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Abstract. A comprehensive inter-comparison of seven radiative transfer models in the limb scattering geometry has been

performed. Every model is capable of accounting for polarisation within a fully
:::::::::
polarization

::::::
within

::
a spherical atmosphere.

Three models (GSLS, SASKTRAN-HR, and SCIATRAN) are deterministic, and four models (MYSTIC, SASKTRAN-MC,

Siro, and SMART-G) are statistical using the Monte Carlo technique. A wide variety of test cases encompassing different

atmospheric conditions, solar geometries, wavelengths, tangent altitudes, and Lambertian surface reflectances have been de-5

fined and executed for every model. For the majority of conditions it was found that the models agree to better than 0.2%

in the single scatter test cases and better than 1% in the multiple scatter scalar and vector test cases
::::
scalar

::::
and

:::::::
vectorial

::::
test

::::
cases

::::
with

::::::::
multiple

::::::::
scattering

::::::::
included, with some larger differences noted at high values of surface reflectancein multiple

scatter. For the first time in limb geometry, the effect of atmospheric refraction was compared among four models that sup-

port it (GSLS, SASKTRAN-HR, SCIATRAN, and SMART-G). Differences among most models in multiple scatter with
::::
with10

:::::::
multiple

::::::::
scattering

::::
and refraction enabled was less than 1%, with larger differences observed for some models. Overall the

agreement among the models with and without refraction is better than has been previously reported in both scalar and vector

:::::::
vectorial modes.

Copyright statement.
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1 Introduction15

The limb scattering measurement technique involves viewing through the side, the limb, of the atmosphere while measuring

scattered sunlight (see Fig. 1). Measurements are performed in the ultraviolet, visible, and near infrared spectral ranges where

scattering of solar irradiance is the dominant source of measured radiation. Scattering occurs through Rayleigh scattering from

the background atmosphere, as well as potential contributions of scattering from larger particles such as stratospheric aerosols

and clouds. The signal is also affected through absorption by atmospheric constituents, typically by molecules such as ozone20

or nitrogen dioxide in the ultraviolet and visible. In the near and short wave infrared, absorption is dominated by water vapour,

methane, carbon dioxide, and molecular oxygen.

Observer

Towards Sun
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θ Solar Zenith Angle (SZA)
Θ Solar Scattering Angle (SSA)
ϕ Solar Azimuth Angle (SAA)
h Tangent Altitude

Figure 1. The limb viewing geometry and definitions of solar zenith angle, solar azimuth angle, solar scattering angle, and tangent altitude.

The tangent altitude and solar zenith angles are defined relative to the un-refracted tangent point
:::
such

:::
that

::
a
::::
solar

:::::::
scattering

:::::
angle

::
of

:
0◦

:
is

:::::
perfect

::::::
forward

::::::
scatter,

:::
and

:
a
::::
solar

:::::
zenith

::::
angle

::
of

:
0◦

:
is

:::
the

:::
sun

:::::
directly

:::::::
overhead. Figure adapted from Zawada et al. (2015).

Several satellite-based limb scattering instruments have flown in the past few decades. Notably, the Optical Spectrograph and

InfraRed Imager System (OSIRIS, Llewellyn et al., 2004) was launched on-board the Swedish satellite Odin (Murtagh et al.,

2002) in 2001, the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY, Bovensmann,25

1999) instrument on-board Envisat in 2002, and the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP, Flynn et al.,

2006) on-board Suomi-NPP in 2011. Two versions of the primarily solar occultation instrument the Stratospheric Aerosol and

Gase Experiment (SAGE), SAGE III-M (Mauldin et al., 1998) on Meteor-3M in 2001, and SAGE III-ISS (Cisewski et al., 2014)

on the International Space Station (ISS) in 2016, have capability to make limb scatter measurements. The stellar occultation

instrument, Global Ozone Monitoring by Occultation of Stars (GOMOS, Kyrölä et al., 2004), is also capable of taking limb30

scatter measurements. OMPS-LP is planned to be re-launched on-board the JPSS-2 satellite in 2022, and a new instrument, the

Atmospheric Limb Tracker for Investigation of the Upcoming Stratosphere (ALTIUS, Fussen et al., 2019) is currently under

development by the European Space Agency for a planned 2024 launch.

Vertical profiles of limb scattering spectra can be inverted to obtain distributions of atmospheric constituents with spectral

absorption or scattering features. These include but are not limited to: stratospheric aerosol (Bourassa et al., 2007; Von Savi-35
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gny et al., 2015), ozone (Roth et al., 2007; Degenstein et al., 2009; Rault and Spurr, 2010; Arosio et al., 2018), nitrogen dioxide

(Butz et al., 2006; Sioris et al., 2017), water vapor (Rozanov et al., 2011b), and bromine oxide (McLinden and Bourassa, 2010; Rozanov et al., 2011a)

:::::::::::::::::::::::::::::::::::::
(McLinden et al., 2010; Rozanov et al., 2011a). Inversion of these spectra requires a Radiative Transfer Model (RTM) capable

of simulating the observed radiance, including all relevant physical effects for the constituent of interest. The accuracy of the

RTM directly influences the accuracy of the retrieved profile.40

All of the aforementioned retrieval methods use RTMs operating in scalar mode, where only the intensity, I , is computed

rather than the full Stokes vector of the observed radiance. This is known to be a good approximation when the instrument itself

is designed to be polarization insensitive. While there do exist errors in the intensity from neglecting polarization (Mishchenko

et al., 1994), they tend to cancel in various normalization schemes used by the retrieval (Loughman et al., 2005). However,

ALTIUS as well as similar instrument concepts (Elash et al., 2017; Kozun et al., 2020), are designed to measure a linear45

polarized signal rather than the raw intensity. For these instruments it is required to use an RTM that is capable of simulating

the full Stokes vector.

Several studies have been performed which inter-compare the accuracy of polarized RTMs (e.g. Emde et al., 2015, 2018),

however these have been focused on viewing angles ofat most
:
,
::
at

:::::
most, 80◦ (a viewing angle of 90◦ would be limb viewing).

For viewing geometries other than limb and occultation it is common to use the plane parallel assumption, which is generally50

not applicable in the limb geometry. The approximative
::::::::::
approximate

:
spherical approach, where single scattered radiance is

calculated using a spherical atmosphere and the multiple scatter signal is approximated with a plane-parallel model, has been

shown to have systematic errors in the limb viewing geometry (Loughman et al., 2004; McLinden and Bourassa, 2010).

Recently, Korkin et al. (2020) have extended some of these results to a fully spherical atmosphere, but the scope of the project

was limited to scalar radiative transfer.55

The most comprehensive previous inter-comparison focusing on the limb scattering geometry was performed by Loughman

et al. (2004). The deterministic models Gauss-Seidel Limb Scattering (GSLS), CDI and CDIPI (Rozanov et al., 2001, which

are solvers implemented in SCIATRAN), and the statistical models Siro (Oikarinen et al., 1999) and MCC++ (Postylyakov,

2004) were considered. It was found that the statistical models generally agree to within 1.5% in the total scattering case
::::
with

:::::::
multiple

::::::::
scattering

:::::::
enabled, while the deterministic spherical models, CDIPI and GSLS, agree with the statistical models at the60

2–4% level. While comparison of the full Stokes vector was included for models that supported it, it was not the primary goal

of the study. The results of this study have been used in benchmarking newly developed RTMs, such as SASKTRAN (Bourassa

et al., 2008), or to evaluate new updates or features of RTMs as was done for GSLS (Loughman et al., 2015).

This study serves to both update the state of inter-comparison of RTMs in limb scattering geometry and to improve on

it in several ways. Firstly, all participating RTMs simulate polarization in the atmosphere and provide full Stokes vectors65

which are compared, these results are of significant importance for the upcoming ALTIUS mission. Secondly, the treatment

of stratospheric aerosols is updated to use Mie scattering solution rather than a Henyey-Greenstein phase function; the Mie

scattering treatment is more representative of the current state of limb retrievals (e.g. Rieger et al., 2019; Malinina et al., 2019;

Taha et al., 2020). In addition, simulations including atmospheric refraction are included for the first time.
:::
All

::
of

:::
the

::::::
model

:::::
results

:::
are

:::::
made

:::::::
publicly

::::::::
available

::
to

::
be

::::
used

::
as

::
a
:::::::::
benchmark

::
in

::::::
future

::::::
studies

::
at

:::::::::::::::::
Zawada et al. (2020).

:
70

3



Descriptions of each model is presented in Sec. 2, with Sec. 3 describing the set up of the test cases in detail. The results and

discussion of the comparisons can be found in Sec. 4 with final conclusions in Sec. 5.

2 Model Descriptions

Generally, modern RTMs include a variety of tools to aid in specifying the atmospheric state and the viewing geometry. These

could be relatively simple things such as pre-computed climatologies of pressure, temperature, and ozone, or something more75

involved such as
:
a built-in Mie scattering code to calculate the optical properties of stratospheric aerosol particles of a given

size distribution. However, the core purpose of every RTM is to solve the radiative transfer equation. Some models may contain

several algorithms to do this and each one is called a solver or engine. In many cases, these solvers start from fundamentally

different assumptions and have their own characteristic features. For example, the RTM SCIATRAN contains several solvers,

however only one (Discrete Ordinates Method-Vector) is capable of simulating polarised
::::::::
polarized radiances (Stokes vectors).80

Two
::::::::
polarized engines are included in this study for SASKTRAN, SASKTRAN-HR and SASKTRAN-MC, which solve the

radiative transfer problem in a successive orders and Monte Carlo (MC) methods respectively.

RTMs typically belong to one of two classes: statistical or deterministic. Statistical models solve the radiative transfer

equation using Monte Carlo simulation of photon paths through the atmosphere, while deterministic models use discretisation,

interpolation, and various simplifying assumptions. Statistical models are often easier to implement since less assumptions are85

made, however they usually are orders of magnitude slower computationally.

2.1 Deterministic Models

Deterministic models solve the Radiative Transfer Equation (RTE) using some form of numerical integration over the Line Of

Sight (LOS) and by making various simplifying assumptions. The choice of how and which quantities are discretised can result

in completely different methods being applied to solving the RTE.90

These methods can further be classified according to how the sphericity of the atmosphere is handled when calculating the

multiple scattered radiance field. Plane parallel models assume a flat Earth, and can therefore not be applied to simulate the

limb viewing geometry. Pseudo-spherical models employ a plane parallel solution, but initialise the data in the RTE with the

solar irradiance attenuated through a spherical atmosphere. Approximative
:::::::::::
Approximate spherical models trace the observer

LOS through a spherical atmosphere, calculate the single scatter term spherically, and then use an approximately spherical95

multiple scatter source function
::
for

::::
light

::::
that

:::
has

::::
been

::::::::
scattered

:::::
more

::::
than

::::
once (typically from one or more pseudo-spherical

calculations, although the exact method may vary from model to model). Lastly, fully spherical models account for sphericity

in all aspects of the calculation.

Some of these approximations have been shown to have significant, systematic effects on calculated radiances in the limb

viewing geometry. Most notably, approximate spherical methods which use a single plane parallel solution
::
for

:::
the

::::::::
multiple100

:::::
scatter

::::::
source

:
have been shown to be systematically high (on the order of 5%) at higher tangent altitudes (McLinden and
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Bourassa, 2010). Similar differences were noted by Loughman et al. (2004) in comparing approximate spherical models with

fully spherical statistical models.

2.1.1 GSLS

The Gauss-Seidel Limb Scattering (GSLS) RTM builds upon the techniques described by Herman et al. (1994, 1995) to105

simulate the vectorial radiance in a spherical atmosphere. Line of sight rays are traced through a fully spherical atmosphere,

integrating a fully spherical single scatter source function and an approximate multiple scatter source. The approximate multiple

scatter source is calculated at a selected number of solar zenith angles using a pseudo-spherical calculation. The number of

solar zenith angles
:
at

::::::
which the multiple scatter source function is calculated at depends on the solar geometry and is shown

in Loughman et al. (2015). GSLS has support for atmospheric refraction and analytic computation of approximate weighting110

functions. A full description of GSLS can be found within Loughman et al. (2004, 2015).

GSLS has been used in several projects involving the retrieval of atmospheric constituents from limb scatter measurements.

Most notably, GSLS is currently used as the RTM for the operational version of the OMPS-LP ozone and stratospheric aerosol

data products (Rault and Loughman, 2013). The OMPS-LP stratospheric aerosol algorithm has also been applied to SCIA-

MACHY measurements (Taha et al., 2011). GSLS was also used in experimental retrievals using limb scatter measurements115

from SAGE III-M (Rault, 2005).

2.1.2 SASKTRAN-HR

SASKTRAN is a fully sphericalvector
:
,
:::::::
vectorial

:
RTM originally developed at the University of Saskatchewan to process data

from the Optical Spectrograph and InfraRed Imaging System (OSIRIS, Llewellyn et al., 2004) instrument. A full description of

SASKTRAN can be found in Bourassa et al. (2008) and Zawada et al. (2015), and details on the polarised
::::::::
polarized calculation120

in Dueck et al. (2017),
::::
and

:::
can

:::
be

:::::
found

:::::
online

::
at
:
https://arg.usask.ca/docs/sasktran/. SASKTRAN includes both a statistical

(SASKTRAN-MC, see Sec. 2.2.2) and a deterministic method (SASKTRAN-HR) to solve the RTE. The deterministic approach

employs the successive order of scattering technique. The technique has a physical interpretation where radiance incident from

the sun directly is used to calculate the single scattered radiance. The single scatter radiance is then used to calculate the second

order of scatter, and the process is iterated until convergence. Refractive effects can also optionally be included, approximate125

analytic weighting functions calculated, and two- and three-dimensional atmospheres can be handled. The primary application

of SASKTRAN has been as the forward model for retrievals of ozone (Degenstein et al., 2009), stratospheric aerosols (Bourassa

et al., 2007), and nitrogen dioxide (Sioris et al., 2017) from the OSIRIS instrument. However, SASKTRAN has also been used

in a variety of projects unrelated to OSIRIS. SASKTRAN has been adapted to process limb retrievals from other instruments,

including stratospheric aerosols from SCIAMACHY measurements (Rieger et al., 2018) and stratospheric ozone from OMPS-130

LP measurements (Zawada et al., 2018). SASKTRAN was also used to analyse data from an acousto-optical tuneable filter

based instrument, the Aerosol Limb Imager (ALI, Elash et al. (2016)), which is conceptually similar to the VIS-NIR channel

of ALTIUS.
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SASKTRAN-HR has various options that control the accuracy of the solution, but the main one is the number of diffuse

profiles, i.e. the number of discretizations used in solar zenith angle to compute the multiple scatter field. The model has135

been configured to use the number of diffuse profiles required to obtain approximately 0.2% accuracy as a function of solar

conditions shown in Zawada et al. (2015).

2.1.3 SCIATRAN

The SCIATRAN software package provides tools for modelling radiative transfer processes in the ultraviolet to thermal infrared

spectral range. A detailed review of available algorithms, selected comparisons, and applications is given by Rozanov et al.140

(2014)
:
,
:::
and

:::::
more

::::::::::
information

::::
can

::
be

::::::
found

::
at

:
https://www.iup.uni-bremen.de/sciatran/. SCIATRAN contains databases (or

code modules) of optical properties and climatologies, and a set of engines to solve the RTE. The only solver capable of

simulating the vector
:::::::
vectorial radiance field is the Discrete Ordinates Method-Vector (DOM-V) solver. The DOM-V solver

uses the discrete ordinates method to simulate the pseudo-spherical solution used to initialize the spherical integration.

In the limb viewing geometry SCIATRAN can operate in two modes, fully spherical and approximate spherical. In the145

approximate spherical mode, the single scatter radiance is calculated accounting for the full sphericity of the Earth, while

the multiple scattered signal is approximated by several pseudo-spherical calculations. In fully spherical mode, the approxi-

mate spherical solution is iterated in a fully spherical geometry to account for sphericity effects. The comparisons shown use

::::::::::
SCIATRAN

::::
uses the fully spherical mode of SCIATRAN

::
in

:::
the

:::::
shown

:::::::::::
comparisons.

SCIATRAN accounts for refractive effects and calculates approximate weighting functions. SCIATRAN has been used in150

numerous applications spanning multiple research areas. One of SCIATRANs
:::::::::::
SCIATRAN’s

:
primary applications is its use

as the forward model for SCIAMACHY limb scatter retrievals of including, but not limited to, ozone (Rozanov et al., 2007),

water vapour (Rozanov et al., 2011b), and stratospheric aerosols (Von Savigny et al., 2015; Malinina et al., 2018). SCIATRAN

has also been successfully used in the inversion of data products from the observations of other limb missions, including the

retrievals of stratospheric aerosol from OSIRIS measurements (Rieger et al., 2018), and ozone and stratospheric aerosol from155

OMPS-LP measurements (Arosio et al., 2018; Malinina et al., 2020).

2.2 Statistical Models

Statistical models use Monte Carlo (MC) simulation to solve the RTE. In spherical geometry, the most common technique is

the so-called backward MC method, or adjoint method. Here, photons are traced, starting at the sensor, through the atmosphere

and towards the sun; this in contrast to the forward method, where photons originate at the source (Sun). Along the photon160

path, the choice of where the photon scatters and the direction of scattering are sampled based on the probability of a scatter

event occurring. The final radiance, and associated precision, are estimated by analysing an ensemble of a large number of

photons.
:::
All

::
of

:::
the

::::::
models

::::::
within

:::
this

:::::
study

:::
use

::
a

::::::
variant

::
of

:::
the

::::::::
backward

::::
MC

:::::::
method.

The MC technique naturally has few assumptions which allows for easier implementation of new features. A primary exam-

ple of this is implementing atmospheric constituents that vary in three full dimensions, rather than only in altitude. It is also165

quite natural to handle the full sphericity of the atmosphere. Because of these reasons, statistical models are primarily used
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as benchmark models and to study new effects. Statistical models are typically orders of magnitude slower than deterministic

models and are thus usually not used in operational retrieval methods. They also contain inherent random noise, driven by the

number of photons used in the simulation, which may need to be considered depending on the application.

2.2.1 MYSTIC170

The Monte carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres (MYSTIC) model (Mayer, 2009;

Emde et al., 2010) is a statistical, fully spherical, polarised
::::::::
polarized RTM that is distributed as part of the libRadtran software

package (Emde et al., 2016; Mayer and Kylling, 2005)
::::
which

::
is
::::::::
avialable

:::::
online

:
(http://www.libradtran.org/

:
). Mystic is capable

of simulating radiances, irradiances, heating rates, and actinic fluxes in the solar and thermal spectral ranges. While MYSTIC

was originally designed for applications in three-dimensional cloudy atmospheres, it contains the full functionality necessary to175

simulate limb scattered radiances. In spherical mode, MYSTIC uses the backward MC method. MYSTIC contains specialised

variance reduction methods for handling strongly peaked phase functions (Buras and Mayer, 2011), and is capable of simulating

the effects of a fully three-dimensional atmosphere
:::::::
handling

:::::::::::
atmospheres

:::::
where

:::
the

:::::::::
parameters

::::
vary

:::
in

::::::::::::::
three-dimensions

::::
(not

:::
just

::
in

:::::::
altitude). (Emde and Mayer, 2007; Emde et al., 2017). High-spectral resolution radiances can be simulated efficiently

using the ALIS (Absorption Lines Importance Sampling) method (Emde et al., 2011).180

2.2.2 SASKTRAN-MC

The SASKTRAN RTM contains a MC mode (SASKTRAN-MC) based upon the Siro algorithm (Oikarinen et al., 1999). The

primary purpose of SASKTRAN-MC is to serve as a benchmark for the SASKTRAN-HR model.

SASKTRAN-MC is fully polarised
::::::::
polarized, spherical, and also uses the backward MC method. SASKTRAN-MC is capable

of handling three-dimensional atmospheres and includes options to simulate the radiance to a specific precision level, rather185

than specifying the absolute number of photons to simulate. For more detailssee Zawada et al. (2015) and Dueck et al. (2017)
:
,

:::
see

:::::::::::::::::
Zawada et al. (2015),

::::::::::::::::
Dueck et al. (2017),

::::
and https://arg.usask.ca/docs/sasktran/.

2.2.3 Siro

Siro is a statistical, fully spherical, polarised
::::::::
polarized, RTM developed at the Finnish Meteorological Institute, using the back-

ward MC method (Oikarinen et al., 1999)
:
,
::::
more

::::::::::
information

::::
can

::
be

:::::
found

::::::
online

:
at
:
http://ikaweb.fmi.fi/ika_models.html#siro.190

Siro is capable of simulating radiances where the atmosphere varies three-dimensionally (not only in altitude). Siro is com-

monly used as a reference model for both studying limb scattered radiance and in comparisons with other RTMs. Oikarinen

et al. (1999) used Siro to demonstrate the importance of multiple scattering for limb scatter instruments, and to simulate the

effects of a three-dimensionally
:::::::::::::::
two-dimensionally varying reflective surface (Oikarinen, 2002). In Oikarinen (2001) the effect

of polarization on limb scatter radiance was assessed in detail using Siro. Siro played a key role in the RTM inter-comparison195

study performed by Loughman et al. (2004) as one of the MC reference models.
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2.2.4 SMART-G

SMART-G (Speed-up Monte-carlo Advanced Radiative Transfer code with GPU) is a radiative transfer solver for the coupled

ocean-atmosphere system with a wavy interface (Ramon et al., 2019) or any surface spectral BRDF boundary condition. It

is based on the MC technique, works in either plane-parallel or spherical-shell geometry, and accounts for polarization. The200

vector
:::::::
vectorial code is written in CUDA (Compute Unified Device Architecture) and runs on GPUs (Graphic Processing

Units). Physical processes included in the current version of the code are elastic scattering, absorption, reflection, thermal

emission, and refraction.

The radiances at any level of the domain can be estimated using the local estimate variance reduction method (Marchuk

et al., 2013). Benchmark values are accurately reproduced for clear (Natraj and Hovenier, 2012) and cloudy atmospheres205

(Kokhanovsky et al., 2010) over a wavy reflecting surface and a black ocean (Emde et al., 2015). For pure Rayleigh atmo-

spheres as in ocean-surface-atmosphere systems comparisons, the agreement is better than 1E-5 in intensity and 0.1% in

degree of polarization (Ramon et al., 2019; Chowdhary et al., 2020). The SMART-G code is capable of handling horizontal

inhomogeneities of the albedo like adjacency effects (Chowdhary et al., 2019), or three-dimensional variations of the oceanic

and atmospheric optical properties.210

2.2.5 Differences in the
::::::::::
Backwards

:
Monte Carlo Methods

While all four models listed above use the Monte Carlo technique, there is one difference
::::
There

::
is
:
a
::::::
subtle

::::::::
difference

::
in

:::
the

::::
way

::
the

::::::::::
backwards

:::::
Monte

:::::
Carlo

:::::::
method

::
is

:::::::::::
implemented that can be noticed in the subsequent comparisons. One option is to trace

rays through the atmosphere, and calculate the scattering probability at each layer interface. This gives the possibility of photons

not scattering and directly escaping the atmosphere, which is important for estimates of radiative fluxes (not directly applicable215

for limb scatter measurements). A consequence of this is that at higher
:::::
longer

:
wavelengths and higher tangent altitudes where

the atmosphere is optically thin, a large number of photons are required to reduce the statistical noise to acceptable levels. In

this study this technique is used by MYSTIC and SMART-G.

An alternative technique is to force every photon traced backwards from the observer to scatter. Random numbers are

generated to determine the scatter location, not if scattering actually occurs. Photons can then be weighted by the optical220

thickness to account for the probability of scattering. A benefit of this technique is that the number of photons required to hit

a desired noise floor is more uniform in wavelength and altitude space, but the technique is more specific to limb scattering

measurements. Siro and SASKTRAN-MC both use the same force-scatter technique
::::::::
technique

:::::
where

:::::
every

::::::
photon

::::::
traced

::
is

:::::
forced

::
to

::::::
scatter.

SMART-G includes an option to force additional scattering in limb mode, but only for the first (single) scatter. The option225

has a similar effect to the technique used by Siro/SASKTRAN-MC in that it reduces the variance of the calculation for optically

thin scenarios, but it is not exactly equivalent.
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Overall, all of the mentioned techniques solve the radiative transfer equation with the same level of accuracy. The only dif-

ference is the number of photons required to reach a desired level of precision. A more in-depth discussion of the computational

efficiency of the different techniques for different scenarios is presented in Sec. 4.5.230

3 Model Test Cases

Test cases are designed to explore the aspects of the RTMs that are applicable for past, present, and future satellite-based limb-

scattering measurements. All tests are performed for the following range of tangent altitudes, solar angles, surface reflectance,

atmospheric constituent conditions, and wavelengths:

– 80 tangent altitudes from 0.5 km to 79.5 km (inclusive) with a spacing of 1 km.235

– 9 combinations of SZA and SAA which are given in Table 1
:::
and

:::
are

:::::
typical

:::
for

::
a

::::::::
near-polar

::::::::::::::
sun-synchronous

:::::
orbit

::::
with

::
an

::::::::
equitorial

:::::::
crossing

::::
time

::::
near

:::::
noon

::::
such

::
as

::::
what

::
is
:::::::
planned

:::
for

:::::::
ALTIUS.

– 3 values of a Lambertian Effective Reflectance of 0, 0.3, and 1.

– 3 atmospheric constituent conditions: pure Rayleigh scattering, Rayleigh scattering and ozone absorption, and Rayleigh

+ stratospheric aerosol scattering and ozone absorption240

– 11 wavelengths provided in Table 2.

These test cases span the reasonable conditions that have been, or are currently, in use by operational limb scatter instruments

for retrievals of typical atmospheric constituents.

In addition to different atmospheric and geometry conditions, test cases are selected using different RTM settings:

– Single scattering
::::
only,

:::::::
vectorial, vector, no refraction245

– Multiple scattering
:::::::
included, scalar, no refraction

– Multiple scattering
:::::::
included,

::::::::
vectorial, vector, refraction

Note that a single scattering scalar test case would be redundant as polarization only affects
:::
the

:::::
single

::::::
scatter I through multiple

scattering
::
is

:::::::::
unaffected

::
by

::::::::::
polarization

:
when the incident source is unpolarized. In all cases the SZA and SAA are defined at

the tangent point of each individual line of sight. The placement of the tangent point assumes straight-line, un-refracted rays,250

from the observer.

One of the challenges in performing an inter-comparison of RTMs is ensuring that the inputs are the same across every model.

In this study, care was taken so that the input parameters were specified in a way that can be assimilated by every model in the

study. Stratospheric aerosol is specified as a log-normal distribution of Mie scattering particles with a median radius of 80nm

and a mode width of 1.6, with scattering parameters (cross sections, Mueller matrices, and Legendre moments) calculated255

using the code of Wiscombe (1980) and tabulated in wavelength. The refractive index is consistent with that of sulfuric acid
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Table 1. Solar zenith angles, solar azimuth angles, and solar scattering angles used in the test cases.

SZA
:::::

Solar
Zenith
Angle SAA

:::::::

Solar
Azimuth

Angle SSA
:::::::

Solar
Scattering

Angle
:

10◦ 20◦ 80.6◦

15◦ 70◦ 84.9◦

35◦ 90◦ 90.0◦

45◦ 50◦ 63.0◦

50◦ 130◦ 119.5◦

60◦ 70◦ 72.8◦

70◦ 30◦ 35.5◦

80◦ 60◦ 60.5◦

80◦ 150◦ 148.5◦

and is taken from Palmer and Williams (1975). Ozone
::::
The

:::::
ozone

:
absorption cross section is taken from measurements by

Brion et al. (1993); Daumont et al. (1992); Malicet et al. (1995) interpolated to 243K. Rayleigh scattering is assumed to be

simple Rayleigh scattering
:::::
elastic

:::
and

:
without anisotropy corrections. These parameters are provided for reference in Table 2.

The background atmosphere is specified on a 1 km grid from 0 km to 100 km. The ozone profile is taken from a climatology260

derived from measurements from the Microwave Limb Sounder (Waters et al., 2006) and the Atmospheric Chemistry Exper-

iment (Bernath et al., 2005). Rayleigh scattering number density, pressure, and temperature are taken from typical tropical

conditions in the MSIS-E-90 atmospheric model. The GLobal Space-based Stratospheric Aerosol Climatology (GLoSSAC,

Thomason et al., 2018) is used to obtain a typical background aerosol extinction
:::::::
(vertical

::::::
optical

:::::
depth

::
of

:::::::
0.00534

::
at

::::
675 nm).

As noted in previous polarized RTM intercomparisons (e.g. Emde et al., 2015), the Stokes vectors returned by each RTM265

are not directly comparable due to differing conventions. A full discussion of differing
:::
the

:::::::
different conventions for reporting

the Stokes vector is beyond the scope of this study, and we refer to documentation on each model for specifics on how each

individual RTM defines the Stokes vector. For consistency in this study all Stokes parameters are converted to follow the

definition of Hovenier et al. (2004), which for the models included differs only by the sign of Q,U, and/or V . The signs applied

to the Stokes parameters from each of the models are shown in Table 3.
:::
We

:::::
define

::
a
:::::::
cartesian

:::::::::
coordinate

::::::
system

::
z

::::::::
(vertical),

::
x270

:::::::
(South),

::::
and

:
y
::::::

(East),
:::
the

::::::::
reference

:::::
frame

:::
for

:::
the

::::::
Stokes

::::::
vector

:
is
::::
then

:::
the

:::::
plane

:::::::
spanned

:::
by

:::
the

:
z
::::
and

:::
line

::
of

:::::
sight

:::::::::
directions.

::
In

:::
this

:::::
frame

::
Q

::
is
:::
the

::::::::
“vertical”

::::::::::
polarization

::::
and

::
U

::
is

:::
the

::::::::::
“horizontal”

:::::::::::
polarization.

3.1 A Note on Atmospheric Gridding

The test cases specify the atmospheric state parameters on a 1 km grid from 0 km to 100 km, but leave the interpolation

scheme up to the individual RTM. The two standard choices either assume that the atmospheric state
:::::::
(number

:::::::
densities

:::
of275
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Table 2. The Rayleigh scattering cross-section, ozone absorption cross-section, and stratospheric aerosol refractive index used for the test

cases.

Wavelength [nm] Rayleigh Cross-Section [cm2] Ozone Cross-Section [cm2] Aerosol Refractive Index

300 5.602831e-26 3.626519e-19 1.452272 - 0i

315 4.549917e-26 4.218142e-20 1.449746 - 0i

351 2.878846e-26 1.225798e-22 1.449180 - 1.33565e-05i

435 1.177405e-26 8.362497e-23 1.434603 - 4.90115e-05i

442 1.102286e-26 1.698570e-22 1.433675 - 5.10270e-05i

525 5.438003e-27 2.183215e-21 1.429252 - 6.51460e-05i

600 3.156146e-27 5.206045e-21 1.429088 - 6.46200e-05i

675 1.957387e-27 1.505802e-21 1.428480 - 5.44275e-05i

943 5.069933e-28 0 1.423274 - 0i

1020 3.692419e-28 0 1.421113 - 0i

1700 4.611621e-29 0 1.396316 - 4.33650e-04i

Table 3. Sign that each models Stokes parameters were multiplied by to follow the definition of Hovenier et al. (2004). A “-” indicates that

the component was multiplied by −1, while a “+” indicates the component was unchanged.

Model Q U

GSLS - +

MYSTIC + -

SASKTRAN (MC/HR) - +

SCIATRAN + +

Siro - +

SMART-G + -

::::::
various

:::::::
species,

::::::::::
temperature,

::::
and

:::::::
pressure)

:
varies linearly between grid points, or that the atmosphere consists of 1 km homo-

geneous layers where the atmospheric state parameters are constant. How the discretized atmospheric state maps to an effective

continuous quantity is of particular importance since any retrieved quantity must be interpreted the same way.

The RTMs GSLS, SASKTRAN (HR and MC), and Siro assume linear interpolation and handle it through analytic methods.

All four models calculate optical depth exactly, assuming a linearly varying extinction (see Oikarinen et al., 1999; Loughman280

et al., 2015, for more detail). For SASKTRAN-MC and Siro this is all that is required and the linear variation of the atmosphere

is accounted for without approximation. GSLS and SASKTRAN-HR must make additional approximations in the calculation

of the source function and we refer back to Loughman et al. (2015) and Zawada et al. (2015) respectively for the exact methods

used.
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Figure 2. (Left Panel) Percent difference in single scattered radiance
::
at

:::
351nm when MYSTIC is using 1000m or 250m homogeneous

shells compared to 100m homogeneous shells. (Right Panel) The sun-normalized radiance computed using 100m shells. The atmosphere

contains Rayleigh scattering, ozone absorption, and stratospheric aerosol Mie scattering with a SZA of 70◦and a SAA of 30◦. Refraction is

disabled. MYSTIC was configured to use 100 million photons. Dashed vertical lines indicate ±0.2% levels.

The other RTMs (MYSTIC, SCIATRAN, SMART-G) use homogeneous layers. To compare the models more directly
:::::
better285

::::::::
harmonize

:::
the

:::::::::
treatment

::
of

:::
the

:::::
input

::::
data, the RTMs using homogeneous layers have been configured using sub-layers with

linear interpolation. Figure 2 shows an example of how using 1000m or 250m homogeneous shells vary compared to 100m

shells within MYSTIC. Layering using 1000m shells introduces errors on the order of 0.5% at 351 nm in regions where the

atmosphere is optically thin, while the error using 250m shells is 0.1%. For all future calculations both MYSTIC and SMART-

G have been configured to use 250m shells. SCIATRAN uses a hybrid system where sub-gridding is applied only to the first290

three layers near the beginning of each integration line and three layers above the tangent point (the exact number of layers is

an input parameter).

4 Discussion and Results

The main challenge in interpreting, and attributing , differences between models is that the true answer is not known. All

comparisons shown in this section are relative to what we have called the Multi-Model Mean (MMM). The MMM is composed295

of the set of models that agree with each other to a level that cannot be attributed to a concrete difference in a single model.

For the single scattering test cases the level was determined to be 0.2%, and 1% for the multiple scattering test cases. Any

RTM that is found to have disagreements above these levels is excluded from the MMM for the relevant test case, causing the

models composing the MMM to vary between different test cases.
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While tests were performed for both vectorial and scalar modes, no significant differences were found in agreement between300

the models in scalar or vector
:::::::
vectorial mode. Therefore, for the purpose of brevity, no comparisons of strictly scalar mode are

shown. It is understood that the results for the polarised
:::::::
polarized

:
comparisons are equally applicable to scalar calculations.

4.1 Single Scatter

Simplifying assumptions made for the single scatter calculation are minimal, and thus we expect differences to be relatively

small. We do not expect zero differences due to the various methods of gridding in the vertical dimension of the atmosphere. As305

originally done in the limb geometry by Siro (Oikarinen et al., 1999) and discussed extensively in Loughman et al. (2004, 2015),

the calculation of optical depth may be performed analytically assuming an extinction that varies linearly in altitude. However,

the integration of the source function cannot be performed the same way and an approximation must be made. For example,

SASKTRAN-HR creates a second order spline of the source function across an integration cell (Zawada et al., 2015), but other

models may assume a constant source function or do something more sophisticated. All of this is further complicated by any310

form of sub-gridding the model may perform in order to obtain a more accurate result.

Differences for the most extreme single scatter case (Rayleigh + ozone + stratospheric aerosol) are shown in Fig. 3. Dif-

ferences are presented relative to the mean of the three deterministic models (SASKTRAN-HR, GSLS, and SCIATRAN),

which we refer to as the Multi-Model Mean (MMM )
:::::
MMM

:::
for

::::
this

::::
case. We chose to use the deterministic models as the

reference because statistical errors in the single scatter case are on the order of the differences observed between the different315

models. For all conditions, errors between the three deterministic models are less than 0.1%. The differences between GSLS,

SASKTRAN-HR, and SCIATRAN are likely due to the slightly different gridding techniques. For the statistical models MYS-

TIC, SASKTRAN-MC, SMART-G, and Siro no errors are detected that are greater than the random noise present (∼0.2 % in

most cases). One thing to note about the SMART-G calculation is that statistical errors are correlated in
::::
with solar geometry,

while for the other MC models the errors are uncorrelated. Errors are correlated because the SMART-G calculation considered320

multiple solar positions simultaneously in a single calculation
::::::::
simulation, while the other models performed each line of sight

and solar position independently.

The excellent agreement in single scatter is expected due to the relative simplicity of the calculation. Fundamentally each

RTM solves the single scatter problem in the same way with minimal assumptions, the primary purpose of this test is to ensure

that the inputs to RTM are configured correctly. The agreement of 0.1–0.2% here sets a baseline that differences above this325

level in more complex test cases cannot be explained by differing treatment
:::::::
different

::::::::
treatments

:
of input data.

4.2 Multiple Scatter

Differences in multiple scatter
:::::::
radiance

::::
with

::::::::
multiple

::::::::
scattering

:::::::
enabled

:
are expected to be larger than those seen in single

scatter owing to the extra complexity of the radiative transfer problem. The discrete models must deal with discretizations

of the multiple scattering source term and may also make fundamental approximations for the sake of computational speed.330

Comparatively the statistical models employ a simpler technique.
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Figure 3. Percent differences in single scatter I relative to the MMM (GSLS, SASKTRAN-HR, and SCIATRAN) for each RTM at a variety

of wavelengths and solar conditions. The atmospheric optical properties include Rayleigh scattering, ozone absorption, and stratospheric

aerosol Mie scattering. Refraction is disabled. Dashed vertical lines indicate ±0.2%

14



In Fig. 4 we see that differences between each RTM and the MMM (MYSTIC, SASKTRAN-HR, SASKTRAN-MC, SCI-

ATRAN, and SMART-G) is usually less than 1% with a few exceptions. Siro shows a low bias on the order of 1–4% at 351

nm, which is most pronounced at low solar zenith angles. The bias is not present when the Lambertian surface albedo is set

to 0 instead of 1. This bias was present in Loughman et al. (2004), however it was misattributed to a high bias in the other335

RTMs as Siro was used as the reference model. Internal testing suggests that the difference may not be directly related to

ground scattering, and instead is an error that compounds on each succesively higher order of scatter. The error is strongest

near 351nm and a surface albedo of 1 because this is the condition where higher orders of scatter have the largest contribution

to the observed radiance.

GSLS at 351 nm has a distinct pattern in altitude with variations on the order of 1% that are relatively consistent across solar340

geometry. The exact cause of these variations are unknown but are likely caused by discretizations of the multiple scatter source

field calculation, however as stated these variations are fairly small. At 675 nm GSLS shows significant deviations of up to 4%

depending on the solar geometry at altitudes near 25 km. The deviation is only present when the Lambertian surface albedo is

1 and is almost non-existent with a 0 albedo. Testing has shown that the difference is present for all atmospheric composition

scenarios and is thought to be due to approximations made in the ground to line of sight scatter calculation
:::::::
multiple

::::::
scatter345

:::::::::
calculation,

::::
and

:
is
::::::::
currently

:::::
under

:::::::::::
investigation.

SASKTRAN (HR and MC), SCIATRAN, SMART-G, and MYSTIC all agree for all conditions to better than 1%. As stated,

differences less than 1% are difficult to attribute to any particular RTM due to both not having a precise reference model and

the inherent statistical noise. However, we do note that SASKTRAN-HR and SCIATRAN both have altitude variation patterns

on the order of 0.5% that are constant across solar geometry but differ in wavelength. MYSTIC, SASKTRAN-MC, and350

SMART-G are indistinguishable at the level of statistical noise.
::
We

:::::
have

:::::
found

::
no

::::::::::
differences

:::
that

:::
are

::::::::
indicative

::
of

::::::::::
differences

::
in

::::::::::
stratospheric

:::::::
aerosol

:::::::::
scattering.

::::::::::
Differences

::
at

:::::
longer

:::::::::::
wavelengths

::::
(not

::::::
shown)

:::
are

::::::::::
comparable

::
to

:::::
those

::
at

::::
675 nm,

::::::
where

::::::
aerosol

::::::::
scattering

:::
can

:::::
make

:::
up

::::
∼75%

:
of

:::
the

::::::::
observed

:::::
signal

::
in
::::

the
::::::
forward

::::::
scatter

::::
high

::::::
albedo

:::::
case. The general agreement

between the models is better than has been observed before in comparisons of RTMs in limb scatter geometry even for scalar

cases.355

4.3 Stokes Parameters

While all comparisons so far have involved vector radiative transfer calculations only differences in the I component of the

Stokes vector have been analyzed. Agreement in I is indicative that the polarization implementation in each model is sensible,

however polarization can be investigated more rigorously by analyzing the individual Stokes parameters. Figure 5 shows the

individual Stokes components, and their differences to the MMM (MYSTIC, SMART-G, and SASKTRAN-MC), for one360

scenario with large polarization (scattering angle near 90 ◦, albedo 0) and one scenario with low polarization (scattering angle

away from 90 ◦, albedo 1).

Generally agreement between Q, U , and the linear polarization,
√
Q2 +U2, is worse than the agreement with I . MYSTIC,

SASKTRAN-MC, and SMART-G agree for all components at the level of statistical noise (∼0.2–1%), while Siro shows

deviations at altitudes below 30 km that can approach 5% depending on the condition. SASKTRAN-HR and SCIATRAN are365
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Figure 4. Percent differences in I ,
::::
with

::::::
multiple

::::::::
scattering

::::::
enabled,

:
relative to the MMM (MYSTIC, SASKTRAN-HR, SASKTRAN-MC,

SCIATRAN, and SMART-G) for each RTM at a variety of wavelengths and solar conditions. The atmospheric optical properties include

Rayleigh scattering, ozone absorption, and stratospheric aerosol Mie scattering. Refraction is disabled. Dashed vertical lines indicate ±1%

levels.
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Figure 5. Left most column: The MMM calculation of I , Q, and U for four different scenarios consisting of MYSTIC, SASKTRAN-MC,

and SMART-G. Other columns: percent difference in I , Q, U , and
√

Q2 +U2 for each model relative to the MMM. The atmospheric optical

properties include Rayleigh scattering, ozone absorption, and aerosol scattering. Dashed vertical lines indicate ±1% levels.
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usually within 1% for the cases shown, however in some situations this can exceed 1%. In cases where the polarization is

small, GSLS can show deviations of 2–4%, but these disappear in the cases with high linear polarization. The differences

observed in linear polarization sometimes mirror differences observed in I , and are sometimes independent.

In order to isolate the polarization effects, we consider two quantities: the Degree of Linear Polarization (DOLP) and the

Linear Polarization Orientation (LPO). DOLP is defined as370

DOLP =

√
Q2 +U2

I
, (1)

which is the fraction of radiation that is linearly polarized, and LPO is defined as

LPO =
1

2
arctan

U

Q
, (2)

which indicates the direction of linear polarization. The absolute differences in DOLP and LPO for the Rayleigh scattering,

ozone absorption, and stratospheric aerosol scattering case are shown in Fig. 6 and Fig. 7 respectively.375

Differences in the DOLP and LPO are overall small, with a few exceptions. Once again, the MC models MYSTIC, SASKTRAN-

MC, and SMART-G agree in all cases to the level of statistical noise in the computation. At 300 nm no differences are observed

between the models as the majority of the signal is single scatter. GSLS, SASKTRAN-HR, and SCIATRAN all have minor

spreads in DOLP at 351 nm depending on solar angle and albedo on the order of 0.002. SCIATRAN shows differences in LPO

at 351 nm of 0.2 ◦ for some conditions, however these are conditions where the overall polarization signal is small. At 675nm380

GSLS has differences in DOLP of up to 0.02 when the surface albedo is 1, which are likely related to the differences in I

observed previously. For the same wavelength the LPO shows deviations on the order of 0.5 ◦ for the high surface albedo case.

Siro has differences in DOLP, but curiously does not have any significant differences in LPO. At 351nm, deviations in

DOLP are up to 0.03 and are present at all albedos and solar conditions, but are larger at high albedo and low solar zenith

angle. The deviations are largest at conditions where there was significant differences in I , but do not share the same shape.385

There are differences of up to 0.02 at 675nm in DOLP between Siro and the MMM, however the differences are only present

at low albedos. The differences are largely eliminated when aerosol is removed from the atmosphere (not shown) suggesting

that it could be due to aerosol multiple scattering.

Both SASKTRAN (HR and MC) and GSLS make the assumption that V is identically
::::::
exactly 0, which reduces the size of

the phase matrix to speed up the computation, and it does not appear that this approximation affects the results in a noticeable390

way. The
::::::::::::
approximation

::
is

:::
not

:::::::::::
fundamental

::
to

:::
the

:::::::
method

::
of

:::::::
solution

:::::
used

::
by

::::::::::::
SASKTRAN

::::
(HR

:::
and

:::::
MC)

:::
and

:::::::
GSLS,

:::
but

:::::::
currently

:::
the

::::::
models

:::
do

:::
not

::::
have

::
an

::::::
option

::
to

::::::
remove

::
it.
::::
The comparison atmospheres only include smaller spherical scatterers

(Mie and Rayleigh scattering), and do not include larger particles as would be seen in ice clouds for example. It is possible that

the approximation of neglecting V would break down under conditions containing larger particles, droplets or crystals .
:::::
where

::::
there

::
is

:::::
greate

::::::::
coupling

:::::::
between

:::::
linear

:::
and

:::::::
circular

::::::::::
polarization.

::::::
These

::::
cases

:::
are

::
a
::::::
subject

::
of

::::::::
potential

:::::
future

:::::
study.

:
395
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Figure 6. Absolute differences in DOLP relative to the MMM (MYSTIC, SASKTRAN-MC, and SMART-G) for each RTM at a variety

of wavelengths and solar conditions. The atmospheric optical properties include Rayleigh scattering, ozone absorption, and stratospheric

aerosol Mie scattering. Refraction is disabled. Dashed vertical lines indicate ±0.005 levels.
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Figure 7. Absolute differences in LPO [◦] relative to the MMM (MYSTIC, SASKTRAN-MC, and SMART-G) for each RTM at a variety

of wavelengths and solar conditions. The atmospheric optical properties include Rayleigh scattering, ozone absorption, and stratospheric

aerosol Mie scattering. Refraction is disabled. Dashed vertical lines indicate ±0.2◦ levels.
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Figure 8. Same as Fig. 4 but with refraction enabled. The MMM is composed of SASKTRAN and SCIATRAN. Dashed vertical lines indicate

±1% levels.

4.4 Refraction

All of the models considered thus far with the exceptions of SASKTRAN-MC and MYSTIC support atmospheric refraction

to some level. While Siro has support for refraction it was not tested as part of this study. GSLS and SASKTRAN-HR neglect

refraction of the incoming solar rays. Furthermore GSLS and SASKTRAN-HR neglect refraction for multiple scattering effects,

only implementing refraction for the line of sight ray. SCIATRAN and SMART-G implement refraction in a generic way400

accounting for all solar and multiple scattering effects. SASKTRAN-HR has since been updated to include refractive effects

for incoming solar rays and multiple scatter effects but the calculations here use only line of sight refraction.
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Figure 9. Ratio of refracted to unrefracted I for
:::
with

:
multiple scatter

:::::::
scattering

::::::
enabled, Rayleigh scattering + ozone absorption + strato-

spheric aerosol scattering, SZA=70◦, SAA=30◦, and a Lambertian surface reflectance of 0 at 1020nm for every model that supports refrac-

tion.

Differences in the multiple scatter signal
:::::::
radiance when refraction is enabled for the stratospheric aerosol scattering case

are shown in Fig. 8. At 351nm the effect of refraction is minimal and agreement is identical to the cases without refraction;

however, at longer wavelengths several differences are observed between the RTMs. SMART-G has a discontinuity in the405

signal at 11.5 km causing differences on the order of 1% relative to SASKTRAN-HR and SCIATRAN. GSLS shows similar

differences
:::
The

:::::::::
agreement

::
of

::::::
GSLS

::::::
relative

:::
to

:::
the

:::::
other

::::::
models

::
is

::::::
almost

::::::::
identical in the refracted and unrefracted cases,

indicating that the refractive effect is similar to that of SASKTRAN-HR and SCIATRAN.

To further investigate these differences, the ratio of refracted to unrefracted I for a single condition for each model is

shown in Fig. 9. This refraction ratio was found to be insensitive to the solar geometry, albedo, and atmospheric composition.410

The refraction ratio is larger at longer wavelengths due to the atmosphere being more optically thin, however the
::
At

:::::
short

::::::::::
wavelengths

::::
and

:::
low

:::::::
tangent

::::::::
altitudes,

:::
the

:::::::::
increased

::::::::
extinction

::::::
causes

::::
the

::::::::::
atmosphere

::
to

:::
be

:::::::
optically

::::::
thick,

:::::::
reducing

::::
the

::::::::::
contribution

::::
from

:::
the

::::::
lower

::::::::::
atmospheric

::::::
layers

:::::
where

:::
the

:::::::::
refractive

::::::
effects

:::
are

:::::::::
significant.

:::::::::
Therefore

:::
the

::::::::
refraction

:::::
ratio

::
is

:::::
shown

::
at

:
1020 nm wavelength as shown in the figure

:::::
which

:
is representative of the differences observed between the models at

all wavelengths
:::::
where

:::
the

::::::::::
atmosphere

::
is

:::::::
optically

::::
thin. GSLS, SASKTRAN-HR, and SCIATRAN show excellent agreement415

in the refraction ratio, with differences being insignificant next to the already observed differences between the models. The

refractive enhancement in SMART-G is 1–2% less than GSLS, SASKTRAN-HR, and SCIATRAN with the exception of a

discontinuity near 11.5 km that greatly enhances the refractive enhancement for a few km below. Possible reasons for the

differences of SMART-G compared to GSLS, SASKTRAN-HR, and SCIATRAN are still under investigation.

There are several possible reasons for the small observed differences between GSLS, SASKTRAN-HR and SCIATRAN.420

The index of refraction of the atmosphere was not harmonized between the models, instead each model performed internal
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calculations using the provided atmospheric temperature and pressure. There exist various methods
::::::
Various

:::::::
methods

:::::
exist to

do this calculation and they may not be the same between each RTM. Differing methods of ray-tracing and integration can also

lead to small differences. Since SCIATRAN (and SMART-G) included refractive effects for the incoming solar ray and multiple

scatter terms, it is possible that this
::::
solar

:::::::::
refraction could be the source of some minor differences. The solar geometries tested425

here have been limited to SZA ≤ 80 ◦, where refraction of the incoming solar ray is expected to be minimal. Further study

could examine the effect of refraction at higher
:::::
larger solar zenith angles.

4.5 Timing

We have considered a basic run time comparison between the models in the study. While a useful exercise, there are technical

challenges in standardizing the hardware used to execute the models, and in the case of SMART-G which uses a GPU the stan-430

dardization is not possible. More importantly every model has settings that involve an accuracy/speed trade-off. For example,

with the deterministic models, there are various discretization setting that can dramatically affect the speed of the calculations.

Harmonizing the balance between accuracy and speed between all of the RTMs is impractical, instead we opt for a simple

order of magnitude timing estimate. The time taken to execute all of the multiple scatter
:::::::
enabled,

:
polarized tests for each

model without refraction is shown in Table 4. These timing numbers should be interpreted as the time required to execute a435

wide variety of test cases, individual RTMs may be significantly more or less efficient in specific cases, however analyzing

these differences is beyond the scope of this study. For the CPU based models a scaled runtime value is also supplied where the

runtime on equivalent hardware has been approximated using the relative
:::::::::::
multithreaded CPU benchmark values from https://

www.passmark.com/. The deterministic models, GSLS, SCIATRAN, and SASKTRAN-HR, all have runtimes of a similar order

of magnitude taking anywhere from 0.3 s to 1 s to execute a single wavelength, solar geometry, and atmospheric composition440

on average.

Analyzing the timing of the Monte Carlo models is inherently more challenging as the calculations also contain statistical

noise. It is common to benchmark models for a set number of photons, however the number of photons used is not comparable

between Siro/SASKTRAN-MC and MYSTIC/SMART-G since the MC technique is not the same. Instead, the precision of

the calculation must be directly compared, which is shown for a typical condition in Fig. 10. For the precision estimation and445

timing, MYSTIC was configured to use a constant 1E6 photons. The other models (SASKTRAN-MC, Siro, and SMART-G)

were configured identically to the previous radiance comparisons. Siro used a constant 1E6 photons, while SASKTRAN-MC

and SMART-G used a variable number of photons targeting 0.2–0.3% precision.

For the given precisions, The
::
the CPU based statistical models, MYSTIC, SASKTRAN-MC, and Siro, have runtimes within

an order of magnitude. The runtime of Siro appears large, however the precision is generally better. Approximately scaling the450

Siro calculation to 0.2% precision would result in a speed increase of a factor of ∼4. Because of the differences in precision

between the different calculations we won’t attempt to quantify small differences between the MC models. One thing of

particular interest is the general efficiency between the technique used by Siro/SASKTRAN-MC and MYSTIC/SMART-G.

Both Siro and MYSTIC used a constant 1E6 photons for all conditions, however the precision of Siro is relatively constant in

altitude and wavelength hovering around 0.1%, while the precision of MYSTIC varies significantly. MYSTIC achieved better455
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Table 4. Estimated time to execute all multiple scatter
:::::::
scattering

:::::::
enabled, no refraction tests. This includes three effective surface albedos,

three different atmospheric compositions, 11 wavelengths, 9 solar geometries, and 80 lines of sight. The MC models were executed to the

precision shown in Fig. 10 (see text for more detail). aThe scaled runtime is calculated by scaling every CPU to the computational power of

the AMD 3900x using the relative benchmark values from https://www.passmark.com/ as of November 6th 2020.

Model Hardware Description Time [minutes] Scaled Runtimea [Minutes]

GSLS Two Intel Xeon E5-2630 (6 physical cores at 2.3 GHz each) 35 13.0

SASKTRAN-HR AMD 3900x (12 physical cores at 3.8 GHz) 7.4 7.4

SCIATRAN Intel i7-6850 (6 physical cores at 3.6 GHz) 13.5 4.6

SASKTRAN-MC AMD 3900x (12 physical cores at 3.8 GHz) 1909 1909

Siro Four Intel Xeon E5-2630 (8 physical cores at 2.4 GHz each) 16560 20078

MYSTIC AMD 3900x (12 physical cores at 3.8 GHz) 1906 1906

SMART-G NVIDIA Titan V 59.2 N/A

than 0.1% precision in cases where the atmosphere heavily scatters (low altitudes, shorter wavelengths), and worse precision

at higher altitudes and longer wavelengths where the atmosphere is optically thin. As mentioned earlier, this is since photons

in Siro are forced to scatter, while photons in MYSTIC may pass through the atmosphere without interaction.

The runtime for the GPU based MC model, SMART-G, is ∼1–2 orders of magnitude less than the other MC models. The

most natural comparison is between SMART-G and SASKTRAN-MC since they have similar precision for this case. Here,460

SMART-G achieves a speedup of ∼30x relative to SASKTRAN-MC on the hardware used. SMART-G only forces
::::::::
improves

::
the

:::::::
relative

::::::::
precision

::
of

::::
the

:::::::::
calculation

:::
by

::::::
forcing

:
scatter events to happen on the first order of scatter (contrary

:::::
similar

:
to

SASKTRAN-MC and Siro which force scatters on all orders), but
:::
and it appears that this is sufficient to obtain reasonable

precision in all scenarios.

5 Conclusions465

A systematic comparison has been performed between seven radiative transfer models operating in the limb scatter geome-

try. The seven models are capable of handling the sphericity of the atmosphere, and compute the Stokes vector accounting

for polarisation
::::::::::
polarization. The test cases cover a wide variety of solar angles, Rayleigh scattering, ozone absorption, Mie

scattering, and surface reflectances.

In single scatter, the deterministic models GSLS, SASKTRAN-HR, and SCIATRAN agree within 0.1% for all observed470

conditions. The statistical models MYSTIC, SASKTRAN-MC, Siro, and SMART-G all agree to a level better than the
::
at

:::
the

::::
level

::
of precision of the calculation which is approximately ∼0.2%.

For almost all conditions in multiple scatter
::::
with

:::::::
multiple

:::::::::
scattering

:::::::
enabled, the agreement between the fully spherical

models in the multiple scatter cases is within 1% when refraction is disabled for I with a few exceptions:
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Figure 10. Precision estimates for the MC models for
:::
with

:
multiple scatter

:::::::
scattering, Rayleigh scattering + ozone absorption + stratospheric

aerosol scattering, SZA=70◦, SAA=30◦, and a Lambertian surface reflectance of 1. Precision estimates for MYSTIC, SASKTRAN-MC, and

SMART-G were taken from the model output. Siro precision was estimated by running the above scenario 20 times and taking the standard

deviation.

– Siro can have disagreement of up to 3% at shorter wavelengths, particularly when the solar zenith angle is low
:::::
small475

and the surface reflectance is high. The difference manifests as a low bias in the radiance, and a high bias in the degree

of linear polarization. The cause of this bias is currently unknown.

– At longer wavelengths in all atmospheric conditions and when the Lambertian surface reflectance is high, GSLS shows

biases of up to 3% that are dependent on solar geometry. The bias is thought to be caused by approximations made in

the direct ground to line of sight scattering calculation
:::::::
multiple

::::::::
scattering

::::::::::
calculation,

:::
but

::
is

:::
still

:::::
under

:::::::::::
investigation.480

Refraction has been tested for GSLS, SASKTRAN-HR, SMART-G, and SCIATRAN. The refractive effect among all models

is almost indistinguishable, with the exception of a ∼1% discontinunity
::::
jump

:
in radiance in the SMART-G calculation at

11.5 km when refraction is enabled. The cause of the discontinuity
::::
jump is currently unknown.

Differences in quantities representing linear polarization, the DOLP and LPO, have also been assessed, however the results

are more difficult to interpret. The MC models MYSTIC, SASKTRAN-MC, and SMART-G agree within statistical noise485

for all considered conditions and serve as a combined reference. SASKTRAN-HR and SCIATRAN generally agree with the

reference at a level of 0.002 in DOLP and 0.2 ◦ in LPO, with the largest deviations in LPO being in conditions where the

linearly polarized signal is small. For most conditions, GSLS agrees at a similar level, with the exception of high Lambertian

surface albedos at longer wavelengths where DOLP can vary up to 0.02, and LPO by 0.5 ◦. Siro shows deviations in DOLP at

both 351 nm and 675nm that approach 0.03, but has no distinguishable difference from the reference in LPO.490
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Overall the agreement between the models is excellent, and is better than has been reported for scalar comparisons in the past.

The agreement provides additional confidence in the retrievals from limb scatter instruments such as OMPS-LP, OSIRIS, and

SCIAMACHY. In particular, confidence in modelling the polarized signal is important for the upcoming ALTIUS missionwhich

is linearly polarized.

There are several areas where future studies comparing RTMs in the limb viewing geometry could expand upon. Scattering495

from larger, non-spherical, particles, droplets, or crystals
::::
such

::
as

:::::
those

::::::::
contained

::
in

:::::
clouds

:
should be assessed which may result

in larger differences in particular for circular polarization. More extreme cases with larger
::::::
higher solar zenith angles may be

checked , in particular to
:
to
::::::
further

:::::
push

:::
the

::::::
models

::::::
which

:::::
could

::::
also

::
be

::::
used

:::
to determine the effect of refraction at higher

solar zenith angles.
:::::::::::::
Non-Lambertian

::::::::
reflecting

:::::::
surfaces

::
as

::::
well

::
as

::
a
:::::
larger

::::::
variety

::
of

:::::::::::
stratospheric

::::::
aerosol

:::::::::
conditions

:::::
would

:::
be

::::::
another

:::::::::
interesting

::::
area

::
of

::::::
study.

::::::
Finally,

:::
the

::::::
impact

:::
of

:::
the

:::::::
observed

::::::::::
differences

:::::::
between

:::
the

:::::::
models

:::::
could

::
be

:::::::
studied

::
in

:::
the500

::::::
context

::
of

:::::::
standard

::::::::::
applications

:::::
such

::
as

::::
limb

::::::
scatter

::::::
species

::::::::
retrievals.

:
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