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Abstract. Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement

stations, and typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome

these limitations is calibration through co-location with public measurement stations. Here we test the idea of using machine

learning algorithms for such calibration tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate

matter of particle sizes smaller than 10 µm (PM10) at three different locations in the urban area of London, UK. We compare5

the performance of Ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of Random

Forest regression (RFR) and Gaussian Process regression (GPR). We further benchmark the performance of all three machine

learning methods relative to the more common Multiple Linear Regression (MLR). We obtain very good out-of-sample R2-

scores (coefficient of determination) > 0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In

contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and is10

also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best

performing method in our calibration setting, followed by Ridge regression and RFR. We also highlight several key limitations

of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, all methods are

fundamentally limited in how well they can reproduce pollution levels that lie outside those encountered at training stage. We

find, however, that the linear Ridge regression outperforms the non-linear methods in extrapolation settings. GPR can allow15

for a small degree of extrapolation, whereas RFR can only predict values within the training range. This algorithm-dependent

ability to extrapolate is one of the key limiting factors when the calibrated sensors are deployed away from the co-location

site itself. Consequently, we find that Ridge regression is often performing as good as, or even better than, GPR after sensor

re-location. Our results highlight the potential of co-location approaches paired with machine learning calibration techniques

to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice20

of calibration variables, and the features of the calibration algorithm.
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1 Introduction

Air pollutants such as nitrogen dioxide (NO2) and particulate matter (PM) have harmful impacts on human health, the ecosys-

tem, and public infrastructure (European Environment Agency, 2019). Moving towards reliable and high-density air pollution

measurements is consequently of prime importance. The development of new low-cost sensors, hand in hand with novel sensor25

calibration methods, has been at the forefront of current research efforts in this discipline (e.g. Mead et al., 2013; Moltchanov

et al., 2015; Lewis et al., 2018; Zimmerman et al., 2018; Sadighi et al., 2018; Tanzer et al., 2019; Eilenberg et al., 2020;

Sayahi et al., 2020). Here we present insights from a case study using low-cost air pollution sensors for measurements at three

separate locations in the urban area of London, UK. Our focus is on testing the advantages and disadvantages of machine

learning calibration techniques for low-cost NO2 and PM10 sensors. The principal idea is to calibrate the sensors through30

co-location with established high-performance air pollution measurement stations (Fig. 1). Such calibration techniques, if suc-

cessful, could complement more expensive laboratory-based calibration approaches, thereby further reducing the costs of the

overall measurement process (e.g. Spinelle et al., 2015; Zimmerman et al., 2018; Munir et al., 2019). For the sensor calibration,

we compare three machine learning regression techniques in the form of Ridge regression, Random Forest regression (RFR),

and Gaussian Process regression (GPR), and contrast the results to those obtained with standard Multiple Linear Regression35

(MLR). RFR has been studied in the context of NO2 co-location calibrations before, with very promising results (Zimmerman

et al., 2018). Equally for NO2, but not for PM10, different linear versions of GPR have been tested by De Vito et al. (2018) and

Malings et al. (2019). To the best of our knowledge, we are the first to test Ridge regression both for NO2 and PM10 and GPR

for PM10. Finally, we also investigate well-known issues concerning site-transferability (Masson et al., 2015; Fang and Bate,

2017; Hagan et al., 2018; Malings et al., 2019), i.e. if a calibration through co-location at one location gives rise to reliable40

measurements at a different location.

A key motivation for our study is the potential of low-cost sensors (costs on the order of £10-£100) to transform the level of

availability of air pollution measurements. Installation costs of state-of-the-art measurement stations typically range between

£10,000 and £100,000 per site, and those already high costs are further exacerbated through subsequent maintenance and

calibration requirements (Mead et al., 2013; Lewis et al., 2016; Castell et al., 2017). Lower measurement costs would allow for45

the deployment of denser air pollution sensor networks; for portable devices possibly even at the exposure level of individuals

(Mead et al., 2013). A central complication is the sensitivity of sensors to environmental conditions such as temperature and

relative humidity (Masson et al., 2015; Spinelle et al., 2015; Jiao et al., 2016; Lewis et al., 2016; Spinelle et al., 2017; Castell

et al., 2017), or to cross-sensitivities with other gases (e.g. nitrogen oxide), which can significantly impede their measurement

performance (Mead et al., 2013; Popoola et al., 2016; Rai and Kumar, 2018; Lewis et al., 2018; Liu et al., 2019). Low-cost50

sensors thus require, in the same way as many other measurement devices, sophisticated calibration techniques. Machine

learning regressions have seen increased use in this context due to their ability to calibrate for many simultaneous, non-linear

dependencies. These dependencies, in turn, can for example be assessed in relatively expensive laboratory settings. However,

even laboratory calibrations do not always perform well in the field (Castell et al., 2017; Zimmerman et al., 2018). Here, we

instead evaluate the performance of low-cost sensor calibrations based on co-location measurements with established reference55

2



stations (e.g. Masson et al., 2015; Spinelle et al., 2015; Esposito et al., 2016; Lewis et al., 2016; Cross et al., 2017; Hagan et al.,

2018; Casey and Hannigan, 2018; Casey et al., 2019; De Vito et al., 2018, 2019; Zimmerman et al., 2018; Casey et al., 2019;

Munir et al., 2019; Malings et al., 2019, 2020). If sufficiently successful, these methods could help to substantially reduce the

overall costs and simplify the process of calibrating low-cost sensors.

Another challenge in relation to co-location calibration procedures is ‘site-transferability’. This term refers to the measure-60

ment performance implications of moving a calibrated device from one location (where the calibration was conducted) to

another location. Some significant performance losses after site transfers have been reported (e.g. Fang and Bate, 2017; Casey

and Hannigan, 2018; Hagler et al., 2018; Vikram et al., 2019), with reasons typically not being straightforward to assign. A key

driver might be that often devices are calibrated in an environment not representative of situations found in later measurement

locations. As we discuss in greater detail below, for machine learning-based calibrations this behaviour can, to a degree, be65

fairly intuitively explained by the fact that they do not tend to perform well when extrapolating beyond their training domain.

As we will show, this issue can easily occur in situations where already calibrated sensors have to measure pollution levels

well beyond the range of values encountered in their training environment.

Predictors (Xr)

Machine learning

    

    Fit regression func�on  Yr = f(Xr)

  Model learning

   Ridge, Random Forests, Gaussian Processes

   Cross-valida�on

Predic�on on test set at the same loca�on r 

Predictand (Yr)
             PM10 or NO� levels
        from co-located
      reference stations

Calibrated predic�ons given new Xr 

t
PM/NO₂ low-cost sensor signals
Temperature, relative humidity

Predic�ons at new loca�on r’ given Xr’    

Figure 1. Sketch of the co-location calibration methodology. We co-locate several low-cost sensors for PM (for various particle sizes)

and NO2 with higher cost reference measurement stations for PM10 and NO2. The low-cost sensors also measure relative humidity and

temperature as key environmental variables that can interfere with the sensor signals, and for NO2 calibrations we further include nitrogen

oxide (NO) sensors. We formulate the calibration task as a regression problem in which the low-cost sensor signals and the environmental

variables are the predictors (Xr), and the reference station signal the predictand (Yr), both measured at the same location r. The time

resolution is set to hourly averages to match publicly available reference data. We train separate calibration functions for each NO2 and

PM10 sensor, and compare three different machine learning algorithms (Ridge, Random Forest and Gaussian Process regression) with

Multiple Linear Regression (MLR) in terms of their respective calibration performances. The performance is evaluated on out-of-sample test

data, i.e. on data not used during training. Once trained and cross-validated, we use these calibration functions to predict PM10 and NO2

concentrations given new low-cost measurements X , either measured at the same location r, or at a new location r′. The latter is to test the

feasibility and impacts of changing measurement sites post-calibration. The time series (right) are for illustration purposes only.

We highlight that, in particular concerning the performance of low-cost PM10 sensors, a huge gap in the scientific literature

has been identified regarding issues related to co-location calibrations (Rai and Kumar, 2018). We therefore expect that our70

study will provide novel insights into the effects of different calibration techniques on sensor performances, and a data sample
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that other measurement studies from academia and industry can compare their results against. We will mainly use the R2-score

(coefficient of determination) and root mean squared error (RMSE) as metrics to evaluate our calibration results, which are

widely used and should thus facilitate intercomparisons. To provide a reference for calibration results perceived as ‘good’ for

PM10, we point towards a sensor comparison by Rai and Kumar (2018) who found that low-cost sensors generally displayed75

moderate to excellent linearity (R2 > 0.5) across various calibration settings. The sensors typically perform particularly well

(R2 > 0.8) when tested in idealised laboratory conditions. However, their performance is generally lower in field deployments

(see also Lewis et al., 2018). For PM10, this performance deterioration was, inter alia, attributed to changing conditions of

particle composition, particle sizes, and environmental factors such as humidity and temperature, which are thus important

factors to account for in our calibrations.80

The structure of our manuscript is as follows. In sect. 2, we introduce the low-cost sensor hardware used, the reference

measurement sources, the three measurement site characteristics and measurement periods, the four calibration regression

methods, as well as the calibration settings (e.g. measured signals used) for NO2 and PM10. In sect. 3, we first introduce multi-

sensor calibration results for NO2 at a single site, depending on the sensor signals included in the calibrations and the number

of training samples used to train the regressions. This is followed by a discussion of single-site PM10 calibration results before85

we test the feasibility and challenges of site transfers. We discuss our results and draw conclusions in sect. 4.

2 Methods and Data

2.1 Sensor hardware

Depending on the measurement location, we deployed one set or several sets of air pollution sensors, and we refer to each set

(provided by London-based AirPublic Ltd) as multi-sensor ‘node’. Each of these nodes consists of multiple electrochemical90

and metal oxide sensors for PM and NO2, as well as sensors for environmental quantities and other chemical species known for

potential interference with their sensor signals (required for calibration). Each node thus allows for simultaneous measurement

of multiple air pollutants, but we will focus on individual calibrations for NO2 and PM10 here because these species were

of particular interest to our own measurement campaigns. We note that other species such as PM2.5 are also included in the

measured set of variables. We will make our low-cost sensor data available (see Data Availability statement), which will allow95

other users to test similar calibration procedures for other variables of interest (e.g. PM2.5, ozone). A caveat is that appropriate

co-location data from higher cost reference measurements might not always be available.

For NO2, we incorporated three different types of sensors in our set-up for which purchasing prices differed by an order of

magnitude. One aspect of our study will therefore be to evaluate the performance gained by using the more expensive, but still

relatively low-cost, sensor types. Of course, our results will only be validated in the context of our specific calibration method100

so that more general conclusions have to be drawn with care.

Each multi-sensor node contained (i.e. all nodes consist of the same types of individual sensors):
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– Two MiCS-2714 NO2 sensors produced by SGX Sensortech. These are the cheapest measurement devices deployed in

our set with market costs of approximately £5 per sensor.

– Two Plantower PMS5003T series PM particle sensors, which measure particles of various size categories including105

PM10 based on laser scattering using Mie theory. We note that particle composition does play a role in any PM calibration

process as for example organic materials tend to absorb a higher proportion of incident light as compared to inorganic

materials (Rai and Kumar, 2018). Below we therefore effectively make the assumption that we measure and calibrate

within composition-wise similar environments. By taking into account various particle size measures in the calibration,

we likely do indirectly account for some aspects of composition though because, to a degree, particle sizes might be110

correlated with particle composition. Each PMS device also contains a temperature and relative humidity sensor and

these variables were also included in our calibrations. The minimum distinguishable particle diameter for the PMS

devices is 0.3 µm. The market cost is £20 per one sensor.

– An NO2-A43F 4-Electrode NO2 sensor produced by Alphasense. Market cost £45.

– An NO2-B43F 4-Electrode NO2 sensor produced by Alphasense. Market cost £45.115

– An NO-A4 4-Electrode nitric oxide sensor produced by Alphasense to calibrate against the sometimes significant inter-

ference of NO2 signals with NO. Market cost £45.

– An OX-A431 4-Electrode Oxidising Gas Sensor measuring a combined signal from ozone and NO2 produced by Al-

phasense. We used this signal to calibrate against possible interference of electrochemical NO2 measurements by ozone.

Market cost £45.120

– A separate temperature sensor built into the Alphasense set. It is needed to monitor the warm-up phase of the sensors.

In normal operation mode, each node provided measurements around every 30 seconds. These signals were time-averaged to

hourly values for calibration against hourly public reference measurements.

2.2 Measurement sites and reference monitors

We conducted measurements at three sites in the Greater London area during distinct multi-week periods (Table 1). Two of125

the sites are located in the London Borough of Croydon, which we label CR7 and CR9 according to their UK postcodes. The

third site is located in the car park of the company Alphasense in Essex, hereafter referred to as site ‘CarPark’ (Figure 2a).

At CR7, the sensor nodes were located kerbside on a medium busy street with two lanes in either direction. At CR9, the

nodes were located on a traffic island in the middle of a very busy road with three lanes in either direction (Figure 2b). For

the two Croydon sites, reference measurements were obtained from co-located, publicly available measurements of London’s130

Air Quality Network (LAQN, www.londonair.org.uk). In the two locations in question, the LAQN used Chemiluminescence

detectors for NO2, and ThermoScientific tapered element oscillating microbalance (TEOM) continuous ambient particulate

monitors, with a Volatile Correction Model (Green et al., 2009) for PM10 measurements at CR9. For the CarPark site, PM10
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measurements were conducted with a Palas Fidas Optical Particle Counter AFL-W07A. These CarPark reference measurements

were provided at 15 minutes intervals. For consistency, these measurements were averaged to hourly values to match the135

measurement frequency of publicly available data at the other two sites.

Site Max. co-location period Reference sensors Low-cost sensor IDs

CR7 22 Oct 2018 - 5 Dec 2018 NO2 (London Air Quality Network) 3-7, 11, 13-24, 27, 28

CR9 24 Sep 2019 - 19 Jan 2020 NO2 and PM10 (London Air Quality Network) 19

CarPark 29 Jan 2019 - 26 Apr 2019 PM10 (Palas Fidas Optical Particle Counter AFL-W07A) 19, 25, 26

Table 1. Overview of the measurement sites and the corresponding maximum co-location periods, which vary for each specific sensor

node and co-location site due to practical aspects such as sensor availability and random occurrences of sensor failures. Note that reference

measurements for NO2 and PM10 are only available for two of the three sites each. Sensors that were co-located for at least 820 active

measurement hours are identified by their sensor IDs in the last column. Further note that the only sensor used to measure at multiple sites is

sensor 19, which is therefore used to test the feasibility of site transfers.
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(a)

(b)

Figure 2. Examples of the co-location set-up of the AirPublic low-cost sensor nodes with reference measurement stations at sites (a) CarPark

and (b) CR9, respectively.

2.3 Co-location set-up and calibration variables

In total, we co-located up to 30 nodes, labelled by identifiers (IDs) 1 to 30. For our NO2 measurements, we considered

the following 15 sensor signals per node to be important for the calibration process: the NO sensor (plus its baseline signal to

remove noise), the NO2 + O3 sensor (plus baseline), the two intermediate cost NO2 sensors (NO2-A43F, NO2-B43F) plus their140

respective baselines, the two cheaper MICS sensors, three different temperature sensors and two relative humidity sensors. All

15 signals can be used for calibration against the reference measurements obtained with the co-located higher cost measurement

devices. We discuss the relative importance of the different signals, e.g. the relative importance of the different NO2 sensors

or the influence of temperature and humidity in section 3. For the PM10 calibrations, we used two devices of the same type of

low-cost PM sensor, resulting in 2×10 different particle measures used in the PM10 calibrations. In addition, we included the145

respective sensor signals for temperature and relative humidity, providing us with in total 24 calibration signals for PM10.
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2.4 Calibration algorithms

We evaluate four regression calibration strategies for low-cost NO2 and PM10 devices, by means of co-location of the devices

with the aforementioned air quality measurement reference stations. The four different regression methods - which are multiple

linear regression (MLR), Ridge regression, Random Forest regression (RFR), and Gaussian Process regression (GPR) - are150

introduced in detail in the following subsections. As we will show in section 3, the relative skill of the calibration methods

depends on the chemical species to be measured, sample size available for calibration, as well as certain user preferences.

We will additionally consider the issue of site transferability for sensor node 19, including its dependence on the calibration

algorithm used. We note that we do not include the manufacturer calibration of the low-cost sensors in our comparison here

mainly because we found that this method, which is a simple linear regression based on certain laboratory measurement155

relationships, provided us with negative R2-scores when compared with reference sensors in the field. This result is in line

with other studies that reported differences between sensor performances in the field and under laboratory calibrations (see e.g.

Mead et al., 2013; Lewis et al., 2018; Rai and Kumar, 2018).

2.4.1 Ridge and Multiple Linear Regression

Ridge regression is a linear least squares regression augmented by L2-regularization to address the bias-variance trade-off160

(Hoerl and Kennard, 1970; James et al., 2013; Nowack et al., 2018, 2019). Using statistical cross-validation, the regression fit

is optimized by minimizing the cost function

JRidge =

n∑
t=1

yt− p∑
j=1

cjxj,t

2

+α

p∑
j=1

c2j (1)

over n hourly reference measurements of pollutant y (i.e. NO2, PM10). xj,t are p non-calibrated measurement signals from

the low-cost sensors, representing signals for the pollutant itself as well as signals recorded for environmental variables (tem-165

perature, humidity) and other chemical species that might cause interference with the signal in question. The cost function (1)

determines the optimization goal. Its first term is the ordinary least squares regression error, the second term term puts a penalty

on too large regression coefficients and thus avoids overfitting in high-dimensional settings by nudging the regression towards

small regression coefficients cj . Smaller (larger) values of the regularization coefficient α put weaker (stronger) constraints on

the size of the coefficients, thereby favoring overfitting (high bias). We find the value for α through 5-fold cross-validation, i.e.170

each data set is split into five ordered time slices and α optimized by fitting regressions for large ranges of α-values on four

of the slices at a time, and then the best α is found by evaluating the out-of-sample prediction error on each corresponding

remaining slice using the R2-score. Each slice is used once for the evaluation step. Before the training procedure, all signals are

scaled to unit variance and zero mean as to ensure that all signals are weighted equally in the regression optimization, which we

explain in more detail at the end of this section. Through the constraint on the regression slopes, Ridge regression can handle175

settings with many predictors, here calibration variables, even in the context of strong collinarity in those predictors (Dormann

8



et al., 2013; Nowack et al., 2018, 2019). The resulting linear regression function fRidge

ŷ(t) = fRidge = c0 +

p∑
j=1

cjxj(t) (2)

provides estimates for pollutant mixing ratios ŷ at any time t, i.e. a calibrated low-cost sensor signal, based on new sensor

readings xj(t). fRidge represents a calibration function because it is not just based on on a regression of the pollutant signal180

itself against the reference, but on multiple simultaneous predictors, including those representing known interfering factors.

Multiple Linear Regression (MLR) is the simple non-regularized case of Ridge, i.e. where α is set to nil. MLR is therefore a

good benchmark to evaluate the importance of regularization and, when compared to RFR and GPR below, of non-linearity in

the relationships. As MLR does not regularize its coefficients, it is expected to increasingly lose performance in settings with

many (non-linear) calibration relationships. This loss of MLR performance in high-dimensional regression spaces is related to185

the ‘curse of dimensionality’ in machine learning, which expresses the observation that one requires an exponentially increasing

number of samples to constrain the regression coefficients as the number of predictors is increased linearly (Bishop, 2006). We

will illustrate this phenomenon for the case of our NO2 sensor calibrations below.

Finally, we note that for Ridge regression, as also for GPR described below, the predictors xj must be normalized to a com-

mon range. For Ridge this is straightforward to understand as the regression coefficients, once the predictors are normalized,190

provide direct measures of the importance of each predictor for the overall pollutant signal. If not normalized, the coefficients

will additionally weight the relative magnitude of predictor signals, which can differ by orders of magnitude (e.g. temperature

at around 273 Kelvin, but a measurement signal for a trace gas on the order of 0.5 amplifier units). As a result, the predictors

would be penalized differently through the same α in equation (1), which could mean that certain predictors are effectively

not considered in the regressions. Here, we normalize all predictors in all regressions to zero mean and unit standard deviation195

according to the samples included in each training dataset.

2.4.2 Random Forest regression

Random Forest regression (RFR) is one of the most widely used non-linear machine learning algorithms (Breiman and Fried-

man, 1997; Breiman, 2001), and has already found applications in air pollution sensor calibration as well as in other aspects

of atmospheric chemistry (Keller and Evans, 2019; Nowack et al., 2018, 2019; Sherwen et al., 2019; Zimmerman et al., 2018;200

Malings et al., 2019). It follows the idea of ensemble learning where multiple machine learning models together make more

reliable predictions than the individual models. Each RF regression object consists of a collection (i.e. ensemble) of graphical

tree models, which split training data by learning decision rules (Figure 3). Each of these decision trees consists of a sequence

of nodes, which branch into multiple tree levels until the end of the tree (the ‘leaf’ level) is reached. Each leaf node contains

at least one, or several samples from the training data. The average of these samples is the prediction of each tree for any205

measurement of predictors x defining a new traversion of the tree to the given leaf node. In contrast to Ridge regression, there

is more than one tunable hyperparameter to address overfitting. One of these hyperparameters is the maximum tree depth, i.e.

the maximal number of levels within each tree, as deeper trees allow for a more detailed grouping of samples. Similarly, one
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can set the minimum number of samples in any leaf node. Once this minimum number is reached, the node is not further split

into children nodes. Both smaller tree depth and a greater number of minimum samples in leaf nodes mitigate overfitting to210

the training data. Other important settings are the optimization function used to define the decision rules, and for example the

number of estimators included in an ensemble, i.e. the number of trees in the forest.

...

(x1, x2,...,xp)t

Tree 1 Tree 2 Tree K

Tree predictions yt,1 yt,2 yt,K

ȳt Random Forest prediction 

Predictors xi at time t

Figure 3. Sketch of a Random Forest regressor. Each Random Forest consists of an ensemble of K trees. For visualization purposes, the

trees shown here have only four levels of equal depth, but more complex structures can be learned. The lowest level contains the leaf nodes.

Note that in real examples, branches can have different depths, i.e. the leaf nodes can occur at different levels of the tree hierarchy, see e.g.

Figure 2 in Zimmerman et al. (2018). Once the decision rules for each node and tree are learned from training data, each tree can be presented

with new sensor readings x at a time t to predict pollutant concentration yt. The decision rules depend, inter alia, on the tree structure and

random sampling through bootstrapping, which we optimize through 5-fold cross-validation. Based on the values xi, each set of predictors

follows routes through the trees. The training samples collected in the corresponding leaf node define the tree-specific prediction for y. By

averaging K tree-wise predictions we combat tree-specific overfitting, and finally obtain a more regularized Random Forest prediction ȳt.

The RFR training process tunes the parameter thresholds for each binary decision tree node. By introducing randomness, for

example by selecting a sub-set of samples from the training data set (bootstrapping), each tree provides a somewhat different

data representation. This random element is used to obtain a better, averaged prediction over all trees in the ensemble, which215

is less prone to overfitting than individual regression trees. We here cross-validated the scikit-learn implementation of RFR

(Pedregosa et al., 2011) over problem-specific ranges for the minimum number of samples required to define a split and the

minimum number of samples to define a leaf node. The implementation uses an optimised version of the Classification and

Regression Trees (CART) algorithm, which constructs binary decision trees using the predictor and threshold that yields the

largest information gain for a split at each node. The mean squared error of samples relative to their node prediction (mean)220

serves as optimization criterion, as to measure the quality of a split for a given possible threshold during training. Here we

consider all features when defining any new best split of the data at nodes. By increasing the number of trees in the ensemble,

the RFR generalization error converges towards a lower limit. We here set the number of trees in all regression tasks to 200 as

a compromise between model convergence and computational complexity (Breiman, 2001).
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2.4.3 Gaussian Process regression225

Gaussian Process regression (GPR) is a widely used Bayesian machine learning method to estimate non-linear dependencies

(Rasmussen and Williams, 2006; Pedregosa et al., 2011; Lewis et al., 2016; De Vito et al., 2018; Runge et al., 2019; Malings

et al., 2019; Nowack et al., 2020; Mansfield et al., 2020). In GPR, the aim is to find a distribution over possible functions that

fit the data. We first define a prior of possible functions that is updated according to the data using Bayes’ theorem, which

provides us with a posterior distribution over possible functions. The prior distribution is a Gaussian Process (GP )230

Y ∼GP (µ,k(xi,xj)) (3)

with mean µ and a covariance function, or kernel, k which describes the covariance between any two points xi and xj . We here

standard-scale (i.e. centre) our data so that µ=0, meaning our GP is entirely defined by the covariance function. Being a kernel

method, the performance of GPR depends strongly on the kernel (covariance function) design as it determines the shape of the

prior and posterior of the Gaussian Process, and in particular the characteristics of the function we are able to learn from the235

data. Owing to the time-varying, continuous but also oscillating nature of air pollution sensor signals, we here use a sum kernel

of a radial basis function (RBF) kernel, a white noise kernel, a Matérn kernel and a Dot-Product kernel. The RBF kernel, also

known as squared exponential kernel, is defined as

k(xi,xj) = exp

(
−d(xi,xj)

2

2l2

)
. (4)

It is parameterized by a length scale l > 0, and d is the Euclidean distance. The length scale determines the scale of variation240

in the data, and is learned during the Bayesian update, i.e. for a shorter length scale the function is more flexible. However,

it also determines the extrapolation scale of the function, meaning that any extrapolation beyond the length scale is probably

unreliable. RBF kernels are particularly helpful to model smooth variations in the data. The Matérn kernel is defined by

k(xi,xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi,xj)

)ν
Kν

(√
2ν

l
d(xi,xj)

)
, (5)

where Kν is a modified Bessel function and Γ the gamma function (Pedregosa et al., 2011). We here choose ν=1.5 as the245

default setting for the kernel, which determines the smoothness of the function. Overall, the Matérn kernel is useful to model

less smooth variations in the data than the RBF kernel. The Dot-Product kernel is parameterized by a hyperparameter σ2
0

k(xi,xj) = σ2
0 +xi ·xj (6)

and we found that adding this kernel to the sum of kernels significantly improved our results empirically. The white noise

kernel simply allows for a noise level on the data as independently and identically normally-distributed, specified through a250

variance parameter. This parameter is similar to, and will interact with, the α noise level described below, which is, however,

tested systematically through cross-validation.

The Python scikit-learn implementation of the algorithm used here is based on algorithm 2.1 of Rasmussen and Williams

(2006). We optimized the kernel parameters in the same way as for the other regression methods through 5-fold cross-

validation, and subject to the noise α-parameter of the scikit-learn GPR regression packages (Pedregosa et al., 2011). This255
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parameter is not to be confused with the α regularization parameter for Ridge regression and takes the role of smoothing the

kernel function, as to address overfitting. It represents a value added to the diagonal of the kernel matrix during the fitting

process with larger α values corresponding to greater noise level in the measurements of the outputs. However, we note that

there is some equivalency with the α parameter in Ridge as the method is effectively a form of Tikhonov regularization that

is also used in Ridge regression (Pedregosa et al., 2011). Both inputs and outputs to the GPR function were standard-scaled260

to zero mean and unit variance based on the training data. For each GPR optimization, we chose 25 optimizer restarts with

different initializations of the kernel parameters, which is necessary to approximate the best possible solution to maximize the

log-marginal likelihood of the fit. More background on GPR can be found in Rasmussen and Williams (2006).

2.5 Cross-validation

For all regression models, we performed 5-fold cross-validation where the data are first split into training and test sets, keeping265

samples ordered by time. The training data are afterwards divided into five consecutive subsets (folds) of equal length. If the

training data are not divisible by five, with a residual number of samples n, then the first n folds will contain one surplus

sample compared to the remaining folds. Each fold is used once as a validation set while the remaining four folds are used for

training. The best set of model hyperparameters, or kernel functions, is found according to the average generalization error on

these validation sets. After the best cross-validated hyperparameters are found, we refit the regressions models on the entire270

training data using these hyperparameter settings (e.g. the α value for which we found the best out-of-sample performance for

Ridge regression).

3 Results

3.1 NO2 sensor calibration

The skill of a sensor calibration function is expected to increase with sample size, i.e. the number of measurements used in275

the calibration process, but will also depend on aspects of the sampling environment. For co-location measurements, there

will be time-dependent fluctuations in the value ranges encountered for the predictors (e.g. low-cost sensor signals, humidity,

temperature) and predictands (reference NO2, PM10). The calibration range in turn affects the performance of the calibration

function: if faced with values outside its training range, the function effectively has to perform an extrapolation rather than

interpolation, i.e. the function is not well constrained outside its training domain. This limitation is particularly critical for non-280

linear machine learning functions (Hagan et al., 2018; Nowack et al., 2018; Zimmerman et al., 2018). Calibration performance

will further vary for each device, even for sensors of the same make, due to unavoidable randomness in the sensor production

process (Mead et al., 2013; Castell et al., 2017). To characterize these various influences, we here test the dependence of three

machine learning calibration methods, as well as of MLR, on sample size and co-location period for a number of NO2 sensors.

The NO2 co-location data at CR7 is ideally suited for this purpose. 21 sensor nodes of the same make were co-located with285

a LAQN reference during the period October to December 2018 (Table 1). We actually co-located 30 sensor sets at the site, but
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we excluded any sensors with fewer than 820 hours (samples) after outlier removal from our evaluation. The remaining sensors

measure sometimes overlapping, but different time intervals as a result of varying co-location start and end times as well as

accidental sensor malfunctions. To detect these malfunctions, and to exclude the corresponding samples, we removed outliers

(evidenced by unrealistically large measurement signals) at the original time resolution of our measurements, i.e. < 1 minute290

and prior to hourly averaging. To detect outliers for removal, we used the Median Absolute Deviation (MAD) method, also

known as ‘robust Z-Score method’, which identifies outliers for each variable based on their univariate deviation from their

training data median. Since the median is a robust statistic to outliers itself, it is a typically a better measure to identify outliers

than for example a deviation from the mean. Accordingly, we excluded any samples t from the training and test data where the

quantity295

Mj,t = 0.6745
|xj,t− x̃j |

median{|xj,t− x̃j |}
(7)

takes on values >7 for any of the predictors, where x̃j is the training data median value of each predictor. To train and cross-

validate our calibration models, we took the first 820 hours measured by each sensor set and split it into 600 hours for training

and cross-validation, leaving 220 hours to measure the final skill on an out-of-sample test set. We highlight again that the test

set will cover different time intervals for different sensors, meaning that further randomness is introduced in how we measure300

calibration skill. However, the relationships for each of the four calibration methods are learned from exactly the same data,

and their predictions are also evaluated on the same data, meaning that their robustness and performance can still be directly

compared. To measure calibration skill we used two standard metrics in the form of the R2-score (coefficient of determination)

defined by

R2(y, ŷ) = 1−
∑n
i=1(yi− ŷi)2∑n
i=1(yi− ȳ)2

, (8)305

and the RMSE between the reference measurements y and our calibrated signals ŷ on the test sets. For particularly poor

calibration functions, the R2-score can take on infinitely negative values whereas a value of 1 implies a perfect prediction. An

R2-score of 0 is equivalent to a function that predicts the correct long-term time average of the data, but no fluctuations therein.

As discussed in section 2.1, each of AirPublic’s co-location nodes measures 15 signals (the predictors, or inputs) that we

consider relevant for the NO2 sensor calibration against the LAQN reference signal for NO2 (the predictand, or output). Each310

of the 15 inputs will potentially be systematically linearly or non-linearly correlated with the output, which allows us to

learn a calibration function from the measurement data. Once we know this function, we should be able to make accurate

predictions given new inputs to reproduce the LAQN reference. As we fit two linear and two non-linear algorithms, certain

transformations of the inputs can be useful to facilitate the learning process. For example, a relationship between an input

and the output might be an exponential dependence in the original time series so that applying a logarithmic transformation315

could lead to an approximately linear relationship that might be easier to learn for a linear regression function. We therefore

compared three set-ups with different sets of predictors:

1. Using the 15 input time series as provided (label I15).
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2. Adding logarithmic transformations of the predictors (I30).

3. Adding both logarithmic and exponential transformations of the predictors (I45).320

which are labelled according to their total number of predictors after adding the input transformations, i.e. 15, 30 and 45. The

logarithmic and exponential transformations of each input signal Ai(t) are defined as

Ai,log(t) = log(Ai(t) + 1) (9a)

Ai,exp(t) = exp

(
Ai(t)

Amax + ε

)
(9b)325

where Amax is the maximum value of the predictors time series and ε=10−9. The latter prevents possible divisions by zero

whereas the former prevents overflow values in the function.

3.1.1 Comparison of regression models for all predictors

For a first comparison of the calibration performance of the four methods, we show R2-scores and RMSEs in Table 2, rows (a)

to (c), averaged across all 21 sensor nodes. GPR emerges as the best performing method for all three sets of predictor choices,330

reaching R2-scores better than 0.8 for I30 and I45. This highlights that GPR should from now on be considered as an option

in similar sensor calibration exercises. RFR consistently performs worse than GPR, but slightly better than Ridge regression,

which in turn outperforms MLR in all cases, but the differences are fairly small for I15 and I30. A notable exception occurs for

I45, where the R2-score for MLR suddenly drops abruptly to around 0.2. This sudden performance loss can be understood from

the aforementioned ‘curse of dimensionality’: MLR increasingly overfits the training data as the number of predictors increases;335

the existing sample size becomes too small to constrain the 45 regression coefficients (Bishop, 2006; Runge et al., 2012). The

machine learning methods can deal with this increase in dimensionality highly effectively and thus perform well throughout all

three cases. Indeed, GPR and Ridge regression benefit slightly from the additional predictor transformations. This robustness

to regression dimensionality is a first central advantage of machine learning methods in sensor calibrations. Machine learning

methods will be more reliable and will allow users to work in a higher dimensional calibration space compared to MLR. Having340

said that, for 15 input features the performance of all methods appears very similar on first sight, making MLR seemingly a

viable alternative to the machine learning methods. We note, however, that there is no apparent disadvantage in using machine

learning methods to prevent potential dangers of overfitting depending on sample size.
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Input features MLR Ridge RFR GPR

(a) I15 0.74 (6.2) 0.75 (6.1) 0.76 (5.9) 0.79 (5.7)

(b) I30 0.73 (6.3) 0.75 (6.0) 0.76 (5.9) 0.81 (5.4)

(c) I45 0.23 (10.6) 0.75 (6.0) 0.76 (5.9) 0.80 (5.5)

(d) MICS, T, RH -2.9 (28.3) -0.03 (12.6) 0.01 (12.2) -0.12 (13.1)

(e) A43F, T, RH 0.25 (9.7) 0.22 (10.1) 0.44 (8.7) 0.47 (8.4)

(f) B43F, T, RH 0.20 (10.6) 0.39 (9.7) 0.43 (9.5) 0.49 (9.3)

(g) NO/O3/B43F/T/RH 0.68 (6.9) 0.75 (6.2) 0.69 (6.8) 0.77 (6.0)

(h) (g) + A43F 0.72 (6.4) 0.74 (6.2) 0.75 (6.1) 0.79 (5.7)

(i) I30 + B43F (τ=1) 0.78 (5.8) 0.79 (5.6) 0.78 (5.7) 0.84 (5.0)

Table 2. Average NO2 sensor skill depending on the selection of predictors. Shown are average R2-scores and root mean square errors (in

brackets; units µg m−3). Results are averaged over the 21 low-cost sensor nodes with 600 hourly training samples each, and the evaluation

is carried out for 220 test samples each. RH stands for relative humidity, T for temperature.

3.1.2 Calibration performance depending on sample size

We next consider the performance dependence on sample size of the training data (Figure 4). The advantages of machine345

learning methods become even more evident for smaller numbers of training samples, even if we consider case (b) with

30 predictors, i.e. I30, for which we found that MLR performs fairly well if trained on 600 hours of data. The mean R2-

score and RMSE (µg m−3) quickly deteriorate for smaller sample sizes for MLR, in particular below a threshold of less than

400 hours of training data. Ridge regression - its statistical learning equivalent - always outperforms MLR. Both GPR and

RFR can already perform well at small samples sizes of less than 300 hours. While all methods converge towards similar350

performance approaching 600 hours of training data (Table 2), MLR is generally performing worse than Ridge regression and

significantly worse that RFR and GPR.

Further evidence for advantages of machine learning methods are provided in Figure 5 showing boxplots of the R2-score

distributions across all 21 sensor nodes depending on sample size (300, 400, 500, 600 hours) and regression method. While

median sensor performances of MLR, Ridge and GPR ultimately become comparable, MLR is typically found to yield a355

number of poor performing calibration functions with some R2-scores well below 0.6 even for 600 training hours. In contrast,

the distributions are far narrower for the machine learning methods: GPR and RFR do not show a single extreme outlier even

after being trained on only 400 hours of data, providing strong indications that the two methods are the most reliable. After

600 hours, one can effectively expect that all sensors will provide R2-scores > 0.7 if trained using GPR. Overall, this highlights

again that machine learning methods will provide better average skill, but also are expected to provide more reliable calibration360
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functions through co-location measurements independent of sensor device and the peculiarities of the individual training and

test data set.
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Figure 4. Error metrics as a function of the number of training samples for I30, as labelled. The figure highlights the convergence of both

metrics for the different regressions methods as the sample size increases. Note that MLR would not converge for I45 owing to the curse

of dimensionality. This tendency can also be seen here for small sample sizes, where MLR rapidly loses performance. Results are averaged

over the 21 low-cost sensor nodes with 600 hourly training samples each, and the evaluation is carried out for 220 test samples each.
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Figure 5. Node-specific I30 R2-scores depending on calibration method and training sample size, evaluated on consistent 220-hour test

datasets in each case (see main text). The boxes extend from the lower to the upper quartile; inset lines mark the median. The whiskers

extending from the box indicate the range excluding outliers (fliers). Each circle represents the R2-score on the test set for an individual node

(21 in total). For MLR, some sensor nodes remain poorly calibrated even for larger sample sizes.
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3.1.3 Calibration performance depending on predictor choices and NO2 device

Tests (a) to (c) listed in Table 2 indicate that the machine learning regressions for NO2, specifically GPR, can benefit slightly

from additional logarithmic predictor transformations, but that adding exponential transformations on top of these predictors365

does not further increase predictive skill, as measured through the R2-score and RMSE. Incorporating the logarithmic trans-

formations, we next tested the importance of various predictors to achieve a certain level of calibration skill (rows (d) to (i) in

Table 2). This provides two important insights: firstly, we test the predictive skill if we use the individual MICS and Alphasense

NO2 sensors separately, i.e. if individual sensors are performing better than others in our calibration setting and if we need all

sensors to obtain the best level of calibration performance. Secondly, we test if other environmental influences such as humidity370

and temperature significantly affect sensor performance.

We first tested three set-ups in which we used only the sensor signals of the two cheaper MICS devices (d) and then set-ups

with the more expensive Alphasense A43F (e) and B43F (f) devices. Using just the MICS devices, the R2-score drops from

0.75-0.81 for the machine learning methods to around zero, meaning that hardly any of the variation in the true NO2 reference

signal is captured. Using our calibration approach here, the MICS would therefore not be sufficient to achieve a meaningful375

measurement performance. The picture looks slightly better, albeit still far from perfect, for the individual A43F and B43F

devices for which R2-scores of almost 0.5 are reached using non-linear calibration methods. We note that the linear MLR and

Ridge methods do not achieve the same performance, but Ridge outperforms MLR. The most recently developed Alphasense

sensor used in our study, B43F, is the best performing standalone sensor. If we add the NO/O3 sensor and the humidity and

temperature signals to the predictors - case (g) - its performance alone almost reaches the same as for the I30 configuration.380

This implies that the interference with NO/ozone, temperature and humidity might be significant and has to be taken into

account in the calibration, and that if only one sensor could be chosen for the measurements, the B43F sensor would be the

best choice. By further adding the A43F sensor to the predictors the predictive skill is only mildly improved (h). Finally,

we note that, in this stationary sensor setting, further predictive skill can be gained by considering past measurement values.

Here, we included the one-hour lagged signal of the best B43F sensor (i). This is clearly only possible if there is a delayed385

consistency, or autocorrelation, in the data, which here leads to the best average R2 generalization score of 0.84 for GPR, and

related gains in terms of the RMSE. While being an interesting feature, we will not consider such set-ups in the following,

because we intend sensors to be transferable among locations, and that they should only rely on live signals for the hour of

measurement in question.

In summary, using all sensor signals in combination is a robust and skilful set-up for our NO2 sensor calibration and is390

therefore a prudent choice, at least if one of the machine learning methods is used to control for the curse of dimensionality. In

particular, the B43F sensor is important to consider in the calibration, but further calibration skill is gained by also considering

environmental factors, the presence of interference from ozone and NO, and additional NO2 devices.
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3.2 PM10 sensor calibration

In the same way as for NO2, we tested several calibration settings for the PM10 sensors. For this purpose, we consider the395

measurements for the location CarPark, where we co-located three sensors (IDs 19, 25 and 26) with a higher cost device

(Table 1). However, after data cleaning, we have only 509 and 439 samples (hours) for sensors 19 and 25 available, respectively,

which our NO2 analysis above indicates is too short to obtain robust statistics for training and testing the sensors. Instead we

focus our analysis on sensor 26 for which there are 1314 hours of measurements available. We split this data into 400 samples

for training and cross-validation, leaving 914 samples for testing the sensor calibration. Below we discuss results for various400

calibration configurations, using the 24 predictors for PM10 (section 2.3) and the same four regression methods as for NO2.

The baseline case with just 24 predictors is named I24, following the same nomenclature as for NO2. I48 and I72 refer to the

cases with additional logarithmic and exponential transformations of the predictors according to equations (9a) and (9b). In

addition, we test the effects of environmental conditions, as expressed through relative humidity and temperature, by excluding

these two variables from the calibration procedure, while using the I48 set-up with the additional log-transformed predictors.405

The results of these tests are summarized in Table 3. For the baseline case of 24 non-transformed predictors, RFR (R2 =

0.70) is outperformed by Ridge regression (R2 = 0.79) and GPR (R2 = 0.79). This is mainly the result of the fact that some

of the pollution values measured with sensor 26 during the test period lie outside the range of values encountered at training

stage. RFR cannot predict values beyond its training range (i.e. it cannot extrapolate to higher values) and can therefore not

predict those values accurately (see also Zimmerman et al., 2018; Malings et al., 2019). Instead, RFR constantly predicts the410

maximum value encountered during training in those cases.

Predictors MLR Ridge RFR GPR

(a) I24 0.28 (13.0) 0.79 (6.9) 0.70 (8.3) 0.79 (7.1)

(b) I48 0.70 (8.4) 0.80 (6.8) 0.70 (8.3) 0.76 (7.4)

(c) I72 0.47 (11.1) 0.80 (6.8) 0.70 (8.3) 0.79 (7.0)

(d) I48 - RH, T 0.76 (7.6) 0.78 (7.2) 0.67 (8.8) 0.75 (7.6)

Table 3. Sensor skill depending on the selection of predictors for PM10 sensor 26 at location CarPark. Shown are the R2-scores and RMSEs

(in brackets) evaluated over 914 hours of test data, after training and cross-validating the algorithms on 400 hours of data. RMSEs are given

in µg m−3. In (d), relative humidity (RH) and temperature (T) are removed from the calibration variables to test their importance for the

measurement skill.

However, this problem is not entirely exclusive to RFR, but is inherited by all methods, with RFR only being the most

prominent case. We illustrate the more general issue, which will occur in any co-location calibration setting, in Figure 6. In

the training data, there are not any pollution values beyond ca. 40 µg m−3 so that the RFR predictions simply level off at that

value. This is a serious constraint in actual field measurements where one would be particularly interested in episodes of highest415
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pollution. We note that this effect is somewhat alleviated by using GPR and even more so by Ridge regression. For the latter, this

behaviour is intuitive as the linear relationships learned by Ridge will hold to a good approximation even under extrapolation

to previously unseen values. However, even for Ridge regression the predictions eventually deviate from the 1:1 line for the

highest pollution levels. This aspect will be crucial to consider for any co-location calibration approach, as is also evident from

the poor MLR performance, despite being another linear method. In addition, MLR sometimes predicts substantially negative420

values, producing an overall R2-score of below 0.3, whereas the machine learning methods appear to avoid the problem of

negative predictions almost entirely. In conclusion, we highlight the necessity for co-location studies to ensure that maximum

pollution values encountered during training and testing/deployment are as similar as possible. Extrapolations beyond 10-20

µg m−3 appear to be unreliable even if Ridge regression is used as calibration algorithm, which is the best among our four

methods to combat extrapolation issues.425

MLR, R=0.72
Ridge, R=0.95
GPR, R=0.95
RFR, R=0.91

Figure 6. Calibrated PM10 values (in µg m−3) versus the reference measurements for 900 hours of test data at location CarPark for the I24

predictor set-up. The ideal 1:1 perfect prediction line is drawn in black. Inset values R are the Pearson correlation coefficients.

A test with additional log-transformations (I48) of the predictors led to test score improvements for the two linear methods

(Table 3), in particular for MLR (R2=0.7) but also for Ridge regression (R2=0.8). This implies that the log-transformations have

helped linearize certain predictor-predictand relationships. Further exp-transformations (I72), and thus also further increasing

the predictor dimensionality, did not lead to an improvement in calibration skill. We therefore ran one final test using the I48

set-up but without relative humidity and temperature included as predictors. This test confirmed that the sensor signals indeed430

experience a slight interference from humidity and temperature, at least considering the machine learning regressions. Notably,

this loss of skill is not observed for MLR for which the R2-score actually improves. A likely explanation for this behaviour is

the curse of dimensionality that affects MLR more significantly than the three machine learning methods so that the reduction in

collinear dimensions (given the sample size constraint) is more beneficial than the information gained by including temperature

and humidity in the MLR regression.435
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In summary, we have found that Ridge regression and GPR are the two most reliable and high-performing calibration

methods for the PM10 sensor. We are able to attain very good R2-scores > 0.7 for all four regression methods though. An

important point to highlight is the characteristics of the training domain, in particular of the pollution levels encountered

during the training data measurements. If the value range is not sufficient to cover the range of interest for future measurement

campaigns, then Ridge regression might be the most robust choice to alleviate the underprediction of the most extreme pollution440

values. However, the power of extrapolation of any method is limited so that we underline the need to carefully check every

training data set if it fulfills such crucial criteria, see also similar discussions in other calibration contexts (Hagan et al., 2018;

Zimmerman et al., 2018; Malings et al., 2019).

3.3 Site transferability

Finally, we aim to address the question of site transferability, i.e. how reliably a sensor calibrated through co-location can be445

used to measure air pollution at a different location. One of the sensor nodes (ID 19) was used for NO2 measurements at both

locations CR7 and CR9, and was also used to measure PM10 at CR9 and CarPark, allowing us to address this question for our

methodology. Note that these tests also include a shift in the time of year (Table 1), which has been hypothesized to be one

potentially limiting factor in site transferability. The results of these transferability tests for PM10 (from CR9 to CarPark and

vice versa) and NO2 (from CR7 to CR9 and vice versa) are shown in Figures 7 and 8, respectively.450

For PM10, we trained the regressions, using the I24 predictor set-up, on 400 hours of data at either location. This emulates

a situation in which, according to our results above, we limit the co-location period to a minimum number of samples required

to achieve reasonable performances across all four regression methods. To mitigate issues related to extrapolation (Figure 6),

we selected the last 400 hours of the time series for location CarPark (Figure 7a), and hours 600 to 1000 of the time series for

location CR9 (Figure 7b). This way we still emulate a possible minimal scenario of 400 consecutive hours of co-location, while455

also including near maximum and minimum pollution values within our training data (given the available measurement data).

We note that alternative sampling approaches, such as random sampling with shuffling of the data, could lead to artificial effects

at validation and testing stage, because of autocorrelation effects that could inflate apparent calibration skill. The maximum

pollution found within the two time slices differ only by ca. ± 10 µg m−3, for which at least Ridge regression should provide

reasonable extrapolation performances. For the resulting predictions at location CarPark, using models trained on the CR9 data,460

we achieve generally very good R2-scores ranging between 0.67 for RFR and 0.78 for Ridge regression. The site-transferred

measurement performance of sensor 19 is therefore almost as good as the one for sensor 26 at the co-location site itself

(Table 3), i.e. we cannot detect any significant loss in measurement performance due to the site transfer. A surprising element

is that MLR performs almost as good as Ridge regression in this case, whereas it performed poorly for sensor 26, where it only

achieved an R2-score of 0.28 (Table 3). This underlines our previous observation that the performance of MLR is more sensitive465

to the specific sensor hardware, with sometimes low performance for relatively small sample sizes (Figure 5). However, our

results also show again that linear methods appear to generally perform well for our PM10 sensors, with Ridge regression

being the most reliable and high-performing choice overall. These results are further supported by calculations concerning the

detection of only the most extreme pollution events in the time series, see also the definition of such events described in the
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caption of Figure 7. We characterize such events in the form of their statistical recall in our sensor measurements (the fraction470

of extreme pollution events in the reference time series that are also identified by our calibrated sensors) and precision (the

fraction of extreme events identified by our sensors that are indeed also extreme events in the reference time series) and show

the results as inset numbers in Figures 7 and 8. Overall, these site-transfer PM10 results from CR9 to CarPark imply that

sensors calibrated through co-location can achieve high measurement performance distant from the co-location site.
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Reference
MLR  R2 = 0.75, recall = 0.88, precision = 0.86
Ridge  R2 = 0.78, recall = 0.85, precision = 0.83
GPR  R2 = 0.76, recall = 0.85, precision = 0.74
RFR  R2 = 0.67, recall = 0.81, precision = 0.66

Reference
MLR  R2 = 0.53, recall = 0.71, precision = 0.57
Ridge  R2 = 0.52, recall = 0.71, precision = 0.61
GPR  R2 = 0.44, recall = 0.72, precision = 0.60
RFR  R2 = 0.37, recall = 0.72, precision = 0.61

Figure 7. Tests of PM10 sensor site transfers using calibration models trained on 400 hours of data. (a) Predictions for the four regression

models (as labelled) and reference measurements at location CarPark, using models trained at CR9, and (b) at location CR9, using models

trained on data measured at CarPark. The inset values provide the R2-scores for each method relative to the reference as well as the corre-

sponding recall and precision for the detection of the strongest pollution events, which are typically of particular interest in real life situations

(here defined as events when two values within the last three hours exceeded a threshold of 35 µg m−3). For compactness, we only show

data for times at which both reference and low-cost sensor data was available, and label these hours as a consecutive timeline.

However, we do find that site transferability is not always as straightforward as found for this particular case. For example,475

for the inverse transfer using models trained at CarPark and predicting PM10 pollution levels at CR9, we find lower R2-scores

overall. There is consistency in the sense that MLR and Ridge remain the best performing methods for sensor 19 with R2-

scores of around 0.5, but the sensors now miss several significant pollution events in the time series. We note, however, that

many of the most extreme pollution events are still detected, which is evident from the still relatively high precision and recall
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scores for all methods. These results underline that in general at least a good performance can be achieved with co-location480

calibrations, but that there are also significant challenges posed by site transfers. In particular, the problem is not necessarily

symmetric among sites, i.e. the skill of the method can depend on the direction of the transfer, even if the pollution levels at

both sites are similar. We therefore hope that our insights and results will motivate further work in this direction, with the aim

to identify possible causes of such effects. We discuss some of the possible reasons for this behaviour in sect. 4.
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Reference
MLR  R2 = -0.07, recall = 0.37, precision = 0.69
Ridge  R2 = 0.32,  recall = 0.98, precision = 0.49
GPR  R2 = 0.62,  recall = 0.61, precision = 0.60
RFR  R2 = 0.62,  recall = 0.57, precision = 0.72

Reference
MLR  R2 = 0.31, recall = 0.08, precision = 0.56
Ridge  R2 = 0.53, recall = 0.05, precision = 1.00
GPR  R2 = 0.51, recall = 0.00, precision = 0.00
RFR  R2 = 0.36, recall = 0.00, precision = 0.00

Figure 8. Tests of NO2 sensor site transfers using calibration models trained on all available samples for locations CR7 and CR9. (a)

Predictions for the four regression models (as labelled) and reference measurements at location CR7, using models trained on data from

CR9, and (b) vice versa. The inset values provide the R2-scores for each method relative to the reference as well as the corresponding recall

and precision for the detection of the strongest pollution events, which are typically of particular interest in real life situations. Since the two

locations were subject to very different pollution ranges (note the different value ranges on the y-axes), these are defined in (a) as 45 µg m−3

and in (b) as 90 µg m−3, and we indicate these thresholds by gray dashed lines. An extreme pollution event occurs when the threshold is

exceeded for two of the last three hours. For compactness, we only show data for times at which both reference and low-cost sensor data was

available, and label these hours as a consecutive timeline.

Similarly, we find promising results for the NO2 sensor site transfer using the I30 predictor set-up (Figure 8). The key485

challenge for the sensor transfer from CR7 to CR9 is that the maximal pollution levels at the two locations differ substantially,

with peak concentration being around 100 µg m−3 greater at CR9. To allow for the best possible learning opportunities for the
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regression algorithms, we therefore used all available samples for training, which are 1482 samples at CR9 and 829 samples at

CR7. This leads to overall good performance of the non-linear RFR and GPR methods at location CR7 using models trained at

CR9. As no extrapolation is necessary, these methods achieve a good performance of R2-scores > 0.6 and also a good balance490

of precision and recall. The results are, however, slightly worse than for the same site calibrations (Table 2). Ridge regression

has a tendency to overpredict NO2 pollution levels in this particular case, likely because it cannot capture some non-linear

effects that would have limited the prediction values. As a result, it also reproduces almost all extreme pollution events where

the concentration of NO2 exceeds 45 µg m−3 (recall =0.98) but also predicts many false pollution events (precision=0.49).

Despite the large sample size, MLR performs poorly for both site transfers (R2=0.07 and -0.31). In particular, MLR un-495

derpredicts, sometimes providing even impossible negative pollution estimates, at CR7 whereas it provides several runaway

positive values at CR9 (Figure 8). However, at CR9 all methods struggle with the impossible challenge of extrapolation far

outside their training domain, which effectively is an extreme demonstration of the effects of an ill-considered training range

(cf. Figure 6). Among the machine learning methods, the effect is as expected most prominent for RFR (R2=0.36), which

cannot predict any pollution values beyond those encountered at training stage. This is a serious limitation and means that the500

method scores nil on precision and recall of any extreme pollution events at CR9 where NO2 levels exceeded 90 µg m−3. GPR

is slightly better at extrapolating beyond its training domain (compare also Figure 6) but still not good enough to reproduce

any of the extreme pollution events, giving rise to equally low precision and recall. Ridge regression, as a regularized linear

method, performs best in the sense that it is able to reproduce at least a few of the extreme events (recall=0.05) and predicting

no false extreme events (precision=1.0), while still achieving an R2-score of 0.53. Nonetheless, it is clear from the time series505

in Figure 8 that none of the regression methods works for this site transfer, simply because of the too large extrapolation range.

4 Discussion and conclusions

We have compared four different regressions methods to calibrate a number of low-cost NO2 and PM10 sensors against

reference measurement signals, by means of co-location at three separate sites in London, UK. An summary of the various

features of each regression algorithm is given in Table 4. Comparing the four regression methods our main conclusions are:510

1. For the 21 NO2 sensor nodes, Gaussian Process regression (GPR) is generally performing best at the same measurement

site, followed by Ridge regression, Random Forest regression (RFR), and Multiple Linear regression (MLR). For a single

sensor PM10 calibration, we find that Ridge regression and GPR attain about the same measurement performance, with a

slight edge for Ridge regression. We note that in particular the relative performance of GPR differs greatly from a recent

study by Malings et al. (2019), likely due to our different choice of kernel design.515

2. Special care must be taken of the calibration conditions, in particular if sensors are thereafter used for measurements

in areas where higher pollution levels are to be expected. The linear Ridge method can best mitigate the catastrophic

measurement failure in such extrapolation settings, for both NO2 and PM10 measurements, but also fails if measurement

signals deviate by more than around 10-20 µg m−3 from the maximum pollution level in the training data. For our NO2
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measurement with site transfer, we find that the non-linear methods GPR and RFR can outperform Ridge regression,520

assuming that the training pollution range encapsulates the range of values encountered at the new site. For the PM10

sensor calibrations and corresponding site transfers, we find that Ridge regression is the highest performing and most

reliable calibration algorithm overall.

3. All three machine learning methods (Ridge, GPR, and RFR) generally outperform, or perform as least as good as,

MLR. The machine learning methods are also more reliable if many signals are used for calibration, or if the number525

of measurement samples is relatively small. MLR suffers most significantly from the curse of dimensionality in those

settings and can produce highly erroneous results.

4. Under careful consideration of the calibration conditions given expected measurement conditions, the low-cost sensors

typically achieve high performances with R2-scores often exceeding 0.8 on new unseen test data.

Method Non-linear Robustness to curse of dimensionality Same site performance Extrapolation (site transfer skill)

NO2 PM10 NO2 PM10

MLR No Poor Poor-good Poor-good Poor Moderate-good

Ridge No Very good Very good Best Moderate Good

GPR Yes Very good Best Very good Poor-good Moderate-good

RFR Yes Very good Very good Good Poor-good Poor-good

Table 4. Summary and qualitative evaluation of key features of each of the four regression algorithms. The robustness to the curse of

dimensionality refers to how well each algorithm can handle an increase in the number of calibration variables. In addition, we summarize

how well each method performs for our calibrations here if evaluated against test data sampled at the same site as the one used for training,

and after site transfers. The variable performance of GPR (and also RFR) for site transfers is mainly the result of its limited skill to extrapolate

so that its performance will always depend strongly on how representative the training data is in terms of value ranges. We also note that

robustness to the curse of dimensionality (third column) is only considered with respect to the maximum of 72 predictors considered here.

In even higher dimensions more significant differences across the machine learning methods are expected to occur eventually.

On another note, we highlight that we sometimes found significant signals in our test data sets that were not reproduced by our530

low-cost sensor nodes, see e.g. the pollution peak at t≈140 in Figure 7a, even if the measured pollution value lies well within

the training data range. It is hard to assign reasons to this surprising sensor behaviour, as our low-cost sensors are apparently

able to capture most of the other pollution spikes well for the same dataset. One possible reason is a calibration blind spot,

i.e. we encounter a new type of sensor interference which we did not find in the training data. For example, this could be

substantial changes in environmental conditions, or e.g. PM particle composition, which are not captured by the calibration535

function. In our interpretation of results, this would represent again an extrapolation with respect to the predictors and/or the
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predictands. However, we think that this is unlikely, given that the behaviour is not found frequently, at least in this particular

time series. Two other options are (a) imperfect co-location, for example we might have missed an important local pollution

plume by chance, or (b) temporary sensor failures that were removed by the MAD outlier removal, i.e. that our sensors were

temporarily inoperational at the time of a pollution spike that dominated the values for the given measurement hour. Interesting540

aspects to explore as part of future work might be to compare how sensitive site transfer performances are to the measurement

principle of the NO2 and PM10 devices used, and effects of the seasonal cycle (e.g. winter-based calibrations to be used during

summer). We hope that future measurement campaigns can provide further insights into such calibration challenges, and hope

that our study can motivate further work in this direction.

In conclusion, our results underline the potential of machine learning algorithms for the calibration of co-located low-cost545

NO2 and PM10 sensors. At the same time, we highlight several significant challenges that will always have to be considered

in similar calibration processes. This includes the need for a well-adjusted calibration dataset to avoid calibration failure if the

algorithm needs to extrapolate to significantly higher pollution values, and the role of individual choices relating to the combi-

nation of calibration variables and calibration algorithms, e.g. concerning the curse of dimensionality, predictor transformations

and linearity in the predictor-predictand relationships. Recent studies indicate that the issues related to extrapolation can be550

mitigated through the application of hybrid models in which non-linear machine learning models are used within the training

domain and a simpler linear regression approach otherwise (Hagan et al., 2018; Malings et al., 2019). We note that in particular

Ridge regression could be a good compromise, which does not require a somewhat arbitrary hybrid-model definition. Having

said that, we also found that even high-dimensional linear methods have ultimately limited extrapolation skill (Figure 6) so

that the consideration of the training data pollution range remains of fundamental importance. We hope that such insights will555

contribute to ever less expensive and more spatially dense measurements of air pollution in the future, and that our work will

motivate additional measurement campaigns, testing of other calibration algorithms, and further low-cost sensor development.
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