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Reply to Reviewer #2: 

We thank the anonymous reviewer for the overall positive feedback and helpful comments, 
which have helped to further improve our manuscript. We address each comment (re-stated in 
italic font) point-by-point below. 

This study investigates a promising calibration method for the low-cost air pollution sensors, through co-
location with public measurement stations and regression towards the station reference data. Four 
machine learning algorithms for the regression, namely Ridge, Random Forest (RF), Gaussian Process 
Regression (GPR) and Multiple Linear Regression (MLR) are implemented and compared. The 
influence from co-location training conditions and choice of calibration input data, and the issues of “site-
transferability” are also discussed. Overall, this interesting manuscript is well written, and potentially 
contributes to the scientific community and also the environmental protection agencies. 

My comments are listed below: 

1. My biggest concern is about the “site-transferability”. 

1) Any more insights on the key factors limiting the site-transferability? Description between Line 102-
110 has stated that the PMS5003T series PM particle sensors are based on laser scattering using Mie 
theory, and the composition-wise similar environments are assumed for measurement and calibration, 
which potentially limits the site-transferability. If the authors could also explain the measurement 
principles for other sensors and how would they potentially limit the site-transferability? 

Thank you for this important comment. We agree that there are a number of potential reasons 
for why side transferability can be limited. In our manuscript we aim to highlight the importance 
of the choice of machine learning calibration functions and aspects such as the training range 
of values sampled over, the number of training samples, and if the regression algorithm is linear 
or not. We reflect this more clearly in our revised manuscript, in particular through the change 
in manuscript title in response to the Reviewer #1. 

In terms of the measurement principle, we think that the sensors are widely used and we have 
not produced the sensors ourselves and have not got the data to compare how different 
measurement principles could have affected our results. Any discussion would thus be highly 
speculative and could not be of quantitative nature, and is thus beyond the scope of our 
manuscript in our opinion. However, we agree that the fact that measurement principles could 
also affect transferability outcomes is worth highlighting. We have therefore added a comment 
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to the discussion and conclusions (lines 533-544) on potential other factors that could also affect 
side transferability: 

“One possible reason is a calibration blind spot, i.e. we encounter a new type of sensor 
interference which we did not find in the training data. For example, this could be substantial 
changes in environmental conditions, or e.g. PM particle composition, which are not captured 
by the calibration function. In our interpretation of results, this would represent again an 
extrapolation with respect to the predictors and/or the predictands. […] Interesting aspects to 
explore as part of future work might be to compare how sensitive site transfer performances are 
to the measurement principle of the NO2 and PM10 devices used, and effects of the seasonal 
cycle (e.g. winter-based calibrations to be used during summer). We hope that future 
measurement campaigns can provide further insights into such calibration challenges, and hope 
that our study can motivate further work in this direction.” 

In addition, we had already mentioned studies that studied such factors in the introduction where 
we note that (lines 62-68): 

“Some significant performance losses after site transfers have been reported (Fang and Bate, 
2017; Casey and Hannigan, 2018; Hagler et al., 2018; Vikram et al., 2019}, with reasons typically 
not being straightforward to assign. A key driver might be that often devices are calibrated in an 
environment not representative of situations found in later measurement locations. As we 
discuss in greater detail below, for machine learning-based calibrations this behaviour can, to a 
degree, be fairly intuitively explained by the fact that they do not tend to perform well when 
extrapolating beyond their training domain. As we will show, this issue can easily occur in 
situations where already calibrated sensors have to measure pollution levels well beyond the 
range of values encountered in their training environment.” 

2) The use of multi-sensor nodes is a very good idea to involve more factors for the regression and thus 
potentially enhance the “site-transferability”. But the description for the set-up of sensor hardware in 
Sect. 2 is not clear. In Line 99, “Each multi-sensor node contained”, does it mean that all nodes listed in 
Table 1 have the same set-up of sensor hardware? If so, why the same set-up is used for NO2 and 
PM10, respectively? In Table 1, different nodes spanning over different measurement time? Why so 
many nodes are used at CR7 site for the relatively shorter time period? Please add clarification.  

Yes, we indeed used the same set-up for each sensor node and each node contained 
measurements for NO2, various particle sizes etc. This was mainly motivated by how we operate 
such sensors in real world settings where we usually want to measure as many pollutants as 
possible simultaneously. Of course, there will be variance in the production of sensors of the 
same make, so that the sensor nodes are not expected to behave identically. 

The different measurement periods were caused by random sensor-drop outs, sensor 
availability (e.g. delayed delivery, used elsewhere). We simply tried to use many sensors as 
possible at any given time during the period in which the sensors were run. In conclusion, these 
choices were all motivated by rather practical boundary conditions which we did not have full 
control over. 

To clarify these points, we have adapted the text to the following (line 102): 

“Each multi-sensor node contained (i.e. all nodes consist of the same types of individual 
sensors):” 

We have further added the following explanation to the beginning of section 2.1 (page 4) on 
sensor hardware: 



 
 

“Each node thus allows for simultaneous measurement of multiple air pollutants, but we will 
focus on individual calibrations for NO2 and PM10 here because these species were of particular 
interest to our own measurement campaigns. We note that other species such as PM2.5 are also 
included in the measured set of variables. We will make our low-cost sensor data available (see 
Data Availability statement), which will allow other users to test similar calibration procedures 
for other variables of interest (e.g. PM2.5, ozone). A caveat is that appropriate co-location data 
from higher cost reference measurements might not always be available.” 

In addition, we have clarified in the caption of Table 1 (page 6): 

“Overview of the measurement sites and the corresponding maximum co-location periods, 
which vary for each specific sensor node and co-location site due to practical aspects such as 
sensor availability and random occurrences of sensor failures. 

3) In Figs. 7-8, the results for “site-transferability” looks promising except NO2 concentrations predicted 
at CR9 between ∼700-1000 h are largely underestimated. What if the node-19 is calibrated at CR9, 
would the peak concentrations between ∼700-1000 h be properly predicted? Why the calibration is not 
performed at the site with a larger range for the observed concentrations (e.g., CR9 rather than CR7 for 
NO2 for the Sect. 3.1)? I mean, the calibration at CR7 discussed at Sect. 3.1 seems to have a limited 
applicability. 

The idea behind these figures is to demonstrate limitations of site transferability (i.e. to train on 
data measured at one site and to predict on the other), especially to highlight extrapolation 
issues if the two sites have very different pollution ranges. Predictions of the kind Reviewer #2 
suggests here – i.e. at the same site - generally perform well, especially if the training range 
contains the test range of pollution values, see e.g. R2-scores in Table 2. Therefore, if node 19 
was calibrated at CR9 it would be possible to predict the peak concentrations between 700-1000h 
better. However, this would only be the case if at least one or two of the peaks would also be 
contained in the training dataset as otherwise e.g. RFR would not be able to extrapolate to such 
high values. 

2. Besides the spatial variability, the temporal variability is also very important. I mean, given the fixed 
co-location, if the calibration performed during the winter time, is applicable to make proper predictions 
during the summer time? Furthermore, any special treatment for the calibration of the sensor signals 
during occasionary condition (e.g., intensive washout during the heavy rain, dust event, or strong 
temperature inversion, etc.) when the observed concentrations at the reference site are extraordinarily 
high or low? 

Changing background conditions would in our interpretation of the results represent an 
extrapolation task, because the new conditions would not have been contained in the training 
data. Each co-location measurement campaign thus has to be aware of the potential implications 
of training on non-representative training conditions, which is indeed a key point we are trying 
to make in our paper. Given our measurement periods (Table 1), we sample some degree of 
seasonal variability but, of course, such tests could be extended. We have thus highlighted this 
point in the revised conclusions and discussion section of our manuscript (lines 533-537): 

“One possible reason is a calibration blind spot, i.e. we encounter a new type of sensor 
interference which we did not find in the training data. For example, this could be substantial 
changes in environmental conditions, or e.g. PM particle composition, which are not captured 
by the calibration function. In our interpretation of results, this would represent again an 
extrapolation with respect to the predictors and/or the predictands.” 



 
 

In the same paragraph, we now mention that the seasonal cycle could be interesting to study, 
too: 

“Interesting aspects to explore as part of future work might be to compare how sensitive site 
transfer performances are to the measurement principle of the NO2 and PM10 devices used, and 
effects of the seasonal cycle (e.g. winter-based calibrations to be used during summer).” 

3. In Table 2, it is very interesting that the performance is greatly enhanced if the sensor signals relevant 
with NO/O3 are involved into regression (i.e., (g) v.s. (f)), and further involvement of more factors does 
not seem to improve the performance significantly. Any more detailed explanation (the description 
between Line 375-378 lacks of insights)? How about the performance for the NO/O3/T/RH, if it is better 
than A43F/T/RH and B43F/T/RH? And the computing cost for each selection of predictors? 

It is intuitive and well-known that NO2 sensors can suffer from interference with NO/ozone. It 
seems that this is supported by our results and this is the point we discuss here. Using a set-up 
without any NO2 sensors but only NO/ozone sensors would not make a lot of sense to us, 
especially in terms of robustness, given that we ultimately want to measure NO2. The computing 
cost of selecting additional predictors is in our opinion negligible (orders of a few seconds to 
minutes at most on a typical laptop nowadays). The discussion on possible choices concerning 
NO2 sensor selection is motivated by the actual cost of purchasing additional devices, i.e. how 
much the inclusion of additional sensor signals actually helps in improving sensor 
performances and which degree of measurement accuracy could be reached with a reduced set-
up. 

4. It would be very nice if the authors could use a table to summarize and compare the key assumptions, 
algorithms, advantages/disadvantages, computing cost etc. for the four regression methods. 

This is indeed a very good idea – thank you for the suggestion. We now include a fourth table in 
the manuscript, discussed in the conclusions section (page 25), which summarizes a few key 
points. For compactness, we have left out the computing cost because all calculations can fairly 
easily be carried out on standard computing systems/laptops nowadays and we believe that the 
focus should thus be on actual calibration performances. 

5. In Fig. 5, how the circles (for each individual node) are calculated, as each node has a different time 
span? Table 2 and Fig. 4 are based on the average of the 21 nodes, right? Please add clarification 

These are test set R2-scores (220 hours for each node) for each individual node and the numbers 
in Table 2 and Figure 4 are indeed average values. We discuss the split of training and test data 
in section 3.1: 

“To train and cross-validate our calibration models, we took the first 820 hours measured by 
each sensor set and split it into 600 hours for training and cross-validation, leaving 220 hours to 
measure the final skill on an out-of-sample test set. We highlight again that the test set will cover 
different time intervals for different sensors, meaning that further randomness is introduced in 
how we measure calibration skill. However, the relationships for each of the four calibration 
methods are learned from exactly the same data, and their predictions are also evaluated on the 
same data, meaning that their robustness and performance can still be directly compared. To 
measure calibration skill we used two standard metrics in the form of the R2-score (coefficient 
of determination) and the RMSE between the reference measurements and our calibrated signals 
on the test sets. For particularly poor calibration functions, the R2-score can take on infinitely 
negative values whereas a value of 1 implies a perfect prediction. An R2-score of 0 is equivalent 
to a function that predicts the correct long-term time average of the data, but no fluctuations 
therein.” 



 
 

We have added a short clarification to the caption of Figure 5 as well: 

“Node-specific I30 R2-scores depending on calibration method and training sample size, 
evaluated on consistent 220-hour test datasets in each case (see main text).” 

We have further added the following clarifying sentence to the captions of Table 2 and Figure 4: 

“Results are averaged over the 21 low-cost sensor nodes with 600 hourly training samples each, 
and the evaluation is carried out for 220 test samples each.” 

6. Why PM10 rather than PM2.5 is focused on? PM2.5 is more relevant with the public health issues. 

Arguably PM2.5 is a very important metric, but both PM10 and PM2.5 are frequently used in policy 
and scientific domains. We chose PM10 here for project-specific reasons (our collaborators were 
specifically interested in PM10), but we will make our PM2.5 data public so that other researchers 
could investigate PM2.5, too, which is beyond the scope of our own study. We have added an 
explanation to our revised manuscript (see also reply to another comment above): 

“We note that other species such as PM2.5 are also included in the measured set of variables. 
We will make our low-cost sensor data available (see Data Availability statement), which will 
allow other users to test similar calibration procedures for other variables of interest (e.g. PM2.5, 
ozone). However, we note that appropriate co-location data from higher cost reference 
measurements might not always be available.” 


