cloud thickness above the fog layer does not
exceed 25m (in either model or observation) and difference between the model and the observation fog top being less than
25m.

unmanned aerial vehicles (UAVs) is required. The fog layer thickness depends on the rate of cooling, the entrainment
and surface interactions among other processes. It was also demonstrated by Wærsted (2018) that the fog top height
is a key parameter in determining the fog dissipation. It thus follows that the better the fog top height prediction, the290

better the fog dissipation forecast will be. This section aims at investigating fog thickness and LWP errors observed
in the AROME fog forecasts during the winter 2018-2019.
Fog thicknesses were derived from the radar observations during fog conditions. This was found from the height

at which the radar reflectivity dropped below the larger of −45 dBZ or the sensitivity of the radar (whichever value
was greater) at that range gate. The fog top height was then found in the model from the simulated reflectivity295

(with the same conditions) for times when fog conditions were simulated. The height resolution of the radar was
12.5m, whereas the resolution for the model ranged between 12m at the surface to 65m at 750m agl, giving an
uncertainty in fog top height difference of 12.25m to 37.75m. Comparisons were made between the two, for times
when both observations and simulations are under fog conditions. Figure 4 shows the distribution of fog top height
differences where a positive thickness difference means an observed fog top higher than the simulated fog top. The300

figure shows that errors of up to 300m were found, and 44 percent of fog top height differences were greater than
100m. The mean height difference is −22.5m, and the standard deviation of fog top heights is 104m.
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As liquid water content is the variable responsible for causing fog, its accuracy will thus determine the quality
of fog forecasts. As there are no in-situ sensors for recording the liquid water content at the observation site, the
integrated value of this, the liquid water path (LWP) from the HATPRO microwave radiometer, was used to evaluate305

the quality of the liquid water content forecast in the model. By comparing liquid water paths for all fog cases, we are
left open to comparing not only the error in the thickness and density of the fog layer, but also of clouds aloft. Data
from the radar were therefore used to select cases of fog during which the layers of cloud aloft were of less than 25m
thick. Similarly, cases where the model simulates thick clouds aloft were discarded. The liquid water path was then
compared for cases where the thickness of the fog layer predicted in the model and observed had differences of less310

than 25m (figure 4). As expected, the differences in liquid water path decrease with the constraints. For cases where
there is simply fog observed and simulated, the bias in LWP is 8 gm−2 of over prediction by the model and a standard
deviation of 66 gm−2. For the model-observation comparisons where the fog thicknesses are the same and no cloud
aloft is seen, there is a bias of 14 gm−2 of over prediction in the model and a standard deviation of 26.4 gm−2. As is
also shown in figure 4, the model more frequently over-predicts the fog thickness than under-predicts it, accounting315

for the positive LWP bias. Given the accuracy of the liquid water path retrieved from the microwave radiometer,
as outlined in section 2.4, of approximately 20 gm−2, it can be concluded that when the fog layer thickness is well
predicted by the AROME model, the liquid water content inside the fog layer is also well predicted.
From the analysis presented in this section, it may be concluded that significant variations both temporally and

spatially could provide scope for the selection of a background profile which does not correspond directly to the320

location and time the observation was made at. The analysis of the liquid water content prediction of the model,
however, shows that the model can be reliable providing that fog is forecast with a similar thickness to that observed.
In the next section, the forward operator is evaluated for sources of error, and then comparisons are made between
observed cloud radar profiles and profiles simulated from the AROME model. A methodology is also proposed for
selecting a background profile which better corresponds to the observed profile.325

4 Evaluation of Observation Operator

4.1 Forward Operator Sensitivity Study

The radar simulator was based on radar equations which link the hydrometeor contents contained within a parcel
of air to the recorded reflectivity. The attenuation and the reflectivity values both depend on the size and number
of droplets. As there is a very large number of ways a mass of water could theoretically be divided among droplets,330

a size distribution needs to be assumed, based on observed droplet size distributions. The droplet size distribution
used in this work is consistent with the one used in the AROME model, the one-moment microphysical scheme
ICE-3. This uses a modified gamma distribution, as specified in equations 5 and 6.
In the set of equations, N(D) is the droplet number concentration where D is the droplet diameter. Coefficients a

and b determine the mass-diameter relationship of the droplets (equation 7), which, when applied to cloud droplets335
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are well known due to their spherical nature, and are set at 524 kg· m−b and 3 respectively. α and ν are fixed
coefficients, referred to as the shape parameters and are set to 1 and 3 respectively in ICE-3 for cloud liquid droplet
over land. N0 is the total droplet number concentration and is set to 300 cm−3 in ICE-3 for liquid cloud over land.
M is the liquid water content of the grid point in kg · m−3.

The advantages of using this modified gamma distribution are that the shape and median diameter of the distri-340

bution are modified with the liquid water content and number concentration of the cloud. For example, when using
the modified gamma distribution with a total concentration of 30 cm−3, the median diameter will be greater than
for a total concentration of 300 cm−3, as illustrated in figure 5.

N(D) =N0
α

Γ(ν)ΛανDαν−1e(−(ΛD)α), (5)

Λ = ( MΓ(ν)
aN0Γ(ν+ b

α )
)( −1

b ), (6)345

m(D) = aDb (7)

As all parameters of the modified gamma distribution except for the liquid water content are held constant in
ICE-3, when radar simulations are made for cloud with a droplet size distribution which the parameters do not
accurately describe, errors are likely to be made in the calculation of radar reflectivity. In order to assess this
uncertainty, simulations were made on an AROME model profile in fog conditions, for which the size distribution350

parameters were perturbed. These perturbations would need to reflect potential variabilities seen in (continental
liquid water) fog and low liquid cloud.
Microphysical observations have been investigated on fog events in previous works (Mazoyer et al., 2019; Podzimek,

1997) which tend to show lower droplet number concentrations than is prescribed for continental clouds in the
ICE3 microphysical scheme (of 300 cm−3 ). From the works of Mazoyer (2016), which looked at median droplet355

concentrations for continental fog events, and Zhao et al. (2019), which investigated the microphysics of continental
boundary layer clouds, reasonable lower and upper bounds of the N0 parameter of 30 and 300 cm−3 were decided.
Figure 5 shows the difference in cloud droplet distribution shapes when these two values are used.
As the α and ν parameters both affect the width of the size distribution (as may be seen in figure 5), it has

been a common approach (Mazoyer, 2016; Geoffroy et al., 2010) to fix α and to optimise the value of ν. The most360

frequently used values are α= 1 (Liu and Daum, 2000) and α= 3 (Seifert and Beheng, 2001). For this work, it was
decided to use α= 1 which was shown by Mazoyer (2016) to best represent fog droplet size distributions and also
for consistency with the ICE-3 value.
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Figure 5. Modified gamma distributions for a liquid water content of 0.12 gm−3 prescribed by the ICE-3 scheme. From top
left: α= 1 and α= 3 (default = 1); ν = 2.5 and ν = 15 (default = 3); N = 30cm−3 and N = 300cm−3 (default = 300cm−3).

From previous studies examining the value of ν where α= 1 (Geoffroy et al., 2010; Miles et al., 2000) it was
decided that a range of ν = 6.8 to 11.1 should be used. The modified gamma distribution with these values is shown365

in figure 5. Though there may be correlations between the LWC and the value of N and ν, a parameterisation for
the values of ν and N0 for fog in the context of cloud radar has yet to be performed. For this reason, the parameters
ν and N0 are treated as varying randomly for the purpose of investigating the uncertainty in simulated reflectivity.

It can be seen from figure 5 that the effect of increasing the ν parameter was a narrowing of the distribution,
meaning fewer droplets at the smaller and larger end of the spectrum. The concentration of the largest droplet370

sizes (above 35 µm) is therefore reduced through these changes. As the radar reflectivity is proportional to the sixth
moment of the droplet size where the Rayleigh approximation is valid, this causes smaller values of reflectivity to be
simulated. The perturbations in number concentration, meanwhile, were almost entirely below the value in ICE-3,
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gamma distribution: ν (left panel) and number concentration (right panel) for a fog profile. The 25th and 75th percentiles are
shown in blue, and the median reflectivity shown by the red line.

with a range of 30 cm−3 to 300 cm−3 compared to a value of 300 cm−3 in ICE-3. As may be seen in figure 5, this
caused an increase in the number of large droplets (over 50 µm and thus an increase in the simulated reflectivity).375

In order to assess the uncertainty in the simulations resulting from the uncertainty in the size distribution pa-
rameters ν and N0, simulations were made by perturbing these parameters according to the typical uncertainties
from the literature previously discussed. An atmospheric profile under fog conditions was selected from the AROME
model with a maximum LWC of 0.12 gm−3 at 71m agl. Reflectivity was then simulated with changes to the default
parameters of the modified gamma distribution. Firstly, the number concentration was held constant, whilst pertur-380

bations were made to the ν parameter. The same process was repeated, keeping value of ν constant and simulating
the reflectivity with perturbations in the N0. The obtained distribution of reflectivity values is shown in figure 6.
It can be seen that the uncertainty in the number concentration contributes the largest to the uncertainty in the

simulated reflectivity. For the altitude at which the liquid water content is the largest, at 0.12 gm−3 the reflectivity
difference reaches 9.5 dB between the highest and lowest readings, and 3.9 dB between the 25th and 75th percentiles.385

For the changes in the ν parameter, the difference between the highest and lowest reading is 6.0 dB, with a difference
of only 2.2 dB between the 25th and 75th percentiles. The reflectivity simulated from the default parameters in ICE-3
can be seen from the plots as the minimum reflectivity simulated in figure 6. When the 25th to 75th percentiles are
considered, the total uncertainty in the simulated reflectivity caused by the uncertainty of the three parameters may
be evaluated to be 6.1 dB at 0.12 g · m−3.390
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The results of the microphysics study highlights that non-negligible errors on the simulated radar reflectivity
can be attributed to errors in the fixed parameters of the droplet size distribution. The ν parameter was found to
contribute to the errors to a lesser extent than the droplet number concentration.

4.2 Most Resembling Profile (MRP) Selection Method

Section 3.3 has demonstrated that significant errors are seen both spatially and temporally in the AROME model395

when corresponding exactly to the time and location of the observation. In order to improve the accuracy of the
background profile, a method was thus devised to select the model profile which best corresponds to the measured
atmospheric profile. For this, reflectivity for all profiles throughout the domain was simulated for a time window of
6 hours (±3 hours). Reflectivity differences were then found between the observed profile and each of the simulated
profiles. The weighted RMSE was then found from equations 9 and 8. The profile with the smallest weighted RMSE400

was selected as the ‘most resembling profile’. This method is similar to the most resembling column (MRC) method
used by Borderies et al. (2018) to calibrate and validate the RASTA cloud radar observation operator. It also includes
an altitude-dependent weighting function (equation (8)) as was used in Le Bastard et al. (2019), which puts a larger
weight on the bins at a lower height. In this equation, Height is the height of the reflectivity bin and Altmax is the
maximum altitude considered which for this study was set to 5000m.405

Wi = 2
Heighti
Altmax + 1

− 1 (8)

Weighted RMSE =

√∑i=Maxlev
i=0 Wi(ZObservation −ZSimulation)2

n
(9)

Using the MRP selection, simulated reflectivity showed better agreement to observed reflectivities with the choice
of a more appropriate background profile. This is often the case when fog is predicted by the model, but none is
seen, in which case it is generally possible to select a clear-sky profile. The method is also able to deal with temporal410

shifts in the fog event between the model and observations, as well as differences in the vertical structure. Figure
7 illustrates the MRP selection during a fog event observed at SIRTA on the 22 November 2018. It demonstrates
well how much benefit is brought by the selection method with fog structures closer to the observation. In both
the observation and simulation, stratus lowering events were seen, however, the model predicted the event to occur
80min before it was observed, and the fog top height to wrongly increase from 200m to 400m between 10:00 and415

11:00 UTC. This is also shown in 8, for which the correction in fog top height and values of simulated reflectivity is
clearly illustrated on a specific vertical profile selected during the fog mature phase. The stratus was also predicted
to lower from 100m over one hour in the model, which was corrected to lower from 250m over two hours with the
MRP selection method. The MRP selection method was able to select background profiles to rectify temporal errors
at the fog formation but also the fog vertical structure.420
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Figure 7. Radar reflectivity and surface level visibility from a fog event at SIRTA observed on 22/11/2018 (top), simulated
from the nearest gridpoint (middle) and with the MRP selection method (bottom). The dashed black line indicates the time
at which the following plot of reflectivity profiles is taken. These plots show the reflectivity for all profiles, where profiles
containing rain have been masked over in grey.

4.3 Contoured Frequency by Altitude Diagrams

In order to investigate the capability of the forward model to reproduce the overall structure of observed reflectivity,
Contoured Frequency by Altitude Diagrams (CFADs, Yuter and Houze, 1995) calculated both from the observations
and the simulations were compared in figure 9. In these figures, the number of cases in each radar reflectivity bin
and each altitude level are shown between 50m to 1000m with a bin width of 1 dB. The distributions at each height425

level were then normalised, and the relative frequency of each bin is shown on the plots. The CFADs were plotted
using data for which reflectivity at each range gate was obtained in the observation, nearest corresponding profile
and the MRP.
In the observations, the reflectivity in the lower 300m is most concentrated between −30 dBZ to −20 dBZ and be-

comes gradually less concentrated at lower reflectivities. This contrasts the nearest corresponding profile simulations430
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Figure 8. Radar reflectivity profiles of the observation, simulation from the nearest gridpoint, and MRP simulation, from the
mature phase of the fog event at SIRTA on 22/11/2018. At this point in the fog event, the model overestimated the thickness
of the fog layer by around 33%

where there are significantly fewer radar reflectivities below −30 dBZ, and a concentration of higher values around
−25 dBZ. This distribution is improved by the implementation of the MRP method, where a more even distribution
of reflectivities may be seen in the bottom 400m. Though the distribution of simulated reflectivity generally improves
by using the MRP method, a large concentration of values between −23 dBZ and −20 dBZ persists which is not seen
in the observation CFAD.435

4.4 Statistics on Reflectivity Innovations

For the period for which the fog classification was previously applied to, between November 2018 and February 2019,
radar reflectivity was simulated for the 28 km by 28 km domain for the entire period, after which the MRP method
was applied. The observations were downscaled to the resolution of the simulations by using the observation which
corresponded most closely to the time of the simulation, and by using the bin corresponding most closely to the440

level heights of the model.
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Figure 9. CFADs of reflectivity observed and simulated from the nearest corresponding and most resembling profiles for the
period 01/11/2018 to 19/02/2019 where cloud is seen in all three frames.
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Figure 10. Left panel: The bias and standard deviation of Observation - Simulated radar reflectivity at SIRTA for the period
01/11/2018 - 19/02/2019. The statistics were calculated for instances when reflectivity was both observed and simulated at
a given range gate at a given time. Right panel: the count of cells for which reflectivity was observed and simulated.

The radar simulator relies on the Mie approximation to derive the radar reflectivity. This approximation is valid
for uniform spherical particles, which may be assumed for liquid cloud droplets. However, for snow, graupel, ice,
and rain, whose shape can be significantly more complex, this approximation can no longer be assumed to be valid,
and larger errors of simulated reflectivity are likely to be caused by this. It was therefore decided to limit this study445

to reflectivity differences only due to the hydrometeors which are mainly responsible for fog in the mid-latitudes
in winter: liquid water droplets. For the observation, a mask proxy was provided by the developers of the BASTA
instrument to classify the hydrometeor type. The mask was used to reject from the statistical analysis cloud radar
observations containing rain, drizzle, and ice below 200m in the observations.
In the model space a mask based on simulated reflectivity was used to discern whether rain, ice, snow or graupel450

significantly contributed to the simulated reflectivity. This was made by finding reflectivity differences between
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the simulations containing all hydrometeors and the simulations for only cloud liquid water. Profiles containing
significant reflectivity differences (of greater than 3 dB) were masked. This value was chosen as a 3 dB increase in
radar reflectivity corresponds to a doubling of the received power. This effectively means that where differences
between radar reflectivity simulated with only liquid water and radar reflectivity simulated with all hydrometeors455

exceeds 3 dB, the other hydrometeors contribute more to the radar reflectivity than liquid water content. Due to the
effect of attenuated signal which occurs when the radar signal passes through a rain event but impacts the readings
above as well as inside the rainy atmosphere, where rain was found below 200m, the entire profiles were also removed
from the statistical calculations.
Innovations (the difference between observed values and simulated values) were then calculated with the simula-460

tions for the nearest corresponding gridpoint and the MRP selection method. For these calculations, data was only
used for which the range gate in both the simulation and observation had reflectivity signal above the sensitivity
of the instrument. Figure 10 shows the standard deviation and bias at each height level. Statistics are shown up
to 1200m altitude as above this height, not enough cases without significant impact from ice can be selected. It
may be seen from the plots that both the bias and standard deviation are reduced at almost all heights with the465

implementation of the MRP method. The standard deviation was highest for the nearest profile at a height of 80m
agl, for which the standard deviation was 12.6 dB. The MRP selection method was able to reduce this value to
4.7 dB, showing an improvement of 7.9 dB. Between 400m and 1000m, the bias for the nearest profile was between
4.7 dB and 6.2 dB. For the MRP, it remained below 1.5 dB for the same height range. The improvement in the
standard deviation may be also seen in figure 11, in which the use of the MRP causes the distribution of reflectivity470

innovations to become narrower. It may also be seen that using the MRP method increases the count and hence
more retrievals may be made with this method compared to the nearest gridpoint method. This study shows that,
after removal of the largest background errors, the forward operator used in this study is able to replicate similar
values of radar reflectivity from the background profiles, compared to the profiles observed during fog conditions.
For the application of future 1D-Var retrievals and data assimilation, this brings the benefit of the simulations not475

needing to be bias-corrected. The reduction in the standard deviation may also improve the accuracy of the retrieved
profiles.
Additionally, data assimilation relies on the assumption that the distribution of background and observation errors

are Gaussian. Though in real-world scenarios, a perfectly Gaussian distribution is rarely observed, certain manual
and statistical checks may be made to ensure that a distribution is approximately Gaussian. According to Bulmer480

(1979), one of these checks is for the skewness and excess kurtosis of a distribution to be between −1 and 1. Figure
11 shows the distribution of innovations both for the co-located profile and the MRP profile at 80m altitude. For
the nearest profile, the Gaussianity is not satisfied, with values of skewness and excess kurtosis of 0.53 and 1.196
respectively. The MRP method did not satisfy this criteria either, with values of 0.68 and 2.68 respectively. This
problem was due to the fact that more data was seen in the extremes of the distribution, with a reduction in the485

reflectivity differences for many cases but some cases not being improved, for example when fog was not forecast at all
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Figure 11. From top left to bottom right: distribution of observed minus simulated reflectivity errors for the nearest corre-
sponding profile when no data has been excluded, the MRP when no data has been excluded, the nearest corresponding profile
when 10% of data has been excluded and the MRP when 10% of data has been excluded. All distributions are shown at 80
m agl, for reflectivity innovations when there is signal both in the simulation and observation above the sensitivity threshold.
The blue line shows the Gaussian distribution with the same mean and standard deviation.

throughout the domain. In order to rectify this, the most extreme 10% of data points corresponding to the simulated
errors above 16 dB for the nearest profile selection and 6.5 dB for the MRP were removed. After this data screening,
the excess kurtosis for the nearest profile and MRP were reduced to 0.68 and 0.64 respectively demonstrating that
distributions of innovations can be safely considered as Gaussian for future data assimilation steps. These conditions490

were also met for the distributions at higher levels (not shown).

5 Conclusion and Discussion

In preparation of future data assimilation of newly developed 95 GHz cloud radar observations, this work aimed at
better understanding the uncertainties associated with background, observation, and forward operator errors during
fog events.495

An overview of fog forecast errors was firstly made using an instrumental dataset from SIRTA, Paris during winter
2018-2019. It was concluded that the AROME model tends to over-forecast fog, with 1.6 times the amount of fog
profiles being forecast compared to those observed over the investigation period. It was also shown that the model
tends to over-forecast the fog top height, and that fog forecasts are prone to temporal errors of up to three hours.
Fog presence was also shown to display significant spatial variation in the model. For times in which the fog top500
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height was well predicted by the model, however, the liquid water path was also well predicted, with a standard
deviation in LWP difference of 26.4 gm−2 when the fog top height had a difference of less than 25m and there was
no cloud aloft.
In order to correct for modelling errors, a method for selecting the model profile which best resembles the observed

profile was proposed. This contained a weighting function to ensure that the selected profile is optimised for fog, in505

case there were also clouds aloft in the observed profile.
As previously discussed, variational retrieval methods assume un-biased and normally distributed background

and observation errors. In order to assess whether these conditions were met, statistics of the differences between
observations and simulated reflectivity were calculated for both the nearest corresponding profile and the MRP. It
was found that whilst there was a significant bias for the nearest corresponding profile (−2 dB to 5 dB below 1000m)510

this was greatly reduced for the MRP ( 0 dB to 1.5 dB below 1000m). The standard deviation was also reduced
from 10.1 dB to 4.7 dB at 200m through the implementation of the MRP method. When testing the distributions for
normality, it was necessary to exclude 10% of the data (limiting the innovations to −17 dB to 17 dB for the nearest
profile selection method and −6.5 dB to 6.5 dB from the MRP method) in order for the excess kurtosis requirements
to be met.515

The contribution of uncertainties in the radar simulator due to assumptions on the droplet size distribution was also
analysed. The uncertainty due to shape parameters of the cloud droplet size distribution was assessed to be 6.1 dB.
Although this value seems large considering that the standard deviation of innovation errors was reduced to less than
5dB with the MRP method, the use of a 2-moment microphysical scheme, such as LIMA (Vié et al., 2015), which
is currently being tested for operational use, promises to reduce this error by a prognostic evolution of the droplet520

number concentration. Future methods of OE retrieval with cloud radar could also include the droplet number
concentration and size distribution parameters in the set of variables to be retrieved. In this case, uncertainties
from microphysical assumptions could be greatly reduced. Indeed, the significant sensitivity of the radar simulator
towards droplet size distribution properties, as shown in this study, could prove to be advantageous for retrievals
of these properties. The need for a background covariance matrix to include the additional variables, as well as a525

lack of additional observations which could constrain the retrieval, means that this would, however, add additional
complexity.
The results shown here indicate the suitability of the method for future 1D-Var retrievals of liquid water content

profiles from the BASTA cloud radar by using an appropriate background profile from the AROME model and a
consistent radar simulator. The benefits of this could be seen through the assimilation of the retrieved profiles into530

a high resolution model as well as deriving continuous measurements of the liquid water content profile throughout
the boundary layer, which would be of particular use to fog process studies. When a better agreement was found
between the background profile and observation, the radar simulator was also found to be suitable to simulate the
BASTA cloud radar reflectivity during fog conditions paving the way for larger model evaluations during fog events.
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