
Reviewer #1 

This manuscript provides a seven-step methodology for the calibration and quality assurance of 
low-cost air quality sensors. Thanks to the generalised nature of this method, it can be applied to 
a wide range of sensors and potentially be used as a standard calibration procedure. The data 
processing script was made publicly available which maximises the applicability of this method 
and the impact of this research. 

The authors have pointed out current challenges in the use of low-cost sensors including the lack 
(or incomparability) of calibration procedures in many low-cost sensor application studies. They 
stress the need of a reliable and reproducible data calibration and post-processing method. This 
manuscript is an important step towards this aim and, therefore, a valuable contribution to the 
literature in this field as it has the potential to improve the data quality in future applications of 
low-cost sensors. The manuscript is well structured and clearly written. 

My main suggestions to further improve the scientific quality of the manuscript are: 

• Discuss the limitations of this method in more detail (Point 1) 

• Add physical explanations of the found observations (Point 5) 

 

We thank the reviewer for their positive comments regarding this manuscript and their recognition 
of the need for such a standardized methodology in the calibration of low-cost sensors. Their 
comments are very helpful and have improved the quality of this manuscript. What follows are 
point by point responses to their main comments. All technical comments were accepted and 
changed in the manuscript, unless otherwise specified.  

Specific comments 

1. Please discuss the limitations of your calibration method in more detail (Point 2.1)  

• Application range of calibrated sensors (indoor vs outdoor vs mobile) 
 
You stressed the importance of calibrating the sensors under conditions that are similar 
to those under which they will be (or have been) operated during the experimental 
application. This needs to be considered when defining the application range of the 
sensors. 
 
Thanks to their silent operating conditions and small size, low-cost sensors are suited 
for indoor as well as mobile applications (e.g. wearable sensors for personal exposure 
assessment). However, if the calibration is conducted outdoors, the sensors might not 
be suited for such applications as the environmental conditions may differ significantly 
in these environments. Furthermore, mobile deployments would require further data 
cleaning and validation steps as rapidly changing environments may have an impact on 
the sensor performance (e.g. Alphasense Ltd., 2013). 

 



We thank the reviewer for this comment. Some text has been added to this section to clarify the 
study’s focus on stationary field deployment and to highlight that different calibration 
considerations should be used depending on the environment in which the sensors will be deployed.  

The added text reads, “In this study, we focus primarily on stationary field deployment of low-cost 
sensor systems. There are, however, other forms of deployment, including indoor and mobile, for 
which these criteria also apply. It is important to mention that there may be other considerations 
required in such alternative forms of deployment, e.g. more scrutinous data cleaning in mobile 
deployments due to impacts of rapidly changing environments on sensor performance.” 

• Sensor systems 
 
As you have pointed out, low-cost sensors are often temperature and RH dependent 
as well as cross-sensitive to other pollutants. Therefore, it should be recommended to 
apply the presented calibration method to sensor systems (with additional sensors for 
T, RH and cross-sensitive gases) rather than individual sensors. 

We thank the reviewer for this comment. In the manuscript we have tried to be coherent in 
describing that this methodology is intended for use on small sensor systems, which often include 
individual sensors for temperature, relative humidity, and other cross-sensitivities. We have gone 
through the manuscript to ensure that this is consistently presented. Please see the track changes 
version of the manuscript for these changes.  

• Data cleaning (Point 2.2.2) 
 
In this step, point outliers are removed based on the assumption of a slowly changing 
airfield where peak exposures over a few seconds do not occur. However, such short-
term (< 10 sec) emissions may occur in certain settings (e.g. traffic emissions of nearby 
passing vehicles, cigarette emissions of passengers etc.).  One advantage of the high 
spatial and temporal resolution of low-cost sensors is that such peak exposures may 
be captured. The proposed method, however, excludes such events. Please include 
this argument when defining the application range of the sensors (Point 2.1). 

We thank the reviewer for this comment. Indeed, this is a significant challenge in data cleaning 
and unfortunately requires, in some cases, subjective assessment for an accurate determination to 
be reached. While it is possible that this data cleaning method removes some non-outlier 
measurements during peak emissions, it is equally possible that such events are indeed outliers 
due to technical sensor error. For this reason, we recommend that identified outliers be graphically 
compared with neighboring points to determine if their removal is justified.  

With the optimized moving window and threshold identified in this study, for sensor system s71, a 
total of 58 outliers were detected from >500,000 data points. In this case individual assessment of 
each point’s ‘outlierness’ was practical, but there may be cases where this is impractical. In such 
cases, we recommend a random subset of outliers be graphically assessed to determine the extent 
to which the data cleaning function is removing actual outliers. This is imperfect, but it is unlikely 
that a data cleaning method exists which can perfectly separate outliers from peak events. It is 
with such peak events that other tested methods such as the AutoRegressive Integrated Moving 
Average performed particularly poorly, identifying most peak events as outliers. If such events are 
expected due to the deployment environment, particular care in the evaluation of potential outliers 
should address this.  



Clarification text has been added to section 2.2.2 regarding this and now reads, “The points flagged 
as outliers with this method were then graphically assessed against neighboring datapoints to 
prevent inadvertent removal of peak emission events. In other cases where assessing all outliers is 
impractical, it is recommended to do so with a random subset of outliers. Furthermore, if 
substantial short-term events are expected due to the deployment environment, such as during 
mobile measurements, a more thorough check of potential outliers should be done.” 

2. Line 115: You state that, while demonstrated here with MOS, the proposed calibration method 
can equally be applied to electrochemical sensors. To strengthen this argument, please add a brief 
physical explanation, a reference, or experimental proof. 

We thank the reviewer for their comment. A brief physical explanation has been added in the text. 
While different in their design, both MOS and EC sensors produce a measure of voltage/resistance 
which varies in response to changing concentrations of gas-phase species, and hence can be 
calibrated using the same methodology. In more recent published work, we have successfully 
applied this methodology for the calibration of EC sensors, see Schmitz et al., (2021). 

The added text reads “Furthermore, while it was applied here to sensor systems containing metal 
oxide LCS, this methodology is also equally as applicable to electrochemical LCS or photoionization 
detectors (PID), as these produce a similar measure of voltage that varies in response to changing 
concentrations of gas-phase species and have similar cross-sensitivities to temperature and 
relative humidity. It is not directly applicable for optical particle counters (OPC) for the 
measurement of particulate matter, as the transformation of the raw data into concentrations 
during calibration functions differently, though some of the principles discussed here are still 
relevant. For an application of this methodology to EC sensors, please see Schmitz et al., (2021).” 

3. Line 221, line 240: Please explain how you have determined the splitting ratio between training 
and validation period. How much differ you results when using other ratios? 

We thank the reviewer for their comment. In this case a standard splitting ratio of 75:25 for training 
and validation test sets was used, as this is common practice in model building. However, we have 
conducted a robustness cross-check with various splitting ratios and found that our results did not 
differ substantially when using other ratios. The training to validation splitting ratios tested were 
90:10, 80:20, 75:25, 70:30, 60:40, and 50:50. For MLR, the median R² across all blocks in Step 5 for 
NO2 models ranged between 0.78 – 0.83 for ambient T/RH and between 0.59-0.74 for internal 
T/RH. For O3 models, the median R² ranged between 0.90 – 0.93 and 0.60 – 0.85 for ambient and 
internal T/RH, respectively. For RF, the median R² across all blocks for NO2 ranged between 0.71 – 
0.77 and 0.61 – 0.74 for ambient and internal T/RH, respectively. For O3 the median R² ranged 
between 0.89 – 0.93 and 0.70 – 0.89 for ambient and internal T/RH, respectively. Given these 
results, we feel that using a splitting ratio of 75:25 is justified, as the results do not differ 
significantly based on this choice.  

Text has been added in section 2.2.5 that reads, “A robustness cross-check with various splitting 
ratios was conducted and found that changing the splitting ratio did not significantly impact the 
results.” 

4. Table 6: Please explain why you are using the medians and not the means of your statistical 
parameters. (whereas in Line 221 you were speaking about the average RMSE) 

We thank the reviewer for pointing out this discrepancy. The median was chosen instead of the 
mean as it is less susceptible to the influence of extreme values. The discrepancy is due to the 



nature of the R function ‘train()’ from the ‘caret’ package used in Step 4, which provides only the 
mean RMSE during operation. In step 5 the calculations were done manually and thus the median 
was preferred. To correct this, the mean RMSE, MAE, and R² from Step 4 were replaced with 
manually calculated medians. This change is reflected in the text and in tables 2-5. 

5. While the manuscript nicely discusses the implications of a finding, it sometimes does not 
offer physical explanations for them: 

• Line 245: “If the graphs showed instability across the various folds, Step 4 was repeated 
and a new model was selected for validation” 
 
What causes this instability and how can you ensure that the model stays stable under 
field conditions? 

We thank the reviewer for this comment. A sentence for clarification has been added to the text. 
We use instability to refer to major changes in R² and RMSE between folds in the model validation 
process. This is likely caused by differences in field conditions between the training and test folds. 
The best way to ensure the model remains stable under field conditions is with repeated co-location 
over longer time periods, in coordination with meteorological changes due to seasonality. The 
more training data available for calibration, the better the chances that the final model will be 
stable under field conditions.  

The added text now reads, “In this case, instability refers to major differences in R² and RMSE 
between folds likely caused by differing field conditions among the training and test folds. If this is 
seen, it indicates that the model may be too sensitive to changes in field conditions.” 

• Section 3.4.4 (model selection): Different relationships between the input variables were 
found for different models, e.g. an inverse temperature dependence for NO2 was found 
for the best fitting MLR but no temperature dependence was found in the case of the 
best fitting RF. How can you explain this and what type of physical relationship (e.g. 
temperature dependence) would you expect? 

We thank the reviewer for this comment. A dependence on temperature was expected for the NO2 
models and was therefore included during the initial model selection process for both the MLR and 
RF models. However, the nature of this physical relationship was not clear, as the sensor 
specifications indicated that expected temperatures during field deployment would not impact the 
functioning of the MOS sensors. Rather, the dependence on temperature was expected due to the 
impact that temperature, as a proxy for insolation, has on daytime chemistry. An inverse 
relationship in this sense makes sense, as NO2 is photolyzed in VOC-sensitive environments to 
produce O3, which is normally the case in urban environments such as Berlin. 

Following the update of the tables in Step 4 to reflect the median RMSE/MAE/R² instead of the 
mean for each model in response to the reviewer’s previous comment, the best RF model for NO2 
was found to include T, which was previously not the case. All subsequent tables and graphs 
throughout the example were updated to reflect this change in the NO2 RF model. Therefore, the 
reviewer’s comment is partially answered, as there is in fact a temperature dependence in the RF 
model.  

In the case of MLR, the final temperature dependence was determined to require an inverse 
transformation, whereas for RF, the relationships are equal in nature, as inverse, logarithmic, etc. 



transformations do not affect the outcome of the RF model. This is principally due to different 
calculations that occur within the mechanisms of each model. For an RF model, this involves 
randomly choosing a variable by which to split the decision tree. This occurs at each node until no 
more splits are possible or the data are collected into final bins containing 5 data points. Therefore, 
any physical transformation of the data will not lead to a change in the calculations that occur in 
an RF model.   

Text has been added to section 3.4.4, which now reads, “This is in line with what would be expected 
in urban environments, as T can be seen as a proxy for insolation, which causes the photolysis of 
NO2.” 

• The model performance was found to be higher when using the ambient environmental 
conditions (T and RH) as parameters (e.g. Tables 6 and 7). However, you pointed out in 
the discussion (Line 619) that the internal conditions are more representative for the 
operating conditions of the sensor. What are possible explanations for this observation? 

We thank the reviewer for this comment. This is indeed an interesting finding that is challenging 
to explain. The ambient T and RH would be expected to be more accurate models, as they are 
better representative of the conditions under which chemical processes occur that produce the 
concentrations of NO2 and O3 measured by the reference instruments. In this regard it makes sense 
that the model performance during validation was better with models trained using ambient T and 
RH than with internal. However, since the actual chemical reactions being measured are those that 
are taking place on the surface of the MOS, it seems that the internal T and RH better represent 
the conditions of the chemistry inside of the sensor system. The signal produced from the internal 
T and RH sensors is then used alongside the MOS signal in the models as markers for the chemistry 
that is occurring inside the sensor system at the time the same parcel of air reaches the sensor 
system and the reference instrument. However, that there are equally valid explanations for both 
outcomes warrants a closer investigation into these results. We feel that this would require much 
more detailed inspection of model predictions and would be outside the scope of this paper, which 
intends primarily to present and explain a methodology for the calibration of LCS. Future work will 
take a closer look at these results to determine why this occurs.  

A sentence has been added to the discussion in line with this comment and another from Reviewer 
#2 that reads, “However, given that models using ambient data were more accurate during the 
validation step and significant differences between predictions of models trained with internal vs 
ambient T and RH were identified, these results require closer inspection, which should be the 
subject of future research.” 

6. Line 292: Please specify “decent” and “good” agreement (e.g. with mean R2 & RMSE) 

Done. R2 of these intercomparisons have been added to the text in addition to the reference to the 
supplemental information. 

7. Line 327: You deployed (at least) two low-cost sensors. Have you quantified the agreement 
between the two sensors? If so, add a small sentence here as it may be a strong argument why it 
is sufficient to only look at the data of one representative sensor. Perhaps summarise the 
performance of the second sensor briefly in the main text. How can you explain the non-linear 
response of sensor s72 (Figure S8)? 

We thank the reviewer for their comment. For this study, we use the two low-cost sensors primarily 
as examples of how to use the seven-step methodology and did not consider their intercomparison 



as we felt it might distract from the main focus of the work. However, we have added graphs 
depicting the agreement between standardized raw LCS data of s71 and s72 during the 2 co-
locations of the winter measurement campaign into the supplemental information (Figures S4 and 
S5). The Oxa and O3a MOS sensors of each sensor system are linearly related, but due to 
differences in sensor sensitivity, have different baselines. In the summer campaign, the relationship 
between the O3a sensors of s71 and s72 during co-location 2 is non-linear but returns to linear 
agreement in co-location 3 and in the winter campaign.  

A reference to the added graphs in SI and a brief discussion of this point in the text was added 
[section 3.3] and reads, “To compare sensor performance between s71 and s72, an 
intercomparison of available co-location raw data was conducted for the oxidizing MOS (Oxa) and 
ozone MOS (O3a). During all co-locations, the sensors had a linear relationship and an R² > 0.95 
(Figures S4 and S5). In only one instance was this not the case (co-location 2, O3a), where the R² 
was 0.59 and a deviation from linearity was detected. This relationship was linear in all other co-
locations.”.  

8. Figure 8 (optional): Adding histograms showing the overlap between colocation and 
experiment would make the Figure easier to comprehend and help to understand the flagging 
procedure. 

We thank the reviewer for this comment. We have decided not to include extra figures to the 
manuscript, as there are already very many. Instead, since the violin plots in Figure 4 would help 
understand the overlap between co-location and experimental data, we have added text that 
compares Figure 8 to Figure 4.  

The added text in section 3.4.3 reads, “This shows the utility of comparing the results of Step 1 with 
the flags generated in Step 3.” 

9. Line 596: Replace “for those who enjoy” with “to achieve” 

Done. 

Technical comments 

10. Please use subscripts for NO2 and O3 and superscripts for R2 throughout the document. 

Done. 

11. Lines 93 and 96: What means SVM? Do you mean SVR (support vector regression)? 

Yes, this was a mix-up between Support Vector Machines and Support Vector Regression. SVM has 
been changed to SVR to match earlier text in this section. 

12. Line 149: Delete “for use in statistical calibration” (the general quality of the final data is likely 
to be higher) 

Done. 

13. Line 154 (Style, optional): Replace “What follows in this section is a” with “This section 
provides a” 



Done. 

14. Line 196: How do you define the range of the colocation data? As the range between the 
minimum and maximum observations? (Or percentiles?) 

Yes, the range between minimum and maximum observations is meant here. This has been added 
to the text. 

15. Line 219: Please provide references for AIC and VI 

Done. 

16. Line 263 (optional): Perhaps add a sentence or reference explaining the term “smearing” as 
the audience might not be familiar with this practice. 

Done. 

17. Line 295: “more information 295 in section 3.2” – this is section 3.2 

This has been changed to “section 3.3”, as is correct. 

18. Table 1: Is it correct that the sensor models for the reducing and the oxidising gases are 
identical? (SGX Sensortech MICS- 4514) 

Yes, this is correct. This sensor detects both reducing and oxidizing species. 

19. Figure 2 (optional): Adding a timeline with (rough) dates would help to comprehend the 
paragraph above quicker. 

Figure 2 has been updated and dates have been added to the timeline.  

20. Figures 4 c, d; 6; 7 a, b; 10 etc: Make sure that all axes have units (even if only arbitrary units). 

Done. 

21. Figures 14 and 15 (optional): Although you have already mentioned them in Tables 8 and 9, 
add the R2 and RMSE values to the graphs to provide a comprehensive overview. 

Done. 

22. Line 503: “the reference instruments did not impact the predictive accuracy of the models and 
can therefore [in this case] be ignored as a potential interference” – can this be generalised for all 
sensors? If not, add “in this case” 

Done. 

23. Line 508: “The uncertainty between RF models and MLR models was fairly similar” - replace 
“between” with “of” 

Done. 
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