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Abstract. We develop a new way to retrieve the cloud index from a large variety of satellite instruments sensitive to reflected

solar radiation, embedded on geostationary as non geostationary platforms. The cloud index is a widely used proxy for the

effective cloud transmissivity, also called clear-sky index. This study is in the framework of the development of the Heliosat-

V method for estimating downwelling solar irradiance at the surface of the Earth (DSSI) from satellite imagery. To reach

its versatility, the method uses simulations from a fast radiative transfer model to estimate overcast (cloudy) and clear-sky5

(cloud-free) satellite scenes of the Earth’s reflectances. Simulations consider the anisotropy of the reflectances caused by both

surface and atmosphere, and are adapted to the spectral sensitivity of the sensor. The anisotropy of ground reflectances is

described by a bidirectional reflectance distribution function model and external satellite-derived data. An implementation

of the method is applied to the visible imagery from a Meteosat Second Generation satellite, for 11 locations where high

quality in situ measurements of DSSI are available from the Baseline Surface Radiation Network. Results from our preliminary10

implementation of Heliosat-V and ground-based measurements show a correlation coefficient reaching 0.948, for 15-minute

means of DSSI, similar to operational and corrected satellite-based data products (0.950 for HelioClim3 version 5 and 0.937

for CAMS Radiation Service).

1 Introduction

Downwelling surface solar irradiance (DSSI) is one of the Essential Climate Variables defined by the Global Climate Observing15

System (GCOS, 2016). It is the solar part of the downwelling irradiance at the surface of the Earth and on an horizontal unit

surface. The solar irradiance is defined as the integration on the spectral interval 290-3000 nm, accordingly to WMO (2014).

DSSI considers the irradiance coming from all directions of the hemisphere above the surface: the irradiance coming from

the direction of the Sun, plus a diffuse component due to scattering caused by the atmosphere (clouds, gases, aerosols) and

reflection by the surface.20

The knowledge of DSSI variations in space and time is of primary importance for various fields such as Earth sciences,

renewable solar energy industries, agriculture, or some medical fields. To meet all these needs, an ideal information on DSSI

would feature high spatio-temporal resolution, a coverage of the entire Earth’s surface, and the longest time period possible.
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Long time series of data are notably useful to identify statistics of long-term inter-annual to multi-decadal variability and

possible trends, if bias and standard deviation of the error requirements are reached.25

Different approaches already exist to produce such DSSI data. Sources of data mainly include ground pyranometric mea-

surements, e.g. from national meteorological and hydrological services, numerical weather prediction (NWP) modeling, e.g.

the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017) and the Eu-

ropean Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-5 (Hersbach et al., 2020), and satellite-based

remote sensing, e.g. methods listed by Sengupta et al. (2017). Satellite-based methods are an efficient and accurate way to30

produce kilometric and sub-hourly resolved multidecadal time series of DSSI. A more comprehensive review of pros and cons

of different approaches is notably described in Huang et al. (2019).

The imagery produced by satellite radiometers provides a unique perspective on DSSI. Upwelling radiances coming from

each location on Earth are acquired several times per day by a wide set of satellite imagers. This can particularly be achieved

thanks to imagers embedded on meteorological geostationary (GEOs) and polar orbiting satellites like the Polar Operational35

Environmental Satellites (POES) from the National Oceanic and Atmospheric Administration (NOAA), and the MetOp series

operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Another approach

exists since 2015, thanks to the Deep Space Climate Observatory (DSCOVR) satellite mission: its Lissajous orbit around the

L1 Lagrangian point between the Earth and the Sun makes it possible to picture the whole sunlit hemisphere of the planet, with

a single satellite radiometer (Marshak et al., 2018; Hao et al., 2020).40

Imagery of the Earth produced by satellite sensors exists for about six decades, and led early to the development of methods

for estimating DSSI (Tarpley, 1979).

Today, the information from multi-channel satellite measurements offers the possibility to derive cloud physical properties

and then compute cloud attenuation of the solar radiation with methods like the Fast All-sky Radiation Model For Solar Appli-

cations (FARMS) (Xie et al., 2016), Heliosat-4 (Qu et al., 2017), Zhang et al. (2018), or Hao et al. (2019). Such methods are45

especially advantageous for highly reflective regions, where clouds are difficult to discriminate from the ground. Nevertheless,

they require information on more than one spectral channel, limiting their versatility in the choice of satellite sensor.

The use of radiative transfer models and look-up tables is also quite common in the field of satellite-based estimation

of DSSI, but usually requires pre-existing informations on cloud properties or a cloud mask (e.g. ISCCP-F (Zhang, 2004),

GEWEX-SRB (Pinker and Laszlo, 1992; Cox et al., 2017), CLARA (Mueller et al., 2009), Cloud_cci (Stengel et al., 2020;50

Stephens et al., 2001)).

Another group of methods, labeled as "cloud-index methods", are able to produce estimates of downwelling surface solar

irradiance from the visible imagery of satellite radiometers without external knowledge on cloud physical and optical proper-

ties. This gives them potential to retrieve multi-decadal time series including from the imagery of oldest 2-channel sensors like

the Meteosat Visible and Infrared Imager (MVIRI). Cloud-index methods emerged quite early, notably with the seminal work55

of Möser and Raschke (1983) and the first Heliosat method (Cano et al., 1986; Cano, 1982). The cloud index quantity derives

from the radiances measured by spaceborne sensors, and relates them to the extinction of the DSSI caused by clouds. The

greater the cloud index, the greater the extinction, and the smaller the DSSI. More precisely, the cloud index can be used as an
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empirical proxy for effective cloud transmissivity. The latter, also named "clear-sky index" within the scientific community of

solar energy, is defined as the ratio of the all-sky surface irradiance to the clear-sky surface irradiance (Long and Turner, 2008;60

Beyer et al., 1996), i.e. the DSSI in cloud-free conditions.

Figure 1. The calculation of a cloud index for a given location. The cloud index is the ratio between the distances "measurement to clear-sky"

(red arrow) and "overcast-sky to clear-sky" (black arrow).

The cloud-index concept is based on the idea that the presence of a cloud brightens locally pixels of satellite shortwave

imagery. In general, the value that quantifies reflectances of a given location observed from the top of the atmosphere (TOA),

is comprised between a low and a high boundary values. The low boundary value Xmin is taken as the clear-sky case and the

high one Xmax as the most cloudy case. The attenuation of downwelling surface solar irradiance by clouds is roughly given as65

a linear function of the difference between the measured value Xsat and the clear-sky boundary, relatively to the cloudy case -

clear case difference, as illustrated in Figure 1. The cloud index n is then given as:

n=
Xsat−Xmin

Xmax−Xmin
(1)

Differences between cloud-index methods mainly rely on :

– modifications of the relationship between the cloud index and the effective cloud transmissivity (Zarzalejo et al., 2009;70

Perez et al., 2002; Gupta et al., 2001; Rigollier and Wald, 1998);

– the choice of the variable used to calculate the cloud index, for example TOA albedo (Darnell et al., 1988), reflectance

(Wang et al., 2014; Gupta et al., 2001; Möser and Raschke, 1984)), Lambert equivalent reflectivity (LER) (Herman et al.,

2018; Dave, 1978) or raw satellite numerical counts (Pfeifroth et al., 2017; Perez et al., 2002);

– the way to retrieve the Xmax and Xmin for the chosen variable.75
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If very different approaches are used to estimate the upper boundary, the lower boundary is "archive-based", in most literature

we reviewed: it is a minimum based on a time series of past satellite imagery. Such an approach is hardly appliable to non

geostationary satellites due to variable viewing geometries and a low revisit time. As an example, Wang et al. (2014) use a

climatology of surface albedo to derive DSSI from the Ozone Monitoring Instrument (OMI), embedded on the sun-synchronous

satellite Aura.80

In this paper, we aim at finding an alternative to the need for archives of satellite imagery. It would then be easier to consider

imagery from non-geostationary spaceborne platforms and produce a worldwide coverage. It would also let the results more

reproducible, by making each instantaneous estimate independent of the preceding time series. Other drawbacks are frequent

in archive-based methods such as systematic underestimations of the lower boundary Xmin (e.g. unusual dark shadows on the

ground taken as the clear-sky reference), contamination of Xmin by clouds for cloudiest regions and of course, the difficulty to85

find a trade-off between a large time window that ensures the observation of clear sky instants, and a small one that captures

the temporal variability of Xmin.

But the development of an alternative to such archive-based approaches also means dealing with new issues: previous meth-

ods based on archives can be less dependent on absolute calibration of the original imagery (Pfeifroth et al., 2017; Perez et al.,

2002) and consider implicitely the anisotropy of Xmin. The pixel-to-pixel estimation of Xmin is a surrogate for modeling the90

influence of viewing geometry on measured reflectances, while the slot-by-slot temporal characterization of Xmin pictures the

influence of varying solar-viewing geometry for the diurnal cycle of each pixel’s reflectivity.

We aim at developing an alternative "stateless" method to extend the application field of the cloud-index approach to a

wider variety of orbits and optical shortwave sensors. In order to limit the effects of molecular scattering, ozone absorption and95

polarization present in the ultraviolet, and of the absorption of radiation by clouds in the near infrared, the method considers

satellite imagery in the spectral range 400-1000 nm (λ < 1000 nm). This range is also wide enough to permit the use of

imagery from many meteorological satellite imagers launched since the beginnings of spaceborne Earth observation (e.g.

different generations of the Advanced Very High Resolution Radiometer and of GOES, Meteosat and Himawari radiometers).

Heliosat-V makes an extensive use of simulations from a radiative transfer model to estimate the upper boundary variables100

Xmin andXmax, which are here reflectances at the top of the atmosphere. This notably relies on the hypothesis that the absolute

calibration of the satellite measurements is sufficiently well-known to ensure the quality of DSSI retrievals. It also means that

the spectral sensitivity of the sensor and the anisotropy of reflectances caused by surface and atmospheric components have to

be explicitely described to produce accurate estimates.

The impact of the anisotropy of surface reflectance has notably been shown for estimates of a cloud index derived from105

measurements of the ultraviolet/visible Global Ozone Monitoring Experiment 2 (GOME-2) and OMI by Lorente et al. (2018).

The latter study also highlights the improvement of simulated shortwave clear-sky reflectances at the TOA, when using a

model of bidirectional reflectance distribution function (BRDF) parameterized with data derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) spaceborne instruments.

110
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The method foreseen to compute the cloud index of Heliosat-V and eventually the DSSI is described in Section 2, along with

the protocol of validation. Validation results are presented in Section 3 for simulated reflectances at the top of the atmosphere

and for downwelling surface solar irradiance estimates. Section 4 is dedicated to the discussion of results, and Section 5 to the

conclusion and perspectives.

2 Methods115

2.1 The cloud index n

As stated in the introduction, Heliosat-V is a method approximating the attenuation of DSSI radiation by clouds with a cloud

index, n. Here, the cloud index components are reflectances considered at the top of the atmosphere (TOA), and corresponding

to the satellite radiometer viewing geometry and spectral sensitivity. Reflectances are defined by the relation:

ρ=
π L

E0 cos(θs)
(2)120

with L the upwelling radiance at TOA for a given spectral channel, E0 the downwelling spectral solar irradiance at the top

of the atmosphere on a perpendicular plan weighted by the spectral response function (SRF) of the channel, and θs the solar

zenith angle for a given location (i.e. latitude and longitude) and a given time. E0 varies mainly with the Sun-Earth distance,

computed here with the Solar Geometry 2 algorithm (Blanc and Wald, 2012). The cloud index is then defined as:

n=
ρsat− ρclear

ρovc− ρclear
(3)125

where ρsat is the reflectance measured by the radiometer for the given spectral channel, while ρclear and ρovc are estimates

of the reflectance that would be measured by the same sensor for, respectively, a clear-sky scene, and an overcast scene, i.e.

with an optically thick cloud covering the whole pixel considered. The notion of "optically thick cloud" will be described in

detail in the subsection 2.3.

Because of its definition, the cloud index may also be calculated with radiances. We consider here reflectances in order to130

visualize the anisotropic nature of different scenes. It has also the advantage to be a normalized quantity, so we can compare

results for different radiometric channels and different SZAs.

The relationship between n and DSSI varies slightly from one method to another, in particular for highest and lowest values

of n. The core of the relationship for intermediate values of n follows usually:

G=Gc (1−n) (4)135

where G is the all-sky DSSI and Gc is the DSSI in clear-sky conditions and is provided by an external model. The external

model used in this paper will be presented and discussed in section 2.4. The clear-sky index Kc is largely used to simplify the

reading and is defined as:

Kc =
G

Gc
(5)
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so we can rewrite Equation (4) as:140

G=Gc Kc (6)

Several modifications of the relation Kc(n) have been proposed, e.g. by Rigollier and Wald (1998) (reported in Rigollier

et al. (2004)); Gupta et al. (2001); Perez et al. (2002); Zarzalejo et al. (2009). In this paper, we keep the original and simple

relation Kc = 1−n introduced by Darnell et al. (1988) as its optimization is out of the scope of this work. In the following

subsections, we describe the method used to compute ρclear, ρovc and Gc.145

2.2 The clear-sky reflectances ρclear

We use a radiative transfer model to estimate what a spaceborne optical imaging system would measure in clear-sky conditions,

for a given radiometric channel. Using simulations in cloud indices has previously been done notably to retrieve effective cloud

fractions from the OMI instrument (Lorente et al., 2018; Veefkind et al., 2016; Stammes et al., 2008). We apply the same

approach to satellite radiometers.150

Radiative transfer simulations are able to estimate reflected radiation at the top of the atmosphere (TOA) considering the

non-lambertian nature of the atmosphere and of Earth’s surfaces. For the implementation of the method applied here, we use

the model uvspec within the software package libRadtran (version 2.0.2) (Emde et al., 2016) and the one-dimension solver

DISORT (Buras et al., 2011). We chose to use 32 streams for DISORT as a good compromise between time computation

and a good angular representativeness of simulated radiances. For the spectral description, radiative transfer simulations are155

made following the so-called REPTRAN spectral approximation (Gasteiger et al., 2014). This parameterization enables the

production of fast computations of radiative transfer adapted to the spectral sensitivity of satellite radiometric channels.

The spectral description of downwelling solar irradiance at the top of the atmosphere is provided by data from Kurucz

(1992) for simulating ρclear. The composition of the atmosphere is prescribed by time series of total atmospheric columns

of ozone and water vapour from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis (Inness et al.,160

2013) distributed by the ECMWF. The atmospheric abundance profiles of O2, CO2 and NO2 are kept to the fixed values of

the Air Force Geophysics Laboratory (AFGL) midlatitude summer profile (Anderson et al., 1986), along with the temperature,

pressure and air density profiles.

Partial aerosol optical depths (AOD) are provided at the wavelength 550 nm, for 5 types of aerosols (black carbon, dust, sea

salt, organic matter, sulfate) by the Monitoring Atmospheric Composition and Climate (MACC) reanalysis. A more recently165

developed product Copernicus Atmospheric Monitoring Service (CAMS) reanalysis exists, with two supplementary classes

"ammonium" and "nitrate" added to the aerosol categories of the service. It is worth mentioning that we do not use it, even

such change would not affect the method itself.

An algorithm developed by Lefèvre et al. (2013) translates MACC partial aerosol optical depths information into aerosol

mixtures designed for the Optical Properties of Aerosols and Clouds (OPAC) software package (Hess et al., 1998). These mix-170

tures are associated to aerosol properties: scattering and absorbing coefficients, single scattering albedo, asymmetry parameter

and the Angström coefficient. The total AOD at 550 nm is then calculated as the sum of partial AOD at 550 nm provided by
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CAMS. As libRadtran needs a total AOD input for the simulated wavelength, the OPAC Angström coefficient of the given

mixture is used to estimate the AOD at the required wavelength.

The reflective properties of land surfaces are described with the RossThick-LiSparse (Ross-Li) model of bidirectional re-175

flectance distribution function (Roujean et al., 1992; Lucht et al., 2000). It is then possible to consider the variations of the

surface reflectance depending on viewing and solar zenith angles and on the azimuthal difference of both geometries ∆φ. The

Ross-Li model decomposes the BRDF of a surface into a sum of three components: an isotropic contribution, independent of

viewing and solar geometries; a volumic contribution, following a mathematical model of an idealized canopy ; and a geometric

contribution, considering the shadows induced by the roughness of the surface.180

Algorithms have been developed to estimate the parameters fiso, fvol and fgeo that weight respectively each of the contribu-

tors to the surface reflectance for all lands. This has notably been made with the imagery produced by the Moderate Resolution

Imaging Spectroradiometer (MODIS) embedded on Terra and Aqua satellites (Wanner et al., 1997; Lyapustin et al., 2018).

We test here simulations with data from the Algorithm for Modeling MODIS Bidirectional Reflectance Anisotropies of the

Land Surface (AMBRALS) (Wanner et al., 1997) with its derived product MCD43C1 v6 (Schaaf et al., 2002).185

This product provides fiso, fvol and fgeo parameters with a 0.05° resolution (about 6 km at the equator), a daily sampling rate,

16-day average and for seven spectral channels, including 4 channels in the 400-1000 nm spectral interval considered for the

Heliosat-V method (Fig. 3). Owing to libRadtran documentation (Mayer et al., 2017), the values of each parameter are assigned

to the central wavelength of its channel and a linear spectral interpolation is applied for the radiative transfer calculations. For

wavelengths shorter than the 0.47 µm MODIS channel, values are considered spectrally constant. For wavelengths longer than190

0.85 µm, the interpolation is made between parameters at MODIS channels 0.86 µm and 1.24 µm.

2.3 The overcast-sky reflectances ρovc

Cloud-index methods in the literature use various ways to estimate the TOA reflectances in overcast conditions ρovc (Perez

et al., 2002; Lefèvre et al., 2007; Pfeifroth et al., 2017). One way to approximate it without the use of archives of satellite

imagery has been proposed within the Heliosat-2 framework (Lefèvre et al., 2007). An empirical relation based on the work of195

Taylor and Stowe (1984) was developed, considering a dependency of ρovc with the single solar zenith angle θs.

ρovc,HS2 = 0.85− 0.13 [1− exp(−4 cos(θs)5)] (7)

However, spectral radiative transfer simulations of ρovc show that there is also a significant dependency between the TOA

cloudy reflectances and other variables. In Figure 2, we represent 2-dimension histograms of TOA reflectances calculated

from such simulations, with a solar zenith angle set to 30° as an example. For most wavelengths, a significant spread of200

the distribution is observed (Fig. 2, two upper rows), corresponding only to different viewing geometries defined by a linear

meshgrid in cosine of viewing zentih angle (θv) and difference ∆φ of solar and viewing azimuth angles (Table 1).

In this paper, we assume a cloud optical thickness (COT) of 150 to define optically thick clouds and overcast conditions.

This assumption relies on COT statistics from retrievals by the International Satellite Cloud Climatology Project (ISCCP) and

surface measurements of irradiance shown by Trishchenko et al. (2001). The simulations for a low thick cloud (cloud top205
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Figure 2. Two upper rows : distributions of simulated TOA reflectance spectra in overcast conditions ρovc for the different viewing geometries

in the look-up table and for a solar zenith angle of 30°, with a thick liquid cloud (COT = 150). First row: CTH = 15 km ; cloud base height

(CBH) = 2 km. Second row: CTH = 0.5 km ; CBH = 0.2 km . Third row: error on ρovc caused by a misattribution of cloud height to the "low

thick cloud" category. Green, red and blue arrows indicate spectral regions with main absorption features from O3, O2 and H2O, respectively.

height (CTH) at 500 m) and a high thick cloud (CTH at 15 km) show in general a good agreement, except in absorbing bands

of O2 (mainly at 690 nm (O2-B band) and 762 nm (O2-A band)) and H2O (mainly at 725 nm, 820 nm and 950 nm) and for

short wavelengths where scattering becomes increasingly significant (e.g. Jin et al. (2011)). For these wavelengths, the TOA

8

https://doi.org/10.5194/amt-2020-480
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



reflectances with low clouds can be much lower than for high clouds, for a given cloud optical thickness. But outside these

specific spectral regions, the height of clouds will not affect significantly the results of the method.210

An alternative way is therefore to produce look-up tables (LUT) from radiative transfer simulations, an approach notably

applied in the framework of the Heliomont cloud-index method to the Spinning Enhanced Visible and Infra-Red Imager (SE-

VIRI) High Resolution Visible channel (HRV) (Stöckli, 2014). It is then possible to take into account the viewing geometry

and also the spectral variability of ρovc. Assumptions have to be made on the properties of the optically thick clouds as the

Heliosat-V method is designed to work by using only one spectral channel in the range 400-1000 nm: cloud top height, phase215

of cloud, cloud optical thickness, cloud droplet radius or ice crystal shape and size.

Here we construct a liquid cloud LUT of ρovc, setting different cloud and atmosphere properties, geometry and spectral

grids, as described in Table 1. The optical properties of the clouds come from the precalculated Mie tables provided by the

libRadtran software package.

As no information is provided on the actual cloud vertical structure, ρovc are calculated as :220

ρovc =
1
2

(ρovc,high + ρovc,low) (8)

where ρovc,high and ρovc,low are respectively derived from the high and low liquid cloud LUTs, interpolated on the viewing

and solar geometries of the satellite time series and adapted to the spectral response function of radiometric channels.

An ice cloud LUT is also produced, to study the sensitivity of surface irradiance estimates to the assumed cloud phase. The

ice cloud characteristics follow the parameterization by Yang et al. (2013). We use the "aggregate of 8 columns" ice crystal225

habit and the "severe" degree of roughness, which are notably used for the description of ice clouds in the look-up table of the

MODIS collection 6 cloud product (Amarasinghe et al., 2017).

2.4 The clear-sky model of surface irradianceGc

The clear-sky surface irradiance is given by the the version 3 of the McClear model (Gschwind et al., 2019). The McClear

model is a fast and accurate model that provides clear-sky estimation of DSSI with an absolute bias below 21 W m−2 and230

a standard deviation error below 25 W m−2 for 6 BSRN stations used in this paper, namely: Brasilia, Carpentras, Palaiseau,

Payerne, Sede Boker and Tamanrasset. The McClear model was fed with the partial optical depths at 550 nm for black carbon,

dust, sea salt, organic matter and sulfate from MACC reanalysis. It is also fed by water vapor atmospheric total columns ant

the ozone total columns provided by ECMWF. Data was dowloaded from the McClear web service (http://www.soda-pro.com/

web-services/radiation/cams-mcclear).235

2.5 Set-up of validation

To study the validity of the method, we compare DSSI estimates from MSG satellite measurements with pyranometric DSSI

data retrieved from measurement stations part of the reference Baseline Surface Radiation Network (BSRN) (Ohmura et al.,

1998; Driemel et al., 2018). Considered stations are listed in Table 2 and displayed in the MSG field of view in Figure 4. Only
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Table 1. Characteristics of the look-up table of cloudy TOA reflectances

Characteristics Values

Cloud phase liquid (ice only for sensitivity tests)

Cloud optical thickness (COT) 150

Cloud droplet radius vertical profile between 8 and 12 µm

Cloud top height (CTH) 500 m ; 15 km

Solar zenith angle (θs) 0° : 5° : 85°

cosine of viewing zenith angle (cos θv) 0.1 : 0.1 : 1

difference of solar and viewing azimuth angles (∆φ) 0°, 5°, 10° : 20° :170°, 175°, 180°

Spectral resolution 1 nm

TOA spectrum Gueymard (2018)

Ozone total column 300 Dobson Units (DU)

Water vapour total column 20 kg m−2

Aerosols default aerosol described in Shettle (1990)

Temperature and pressure profiles AFGL midlatitude summer

Table 2. List of BSRN stations used for validation

Station Code Latitude Longitude Elevation

Brasilia BRB 15.6010° S 47.7130° W 1023 m

Cabauw CAB 51.9711° N 4.9267° E 0 m

Camborne CAM 50.2167° N 5.3167° W 88 m

Carpentras CAR 44.083° N 5.590° E 100 m

CENER CNR 42.8160° N 1.6010° W 471 m

Lindenberg LIN 52.2100° N 14.1220° E 125 m

Palaiseau PAL 48.7130° N 2.2080° E 156 m

Payerne PAY 46.8150° N 6.9440° E 491 m

Sede Boker SBO 30.8597° N 34.7794° E 500 m

Sao Martinho da Serra SMS 29.4428° S 53.8231° W 489 m

Tamanrasset TAM 22.7903° N 5.5292° E 1385 m

the highest quality BSRN measurements of surface irradiance are used, having passed a quality check (Lefèvre et al., 2013).240

Figure 5 shows the time series when data are considered valid, for each station.
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Figure 3. Colored lines: spectral response functions of different sensors in the spectral range considered by Heliosat-V. Gray lines : TOA

reflectance spectra of typical scenes with a high (dashed line) and low altitude (solid line) thick cloud
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Figure 4. BSRN ground stations used for validation in this study, in the field of view of Meteosat Second Generation (0.6 µm channel).

Figure 5. Time series used for the 15-min mean statistics between satellite estimates and quality-checked BSRN measurements during the

year 2011. In parentheses : percentage of data conserved.
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The method has been tested on images from the SEVIRI sensor, aboard the Meteosat-9 meteorological geostationary satellite

belonging to the family of Meteosat Second Generation (MSG). We consider measurements in the solar channels 0.6 µm and

0.8 µm channels, for the year 2011 and for 11 locations in the field of view of the satellite, and corresponding to locations of

pyranometric in situ sensors from the BSRN network.245

We use the calibration coefficients provided by EUMETSAT that operates MSG. This is worth noting as some calibration

methods recommend to use significantly different gain factors to compute radiances from raw numerical counts (e.g. Doelling

et al. (2018)). The use of optimal calibration is out of the scope of our work. Still, we compared gains coefficients proposed

by EUMETSAT gEUM with those provided by Doelling et al. (2018) gD2018 for the measurements produced by the Meteosat-9

0.6 and 0.8 µm channels in 2011. They show a mean disagreement, calculated as (gEUM− gD2018)/gD2018, of about -9 % for250

0.6 µm and -8 % for 0.8 µm during this period (also illustrated on Fig. A1). Such errors will affect with the same magnitude

the agreement between numerical simulations and measurements of clear-sky TOA reflectances, underlining the importance of

absolute calibration for the Heliosat-V method.

To compare the results of our method to operational satellite-based products of surface irradiance, we use data from Helio-

Clim3 version 5 (HC3v5) and CAMS Radiation (CAMS-RAD) DSSI databases. Both are derived from the imagery of the SE-255

VIRI sensor and are produced by a Heliosat method: a modified version of Heliosat-2 for HC3v5 (Qu et al., 2014) and Heliosat-

4 for CAMS-RAD. Boths products and their descriptions are provided by the SoDa service (http://www.soda-pro.com/).

All validation results thereafter are produced for solar zenith angles lower than 80°.

3 Results

3.1 The cloud index components260

3.1.1 Simulated TOA clear-sky reflectances ρclear

As an intermediate assessment, simulated clear-sky reflectances at the top of the atmosphere (TOA) ρclear are compared to satel-

lite measurements. Cloudy instants are manually filtered out of the satellite time series. Results comprising all the manually-

filtered clear-sky instants in 2011 for all the eleven sites, are shown in Figure 6 as 2D reflectance histograms.

For the 0.6 µm channel, the root-mean-square difference (RMSD) between simulated reflectances ρclear and reflectances265

ρsat measured in clear-sky conditions is about 0.03 (15 %), mainly due to a bias of about 0.02 (10 %). The relative value of the

standard deviation of the difference (STD) is approximately 11 % for both 0.6 µm and 0.8 µm channels. However reflectances

in the near infrared 0.8 µm channel are significantly higher, so is the absolute value of STD. Both higher STD and bias for

the 0.8 µm will cause a lower precision in the calculation of the cloud index than for 0.6 µm. Correlation coefficients are

significantly high, both larger than 0.9 but the correlation is much better for 0.6 µm with 0.974: the variability of ρclear is270

significantly better represented (almost 95 % of the total variance) than for 0.8 µm (82 % of the total variance).

Figure 7 shows that estimates are able to reproduce partly the diurnal variability observed in clear sky conditions. When

studying station by station, highest mean biases reach +0.035 for 0.6 µm (Payerne) and -0.07 for 0.8 µm (Camborne) (see also
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Fig. B1). It is worth noting that we use MCD43C1v6 BRDF data regardless of their quality flags. We observe although that

keeping only the highest quality data slightly improves statistics.275

Figure 6. Simulation of clear-sky reflectances at the TOA (ρclear) for MSG 0.6 µm (left panel) and 0.8 µm (right panel) spectral channels

compared with actual satellite measurements. The comparison is done for all 11 locations, for the year 2011.

3.1.2 Simulated reflectances at the top of the atmosphere in overcast conditions ρovc

The validity of ρovc is more difficult to test than that of ρclear by comparing with satellite measurements as the occurence of

optically thick clouds can be rare depending on the location, the season and the hour of the day. We therefore use 9 years of

Meteosat measurements, between 2011 and 2019 to extract the 1% most reflective scenes for each station, month and hour of

the day (Fig. 7). The first row of Figure 6 shows a good agreement between most reflective satellite scenes of the São Martinho280

da Serra pixel and ρovc. On the other hand, some stations show regularly values of measured reflectances beyond the ρovc

simulated boundary, as in the exemple of Camborne (Fig. 7, second row). Figure 7 illustrates also how ρovc depends on the

liquid or ice phase of the cloud, due to their different scattering phase functions.

3.2 Comparison of satellite-based estimates with ground-based measurements

Validation results are shown in Table 3, for 15-min averaged DSSI estimates. Satellite-based estimates are obtained with MSG285

0.6 µm imagery. Results for MSG 0.8 µm imagery show generally lower quality in terms of correlation and STD (Fig. B2).
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Figure 7. Simulated and measured reflectances at the top of the atmosphere above São Martinho da Serra (Brazil, upper row) and Camborne

(United Kingdom, lower row) locations, for MSG 0.6 µm channel and for January, May and September calendar months. Grey plus signs:

MSG measurements (2011, Meteosat-9). Green asterisks: reflectances in overcast conditions ρovc, derived from the liquid-cloud look-up ta-

ble. Blue asterisks: same from the ice-cloud look-up table. Purple asterisks: reflectances in clear-sky conditions ρclear, derived from radiative

transfer simulations. Yellow and orange dots are respectively hourly percentiles 1 and 99 of MSG satellite measurements from year 2011 to

2019.

We tested the sensitivity of the DSSI estimates to the cloud phase by using in one case the reference look-up table, featuring

a liquid cloud, and for the test case, an ice cloud as described in Section 2.3. Results show only minor differences, pointing out

a limited influence of the cloud phase on DSSI estimates (Fig. B3).

3.3 Comparison of satellite-based estimates with operational products HelioClim3 and CAMS Radiation290

The results of the method are also compared to satellite-based DSSI products HelioClim3 version 5 (HC3v5) and CAMS

Radiation Service (CAMS-RAD) on Table 4. Results for the new HSV method show statistics similar to HC3v5 and CAMS-
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Table 3. Validation results for 15-min means of all-sky DSSI, for the year 2011. Results based on the imagery of Meteosat-9/SEVIRI 0.6

µm channel.

Station Number of samples Mean BSRN Bias RMSD Correlation coefficient

W m−2 W m−2 (%) W m−2 (%) (R)

Brasilia 13570 504 25 (5) 137 (27) 0.883

Cabauw 13222 301 4 (1) 72 (24) 0.949

Camborne 12731 310 -3 (-1) 103 (33) 0.901

Carpentras 12642 452 41 (9) 80 (18) 0.969

CENER 14164 412 21 (5) 89 (22) 0.946

Lindenberg 13637 317 9 (3) 81 (26) 0.938

Palaiseau 13993 335 12 (4) 79 (24) 0.948

Payerne 9191 387 29 (8) 88 (23) 0.955

Sede Boker 13574 589 46 (8) 90 (15) 0.960

Sao Martinho da Serra 5864 501 8 (2) 102 (20) 0.936

Tamanrasset 13609 579 26 (5) 88 (15) 0.958

Total 136197 436 20 (5) 93 (22) 0.948

Table 4. Comparison between validation results of HSV with those of HC3v5 and CAMS-RAD, each one versus BSRN measurements.

Statistics on 15-minute means of DSSI for the stack of 11 stations and the year 2011. N = 135107 ; BSRN mean = 424 W m−2

Method/data product Bias STD RMSD Correlation coefficient

W m−2 (%) W m−2 (%) W m−2 (%) (R)

HSV 0.6 µm 20 (5) 91 (21) 93 (22) 0.948

HSV 0.8 µm -6 (-2) 101 (24) 101 (24) 0.934

HC3v5 2 (0) 88 (21) 88 (21) 0.950

CAMS-RAD 0 (0) 98 (23) 98 (23) 0.937

RAD, for both estimates based on 0.6 µm and 0.8 µm channels, in terms of correlation and of STD. One may note very low

values of bias for operational products. This is expected because CAMS-RAD and HC3v5 estimates are calibrated with DSSI

measurements from a similar set of BSRN stations.295

4 Discussion

Cloud-index methods are sensitive to estimates of clear-sky reflectances at the top of the atmosphere (TOA) ρclear, to the

accuracy of overcast reflectances ρovc and to the contrast between clear-sky and overcast scenes.
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Better results from the channel 0.6 µm could be attributed to a smaller influence of the cloud top height, compared to

the 0.8 µm channel which is affected by water vapour absorption (Fig. 3). Also, the choice of a spectral linear interpolation300

between MODIS channels to simulate surface reflectances in SEVIRI channels is supposed to contribute significantly to biases

observed in ρclear simulations, in particular for the 0.8 µm channel with vegetated surfaces due to the red edge spectral pattern.

Such biases could affect significantly DSSI estimates.

The surface reflectivity is lower for shorter wavelengths in general. Selecting a channel for which the surface reflectivity is

low will favor a high contrast between clear-sky and overcast scenes, and improve the precision in the computation of the cloud305

index.

Our ability to reproduce reflectances at the top of the atmosphere in overcast conditions depends also on our knowledge of

cloud properties, including their scattering phase function, tridimensional structure and top height.

But the introduction of radiative transfer simulations in the computation of the cloud index also enhances the importance

of an accurate calibration of satellite radiance measurements. Using the gain coefficients developed by Doelling et al. (2018)310

for CERES-SYN1deg instead of EUMETSAT operational coefficients is sufficient to remove most of the mean bias observed

between simulations and measurements of reflectances at the top of the atmosphere in clear-sky conditions, for the channel

0.6 µm. Besides, this increases the mean bias for the 0.8 µm. It is possibly due to a weaker compensation of the errors on the

calibration and caused by the linear spectral interpolation applied between MODIS channels to reproduce reflexion properties

of vegetated surfaces.315

The simple relationship between the cloud index and the clear-sky index used here explains the significant amount of negative

values of DSSI estimates. The improvement of this relation will be the object of a future study.

Finally, the quality of the results depends also on the quality of the clear-sky surface irradiance model : the example of the

McClear model shows typical biases of 3 % for the studied stations, when compared to BSRN irradiance data (Fig. C1). The

improvement towards a least biased estimation of the downwelling surface solar irradiance based on a cloud index will require320

better estimates of the attenuation of the solar radiation by the clear atmosphere.

5 Conclusion and perspectives

A method to compute the cloud index is described in the framework of the development of the future Heliosat-V method for

estimating downwelling surface solar irradiance from satellite imagery. The cloud index is built to deal with a single radiometric

channel in the spectral range 400-1000 nm. It also does not need archives of data to quantify the cloud effective transmissivity.325

This approach has advantages. First, the concept of the Heliosat-V cloud index enables the use of imagery from geostationary

and non-geostationary platforms, an asset to reach an extended spatial coverage. Moreover, the approach has the potential to

deal with long time series of imagery from radiometers characterized by different spectral sensitivities and viewing geometries.

Validation results using SEVIRI imagery show that DSSI can be estimated by a cloud index method that does not rely

on archives of imagery, with a quality similar to operational satellite-based data products like CAMS Radiation Service and330

HelioClim3, in terms of RMSD and correlation. This is an encouraging step toward the application of a Heliosat method to
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non geostationary satellite sensors. However, we note that there are differentiated errors depending on the spectral channel

considered. This could be attenuated notably by an external knowledge on cloud top height and by improving the spectral

interpolation of reflexion properties of vegetated surfaces.

To clarify the potential of the method for long time series of imagery, we will need to explore how sensitive to the quality335

of input data the results are. The knowledge on atmospheric composition in absorbing and scattering species and on surface

reflectivity properties is notably lower for past periods like 1980’s than for today. Also, the absolute calibration of satellite

imagery can be more uncertain, without on-orbit calibrated instruments. Many inputs of the method have very different degrees

of quality, depending on the period considered: the composition of the clear-sky atmosphere (aerosols and gases), surface

properties, external clear-sky irradiance model. Further work is still to be done on multidecadal time series to study how the340

quality of such ancillary data affect the estimates of DSSI.

Also, producing global maps of DSSI requires to deal with non geostationary satellite imagery. First tests of the method have

been made on the imagery of the Earth Polychromatic Imaging Camera (EPIC) embedded on the DSCOVR platform. They

show encouraging results that will be extended and detailed in a future publication.

Global coverage of DSSI information obviously requires also to deal with ocean surfaces and snow covered regions, and this345

will need to be treated in the future.

Code availability. Excerpts of code are available at https://cloud.mines-paristech.fr/index.php/s/HAWmw7Fs927EtME

Data availability. DSSI results derived from the implementation of Heliosat-V for validation on all 11 stations are available at https://cloud.

mines-paristech.fr/index.php/s/HAWmw7Fs927EtME, along with simulated and MSG measured reflectances, cloud and clear-sky indices

and clear-sky irradiance estimates from the McClear model. The manually filtered clear-sky instants are also provided for all 11 locations.350
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Appendix A: Methods

A1 Set-up of validation

Figure A1. First two rows: calibration gains provided by EUMETSAT (black stars) and by CERES-SYN1deg (Doelling et al., 2018) (red

stars) for 0.6 µm channel (first row) and 0.8 µm (second row) of SEVIRI sensor aboard Meteosat-9, between 2011 and 2019. Third row: ID

of the operational satellite at the longitude 0°.
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Appendix B: Results

B1 Simulated TOA clear-sky reflectances ρclear

Figure B1. Relative mean bias errors of simulated clear-sky reflectances at the top of the atmosphere ρclear ((simulation-

measurement)/measurement) for channels 0.6 µm (upper panel) and 0.8 µm (lower panel), and for each BSRN site.
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B2 Comparison of satellite-based estimates with ground-based measurements355

Figure B2. 2D-histograms of satellite-based DSSI estimates from the Heliosat-V method versus ground-based BSRN measurements for

MSG 0.6 µm channel (left panel) and 0.8 µm channel (right panel).
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Table B1. Validation results for 15-min means of all-sky DSSI, for the year 2011. Results based on the imagery of Meteosat-9/SEVIRI 0.8

µm channel.

Station Number of samples Mean BSRN Bias RMSD Correlation coefficient

W m−2 W m−2 (%) W m−2 (%) (R)

Brasilia 13570 504 13 (3) 142 (28) 0.871

Cabauw 13222 301 -27 (-9) 93 (31) 0.919

Camborne 12731 310 -28 (-9) 117 (38) 0.875

Carpentras 12642 452 19 (4) 81 (18) 0.958

CENER 14164 412 -9 (-2) 96 (23) 0.932

Lindenberg 13637 317 -18 (-6) 92 (29) 0.920

Palaiseau 13993 335 -14 (4) 88 (26) 0.934

Payerne 9191 387 -22 (-6) 99 (26) 0.936

Sede Boker 13574 589 23 (4) 91 (16) 0.947

Sao Martinho da Serra 5864 501 -49 (-10) 124 (25) 0.918

Tamanrasset 13609 579 15 (3) 89 (15) 0.954

Total 136197 424 -6 (-2) 101 (24) 0.934
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Figure B3. Impact of cloud phase on DSSI estimates. 2D-histogram of satellite-based DSSI estimates from the Heliosat-V method versus

ground-based BSRN measurements for the MSG 0.6 µm channel. The liquid cloud look-up table of overcast-sky TOA reflectances is replaced

for the ice cloud LUT.
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Appendix C: Discussion

Figure C1. 2D histogram of 15-min mean clear-sky DSSI from the McClear model versus BSRN measurements from the 11 locations and

year 2011. Cloudy instants filtered out with the mask used for Fig. 6.
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