10

15

20

The high frequency response correction of eddy covariance fluxes.

Part 21: the empirical-an experimental approach and its
interdependence with the time-lag estimation

Olli Peltola!, Toprak Aslan?, Andreas Ibrom?, Eiko Nemitz*, Ullar Rannik?, and Ivan Mammarella®

IClimate Research Programme, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland

2Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box
68, 00014 Helsinki, Finland

3Dept. Environmental Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

4UK Centre for Ecology and Hydrology (UKCEH), Edinburgh Research Station, Penicuik, Bush Estate, EH26 0QB, UK

Correspondence: Olli Peltola (olli.peltola@fmi.fi)

Abstract. The eddy covariance (EC) technique has emerged as the prevailing method to observe ecosystem - atmosphere
exchange of gases, heat and momentum. EC measurements require rigorous data processing to derive the fluxes that can be used
to analyse exchange processes at the ecosystem - atmosphere interface. Here we show that two common post-processing steps
(time-lag estimation via cross-covariance maximisation, and correction for limited frequency response of the EC measurement
system) are interrelated and this should be accounted for when processing EC gas flux data. These findings are applicable
to EC systems employing closed- or enclosed-path gas analysers which can be approximated to be linear first-order sensors.
These EC measurement systems act as a low-pass filters on the time-series of the scalar y (e.g. CO2, H5O) and this induces a
time-lag (¢;,r) between vertical wind speed (w) and scalar  time series which is additional to the travel time of the gas signal
in the sampling line (tube, filters). Time-lag estimation via cross-covariance maximisation inadvertently accounts also for #;,
and hence overestimates the travel time in the sampling line. This results in a phase shift between the time-series of w and Y,
which distorts the measured cospectra between w and y and hence has an effect on the correction for dampening of EC flux
signal at high frequencies. This distortion can be described with a transfer function related to the phase shift (/,,) which is
typically neglected when processing EC flux data. Based on analyses using EC data from two contrasting measurement sites,
we show that the low-pass filtering induced time-lag increases approximately linearly with the time constant of the low-pass
filter, and hence the importance of H, in describing the high frequency flux loss increases as well. Incomplete description of
these processes in EC data processing algorithms results in flux biases of up to 10%, with the largest biases observed for short
towers due to prevalence of small scale turbulence. Based on these findings, it is suggested that spectral correction methods

implemented in EC data processing algorithms are revised to account for the influence of low-pass filtering induced time-lag.

1 Introduction

The eddy covariance (EC) is the standard micrometeorological technique for measuring vertical turbulent fluxes of momen-

tum, heat and gases in the atmospheric surface layer i 5 Aubinet et al., 2012b). Under certain conditions
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(flat terrain, homogeneous and stationarity turbulent flows, source/sink homogeneity, absence of chemical sources/sinks), the
measured EC fluxes represent direct and continuous estimates of the surface exchange of energy and matter between the surface
and the atmosphere, and are then widely used to estimate energy and water balances, as well as carbon budget of different type
of ecosystems (Baldocchi, 2003; Vesala et al., 2008; Mammarella et al., 2015).

Gas flux measurements are made using a three-dimensional sonic anemometer and a gas analyser, which are able to provide
fast-response measurements of turbulent fluctuations of vertical wind velocity and gas concentration {Aubinetet-al20H2a)
(Aubinet et al., 2012b). All EC systems, including open-path, enclosed-path or closed-path gas analysers, act as low pass filters,
and thus cause a systematic bias to flux estimates. Flux loss at high frequency is due to the incapability of the measurement
system to detect small-scale variation. The main reasons for co-spectral attenuation are inadequate frequency response of the
sensor, sensor separation and line averaging, as well as, in closed-path systems, the sampling of air treugh-through tubes and
filters.

The frequency response correction is usually performed based on a priori knowledge of the system transfer function and the

unattenuated cospectrum:

2 00X d
crp— d

= . (1)
ff);z CovXHypy df

Here CF is the estimated spectral correction factor, C'o"-X the normalised unattenuated cospectrum between scalar () and
vertical wind speed (w), f the frequency, Hj, s the total transfer function describing the low-pass filtering, and f; and f> are the
integration limits that are determined by the length of the averaging period and Nyquist frequency, respectively. The correction,
performed by multiplying the measured covariance by the factor CF, always increases the absolute flux magnitude. Note that
the tow-frequeney-high-pass transfer function (Rannik and Vesala, 1999) is not included in Eq. (1), as here we focus only on
the low-pass filtering effect of the EC system. The high-frequeney-low-pass filtering transfer function Hj,¢ can be derived
either theoretically or empirically (Foken et al., 2012a). The correction is in general different for momentum flux, sensible and
latent heat fluxes and the various gas fluxes, and is specific to each EC system. In the theoretical approach, the atmospheric
surface layer co-spectral models (Moncrieff et al., 1997) are used, and H, s is calculated as a convolution of specific transfer
functions representing different causes of flux loss, the equations for which can be found in Moncrieff et al. (1997) and Moore
(1986). This approach works well for correcting the fluxes of momentum and sensible heat, as well as gas fluxes measured by
open-path systems. Further, Horst (1997) and Massman (2000) have proposed alternative theoretical approaches, providing an
analytical estimation of correction factors.

Alternatively, the empirical approach can be used, where the model cospectra and Hy, ¢ are estimated using in situ measure-
ments. This is the preferable approach for closed-path systems, where additional effects related to the inlet dust filters and rain
caps (Aubinet et al., 2016; Metzger et al., 2016), potential variations in the sampling line flow rate, and absortion/desorption
processes inside the sampling tube (Ibrom et al., 2007a; Nordbo et al., 2014; Runkle et al., 2012) may eontributed-contribute

to the EC system cut-off frequency, introducing transfer functions which are difficult to estimate a priori.
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For this approach, different methods have been proposed for retrieving Hj;,r from the measured power spectra or cospectra
of the sonic temperature 7" and the target gas dry mole fraction (Fratini et al., 2012; Ibrom et al., 2007a; Mammarella et al.,
2009; Nordbo et al., 2014). While the use of power spectra is the method recommended by the ICOS methodology (Sabbatini
et al., 2018; Nemitz et al., 2018) and is implemented in the EddyPro software package, other studies and software packages
(EddyUH) have supported the use of measured cospectra (Aubinet et al., 2000; Mammarella et al., 2009, 2016) for the empirical
retrieval of Hy, p. The companion paper (Aslan et al., 2020) has investigated methodological issues and flux uncertainty related
to these two methods under different attenuation conditions and signal-to-noise ratio scenarios.

In EC systems, particularly those using closed-path gas analysers, the measurements of vertical wind velocity and gas
concentration are not co-located, and a time delay between the two signals exists (Aubinetet-al;2042a)(Aubinet et al., 2012b)
. The standard procedure is to determine this time delay for each averaging period (typically 30 minutes) by maximising the
related cross-covariance function (in absolute terms), and taking the corresponding lag as the true signal delay. However, this
time shift between the two signals depends not only on the system setup (e.g. air sample travel time from the inlet to the IRGA
sampling cell, separation distance between the inlet and the centre of the sonic anemometer path), but it can additionally reflect
the low-pass filtering of the measured signal (Massman, 2000; Ibrom et al., 2007b, a).

In this study, we investigate how the low-pass filtering induced phase shift affects the estimation of the high frequency flux
loss, and we show the implications that occur when Hyj, ¢ time constants are empirically derived from measured power spectra
or cospectra, and related CFs values are applied to covariances estimated from the cross-covariance maximum. Finally, we
present a method to take the phase shift effect into account when processing EC data. Towards these aims, we use EC data
collected above a forest canopy (Hyytidld) and a wetland (Siikaneva) in Finland covering a large range of attenuation conditions

and integral turbulent time scale characteristics.

2  Theory
2.1 Transfer functions

The measured cross-spectrum (C'r,,,) between the fluctuations of vertical wind speed +5-and the attenuated and lagged scalar

an be described by (e.g. Massman (2000)):

Orm = [Zy] [y Zy | e~ 0rhus )

where Z,, and Z, are Fourier transforms of the time series of vertical wind speed (w'and-) and scalar (x’) fluctuations which
are perfectly in phase and not attenuated, h,, is the Fourier transform of the filter function that describes the response of the
instrument measuring the scalar time series, j = v/—1 and Dphys = Whphys, Where tph, s 1S a constant time shift (s) between
w’ and x’ and w = 27 f is the angular frequency, with f representing the frequency (Hz). The superscript * denotes complex
conjugation. Equation (2) describes the cross-spectra measured with a typical EC system employing closed-path gas analyser
where the scalar fluctuations are attenuated (h,,), and delayed in time (t,p,s) With respect to w’ due to the gas sampling system

(tubes, filters) and horizontal sensor separation. The signal travel time in the gas sampling line (¢,4ys) could be approximated
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from the volume of the sampling line and flow rate. Note that we assume that the sensor measuring w’ is perfect without any
distortions in the measured w’ time series. This assumption does not limit the generality of the findings below. We also neglect
any influence of sensor separation (Horst and Lenschow, 2009) or high-pass filtering on flux attenuation.

Following, e.g., Horst (1997) and Massman (2000), the scalar sensor is approximated to be a linear first-order sensor for
which h, can be written as
I )

B 1—jwr’

where 7 is the time constant (s) of the filter, also called response time. Note that Z,, Z; is the true cross-spectrum (C'r) between
unattenuated w’ and X’ time series which are in phase and it has a real (cospectrum C'0) and an imaginary (quadrature spectrum
Q) part (Cr=2,,Z; = Co+ jQ). Recall also that the integral of C'o equals the unattenuated covariance w’y’, i.e. the vertical
turbulent flux of scalar x. Following previous studies (Horst, 1997; Massman, 2000), the quadrature spectrum (()) can be
assumed to be zero for stationary turbulent flow and hence C'r=2,, Z; ~ C'o. Now, using Euler’s formula and some derivation
(see Appendix A), we find

O — COS Pphys — WT SIN Pphys Co— _SIN Pphys +WT COS Pphys
" 1+w?r? J 1+ w272

Co=Com~+jQm, 4

where the first term on the right equals the measured cospectrum (Co,,,) and the second term the measured quadrature spectrum
(Qm). Note that whilst () was assumed to be negligible, @), is in fact not equivalent to zero even when ¢,pys = 0, i.e. when
the travel time of scalar x’ signal in the sampling system is zero. This means that w’ and the attenuated %’ (*denotes attenuation
throughout the text), depending on frequency, can be out of phase due to low-pass filtering of Z, with h,. This has already
previously been noted (e.g. Massman, 2000; Massman and Lee, 2002; Wintjen et al., 2020). Now, simply based on the real part

of Cry,, we can define a transfer function for the first-order system (H) as

1
- - 5
1+ w272’ )
and a transfer function (H,) for a generic phase shift ¢ as (Massman, 2000):
Hp, = cos¢ —wrsing. (6)

These two transfer functions together describe how the measured cospectrum (Co,,,) deviates from the cospectrum calculated
from ideal measurements free from any attenuation and time shifts (Co).

Similarly, forming the cross-spectrum of the attenuated scalar with itself yields:

Crinp = [ Zy] [y Zy]" 7
1 * *
T xS = Oy ®)

where Z, Z7 is the unattenuated power spectrum. From this it follows that the same transfer function (i.e. H) applies to both
power spectrum and cospectrum in the case that there is no phase shift between w’ and x’ (i.e. H, equals 1) and the quadrature

spectrum () is zero.
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2.2 Time lag determination via cross-covariance maximisation

TFhe-widely-used-method-to-Ideally the time lag between w’ and x’ would be estimated from the known dimensions of the gas
sampling system and flow rate, in addition to other components causing time delay between signals. However, it is in practise
difficult to keep track of all the components causing the time delay and hence a practical solution has been to estimate the time

lag between w’ and X’ via cross-covariance maximisation. This can be considered to be equivalent to finding a time shift ¢ (and

hence ¢ = wt) that maximises the integral of C'o,,, above (i.e. maximises the covariance between w’ and {'):

7 cos(wt) — wtsin(wt) =
/ T Codw =w'x'(t) )
0

The original aim of this cross-covariance maximisation is to account for the time lag between the time series w’ and X’ that
is induced by sampling lines (air filters, tubing) and horizontal sensor separation, in other words to find such time lag that
removes the e~/%»mvs term in Eq. (2). After such successfully accounting for the travel time (tphys), the attenuation of the
measured cospectrum Co,,, (and hence flux) would be described only by H, instead of H and H,, (see Eq. (4)), since the time
lag estimation sets H,, = 1. However, the filter described by Eq. 3 results in a phase shift and hence produces an additional
time lag between w’ and X/, i.e. t;,. This can be seen from Eq. (4): Q,, differs from zero when ¢ = 0 (see also Massman
(2000); Massman and Lee (2002); Wintjen et al. (2020)). Cross-covariance maximisation inadvertently derives the sum of
tphys and ty, ¢, which implies that the time lag determined by cross-covariance maximisation is not the desired transport time
lag. Using the sum of ¢, and ;,¢ instead of ¢, induces a non-negligible negative ¢ in Eq. (4). Hence when shifting
the time series according to the cross-covariance maximisation, the transfer function related to the phase shift (/) can no
longer be neglected and should be calculated using ¢ = —wt;,f, Where #;,7 is the bias in the time lag when estimated via
cross-covariance maximisation, in other words the low-pass filtering induced time lag (note the minus-sign, since H,, accounts
for the overestimated time lag).

As the maximal possible cospectral energy content per unit frequency can be described with the amplitude spectrum (A4,,, =
\/W), it can be assumed that after the cross-covariance maximisation (time series shifted by ¢,5ys + tipf), Com can
be approximated by A,,. It is straightforward to derive A,,, from Eq. (4):

Ap =+/Co2,+Q2, = __Co VHCo. (10)

Hence A,, is attenuated with v/ H instead of H which describes the attenuation of Co,, in the case that there is no phase
shift between w’ and X’ as shown above. This suggests that after cross-covariance maximisation v/ H approximates H H,,
and the correct transfer function for cospectrum calculated after cross-covariance maximisation. Nete-However, v I is not

equivalent to H H,, This relates to the fact that (), cannot be nullified with a constant time shift since low-pass filterin

induces a frequency-dependent time shift M, see Massman (2000)). If @),,, could be nullified, then Co,, = A

Eq. (10)) and the attenuation of cospectra could be described accurately with v/H . Note also that Eq. (10) applies universally,
independent of ¢.

S€C
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The dependence between low-pass filtering induced time lag (¢;,) and filter response time (7) was estimated using the
approximation H H), ~ VH or Hy,~ \/% For this analysis the phase transfer function H,, was approximated by using the
series expansion of the terms in H,, (Eq. 6). This approximation resulted in H, ~ 1 — §(wty,s)? 4+ w(wty,z). Similarly, \/%
can be approximated by 1+ %(wT)Z. Equating these two approximations up to the second order yields a quadratic equation
where the frequency dependence cancels out: tfp F 2Tty + 72 = 0. The solution of this simple equation gives ¢;,y = 7. Thus,
up to the second order approximation, which holds roughly up to the frequency value w = 1, the low pass filtering induced time

lag equals the time constant of the filter. Note, however, that at this frequency range (w between 0 and 1) the filtering effect

is very weak. The dependence between ¢;,; and 7 can be determined also by numerically solving H,, ~ which equals

is proportional to 7, i.e. #;,

where C' is a proportionality constant. These analyses are continued in Sect. 4.1. Note that the dependency between ¢;,, » and
7 derived here and in Sect. 4.1 was not used in the estimation of correction factors (see Sect. 3.2.1), but merely to analyse the
factors controlling the dependency.

3 Materials and methods
3.1 Measurement sites

Measurements from the Siikaneva fen and the Hyytiéla forest site (SMEAR II) were used. Both stations are part of Integrated
Carbon Observation System (ICOS) measurement station network.

The SMEAR II station is situated in Southern Finland (61°51’ N, 24°17’ E; 181 m a.s.l.). The station is surrounded by
extended areas of coniferous forests and the EC tower is located in a 57-year-old (in 2019) Scots pine (Pinus sylvestris L.)
forest with a dominant tree height of ca. 19 m. The EC measurements were performed with 10 Hz sampling frequency at 27
m height, whereas the zero plane displacement height (d) was 14 m. The wind speed components and sonic temperature were
measured by a 3-D ultrasonic anemometer (Solent Research HS1199, Gill Ltd, Lymington, UK), while carbon dioxide and
water vapor mixing ratios were measured by an infrared gas analyzer (LI-7200, LI-COR Biosciences, Lincoln, NE, USA). A
0.77 m long tube (4 mm inner diameter) was used to sample air for the gas analyzer with a nominal flow rate of 10 1 min_!.
The centre of the sonic anemometer was displaced 20 cm horizontally and 1 cm vertically from the intake of the gas analyzer.
The measurement setup was designed to closely follow the ICOS EC measurement protocols (Franz et al., 2018; Rebmann
et al., 2018). The measurements were conducted between May and August 2019.

The Siikaneva fen site is located in Southern Finland (61°49.9610' N, 24°11.5670" E; 160 m a.s.l), consisting mainly of
sedges (Eriophorum vaginatum, Carex rostrata, C. limosa) and Sphagnrum-speeiesSphagnum species, namely S. balticum, S.
majus and S. papillosum with the-a height of ca. 10-30 cm. Further details about the site can be found in Riutta et al. (2007),
Peltola et al. (2013) and Rinne et al. (2018). The EC measurements were conducted between May and August 2013. The data
used in this study were measured with 10 Hz sampling frequency using a 3-D sonic anemometer (Metek USA- 1, GmbH,

Elmshorn, Germany) and a closed-path analyzer (LI-7000, LI-COR Biosciences, Lincoln, NE, USA). The sonic anemometer

RERNAARIARRA
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and the gas inlet were situated at 2.75 m above the peat surface, and the air was drawn to the analyzer through a 16.8 m long
heated inlet sampling line. The center of the sonic anemometer was displaced 25 cm vertically above the intake of gas analyzer.

A short dataset (hereafter Dg, ) measured between 9:30 and 11:30 on 16-Jun 2013 at the Siikaneva site was used in the
method validation (see Sect. 4.2), whilst long-term datasets from both Siikaneva (hereafter Dg,) and Hyytiéld (hereafter D)
were used to evaluate the accuracy of different spectral correction methods and their effect on CO5 and HyO fluxes (see Sect.
4.3).

3.2 Data processing

High frequency EC data from the two sites were processed in order to evaluate 1) the accuracy of different spectral correction
methods and 2) their effect on gas (CO2 and H2O) flux estimates at these sites. The processing steps followed commonly
accepted routines: 1) data were despiked using a method based on the running median filter (Brock, 1986; Starkenburg et al.,
2016), 2) coordinates were rotated using double-rotation which aligned one of the horizontal wind components with the mean
wind setting the mean vertical and cross wind components to zero, 3) gas (CO2 and HyO) mole fractions were converted
point-by-point to be relative to dry air, if not already done internally by the gas analyser (LI-7200), 4) turbulent fluctuations
were extracted from the measurements using block-averaging and 5) time lags between gas or filtered 7' (see Sect. 3.2.2)
and vertical wind time series were accounted for using cross-covariance maximisation. Power spectra and cospectra were
calculated after these processing steps. Spectral corrections and the related correction factors (C'F') were calculated using four
methods described below, see Sect. 3.2.1. After processing, the flux time series were quality filtered by removing periods with
unrealistic sensible heat fluxes or friction velocities and highly non-stationary fluxes (Foken and Wichura, 1996). Site specific
friction velocity thresholds (0.17 and 0.3 m/s for Siikaneva and Hyytidld, respectively) were used to discard gas flux data during
low turbulence periods. Furthermore, at Hyytidld wind directions between 150° and 230° were discarded since here the mast
construction disturbed the air flow. At Siikaneva an omnidirectional sonic anemometer was used mounted to the top of a mast
and hence clearly disturbed wind directions were not identified. After quality filtering 4210 and 4722 30-min periods were
available for analysis from Hyytidld and Siikaneva, respectively.
Atmospheric stability was evaluated using the Obukhov length (L):

ug

L=-—

(1)

)
vkgw’(%
7%

where u, is the friction velocity, v, = 0.4 the von Karman constant, g the acceleration due to gravity and 6,, is virtual potential
temperature. Overline denotes temporal averaging and primes deviations from the mean. From the Obukhov length, the stability

parameter was calculated as ( = %d, where z is the measurement height and d is the zero plane displacement height.

3.2.1 Empirical estimation of the high-frequeney-attenuationlow-pass filtering of the signal

The total transfer function of an EC setup can be estimated empirically from measured w-x and w-T' cospectra:

CoWX w'T'!

H, oo = ————
’ Cow,T w’fc’

Fr, 12)
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or, alternatively, from the power spectra of the measured scalar and 7":

2
He s — A TF’ru 13
P = Spro? (13)

where C'0">X denotes the cospectral density between w and ¥, and w’Y’ represents the covariance between w and Y. Sy ¢ and
0')22 denote the power spectral density and variance of ¥, respectively, and the corresponding terms are defined for 7. When
estimating H, ., and H, ,, the covariances and variances were calculated from unattenuated frequencies (between 5x 1073 Hz
and 5x 1072 Hz) (Foken et al., 2012a; Sabbatini et al., 2018). An additional normalisation factor (F},) was also incorporated
in order to take into account the fact that the variances and covariances in Eqs. (12) and (13) may be subject to various
high frequency losses (Ibrom et al., 2007a). Here, w and T were approximated to be free from any low-pass filtering effects
and thus Co®"T and St could be used as a reference. H, ., and H, s, were calculated from ensemble-averaged spectra
from measurement periods that fulfilled the following criteria: flux stationarity (Foken and Wichura, 1996) was below 0.3,
u, > 0.1ms™ !, wT7 > 0.02Kms . For CO, it was also required that its turbulent flux was below -0.05 ymolmol ' ms~!
and for HyO it was required that the flux was directed upwards. For HyO the transfer functions were determined in relative
humidity (RH) bins and the 7 and #;,,s values used in calculating C'F' were estimated from exponential fits made to the values
obtained in the RH bins (similarly as for 7 in Mammarella et al. (2009)). In the case of CO, and H»O fluxes, the power spectra
were subjected to noise removal prior to utilising them in Eq. (13) by assuming that the signal was contaminated by white
noise and that at the highest frequencies the power spectra contained only noise. See the influence of different noise removal
techniques on the estimation of high frequency attenuation in our companion paper (Aslan et al., 2020).

Often both H, s and H, ;. are approximated by H with a value for 7 that describes the high-frequeney-attenuation-low-pass
filtering of the EC setup according to Eq. (5). Then the measured flux is corrected for high-frequeney-attenuation-low-pass
filtering by multiplying it with CF (see Eq. (1)). There are different ways to estimate C'o*>X for Eq. (1). Here we limited the
analysis only to periods when the absolute sensible heat fluxes were higher than 15 W m~?2 and estimated C'o™"X in Eq. (1)
with the measured C'o®7' following Fratini et al. (2012).

We used four methods to estimate EC system response times (and additionally ¢,y in Method 4) and then to calculate C'F’

(see Table 1). All the four methods are subject to similar limitations, i.e. they are applicable only when the attenuation is not
strong at frequencies close to the cospectral peak frequency. Method 1 follows the ICOS EC data processing protocol (Sabbatini

etal., 2018) and is implemented e.g. in EddyPro after Hunt et al. (2016) (see also https://www.licor.com/env/support/EddyPro/topics/whats-

new.html). Method 2 follows Aubinet et al. (2000) and is implemented in EddyUH (Mammarella et al., 2016). Method 3 follows
Fratini et al. (2012) and implemented in older versions of EddyPro, and Method 4 is the only one that explicitly accounts for the
temporal lag caused by the high-frequeney-low-pass filtering action of the system and is introduced in this study. In the Method
4, both parameters 7 and #;,,r, were estimated by fitting I/ H,, to H, ... Throughout the study, cross-covariance maximisation
was used to account for the lag between scalar and vertical wind speed as typically done in the global flux measurement net-
and the selection of the time lag estimation method may have an effect on the correct shape of the cospectral transfer
function (see Sect. 2). For instance, the cross-covariance moving average method to estimate the time lag introduced in
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Table 1. Methods used in this study to estimate flux losses and related correction factors (C'F") due to low-pass filtering of the scalar signal.
See the definitions for H and H,, in Egs. (5) and (6), respectively. Values for 7 (and #;;,; in method-Method 4) y-were estimated with non-
linear least squares fit to He ps or He s where F, and 7 (and £;,5 in method-Method 4) )-were used as fitting parameters. The additional
normalisation factor F;, took into account any inaccuracies in estimation of variances and covariances in calculation of He ;s or He s (Egs.
(13) and (12)), respectively. The fits were weighted with temperature cospectra, in order to give more weight to frequencies where the scalar

fluxes were high.

Estimation of 7 Fitting parameters ~ H;,, ¢ used in the estimation of C'F’, Eq. (1)  Reference
Method 1 fit H to He ps Fo, T H Sabbatini et al. (2018)
Method 2 fit H to He cs Fn, T H Aubinet et al. (2000)
Method 3 fit H to He ps Fn, T vH Fratini et al. (2012)
Method 4 fit HHpto Heyeo  Fn, T, tipy HH, This study

Taipale et al. (2010) should be related to Method 4 as it is also based on cross-covariance maximisation, whereas for the
approach in Hunt et al. (2016) the correct cospectral transfer function is H (with the caveat that the physical time lag is
estimated accurately).

3.2.2 Low-pass filtering of temperature data

In order to evaluate the performance of the different spectral correction methods presented in Sect. 3.2.1, high frequency T
time series were attenuated with different values of 7 in order to mimic attenuated scalar time series. Similar to the procedure
used by Aslan et al. (2020), 7" time series were converted to frequency domain via a Fourier transform, multiplied by Eq. (3)

and converted back to time domain with the inverse Fourier transform. Three different values for 7 were used: 0.1 s, 0.3 s and

0.7 s. The correct value for C'F was obtained from the ratio between w’1” and w1 , Where T was the time series attenuated

with the methodology described above. Note that here w’ 1" was calculated using cross-covariance maximisation in order to
mimic regular EC gas flux processing, meaning that the lag caused by low-pass filtering was taken into account. This correct
value for C'F’ was then compared against C'F’ estimated with the four methods described in Sect. 3.2.1 in order to evaluate the
accuracy of the methods.

4 Results and discussion

4.1 Time lag dependence on attenuation and turbulence time scales

In Sect. 2.2, we explained why the following approximate relationship must hold up to some bound at the high frequency

vp

A .. = (] ; k'w. - ) ' - 1A g = O
tonR i stant—e—H, =~ 1 /v H. Using the assumption that ¢,y = C'7, this equation ean-be-was solved
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Figure 1. Top: the value for the proportionality constant C' (¢;,7 = C'7) obtained when approximating H, ~ 1/ V/H at different frequency
ranges. Bottom: H, and 1/ v H calculated using the proportionality tips = 0.637. See more details in Sect. 4.1.

numerically for the constant C' as a function of frequency f. Fig. 1 (upper plot) illustrates that such solution is dependent
on frequency and varies over a relatively large interval up to the frequency %2 (the relationship holds well up to such fre-
quency for any 7). This suggests that ?y,; and 7 are not directly proportional, but their relation depends on frequency. In
accordance with the approximations with the Taylor expansion (Sect. 2.2), at low frequencies the constant C' equals one. Fhe
For illustration, the lower plot of Fig. 1 presents the left and right side terms of the approximate equality using-the-constant

eoefficient C—0:63(H,, ~ 1/v/H) calculated using a value 0.63 for the coefficient C. In spite of the large variation of the ex-
act coefficient with frequency shown in the upper plot in Fig. 1, the selected constant value produces very good correspondence

for the whole frequency range —A-suggesting that ¢’ can be approximated to be constant albeit strictly speaking it is not. The
value of C' = 0.63 was obtained by estimating the average time lag in a least square sense over equally spaced frequencies in
logarithmic scale over the interval from 7= 0.01% to %g for a range of time constants from 0.05 to 1 s. We observed that the
optimum coefficient was independent of 7 and equal to 0.63 (with 2-digit accuracy). Note that these analyses were independent
of the actual turbulent signal as they were obtained using the transfer functions only (/7 and H,,).

In addition-to-the-analysis-aboveorder to evaluate the influence of turbulent signal on the dependence between ;¢ and
7, the integral in Sect. 2.2, i.e. Eq. (9), was solved numerically with various combinations of time lag, 7 and (z —d)/U in

order to evaluate which time lag value resulted in maximum value for the integral for a given 7 and (2 — d)/U combination.
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This approach is similar to finding the time lag between signals using cross-covariance maximisation and it identified the
dependence of the low-pass filtering induced lag (¢;,¢) on 7 and the turbulence time scale ((z — d) /U )and-adds-te-the-analysis

abeve-by-incorporating-the-influence-of turbulent-signal-on-the-dependence. For this numerical experiment, 7 varied between

0.05sand 1s, (z—d)/U between 1 s and 10 s and Co was calculated based on a model (similar to the one in Kristensen
etal. (1997) but fitted to Siikaneva observations). Based on this analysis, 7,y depended approximately linearly on 7 (Fig. 2) in

accordance with the analysis above, yet the dependence had an additional weak ;fUd term:

U ,
tipy = 0.737 — 0.155— -+ 0.025(R? = 0.998).

= a7 — b2 4 ¢, where a = 0.73, b= 0.15s and ¢ = 0.02 s. However, this numerical experiment was repeated also for

very high attenuation levels and the found dependence above failed to fully recover ¢;,, ¢ values at high attenuation and this bias
increased with 7 and inverse of turbulence time scale (i.e. U/(z — d)). For example at 7 = 2s and (z — d) /U = 1s the equation
above gave t;,y = 1.2, whereas based on the numerical integration value 1.0 s was obtained, meaning that the dependence
above was not able to accurately describe the low-pass induced time lag at these high attenuation levels. This is likely due to
the fact that also the shape of the cospectrum Co in Eq. (9) has an effect on ¢;,; dependence on 7. At very high attenuation
levels also the peak of the cospectrum is attenuated and this results in a different ¢;,,; dependence on 7 than the equation above
which describes the dependence when attenuation takes place at high frequencies (i.e. inertial subrange).

The discrepancy between the two dependencies between ¢,y and 7 obtained above was likely due to the fact that the latter
took into account also the variability of the turbulent flux with frequency, whereas the former was based purely on transfer

functions. Nevertheless, these results indicate that, for a given site, #;,y can be approximated to be constant at a specific

attenuation (7) level and hence it-ecan-be-used-supporting the estimation of #;,,; as a fitting parameter when-evaluating-the-high
frequeney-response-of-the- EC-system-in the Method 4 when fitting i/ H,, to H, ., (see Sect. 3.2.1 - Methed-4and Table 1).

4.2 Assessment of the flux loss correction methods using an attenuated T time series

The four methods to estimate the CF (Table 1) were evaluated using an artificially attenuated turbulent 7" time series comparing
different values for 7. Figure 3 shows example cross-covariance functions from the Siikaneva site with three different values of
7 applied to the same 2-hour time series. The peak of the w-T cross-covariance shifted to longer positive times (i.e. T lags w)
and the cross-covariance maximum decreased as 7 increased. This is related to the phase shift and flux attenuation caused by
the low-pass filter, respectively. The low-pass filtering was also evident in the corresponding power spectra and cospectra. The
resulting empirical transfer functions in Fig. 4 show that power spectra were more attenuated than the cospectra, when cospectra
were calculated from data where the time lag derived from cross-covariance maximisation was used to shift the time series (as
is typically done when processing EC data). Moreover, the shape of the empirical transfer function derived from the cospectra
differed from Eq. (5). This difference in shape was related to I, and the phase shift caused by the low-pass filter. Note that the
phase shift resulted in negative values for H H, and H, ., at high frequencies, meaning that the related attenuated cospectrum
had both positive and negative values. This implies that attenuated cospectra should not be presented on log-log scales (negative

values cannot be presented on log-scale). Note also that 1 H, is not exactly equal to VH at all frequencies. Thisrelatesto-the
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Figure 2. Low-pass filtering induced time lag (¢, ) plotted against response time (7). t;, values were estimated by numerically integrating
the integral in Sect. 2.2 with various time lag values and evaluating which value resulted in maximum value for various 7 and (z — d)/U

combinations. The dashed line shows 1:1 correspondence. See more details in Sect. 4.1.

could-be-deseribed-aceurately-with-In particular, [ I{,, shows negative values at high frequencies whereas v H —

does not. When the correction factor was calculated with Method 4, which takes into account the low-pass filtering induced

phase shift, the attenuation factors (1/C'F’) agree with the normalised cross-covariance maxima (see Fig. 3). This indicates that
the attenuation of cross-covariance maxima was accurately estimated with this method. However, when H,, was neglected and
the attenuation factors were calculated with H only, then they agreed with cross-covariance values at zero lag as per predicted
by theory (Sect. 2). Note that the time lag discussed here only represents the low-pass filter effect, not other effects that also
alter the time lag. This is only possible because we work with degraded temperature time series, where phase shifts through
low-pass filtering are the only cause for time delays.

The value for 7 used in attenuating the T time series was further varied between 0.05 s and 1 s and used for the same
2-hour time series. The bias in CF calculated with Method 1 increased with 7 (Fig. 5a). The other methods did not produce

as significantly biased estimates for CF when using this example dataset, although Methods 2 and 3 somewhat underestimated

CF (approximately 4 % underestimation when 7=0.9 s) and this underestimation increased with 7. These findings are in
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Figure 3. Cross-covariance between w and T calculated from data measured between 9:30 and 11:30 16.6.2013 at Siikaneva site. T data
were attenuated with Eq. (3) and three different values for 7 in order to demonstrate the effect of filtering on cross-covariance. All the
cross-covariance values were normalised with maximum of unattenuated cross-covariance (i.e. unattenuated covariance). Dots highlight the
maxima. Horizontal dashed lines show the attenuation factor (inverse of correction factor, 1/C'F) values calculated with Method 4 and
dash-dot lines show the attenuation factors calculated with Method 1. Note that the dash-dot lines match the cross-covariance values at zero

lag, whereas dashed lines agree with the cross-covariance maxima.
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Figure 4. Transfer functions (left y-axes) and frequency-weighted and normalised cospectrum (right y-axes) for the same data shown in Fig.
3. Note that here H, v/ H and H H,, were not fitted but calculated using the known values for 7 and ¢;,,5 resulting from the low-pass filtering

of the T time series (Sect. 3.2.2). Nevertheless, H is related to Method 1, H°® to Method 3 and H H,, to Method 4 (see Table 1). Note
also that the cospectrum shown in the figure was calculated from the unattenuated 7" time series in order to demonstrate the frequency range
having the biggest contribution to the flux.
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Figure 5. Comparison of estimated correction factors and response times to the values used to attenuate the 7" time series. The reference

values for the correction factors were calculated as the ratio between w’T” and w'T”, where T is the temperature time series attenuated

according to Sect. 3.2.2. Note that w’ 1" was calculated using cross-covariance maximisation. The time lags obtained from cross-covariance

maximisation and from fitting H H), to H. ., are shown in panel (c). The same data were used as in Figs. 3 and 4.

agreement with Fig. 4: \/H was above and H below the empirical transfer function calculated from the cospectrum (H, e,cs)s
meaning that they underestimated and overestimated the attenuation, respectively. These findings are also in accordance with
Aslan et al. (2020) results with noisy measurements. Note that Method 2 estimated close to correct value for CF' (Fig. 5a)
despite biased estimates for the response time (Fig. 5b) due to the compensation of two errors (biased 7 and incorrect shape
for the cospectral transfer function). Method 4 was able to reproduce the correct value for 7 from H, .5 (Fig. 5) indicating that
the difference between H, . and H, ,, was indeed related to H), and the low-pass filtering related phase shift. The time lags
estimated by Method 4 (i.e. by fitting H H, to H, ) agreed with the ones estimated by maximising the crosscovariance (Fig.
5c¢) also corroborating this conclusion. It should be noted that the step changes in the data that are very visible in Fig. Sc but to
some extent also in Figs. 5a and b are caused by the finite resolution of the underlying data of w and T of 0.1 s.

In order to evaluate the four methods to estimate CF further, turbulent 7" data were low-pass filtered with three values of
7 (0.1 s, 0.3 s and 0.7 s) over several summer months (May-August) at two contrasting EC sites, Hyytidld and Siikaneva.
Then the related flux attenuation was corrected with the four methods and the results were compared against a reference flux
calculated from unattenuated 7" data. Table 2 summarises the relative differences between the four correction methods and
differences can be noted. The performance of all four methods decreases with increasing 7 at both sites, and Method 1 showed
the worst performance, which is in line with the example shown in Fig. 5 and follows the predictions from theory (Sect. 2). Of
the analysed cases, the biggest bias (+8.6 %) was found when applying Method 1 at Siikaneva with 7 = 0.7 s. In general, the
performance of the methods was worse at Siikaneva than at Hyytidl4. This was likely related to the lower measurement height

at Siikaneva (z — d=2.7 m) than at Hyytiéla (z —d=13 m) and thus the comparably larger contribution of high frequencies to the
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Table 2. Mean-relative-Relative difference between the fluxes-based-on-the-differentcorrection-methods-applied-to-mean sensible heat fluxes
attentrated-obtained with the different values—for+—correction methods ((cor-ref)/ref*100 %) and the reference (unattenuated sensible heat

flux). All values are in %.

Site Prescribed 7 Method 1  Method2 Method3  Method 4
Hyytidld 0.1s +0.6 +0.2 +0.1 +0.3
Hyytidla 03s +1.7 +0.6 +0.5 +0.7
Hyytidla 0.7s +3.8 +1.0 +1.0 +1.5
Siikaneva 0.1s +2.4 -0.1 +0.2 -0.05
Siikaneva 03s +5.2 -0.5 -0.4 +0.3
Siikaneva 0.7s +8.6 -1.4 -1.5 +0.2

covariance. At Siikaneva, smaller eddies dominated the turbulent transport and hence the effect of inaccuracies in describing
the high frequency attenuation of the signal was amplified compared with Hyytidl4.

The importance of turbulence scale on the performance of the four methods was evaluated by stratifying the data according
to stability and plotting them against 7/ITS (Fig. 6) where ITS is the integral time scale of w’T”, calculated from the auto-
covariance of w'T” time series by integrating the normalised autocovariance function until its first zero crossing (e.g. Kaimal

and Finnigan, 1994). This ratio describes the ratio of attenuation and turbulent transport scales. It is also worth noting that this

ratio can alternatively be approximated by the ratio of the eut-eff-frequeney(f-—="1H 27+ te-the-cospectral peak frequency
(fm = nmU/(z—d), where n,, is the normalised cospectral peak frequency) to the cut-off frequenc = 1/(2x7)) (Rannik

et al., 2016). High values for 7 /ITS describe periods when the attenuation time scale is large relative to the time scale of turbu-
lent scalar transport, whereas low values correspond to cases when the attenuation time scale is small relative to this turbulence

scale. When CF was estimated with Methods 2 or 3, the relative bias in CF was typically within +3 % and increased linearly

with 7/ITS at Siikaneva. The different behaviour of the two sites in Figs. 6b and 6¢ may be related to differences in spectral
characteristics of turbulent transport at these two sites since measurements in Hyytidld were made above forest (roughness
sublayer flow) and in Siikaneva above short vegetation (boundary layer flow), For Method 4 the bias was within +2 % at both

sites and independent of the 7/ITS ratio. The remaining small bias obtained with Method 4 can be speculated to be related
to the quadrature spectra, which was assumed to be zero, albeit strictly speaking it is not (Aslan et al., 2020). For Method 1
the relative bias in CF scaled with 7/ITS and after normalisation with ITS the data from both field sites collapsed into one
common relationship (Fig. 6a). Horst (1997) derived a simple formula to estimate CF for different situations as a function of

(7/ITS)®, where oo = 7/8 in neutral and unstable cases and o = 1 in stable cases. Similar dependencies could be derived for

the bias in €F-C'F' derived with Method 1. However, these dependencies should not be used to rectify the biased C'F values
rather C'F should be estimated with methods that do not result in biased C'F’ values in the first place.
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Figure 6. Relative bias in the estimated correction factor (CFest) against 7/ITS where ITS is the integral time scale of w'T’. Data were
divided into unstable (¢ < —0.1), stable (¢ > 0.1) and near-neutral (|{| < 0.1) cases before bin-averaging and plotting. Reference values

for the correction factor (CF in the figure) were calculated from the ratio between unattenuated and attenuated covariances. Note that the

different colors refer to different stability conditions and markers to the different sites.

Since the relative bias in CF when estimated with Method 1 scales with 7/ITS, this dependence can be used to assess
how much scalar fluxes are biased with different EC setups when the Method 1 is utilised in the EC data processing. For the
following example calculations we approximate a linear dependence between ITS and (z—d) /U and used the fit to estimate ITS
for different z — d and U combinations. For a short tower (z —d=1.5 m) with moderate wind speed (U =2 m/s) and attenuation
(1 =0.2 5), fluxes are biased by 4% based on the dependency shown in Fig. 6a. For the same tower, higher attenuation (7 = 0.8
s) results in larger bias (9 %) if the Method 1 is utilised. For a tall tower the biases are not as significant since larger eddies
dominate the transport and hence 7/ITS is smaller for a given 7 than in case of a shorter tower. For a tall tower (z — d=20 m),
with moderate wind speed (U = 3 m/s) and attenuation (7 = 0.2 s) the bias is 1-2% and with higher attenuation (7 = 0.8 s) the
bias is 3-4%. These example calculations demonstrate the magnitude of the flux bias resulting from biased spectral corrections

at contrasting EC sites.
4.3 CO- and H5O fluxes corrected with the four methods

The applicability of the results acquired with attenuated 7" was analysed by processing CO5 and H2O fluxes from summer
months at the two sites (Sect. 3.1). The gas fluxes were corrected with the four spectral correction methods in order to assess
the systematic biases stemming from biased spectral corrections. For CO, the fitting of H to H, ,,, of H to H. s and of
HH, to H, s estimated response times of 0.05 s, 0.10 s and 0.13 s at Hyytiéld and of 0.13 s, 0.12 s and 0.18 s at Siikaneva,
respectively. The low-pass induced time lag (f;,f) estimated as a fitting parameter when fitting H H), to H, ., yielded close
to 0.1 s at both sites for CO,. For reference, the fag-times-time lags estimated via cross-covariance maximisation which are

combinations of signal travel times in the sampling line (¢,,,s) and #;,, s yielded on average 1.4 s and 0.2 s at Siikaneva and
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Figure 7. Empirical transfer functions estimated for CO, from ensemble averaged cospectra (H., s, Eq. (12)) and power spectra (H. s, Eq.

(13)) and three fits to the empirical transfer functions. Also the corresponding frequency-weighted normalised average cospectrum related to
heat flux is shown (grey line) in order to illustrate the frequency range with the highest contribution to the scalar fluxes. Data from Siikaneva

were used.

Hyytiild, respectively. For Hyytidld the signal travel time calculated from the sampling tube dimensions and flow rate was 0.06
S,

Based on theoretical considerations (Sect. 2) and results obtained with attenuated 7' time series, H fit to H, .5 (Method
2) was projected to estimate smaller response time than the other two methods that were projected to agree (see e.g. Fig.
5b). Instead, here for CO, the H H), fit to H, s gave longer response times than the other two methods (Fig. 7). For signals
with small attenuation both 7 and ¢, ¢ are likely difficult to estimate accurately by fitting H I, to H, .. The low-pass filtering
induced lag (%;,, r) can attain values only with the temporal resolution of the underlying-dataitsel-data being processed (here 0.1
s) and hence for time series exhibiting small attenuation ¢;, s may well be zero. This would cause H, ;s and H, . to be similar
and hence they would result in similar estimates for the response time, as observed here for CO5. This granular estimation of
t1py might explain why the response times for CO2 did not follow the expectations. It should be also noted that the methods
to estimate the response time have a limited accuracy of estimation stemming from the algorithms used in the estimation,
instrument limitations and meteorological conditions under which the observations are made (Aslan et al., 2020). Furthermore,
the empirical transfer function derived from cospectra (H, ;) contains the attenuation related also to sensor separation (Horst
and Lenschow, 2009), whereas the empirical transfer function estimated from power spectra (H., ;) is related only to gas
analyser induced low-pass filtering.

For H;O, 7 depends on RH (Mammarella et al., 2009; Ibrom et al., 2007a; Runkle et al., 2012) and hence the analysis

was done in RH bins. Figure 8 shows an example of empirically derived transfer functions for HyO at Siikaneva in moderate
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Figure 8. Similar figure as Fig. 7 but for H>O in moderate relative humidity conditions (59%<RH<62%). Note that 7 estimated from He ;.

agrees with 7 estimated from H. s with H H,,. Data from Siikaneva were used.

relative humidity conditions. H, .; showed less high frequency attenuation than H, ,, due to cross-covariance maximisation as
predicted by the theory (Sect. 2). H H), fit to H, . resulted in similar value for 7 as the one obtained by fitting H to H, ;. The
other fitting parameter in H H), fit (t;,r) was 0.14 s indicating the low-pass filtering of H,O time series caused an additional lag
to the HO time series. Note that H does not perfectly describe the shape of H. ;. This is due to adsorption and desorption of
H>0 to sampling tube walls, a process which cannot be described accurately with Eq. (3) (Nordbo et al., 2013). Hence different
transfer functions have been proposed for H,O (De Ligne et al., 2010; Nordbo et al., 2014).

Figure 9 shows results obtained for H>O in different RH bins at the two sites. The H fit to H, .; (Method 2) gave smaller
values for 7 in agreement with the results obtained with attenuated 7' (Seet-—4-2Fig. 5b) and expectations based on the theory
(Sect. 2). The H H), fit to H, s (Method 4) was able to reproduce the HO time lag dependency on RH, yet it estimated system-
atically smaller values for the time lag difference between H,O and CO3 than obtained with cross-covariance maximisation.
The time lag difference between HyO and CO; can be assumed to be related to #;,,y of HyO since HyO is more attenuated than
COs. The difference between HoO and CO- time lags obtained with cross-covariance maximisation showed linear dependence
on estimated response times in relative humidity bins with a similar dependency at both sites (y=0-47x-0:05s-y =ax +b,
where a = 0.47 and b = —0.05 s for Siikaneva and y=0-44x-6:07-s-a = 0.44 and b = —0.07 s for Hyytiéld, where y is the time
lag difference and x response time. Fits were based on orthogonal linear regression). Difference between HoO and CO, time
lags resulted from stronger low-pass filtering of HoO than COy signal and this analysis assumes that the mere travel times
through the sampling lines (i.e. ¢,,s), which do not depend on the low-pass filtering effects, were the same for H,O and COs.

These results are in line with Seet—4-1-Fig. 2 where it was shown that the low-pass filtering induced time lag was primarily
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Table 3. Mean-relative-Relative difference between the different-correction-methods-apptied-to-mean CO2 and H2O fluxes obtained with the
different correction methods ((cor-ref)/ref*100 %). Fluxes corrected with Method 4 was-were used as a reference for the other three methods.

All values are in %.

Site Gas flux Method 1 Method 2 Method 3
All Night Day All Night Day All Night Day

Hyytidld CO2 -0.5 -0.7 -0.5  +0.07 +0.1 +0.08 -0.7 -1.0 -0.7
Hyytidld H20 +0.7 +1.6 +0.7  -1.0 -1.4 -1.0 23 -4.0 -2.3
Siikaneva CO2 +0.4 +0.3 +04  -03 -0.2 03  -24 -1.9 -2.4
Siikaneva H20 +4.1 +4.7 +4.1  -0.6 -0.8 0.6  -1.0 -1.0 -1.0

determined by a linear dependence on 7 with a secondary dependence on turbulence time scale. However, the slopes obtained
above were different from the ones derived in Sect. 4.1.

The C'F values estimated with the four methods agreed at Hyytidlid for low RH periods, but they diverged at high RH periods.
For instance when RH>80 % the four methods gave on average 1.39, 1.29, 1.23 and 1.37 at the Hyytiil4 site, respectively. These
results are in line with the ones obtained with attenuated T time series (Sect. 4.2 and Fig. 5a): when 7 was large, method-Method
1 yoverestimated-and-method-overestimated and Method 3 J-underestimated C'F' similarly as here for HoO at high RH (and
hence large 7). In contrast, for Siikaneva Method 1 gave systematically higher value for the correction factor regardless of RH,
whereas the other three methods gave more similar CF RH dependency. This difference to Hyytidld was likely due to lower 7
values also at high RH (Fig. 9). Note also that the EC measurement setup (measurement height, gas sampling system) was not
identical at the two sites.

On average, the differences between the four different methods to calculate C'F' were small, typically within +3% at both
sites for both gases (CO5 and H5O) (Table 3). The biggest mean relative difference (4.1%) was found for H,O measurements
at Siikaneva site for Method 1. This was likely due to the combination of low measurement height and high attenuation which
resulted in biased CF values, in accordance with the findings obtained with the attenuated T time series (Fig. 6a). Interestingly,
for CO;, the biggest difference at both sites was obtained with Method 3, yielding smaller fluxes than the reference (Method 4).
The difference was bigger than the one obtained with Method 1 which contradicts the findings presented above with attenuated
T (Sect. 4.2 and Table 2) and expectations based on theory (Sect. 2)—, albeit the found differences between the Methods were
generally small. Note that if ;¢ ~ 0, then both power spectra and cospectra are attenuated similarly (i.e. with ff) yielding
Methods 1, 2 and 4 to be similar. Infrared gas analysers for CO2 and HoO can often be mounted close to the inlet and in both
setups considered here inlet lines are fairly short. The measurement of other gases, incl. CH4 and N3O, usually require larger
equipment which often has to operated on the ground and/or some distance away from the mast, requiring longer inlet lines

with slow time-response. In these situations the correct shape of the cospectral transfer function matters a lot more than for the
measurement setups included here and hence the variability between methods is expected to be larger.
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4.4 Correct form for cospectral transfer function

There has been a long-standing debate about what is the correct form for cospectral transfer function when the scalar measure-
ments are done with first-order linear sensor and vertical wind speed is not attenuated. The seminal paper on EC frequency-
response corrections by Moore (1986) described the flux attenuation related to the scalar sensor with VH (see Eq. (5)), which
was later deemed erroneous, e.g. by Eugster and Senn (1995); Horst (1997, 2000) and others. Partly based on similar deriva-
tions as shown here in Sect. 2, the correct form for the cospectral transfer function was argued by Horst (1997, 2000) and
Massman (2000) to be H, instead of v'H . Lately, both forms (H and V/H) have been utilised in the literature (e.g. Fratini
et al., 2012; Foken et al., 2012b; Mammarella et al., 2016; Hunt et al., 2016; Wintjen et al., 2020) without clear consensus on
which one is correct. Part of this confusion is likely related to the fact that some of the past studies have been using incorrect
terminology by using the term cospectral transfer function (Eq. (5)), even though they have derived/utilised transfer function
for the amplitude spectrum (Eq. (10)).

Briefly summarising the findings in this study, it was shown in Sect. 2 in accordance with e.g. Horst (2000) that in the case
the travel time in the gas sampling system could be accurately estimated and accounted for, the attenuation of cospectrum (and
hence flux) could be described with H. However, cross-covariance maximisation inadvertently accounts also for the scalar low-
pass filtering related time shift (¢;,¢) and consequently induces a phase shift between the lag corrected attenuated scalar and
vertical wind time series. Hence in the case that cross-covariance maximisation is used to align the two time series, the correct
form for cospectral transfer function is H H,,, where the part related to the phase shift (H,,) is calculated with ¢;,, ;. It was shown
above that H H,, can be approximated with V/H. Therefore the debate about which is the correct form for cospectral transfer
function (H or /H) relates to the low-pass filtering induced phase shift as discussed already by Eugster and Senn (1995) and
Horst (2000), albeit with a different conclusion. Note however, that v/H is an approximation, not an exact representation of
the cospectral transfer function.

5 Summary and conclusions

The influence of low-pass filtering induced phase shift on estimation of high frequency response of an EC setup was analysed.
The analysis assumed that the EC setup consisted of a fast-response anemometer and a linear, first-order-response scalar sensor.
Spectral corrections aiming at correcting the EC fluxes for high-frequency-attenuation-low-pass filtering were estimated with
four methods: three widely used methods and one newly proposed method which specifically accounts for the interaction
between the low-pass filtering induced phase shift and highfrequeney-attenuation. Based on theoretical considerations and

experimental results we come to the following conclusions:

— Cross-covariance maximisation overestimates the signal travel time in the EC sampling line since it inadvertently ac-
counts also for the lag caused by low-pass filtering of scalar time series caused by non-ideal measurement system. The

bias in the estimated time lag depends linearly on low-pass filter response time (7) with a small additional dependence

on turbulence time scale. Hence, investigation of other means for estimating the signal travel time might be warranted.
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— Both power spectra and cospectra are attenuated with the same transfer function (H, as noted also by Horst (2000)) in

the case that the travel time of the scalar signal in the sampling line can be accurately estimated. However, if cross-

covariance maximisation is used, then attenuation of cospectra follows H H,, where H,, accounts for the bias in the

estimated travel time caused by cross-covariance maximisation and it was shown that H H), can be roughly approxi-

mated with v/ H. Both-H-and+/H have been-previously-used-in-the Jiterature-Therefore, all flux calculation algorithms

Y v -

eorreetform the cospectra (e.g. Horst, 1997; Massman, 2000) can be projected to be biased in the same way as Method
1 used here if the response time (i.e. HHp)— s—H -5 ' | i i
accurately estimated (e.g. from power spectra). In these cases the bias in EC fluxes can be 10% or above for short tower
measurements with moderate attenuation. Hence, data reprocessing is warranted in order to rectify this bias.

In order to estimate and correct for the flux attenuation correctly, it is vital to accurately describe the attenuation of the
cospectra in the correction procedure. Hence, while fitting H to cospectra (Method 2) biased the first-order response time
due to the use of the incorrect cospectral transfer function, it resulted only in a small bias for the flux correction factor,
since the method describes the attenuation of cospectra accurately once the cross-covariance maximisation has been
applied. By contrast, fitting of H to power-spectra (Method 1) correctly estimates the response time, but it nevertheless
yields biased flux corrections since it utilised a transfer function that is incorrect when estimating the flux using cross-

covariance maximisation.

The theoretical framework proposed in this paper was able to describe the changes in HoO time lag as HoO response time

increased with relative humidity. This suggests that the findings derived here with attenuated temperature time series are

applicable also in real world situations for EC gas flux measurements. —Wintj - s

Reasons for this remained unclear, however low-pass fitiering-induced-time tag—Adternatively, tow-passiltering of inert

gases (such as CO,) in the gas sampling line may deviate from what was described here in such a way that the low-pass

filter acting on CO2 may not induce a phase shift. This
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CO- flux data from an EC setup with pronounced attenuation of CO4 fluctuations in the sampling line —Adse;-thereeent
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laboratory (Metzger et al., 2016; Aubinet et al., 2016).

In summary, it is suggested that the spectral correction methods implemented in EC data processing software are revised so

that the influence of low-pass filtering induced phase shift is recognised following the findings presented above. In particular,
the usage of Method 1 is discouraged as it resulted in clearly biased flux values.

Code and data availability. Data and matlab codes to reproduce Figures 3, 4 and 5 will be uploaded to open data repository Zenodo upon

acceptance of this manuscript along with flux time series processed with the four methods (Table 1) at the two sites.

Appendix A: Derivation of Eq. (4)
Here we derive Eq. (4) starting from the cross-spectrum (Eq. (2)):
Crm = [Zw][hyZy]" e Irnue, (AD

where h,, can be described with Eq. (3), which gives

Z o
Cro =122 | | et (*2)
1—jwr
zZ% .
C')"m _ [Zw] X e Fbphys (A3)
1+ jwr
_ * _¢ 1Y s
C’I“m = szxme JPphy (A4)
Cryy = SO0 ity (AS)
1+ jwr
Co+jQ)(1 —jwr) _;
CTm — ( ljfi)(27_2 J )e ]¢phys (A6)
CT7n = (OO — jw;iow_g JzQ i OJTQ) eijgbphys ) (A7)
T

where Z,, 2}, = Co+ j@Q was utilised. Next quadrature spectrum () was assumed zero (Horst, 1997; Massman, 2000) and

hence

Co—jwrCo
=—F—¢

Cry, = T —JPphys (A8)
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Now we can use Euler formula (e ~7%»rvs = cos Dphys — JSINPphys)

Co—jwrCo .
Cry, = W(cosqﬁphys — jsindpnys)
Cocos Pphys — JwTC0oCOS Pphys — JCOSINPppys —wWTCOSINGphys
Crp, =
1+ w272
Cry = COS Pphys — WT SIN Pphys Co—j SiN Pphys + WT COS Pphys Co
14+ w?r? 14+w?r?

which equals the Eq. (4) in Sect. 2.
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