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Abstract. We develop a new way to retrieve the cloud index from a large variety of satellite instruments sensitive to reflected

solar radiation, embedded on geostationary as non geostationary platforms. The cloud index is a widely used proxy for the

effective cloud transmissivity, also called clear-sky index. This study is in the framework of the development of the Heliosat-

V method for estimating downwelling solar irradiance at the surface of the Earth (DSSI) from satellite imagery. To reach

its versatility, the method uses simulations from a fast radiative transfer model to estimate overcast (cloudy) and clear-sky5

(cloud-free) satellite scenes of the Earth’s reflectances. Simulations consider the anisotropy of the reflectances caused by both

surface and atmosphere, and are adapted to the spectral sensitivity of the sensor. The anisotropy of ground reflectances is

described by a bidirectional reflectance distribution function model and external satellite-derived data. An implementation of

the method is applied to the visible imagery from a Meteosat Second Generation satellite, for 11 locations where high quality

in situ measurements of DSSI are available from the Baseline Surface Radiation Network. For 15-minute means of DSSI,10

results from our preliminary implementation of Heliosat-V and ground-based measurements show a bias of 20 W m−2, a root-

mean-square difference of 93 W m−2, and a correlation coefficient of 0.948. The statistics, except for the bias, are similar to

operational and corrected satellite-based data products HelioClim3 version 5 and CAMS Radiation Service.

1 Introduction

Downwelling surface solar irradiance (DSSI) is one of the Essential Climate Variables defined by the Global Climate Observing15

System (GCOS, 2016). It is the solar part of the downwelling irradiance at the surface of the Earth and on an horizontal unit

surface. The solar irradiance is defined as the integration on the spectral interval 290-3000 nm, accordingly to WMO (2014).

DSSI considers the irradiance coming from all directions of the hemisphere above the surface: the irradiance coming from the

direction of the Sun, usually referred to as beam horizontal irradiance, plus a diffuse component due to scattering caused by

the atmosphere (clouds, gases, aerosols) and reflection by the surface, usually referred to as diffuse horizontal irradiance.20

The knowledge of DSSI variations in space and time is of primary importance for various fields such as Earth sciences, solar

energy industries, agriculture, or some medical fields. To meet all these needs, an ideal information on DSSI would feature

high spatio-temporal resolution, a coverage of the entire Earth’s surface, and the longest time period possible. Long time series
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of data are notably useful to identify statistics of long-term inter-annual to multi-decadal variability and possible trends, if bias

and standard deviation of the error requirements are reached.25

Different approaches already exist to produce such DSSI data. Sources of data mainly include ground pyranometric mea-

surements (Driemel et al., 2018), numerical weather prediction (NWP) modeling (Gelaro et al., 2017; Hersbach et al., 2020),

and satellite-based remote sensing (Sengupta et al., 2021). Satellite-based methods are an efficient and accurate way to pro-

duce kilometric and sub-hourly resolved multidecadal time series of DSSI. A more comprehensive review of pros and cons of

different methods is notably described in Huang et al. (2019).30

The imagery produced by satellite radiometers provides a unique perspective on DSSI. Upwelling radiances coming from

each location on Earth are acquired several times per day by a wide set of satellite imagers. This can particularly be achieved

thanks to imagers embedded on meteorological geostationary (GEOs) and polar orbiting satellites. Another approach exists

since 2015, thanks to the Deep Space Climate Observatory (DSCOVR) satellite mission: its Lissajous orbit around the L1

Lagrangian point between the Earth and the Sun makes it possible to picture the whole sunlit hemisphere of the planet, with a35

single satellite radiometer (Marshak et al., 2018; Hao et al., 2020).

Imagery of the Earth produced by satellite sensors exists for about six decades, and led early to the development of methods

for estimating DSSI (Tarpley, 1979). Today, the information from multi-channel satellite measurements offers the possibility

to derive cloud physical properties and then compute cloud attenuation of the solar radiation with methods like the Fast All-sky

Radiation Model For Solar Applications (FARMS) (Xie et al., 2016), Heliosat-4 (Qu et al., 2017), Zhang et al. (2018), or Hao40

et al. (2019). Such methods are especially advantageous for highly reflective regions, where clouds are difficult to discriminate

from the ground. Nevertheless, they require information on more than one spectral channel, limiting their versatility in the

choice of satellite sensor.

The use of radiative transfer models and look-up tables is also quite common in the field of satellite-based estimation

of DSSI, but usually requires pre-existing informations on cloud properties or a cloud mask (e.g. ISCCP-F (Zhang, 2004),45

GEWEX-SRB (Pinker and Laszlo, 1992; Cox et al., 2017), CLARA (Mueller et al., 2009), Cloud_cci (Stengel et al., 2020;

Stephens et al., 2001), SICCS (Greuell et al., 2013)).

Another group of methods, labeled as "cloud-index methods", are able to produce estimates of downwelling surface solar

irradiance from the visible imagery of satellite radiometers without external knowledge on cloud physical and optical proper-

ties. This gives them potential to retrieve multi-decadal time series including from the imagery of oldest 2-channel sensors like50

the Meteosat Visible and Infrared Imager (MVIRI). Cloud-index methods emerged quite early, notably with the seminal work

of Möser and Raschke (1983) and the first Heliosat method (Cano et al., 1986; Cano, 1982). The cloud index quantity derives

from the radiances measured by spaceborne sensors, and relates them to the extinction of the DSSI caused by clouds. The

greater the cloud index, the greater the extinction, and the smaller the DSSI. More precisely, the cloud index can be used as an

empirical proxy for effective cloud transmissivity. The latter, also named "clear-sky index" within the scientific community of55

solar energy, is defined as the ratio of the all-sky surface irradiance to the clear-sky surface irradiance (Long and Turner, 2008;

Beyer et al., 1996), i.e. the DSSI in cloud-free conditions.
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Figure 1. The calculation of a cloud index for a given location. The cloud index is the ratio between the distances "measurement to clear-sky"

(red arrow) and "overcast-sky to clear-sky" (black arrow).

The cloud-index concept is based on the idea that the presence of a cloud brightens locally pixels of satellite shortwave

imagery. In general, the value that quantifies reflectances of a given location observed from the top of the atmosphere (TOA),

is comprised between a low and a high boundary values. The low boundary value Xmin is taken as the clear-sky case and the60

high one Xmax as the most cloudy case. The attenuation of downwelling surface solar irradiance by clouds is roughly given as

a linear function of the difference between the measured value Xsat and the clear-sky boundary, relatively to the cloudy case -

clear case difference, as illustrated in Figure 1. We name these variables X as they can be of slightly different nature from one

work to another (reflectance, albedo, radiance, digital count, etc.). The cloud index n is then given as:

n=
Xsat −Xmin

Xmax −Xmin
(1)65

Differences between cloud-index methods mainly rely on :

– modifications of the relationship between the cloud index and the effective cloud transmissivity (Zarzalejo et al., 2009;

Perez et al., 2002; Gupta et al., 2001; Rigollier and Wald, 1998);

– the choice of the variable used to calculate the cloud index, for example TOA albedo (Darnell et al., 1988), reflectance

(Wang et al., 2014; Gupta et al., 2001; Möser and Raschke, 1984)), Lambert equivalent reflectivity (LER) (Herman et al.,70

2018; Dave, 1978) or raw satellite numerical counts (Müller et al., 2015; Perez et al., 2002; Cano et al., 1986);

– the way to retrieve the Xmax and Xmin for the chosen variable.

Very different approaches are used to estimate the upper boundary, but for lower boundary, "archive-based" methods are

used in most literature we reviewed: Xmin is a minimum based on a time series of past satellite imagery. This approach75
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as some drawbacks. Firstly, it is hardly applicable to non-geostationary satellites due to variable viewing geometries and a

low revisit time. As an example, Wang et al. (2014) use a climatology of surface albedo to derive DSSI from the Ozone

Monitoring Instrument (OMI), embedded on the sun-synchronous satellite Aura. Secondly, systematic underestimations of the

lower boundary Xmin are commonly detected, for example due to dark shadowing caused by adjacent clouds on the surface,

aerosol treatment (Mueller et al., 2015). On the other hand, contamination of Xmin by clouds on cloudiest regions can lead to80

systematic overestimation of Xmin. Finally, ensuring the observation of clear-sky instants by a sufficiently large time window

and capturing the temporal variability ofXmin by a sufficiently small time window is a difficult trade-off that can lead to biases

if not well respected.

In this paper, we propose a cloud-index method based on radiative transfer modeling as an alternative to the archive-based

approach. This exploratory direction aims at reproducing the satellite measurements of reflectances in both clear-sky and85

overcast conditions based on description of surface, clear atmosphere and cloud properties. Radiative transfer simulations are

able to reproduce how TOA reflectances depend on viewing and solar geometries, with also their spectral distribution. In

addition, it is possible to provide to the radiative transfer model input data that describes variations in space and time of clear

atmosphere composition and of surface properties. Thus, our approach is useful to identify and quantify sources of errors in

cloud-index methods.90

With a spectral and angular description, our method is also able to extend the application field of the cloud-index approach

to a wider variety of orbits and optical shortwave sensors. In order to limit the effects of molecular scattering, ozone absorption

and polarization present in the ultraviolet, and of the absorption of radiation by clouds in the near infrared, the method focuses

on satellite imagery in the spectral range 400-1000 nm (λ < 1000 nm). This range is wide enough to consider imagers on many

meteorological satellites launched since the beginnings of spaceborne Earth observation.95

The method foreseen to compute the cloud index of Heliosat-V and eventually the DSSI is described in Section 2, along with

the protocol of validation. Validation results are presented and discussed in Section 3 for simulated reflectances at the top of the

atmosphere and for downwelling surface solar irradiance estimates. Section 4 is dedicated to the conclusion and perspectives.

2 Methods

Previous methods based on archives can avoid dependency on absolute calibration of the original imagery (Müller et al., 2015;100

Perez et al., 2002) and consider implicitely the anisotropy of Xmin. The pixel-to-pixel estimation of Xmin is a surrogate for

modeling the influence of viewing geometry on measured reflectances, while the slot-by-slot temporal characterization ofXmin

pictures the influence of varying solar-viewing geometry for the diurnal cycle of each pixel’s reflectivity. The development of an

alternative to archive-based approaches means dealing with new issues: a challenge is to reproduce explicitely and accurately

the TOA reflectances. For this, input data and models used need to satisfy the requirements for accurate DSSI estimations, as105

will be discussed therafter.
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2.1 The cloud index n

As stated in the introduction, Heliosat-V is a method approximating the attenuation of DSSI radiation by clouds with a cloud

index, n. Here, the cloud index components are reflectances considered at the top of the atmosphere (TOA), and corresponding

to the satellite radiometer viewing geometry and spectral sensitivity. Reflectances are defined by the relation:110

ρ=
π L

E0 cos(θs)
(2)

with L the upwelling radiance at TOA for a given spectral channel,E0 the downwelling spectral solar irradiance at the top of

the atmosphere on a perpendicular plan weighted by the spectral response function of the channel, and θs the solar zenith angle

for a given location (i.e. latitude and longitude) and a given time. E0 varies mainly with the Sun-Earth distance, computed here

with the Solar Geometry 2 algorithm (Blanc and Wald, 2012). The cloud index is then defined as:115

n=
ρsat − ρclear
ρovc − ρclear

(3)

where ρsat is the reflectance measured by the radiometer for the given spectral channel, while ρclear and ρovc are estimates

of the reflectance that would be measured by the same sensor for, respectively, a clear-sky scene, and an overcast scene, i.e.

with an optically thick cloud covering the whole pixel considered. The notion of "optically thick cloud" will be described in

detail in the subsection 2.3.120

Because of its definition, the cloud index may also be calculated with radiances. We consider here reflectances in order to

visualize the anisotropic nature of different scenes. It has also the advantage to be a normalized quantity, so we can compare

results for different radiometric channels and different SZAs.

The relationship between n and DSSI varies slightly from one method to another, in particular for highest and lowest values

of n. The core of the relationship for intermediate values of n follows usually:125

G=Gc (1−n) (4)

where G is the all-sky DSSI and Gc is the DSSI in clear-sky conditions and is provided by an external model. The external

model used in this paper will be presented and discussed in section 2.4. The clear-sky index Kc is largely used to simplify the

reading and is defined as:

Kc =
G

Gc
(5)130

so we can rewrite Equation (4) as:

G=Gc Kc (6)

In this paper, we keep the original and simple relation Kc = 1−n introduced by Darnell et al. (1988). Its improvement is

out of the scope of this work but has been explored by various studies e.g. by Rigollier and Wald (1998) (reported in Rigollier

et al. (2004)); Gupta et al. (2001); Perez et al. (2002); Zarzalejo et al. (2009), notably to better characterize cloudy situations135

with n≈ 1. In the following subsections, we describe the method used to compute ρclear, ρovc and Gc.
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2.2 The clear-sky reflectances ρclear

We use a radiative transfer model to estimate what a spaceborne optical imaging system would measure in clear-sky conditions,

for a given radiometric channel. Using simulations in cloud indices has previously been done notably to retrieve effective cloud

fractions from the OMI instrument (Lorente et al., 2018; Veefkind et al., 2016; Stammes et al., 2008). We apply the same140

approach to satellite radiometers.

Radiative transfer simulations are able to estimate reflected radiation at the top of the atmosphere (TOA) considering the

non-lambertian nature of the atmosphere and of Earth’s surfaces. For the implementation of the method applied here, we use

the model uvspec within the software package libRadtran (version 2.0.2) (Emde et al., 2016) and the one-dimension solver

DISORT (Buras et al., 2011). We chose to use 32 streams for DISORT as a good compromise between time computation145

and a good angular representativeness of simulated radiances. For the spectral description, radiative transfer simulations are

made following the so-called REPTRAN spectral approximation (Gasteiger et al., 2014). This parameterization enables the

production of fast computations of radiative transfer adapted to the spectral sensitivity of satellite radiometric channels.

The spectral description of downwelling solar irradiance at the top of the atmosphere is provided by data from Kurucz

(1992) for simulating ρclear. The composition of the atmosphere is provided by time series of total atmospheric columns of150

ozone and water vapour, and partial aerosol optical depths (AOD) from the Monitoring Atmospheric Composition and Climate

(MACC) reanalysis (Inness et al., 2013) distributed by the ECMWF. Data from MACC are extracted from the McClear service

(http://www.soda-pro.com/web-services/radiation/cams-mcclear). MACC values are originally given on a 3-hour time step and

with a spatial resolution of about 80 km (Inness et al., 2013; Lefèvre et al., 2013). The McClear service applies to MACC data

a bilinear spatial interpolation onto the considered location, and a linear interpolation in time to a 1-min time step (Lefèvre155

et al., 2013). The atmospheric abundance profiles of O2, CO2 and NO2 are kept to the fixed values of the Air Force Geophysics

Laboratory (AFGL) midlatitude summer profile (Anderson et al., 1986), along with the temperature, pressure and air density

profiles.

Partial AOD from MACC are provided at the wavelength 550 nm, for 5 types of aerosols (black carbon, dust, sea salt,

organic matter, sulfate). Even though two supplementary classes "ammonium" and "nitrate" are now included in the Copernicus160

Atmospheric Monitoring Service (CAMS) reanalysis, these do not impact the method here proposed and were, thus, not

considered.

An algorithm developed by Lefèvre et al. (2013) translates MACC partial aerosol optical depths information into aerosol

mixtures designed for the Optical Properties of Aerosols and Clouds (OPAC) software package (Hess et al., 1998). These mix-

tures are associated to aerosol properties: scattering and absorbing coefficients, single scattering albedo, asymmetry parameter165

and the Angström coefficient. The total AOD at 550 nm is then calculated as the sum of partial AOD at 550 nm provided by

CAMS. As libRadtran needs a total AOD input for the simulated wavelength, the OPAC Angström coefficient of the given

mixture is used to estimate the AOD at the required wavelength.

An important component to simulate ρclear is the reflection properties of surfaces. The impact of the anisotropy of surface

reflectance has notably been shown for estimates of a cloud index derived from measurements of the ultraviolet/visible Global170
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Ozone Monitoring Experiment 2 (GOME-2) and OMI by Lorente et al. (2018). The latter study also highlights the improvement

of simulated shortwave clear-sky reflectances at the TOA, when using a model of bidirectional reflectance distribution function

(BRDF) parameterized with data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) spaceborne

instruments.

Here, we describe reflective properties of land surfaces with the RossThick-LiSparse (Ross-Li) model of bidirectional re-175

flectance distribution function (Roujean et al., 1992; Lucht et al., 2000). It is then possible to consider the variations of the

surface reflectance depending on viewing and solar zenith angles and on the azimuthal difference of both geometries ∆φ. The

Ross-Li model decomposes the BRDF of a surface into a sum of three components: an isotropic contribution, independent of

viewing and solar geometries; a volumic contribution, following a mathematical model of an idealized canopy ; and a geometric

contribution, considering the shadows induced by the roughness of the surface.180

Algorithms have been developed to estimate the parameters fiso, fvol and fgeo that weight respectively each of the contribu-

tors to the surface reflectance for all lands. This has notably been made with the imagery produced by the Moderate Resolution

Imaging Spectroradiometer (MODIS) embedded on Terra and Aqua satellites (Wanner et al., 1997; Lyapustin et al., 2018).

We test here simulations with data from the Algorithm for Modeling MODIS Bidirectional Reflectance Anisotropies of the

Land Surface (AMBRALS) (Wanner et al., 1997) with its derived product MCD43C1 v6 (Schaaf et al., 2002). This product185

provides fiso, fvol and fgeo parameters with a 0.05° resolution (about 6 km at the equator), a daily sampling rate, 16-day

average and for seven spectral channels, including 4 channels in the 400-1000 nm spectral interval considered for the Heliosat-

V method (Fig. 3). Owing to libRadtran documentation (Mayer et al., 2017), the values of each parameter are assigned to

the central wavelength of its channel and a linear spectral interpolation is applied for the radiative transfer calculations. For

wavelengths shorter than the 0.47 µm MODIS channel, values are considered spectrally constant. For wavelengths longer than190

0.85 µm, the interpolation is made between parameters at MODIS channels 0.86 µm and 1.24 µm.

2.3 The overcast-sky reflectances ρovc

Cloud-index methods in the literature use various ways to estimate the TOA reflectances in overcast conditions ρovc (Perez

et al., 2002; Lefèvre et al., 2007; Mueller and Träger-Chatterjee, 2014). One way to approximate it without the use of archives

of satellite imagery has been proposed within the Heliosat-2 framework (Lefèvre et al., 2007) with an empirical relation based195

on the work of Taylor and Stowe (1984). It considers a dependency of ρovc with the single solar zenith angle θs.

However, spectral radiative transfer simulations of ρovc show that there is also a significant dependency between the TOA

cloudy reflectances and other variables. In Figure 2, we represent 2-dimension histograms of TOA reflectances calculated

from such simulations, with a solar zenith angle set to 30° as an example. For most wavelengths, a significant spread of

the distribution is observed (Fig. 2, two upper rows), corresponding only to different viewing geometries defined by a linear200

meshgrid in cosine of viewing zentih angle (θv) and difference ∆φ of solar and viewing azimuth angles (Table 1).

In this paper, we assume a cloud optical thickness (COT) of 150 to define optically thick clouds and overcast conditions. This

assumption relies on COT statistics from Trishchenko et al. (2001). The simulations for a low thick cloud (cloud top height

(CTH) at 500 m) and a high thick cloud (CTH at 15 km) show in general a good agreement (Fig. 2, lower panel), except in
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Figure 2. Two upper rows : distributions of simulated TOA reflectance spectra in overcast conditions ρovc for the different viewing geometries

in the look-up table and for a solar zenith angle of 30°, with a thick liquid cloud (COT = 150). First row: CTH = 15 km ; cloud base height

(CBH) = 2 km. Second row: CTH = 0.5 km ; CBH = 0.2 km . Third row: error on ρovc caused by a misattribution of cloud height to the "low

thick cloud" category. Green, red and blue arrows indicate spectral regions with main absorption features from O3, O2 and H2O, respectively.

absorbing bands of O2 (mainly at 690 nm (O2-B band) and 762 nm (O2-A band)) and H2O (mainly at 725 nm, 820 nm and 950205

nm) and for short wavelengths where scattering becomes increasingly significant (e.g. Jin et al. (2011)). For these wavelengths,

the TOA reflectances with low clouds can be much lower than for high clouds, for a given cloud optical thickness. But outside

these specific spectral regions, the height of clouds will not affect significantly the results of the method.
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Table 1. Characteristics of the look-up table of cloudy TOA reflectances

Characteristics Values

Cloud phase liquid (ice only for sensitivity tests)

Cloud optical thickness (COT) 150

Cloud droplet radius vertical profile between 8 and 12 µm

Cloud top height (CTH) 500 m ; 15 km

Cloud base height (CBH) 200 m ; 2 km

Solar zenith angle (θs) 0° : 5° : 85°

cosine of viewing zenith angle (cos θv) 0.1 : 0.1 : 1

difference of solar and viewing azimuth angles (∆φ) 0°, 5°, 10° : 20° :170°, 175°, 180°

Spectral resolution 1 nm

TOA spectrum Gueymard (2018)

Ozone total column 300 Dobson Units (DU)

Water vapour total column 20 kg m−2

Aerosols default aerosol described in Shettle (1990)

Temperature and pressure profiles AFGL midlatitude summer

An alternative way is therefore to produce look-up tables (LUT) from radiative transfer simulations, an approach notably

applied in the framework of the HelioMont cloud-index method (Stöckli, 2014). It is then possible to take into account the210

viewing geometry and also the spectral variability of ρovc. Assumptions have to be made on the properties of the optically

thick clouds as the Heliosat-V method is designed to work by using only one spectral channel in the range 400-1000 nm: cloud

top height, phase of cloud, cloud optical thickness, cloud droplet radius or ice crystal shape and size.

Here we construct a liquid cloud LUT of ρovc, setting different cloud and atmosphere properties, geometry and spectral

grids, as described in Table 1. The optical properties of the clouds come from the precalculated Mie tables provided by the215

libRadtran software package.

As no information is provided on the actual cloud vertical structure, ρovc are calculated as :

ρovc =
1

2
(ρovc,high + ρovc,low) (7)

where ρovc,high and ρovc,low are respectively derived from the high and low liquid cloud LUTs, interpolated on the viewing

and solar geometries of the satellite time series and adapted to the spectral response function of radiometric channels.220

An ice cloud LUT is also produced, to study the sensitivity of surface irradiance estimates to the assumed cloud phase. The

ice cloud characteristics follow the parameterization by Yang et al. (2013). We use the "aggregate of 8 columns" ice crystal

habit and the "severe" degree of roughness, which are notably used for the description of ice clouds in the look-up table of the

MODIS collection 6 cloud product (Amarasinghe et al., 2017).
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Table 2. Characteristics of the simulated reflectances at TOA in clear-sky conditions

Characteristics Values

Surface reflection model RossThick-LiSparse

Surface reflection data MODIS MCD43C1 v6

Surface elevation Shuttle Radar Topography Mission

Spectral resolution REPTRAN channel parameterization (Gasteiger et al., 2014)

TOA spectrum Kurucz (1992)

Ozone total column ECMWF

Water vapour total column ECMWF

Aerosol optical depth at 550 nm sum of MACC partial optical depths

Aerosol mixtures and properties Lefèvre et al. (2013) and OPAC

Temperature and pressure profiles AFGL midlatitude summer

2.4 The clear-sky model of surface irradianceGc225

The clear-sky surface irradiance is given by the the version 3 of the McClear model (Gschwind et al., 2019). The McClear

model is a fast and accurate model that provides clear-sky estimation of DSSI with an absolute bias below 21 W m−2 and a

standard deviation error below 25 W m−2 for six stations part of the reference Baseline Surface Radiation Network (BSRN)

(Ohmura et al., 1998; Driemel et al., 2018), namely: Brasilia, Carpentras, Palaiseau, Payerne, Sede Boker and Tamanrasset. The

McClear model was fed with the partial optical depths at 550 nm for black carbon, dust, sea salt, organic matter and sulfate from230

MACC reanalysis. It is also fed by water vapor atmospheric total columns and the ozone total columns provided by ECMWF.

Data was dowloaded from the McClear web service (http://www.soda-pro.com/web-services/radiation/cams-mcclear).

2.5 Set-up and datasets for validation

The method has been tested on images from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI), aboard the

Meteosat-9 meteorological geostationary satellite belonging to the family of Meteosat Second Generation (MSG). We consider235

measurements in the solar channels 0.6 µm and 0.8 µm channels, for the year 2011 and for 11 locations in the field of view of

the satellite, corresponding to locations of pyranometric in situ sensors from the BSRN network. We use the calibration gains

provided by EUMETSAT that operates MSG. For sensors with a linear count response like MSG/SEVIRI (Doelling et al.,

2018), the radiance Lsat is related to digital count C via: Lsat = g(C −C0) where C0 is the so-called space count.

To study the validity of the method, we compare DSSI estimates from MSG satellite measurements with pyranometric DSSI240

data retrieved from BSRN measurement stations. Considered stations are listed in Table 3 and displayed in the MSG field of

view in Figure 4. Only the highest quality BSRN measurements of surface irradiance are used, having passed a quality check

(Lefèvre et al., 2013). Figure 5 shows the time series when data are considered valid, for each station.
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Figure 3. Colored lines: spectral response functions of different sensors in the spectral range considered by Heliosat-V. Gray lines : TOA

reflectance spectra of typical scenes with a high (dashed line) and low altitude (solid line) thick cloud
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Table 3. List of BSRN stations used for validation

Station Code Latitude Longitude Elevation

Brasilia BRB 15.6010° S 47.7130° W 1023 m

Cabauw CAB 51.9711° N 4.9267° E 0 m

Camborne CAM 50.2167° N 5.3167° W 88 m

Carpentras CAR 44.083° N 5.590° E 100 m

CENER CNR 42.8160° N 1.6010° W 471 m

Lindenberg LIN 52.2100° N 14.1220° E 125 m

Palaiseau PAL 48.7130° N 2.2080° E 156 m

Payerne PAY 46.8150° N 6.9440° E 491 m

Sede Boker SBO 30.8597° N 34.7794° E 500 m

Sao Martinho da Serra SMS 29.4428° S 53.8231° W 489 m

Tamanrasset TAM 22.7903° N 5.5292° E 1385 m

Figure 4. BSRN ground stations used for validation in this study, in the field of view of Meteosat Second Generation (0.6 µm channel).
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Figure 5. Time series used for the 15-min mean statistics between satellite estimates and quality-checked BSRN measurements during the

year 2011. In parentheses : percentage of data conserved.

13



We also compare the results of our method to operational satellite-based products of surface irradiance. For this, we use

data from HelioClim3 version 5 (HC3v5) and CAMS Radiation (CAMS-RAD) DSSI databases. Both are derived from the245

imagery of the SEVIRI sensor and are produced by a Heliosat method: a modified version of Heliosat-2 for HC3v5 (Qu

et al., 2014) and Heliosat-4 for CAMS-RAD. Both products and their descriptions are provided by the SoDa service (http:

//www.soda-pro.com/).

As this work is exploratory on a new method, we limit ourselves to conservative situations with solar zenith angles lower

than 80°, covering most cases. For higher angles, some effects not considered by the method can occur, including shadowing250

and high parallax effects.

3 Results and discussions

3.1 Validity of cloud index components

The validity of cloud index components, ρsat, ρclear, and ρovc, defines the uncertainty of n. From Equation (3), the uncertainty

on the cloud index can be written as:255

δn=

(
∂n

∂ρsat

)
δρsat +

(
∂n

∂ρclear

)
δρclear +

(
∂n

∂ρovc

)
δρovc (8)

This leads to

δn=
1

∆
(δρsat − (1−n) δρclear − n δρovc) (9)

where ∆ = ρovc − ρclear. It appears that the "clear-sky error" (1−n) δρclear will be more significant in clear-sky conditions

(i.e., n is close to 0), and the "overcast-sky error" n δρovc will be more important in overcast conditions (i.e., n is close to260

1). Besides, the error on cloud index will be inversely proportional to ∆, the difference between overcast and clear-sky TOA

reflectances. Because of this relationship between the errors on cloud index and reflectances, the discussions in this section are

focused on absolute values of reflectance errors.

3.1.1 Measured reflectances at the top of the atmosphere

A potential important source to the measurement error δρsat comes from the calibration gain. The operational calibration gains,265

that we use in this paper, have a claimed uncertainty of around 4% (EUMETSAT, 2019). On the other hand, Hewison et al.

(2020) assert that the alternative method by Doelling et al. (2018), used for GSICS corrected computation of calibration gain,

limits its bias to below 1% .

The use of optimal calibration is out of the scope of our work. Still, we compared gain coefficients proposed by EUMETSAT

gEUM with those provided by Doelling et al. (2018) gD2018 for the measurements produced by the Meteosat-9 0.6 and 0.8 µm270

channels in 2011. They show a mean relative disagreement, calculated as (gEUM − gD2018)/gD2018, of about -9 % for 0.6 µm

and -8 % for 0.8 µm during this period (also illustrated on Fig. A1). We expect that these errors will affect with the same
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magnitude the agreement between numerical simulations and measurements of clear-sky TOA reflectances. This underlines

that an accurate source of absolute calibration is important for the Heliosat-V method.

3.1.2 Simulated reflectances at the top of the atmosphere in clear-sky conditions ρclear275

As an intermediate assessment, simulated clear-sky reflectances at the top of the atmosphere (TOA) ρclear are compared to satel-

lite measurements. Cloudy instants are manually filtered out of the satellite time series. Results comprising all the manually-

filtered clear-sky instants in 2011 for all the eleven sites, are shown in Figure 6 as 2D reflectance histograms.

For the 0.6 µm and 0.8 µm channels, correlation coefficients are both higher than 0.9, but the correlation is much better for

0.6 µm with a value of 0.974. This means that the variability of ρclear is significantly better represented, with almost 95 %280

of the total variance, for 0.6 µm than for 0.8 µm, with 82 % of the total variance. The root-mean-square difference (RMSD)

between the simulated reflectance and measured reflectance in the clear-sky conditions is 0.03 (15%) for the 0.6 µm channel

and 0.04 (12%) for the 0.8 µm channel. The bias is 0.02 (10%) and -0.02 (-7%) for 0.6 µm and 0.8 µm channels respectively,

contributing a big part to the RMSD. The standard deviation of the difference (STD) is 0.02 for the 0.6 µm channel and 0.04

for the 0.8 µm channel. Both higher bias and STD for the 0.8 µm will contribute to lower the precision in the calculation of the285

cloud index based on this channel, compared to 0.6 µm. When studying station by station, the highest absolute standard devia-

tion of the difference between simulations and measurements is reached for Sede Boker with 0.03, while the lowest is reached

for Tamanrasset with 0.008. For bias, highest mean values reach +0.035 for 0.6 µm (Payerne) and -0.07 for 0.8 µm (Camborne)

(see also Fig. B1). Using the gain coefficients developed by Doelling et al. (2018) for CERES-SYN1deg instead of EUMET-

SAT operational coefficients is sufficient to remove most of the mean bias observed between simulations and measurements of290

ρclear, for the channel 0.6 µm. Besides, it increases the mean bias for the 0.8 µm channel.

It is worth noting that we use MCD43C1v6 BRDF data regardless of their quality flags. We observe though that keeping

only the highest quality data improves significantly statistics (Figure B2). Also, the choice of a spectral linear interpolation

between MODIS channels to simulate surface reflectances in SEVIRI channels is supposed to contribute significantly to biases

observed in ρclear simulations, in particular for the 0.8 µm channel with vegetated surfaces due to the red edge spectral pattern295

(low reflectivity below around 700 nm, high reflectivity above around 750 nm). Another part of the bias, difficult to quantify,

is linked to the accuracy of the calibration of satellite measurements.

Figure 7 shows the diurnal variations of measured and simulated reflectances for the SMS and CAM stations. Both SMS

and CAM are surrounded mainly by various types of vegetation and some urban area for the case of CAM (Figure B3). We

observe that simulations are able to reproduce partly the diurnal variability observed in clear-sky conditions (also refer to300

Figure B4 for channel 0.6 µm and 0.8 µm under different surface conditions). On Figure 8, we compare ρclear values with the

surface reflectance ρsurface, computed with the RossThick-LiSparse model applied to BRDF parameters derived from MODIS

646 nm channel, and using viewing and solar geometries considered. Firstly, we see that ρclear values are significantly higher

than ρsurface with a different diurnal pattern. This shows the importance of considering the atmosphere anisotropic reflectance

to reproduce TOA reflectances. We also can see the contribution from the surface anisotropy in the ρclear simulations. This305
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appears in particular close to the backscattering direction where surface reflectance is enhanced: around noon in Camborne and

the morning in São Martinho da Serra.

For CAM, some higher values of ρclear are observed in January. This can be attributed to high aerosol optical depth during

this period, as illustrated in Figure 9. It shows that ρclear is not only sensitive to time variations of surface properties but also

to atmospheric composition changes.310

Figure 6. Simulation of clear-sky reflectances at the TOA (ρclear) for MSG 0.6 µm (left panel) and 0.8 µm (right panel) spectral channels

compared with actual satellite measurements. Represented data include simulations and measurements for all 11 locations, for the year 2011.

3.1.3 Simulated reflectances at the top of the atmosphere in overcast conditions ρovc

The validity of ρovc is more difficult to test than that of ρclear by comparing with satellite measurements as the occurence of

optically thick clouds can be rare depending on the location, the season and the hour of the day. We therefore use 9 years of

Meteosat measurements, between 2011 and 2019 to extract the 1% most reflective scenes for each station, month and hour of

the day (orange dots on Fig. 7). On the first row of Figure 7, we can see that some patterns are similar in simulated ρovc and315

99th percentile of measurements over the São Martinho da Serra pixel: in the forward scattering conditions (evening on the

West edge of Meteosat disc), both agree on increased values of ρovc. On the other hand, some stations show regularly values

of measured reflectances beyond the ρovc simulated boundary, as in the example of Camborne (Fig. 7, second row). Figure

7 illustrates also how ρovc depends on the liquid or ice phase of the cloud, due to their different scattering phase functions.

Our ability to reproduce reflectances at the top of the atmosphere in overcast conditions depends therefore on our knowledge320

of cloud properties, including their scattering phase function and top height. Other effects like the tridimensional structure of
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Figure 7. Simulated and measured reflectances at the top of the atmosphere above São Martinho da Serra (Brazil, upper row) and Camborne

(United Kingdom, lower row) locations, for MSG 0.6 µm channel and for January, May and September calendar months. Grey plus signs:

MSG measurements (2011, Meteosat-9). Green asterisks: reflectances in overcast conditions ρovc, derived from the liquid-cloud look-up ta-

ble. Blue asterisks: same from the ice-cloud look-up table. Purple asterisks: reflectances in clear-sky conditions ρclear, derived from radiative

transfer simulations. Yellow and orange dots are respectively hourly percentiles 1 and 99 of MSG satellite measurements from year 2011 to

2019.

clouds probably explain part of the discrepancies between measurements and plane-parallel simulations in overcast conditions

(Horvath and Davies, 2004).

3.1.4 Difference between simulated overcast and clear-sky reflectances

The difference ∆ between overcast and clear-sky reflectances is bigger when the overcast reflectance is relatively low and325

clear-sky reflectance is relatively high. High values of ∆ mean a good quality of cloud index estimation (cf. Equation 9). We

study the dependencies of ∆ with the simulated reflectances to identify conditions that will cause high uncertainties on the
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Figure 8. Comparison between simulations of clear-sky reflectances at the top of the atmosphere for MSG 0.6 µm channel (ρclear, blue

plus signs) and corresponding surface reflectances computed with the RossThick-LiSparse model applied to MODIS MCD43C1v6 BRDF

parameters for the channel 646 nm (ρsurface, red plus signs) for five days in June 2011. Left panel: Camborne station (CAM) ; right panel:

São Martinho da Serra station (SMS).

Figure 9. Blue plus signs: simulated reflectances at the top of the atmosphere in clear-sky conditions ρclear in January 2011 at Camborne

station (CAM) and for MSG 0.6 µm. Red line: aerosol optical depth at 635 nm used for simulations.

computation of the cloud index. In general, we observe that the computed value of ∆ is higher for the 0.6 µm channel than

for 0.8 µm, as a combination of surface, cloud and clear atmosphere spectral signatures. This is illustrated in Figure 10 for
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Figure 10. Difference between simulated reflectances at the top of the atmosphere in overcast and in clear-sky conditions ∆ = ρovc − ρclear

for São Martinho da Serra (Brazil, upper row) and Camborne (United Kingdom, lower row) locations and for January, May and September

calendar months (three columns from left to right). In blue dots: MSG 0.6 µm channel ; in red dots: MSG 0.8 µm channel.

stations SMS and CAM. We observe however for the desert stations TAM and SBO that both channels present similar values330

of ∆ (Fig. B5). ∆ depends also on the viewing and solar geometries because of ρovc and ρclear different angular signatures.

It leads for example for SMS station and channel 0.8 µm to low values of ∆ in January morning and high values of ∆ in the

evening, which can be explained by the strong forward scattering of clouds occuring in these conditions.
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3.2 Comparison of satellite-based estimates of DSSI with ground-based measurements

Validation results are shown in Table 4, for 15-min averaged DSSI estimates. Satellite-based estimates are obtained with MSG335

0.6 µm imagery. Results for MSG 0.8 µm imagery show generally lower quality in terms of correlation and STD as shown in

Figure 11.

The simple relationship between the cloud index and the clear-sky index used here explains the significant amount of negative

values of DSSI estimates. The improvement of this relation will be the object of a future study.

Figure 11. 2D-histograms of satellite-based DSSI estimates from the Heliosat-V method versus ground-based BSRN measurements for MSG

0.6 µm channel (left panel) and 0.8 µm channel (right panel).

We tested the sensitivity of the DSSI estimates to the cloud phase by using in one case the reference look-up table, featuring340

a liquid cloud, and for the test case, an ice cloud as described in Section 2.3. Results show only minor differences, pointing out

a limited influence of the cloud phase on DSSI estimates (Fig. B6).

Finally, the quality of the results depends also on the quality of the clear-sky surface irradiance model. Gschwind et al.

(2019) report for example relative mean biases of the McClear model from -3.6% (Barrow, Alaska, USA) to +3.2% (Payerne,

Switzerland), when compared to BSRN irradiance measurements. The improvement towards a least biased estimation of the345

downwelling surface solar irradiance based on a cloud index will require better estimates of the attenuation of the solar radiation

by the clear atmosphere.
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Table 4. Validation results for 15-min means of all-sky DSSI, for the year 2011. Results based on the imagery of Meteosat-9/SEVIRI 0.6

µm channel.

Station Number of samples Mean DSSI (BSRN) Bias RMSD Correlation coefficient

W m−2 W m−2 (%) W m−2 (%) (R)

Brasilia 13570 504 25 (5) 137 (27) 0.883

Cabauw 13222 301 4 (1) 72 (24) 0.949

Camborne 12731 310 -3 (-1) 103 (33) 0.901

Carpentras 12642 452 41 (9) 80 (18) 0.969

CENER 14164 412 21 (5) 89 (22) 0.946

Lindenberg 13637 317 9 (3) 81 (26) 0.938

Palaiseau 13993 335 12 (4) 79 (24) 0.948

Payerne 9191 387 29 (8) 88 (23) 0.955

Sede Boker 13574 589 46 (8) 90 (15) 0.960

Sao Martinho da Serra 5864 501 8 (2) 102 (20) 0.936

Tamanrasset 13609 579 26 (5) 88 (15) 0.958

Total 136197 436 20 (5) 93 (22) 0.948

3.3 Comparison of satellite-based estimates of DSSI with HelioClim3 and CAMS Radiation products

The results of the method are also compared to satellite-based DSSI products HelioClim3 version 5 (HC3v5) and CAMS

Radiation Service (CAMS-RAD) on Table 5. Results for the new HSV method show statistics similar to HC3v5 and CAMS-350

RAD, for both estimates based on 0.6 µm and 0.8 µm channels, in terms of correlation and of STD. One may note very low

values of bias for operational products. This is expected because CAMS-RAD and HC3v5 estimates are calibrated with DSSI

measurements from a similar set of BSRN stations.

Better results from the channel 0.6 µm could be attributed to a smaller influence of the cloud top height, compared to the

0.8 µm channel which is affected by water vapour absorption (Fig. 3). Biases discussed for the computation of clear-ky and355

overcat TOA reflectances could also affect significantly DSSI estimates.

4 Conclusion and perspectives

Heliosat-V is a cloud-index method for estimating downwelling surface solar irradiance from satellite imagery. In the frame-

work of its development, we proposed an alternative way to retrieve the components of cloud index, this index being used to

quantify the attenuation of DSSI by clouds. The method takes advantage of radiative transfer modeling to provide versatility to360

the concept of cloud index. It provides advantages: it is applicable for optical sensors on geostationary and non-geostationary
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Table 5. Comparison between validation results of HSV with those of HC3v5 and CAMS-RAD, each one versus BSRN measurements.

Statistics on 15-minute means of DSSI for the stack of 11 stations and the year 2011. N = 135107 ; BSRN mean = 424 W m−2

Method/data product Bias STD RMSD Correlation coefficient

W m−2 (%) W m−2 (%) W m−2 (%) (R)

HSV 0.6 µm 20 (5) 91 (21) 93 (22) 0.948

HSV 0.8 µm -6 (-2) 101 (24) 101 (24) 0.934

HC3v5 2 (0) 88 (21) 88 (21) 0.950

CAMS-RAD 0 (0) 98 (23) 98 (23) 0.937

orbits, flexible for future improvements to describe surface, clear atmosphere and clouds and investigates physical solutions

for limitations observed in previous cloud-index methods.

the method can be applied to different satellite optical sensors embedded on geostationary as non-geostationary orbits, it

provides flexibility for future improvements to describe surface, clear atmosphere and clouds and solves some limitatio. Also,365

it provides an explicit An alternative cloud-index method is described in the framework of the development of the Heliosat-

V method for estimating downwelling surface solar irradiance from satellite imagery. The proposed method uses a radiative

transfer model to compute the theoretical lower and upper boundaries of satellite measurements, corresponding to the clear-sky

and overcast reflectances at the top of the atmosphere. These simulations, along with the satellite measurements, are used to

compute the cloud index needed to quantify the attenuation of DSSI by clouds. is built to deal with a single radiometric channel370

in the spectral range 400-1000 nm. It also does not need archives of data to quantify the cloud effective transmissivity. This

approach has advantages. First, the concept of the Heliosat-V cloud index enables the use of imagery from geostationary and

non-geostationary platforms, an asset to reach an extended spatial coverage. Moreover, the approach has the potential to deal

with long time series of imagery from radiometers characterized by different spectral sensitivities and viewing geometries.

Validation results using SEVIRI imagery show that DSSI can be estimated by a cloud index method that does not rely375

on archives of imagery, with a quality similar to operational satellite-based data products like CAMS Radiation Service and

HelioClim3, in terms of RMSD and correlation. This is an encouraging step toward the application of a Heliosat method to

non geostationary satellite sensors. However, we note that there are differentiated errors depending on the spectral channel

considered. This could be attenuated notably by an external knowledge on cloud top height and by improving the spectral

interpolation of reflexion properties of vegetated surfaces.380

To clarify the potential of the method for long time series of imagery, we will need to explore how sensitive to the quality

of input data the results are. The knowledge on atmospheric composition in absorbing and scattering species and on surface

reflectivity properties is notably lower for past periods like 1980’s than for today. Also, the absolute calibration of satellite

imagery can be more uncertain, without on-orbit calibrated instruments. Many inputs of the method have very different degrees

of quality, depending on the period considered: the composition of the clear-sky atmosphere (aerosols and gases), surface385
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properties, external clear-sky irradiance model. Further work is still to be done on multidecadal time series to study how the

quality of such ancillary data affect the estimates of DSSI.

Also, producing global maps of DSSI requires to deal with non geostationary satellite imagery. First tests of the method have

been made on the imagery of the Earth Polychromatic Imaging Camera (EPIC) embedded on the DSCOVR platform. They

show encouraging results that will be extended and detailed in a future publication.390

Global coverage of DSSI information obviously requires also to deal with ocean surfaces and snow covered regions, and this

will need to be treated in the future.

Code availability. Excerpts of code are available at https://cloud.mines-paristech.fr/index.php/s/HAWmw7Fs927EtME

Data availability. DSSI results derived from the implementation of Heliosat-V for validation on all 11 stations are available at https://cloud.

mines-paristech.fr/index.php/s/HAWmw7Fs927EtME, along with simulated and MSG measured reflectances, cloud and clear-sky indices395

and clear-sky irradiance estimates from the McClear model. The manually filtered clear-sky instants are also provided for all 11 locations.
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Appendix A: Methods

A1 Set-up of validation

Figure A1. First two rows: calibration gains provided by EUMETSAT (black stars) and by CERES-SYN1deg (Doelling et al., 2018) (red

stars) for 0.6 µm channel (first row) and 0.8 µm (second row) of SEVIRI sensor aboard Meteosat-9, between 2011 and 2019. Third row: ID

of the operational satellite at the longitude 0°.
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Appendix B: Results

B1 Simulated TOA clear-sky reflectances ρclear400

Figure B1. Relative mean bias errors of simulated clear-sky reflectances at the top of the atmosphere ρclear ((simulation-

measurement)/measurement) for channels 0.6 µm (upper panel) and 0.8 µm (lower panel), and for each BSRN site.
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Figure B2. Simulation of clear-sky reflectances at the top of the atmosphere (ρclear) for MSG 0.6 µm (upper panel) and 0.8 µm (lower

panel) spectral channels compared with actual satellite measurements. The comparison is done for all 11 locations, for the year 2011. Only

instants with BRDF data of best quality are used (quality flag 0 of MCD43C1, "Best quality, 100% with full inversion")

26



Figure B3. Land cover types around measurement stations São Martinho da Serra (Brazil, upper panel) and Camborne (United Kingdom,

lower panel) for 2011. In red: urban and built-up lands; in gray: croplands/natural vegetation mosaics; in light yellow: croplands; in dark

yellow: savanna; in beige: grasslands; in blue: water bodies. Data from Terra + Aqua MODIS product MCD12Q1 version 6, following the

International Geosphere-Biosphere Programme classification scheme. Credit: NASA Worldview
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Figure B4. Comparison between simulated (red plus signs) and measured reflectances (blue plus signs) at the top of the atmosphere for one

day in clear-sky conditions, for 0.6 µm (first column) and 0.8 µm channels (third column). NDVI computed from satellite measurements

is shown on second column. Rows from top to bottom: locations of São Martinho Da Serra, Camborne, Payerne and Tamanrasset BSRN

stations.
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Figure B5. Difference between simulated reflectances at the top of the atmosphere in overcast and in clear-sky conditions ∆ = ρovc−ρclear
for Tamanrasset (Algeria, upper row) and Sede Boker (Israel, lower row) locations and for January, May and September calendar months

(three columns from left to right). In blue dots: MSG 0.6 µm channel ; in red dots: MSG 0.8 µm channel.
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Table B1. Validation results for 15-min means of all-sky DSSI, for the year 2011. Results based on the imagery of Meteosat-9/SEVIRI 0.8

µm channel.

Station Number of samples Mean BSRN Bias RMSD Correlation coefficient

W m−2 W m−2 (%) W m−2 (%) (R)

Brasilia 13570 504 13 (3) 142 (28) 0.871

Cabauw 13222 301 -27 (-9) 93 (31) 0.919

Camborne 12731 310 -28 (-9) 117 (38) 0.875

Carpentras 12642 452 19 (4) 81 (18) 0.958

CENER 14164 412 -9 (-2) 96 (23) 0.932

Lindenberg 13637 317 -18 (-6) 92 (29) 0.920

Palaiseau 13993 335 -14 (4) 88 (26) 0.934

Payerne 9191 387 -22 (-6) 99 (26) 0.936

Sede Boker 13574 589 23 (4) 91 (16) 0.947

Sao Martinho da Serra 5864 501 -49 (-10) 124 (25) 0.918

Tamanrasset 13609 579 15 (3) 89 (15) 0.954

Total 136197 424 -6 (-2) 101 (24) 0.934

B2 Comparison of satellite-based estimates with ground-based measurements
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Figure B6. Impact of cloud phase on DSSI estimates. 2D-histogram of satellite-based DSSI estimates from the Heliosat-V method versus

ground-based BSRN measurements for the MSG 0.6 µm channel. The liquid cloud look-up table of overcast-sky TOA reflectances is replaced

for the ice cloud LUT.
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