
Reviewer #1 

This manuscript provides a seven-step methodology for the calibration and quality assurance of 
low-cost air quality sensors. Thanks to the generalised nature of this method, it can be applied to 
a wide range of sensors and potentially be used as a standard calibration procedure. The data 
processing script was made publicly available which maximises the applicability of this method 
and the impact of this research. 

The authors have pointed out current challenges in the use of low-cost sensors including the lack 
(or incomparability) of calibration procedures in many low-cost sensor application studies. They 
stress the need of a reliable and reproducible data calibration and post-processing method. This 
manuscript is an important step towards this aim and, therefore, a valuable contribution to the 
literature in this field as it has the potential to improve the data quality in future applications of 
low-cost sensors. The manuscript is well structured and clearly written. 

My main suggestions to further improve the scientific quality of the manuscript are: 

• Discuss the limitations of this method in more detail (Point 1) 

• Add physical explanations of the found observations (Point 5) 

 

We thank the reviewer for their positive comments regarding this manuscript and their recognition 
of the need for such a standardized methodology in the calibration of low-cost sensors. Their 
comments are very helpful and have improved the quality of this manuscript. What follows are 
point by point responses to their main comments. All technical comments were accepted and 
changed in the manuscript, unless otherwise specified.  

Specific comments 

1. Please discuss the limitations of your calibration method in more detail (Point 2.1)  

• Application range of calibrated sensors (indoor vs outdoor vs mobile) 
 
You stressed the importance of calibrating the sensors under conditions that are similar 
to those under which they will be (or have been) operated during the experimental 
application. This needs to be considered when defining the application range of the 
sensors. 
 
Thanks to their silent operating conditions and small size, low-cost sensors are suited 
for indoor as well as mobile applications (e.g. wearable sensors for personal exposure 
assessment). However, if the calibration is conducted outdoors, the sensors might not 
be suited for such applications as the environmental conditions may differ significantly 
in these environments. Furthermore, mobile deployments would require further data 
cleaning and validation steps as rapidly changing environments may have an impact on 
the sensor performance (e.g. Alphasense Ltd., 2013). 

 



We thank the reviewer for this comment. Some text has been added to this section to clarify the 
study’s focus on stationary field deployment and to highlight that different calibration 
considerations should be used depending on the environment in which the sensors will be deployed.  

The added text reads, “In this study, we focus primarily on stationary field deployment of low-cost 
sensor systems. There are, however, other forms of deployment, including indoor and mobile, for 
which these criteria also apply. It is important to mention that there may be other considerations 
required in such alternative forms of deployment, e.g. more scrutinous data cleaning in mobile 
deployments due to impacts of rapidly changing environments on sensor performance.” 

• Sensor systems 
 
As you have pointed out, low-cost sensors are often temperature and RH dependent 
as well as cross-sensitive to other pollutants. Therefore, it should be recommended to 
apply the presented calibration method to sensor systems (with additional sensors for 
T, RH and cross-sensitive gases) rather than individual sensors. 

We thank the reviewer for this comment. In the manuscript we have tried to be coherent in 
describing that this methodology is intended for use on small sensor systems, which often include 
individual sensors for temperature, relative humidity, and other cross-sensitivities. We have gone 
through the manuscript to ensure that this is consistently presented. Please see the track changes 
version of the manuscript for these changes.  

• Data cleaning (Point 2.2.2) 
 
In this step, point outliers are removed based on the assumption of a slowly changing 
airfield where peak exposures over a few seconds do not occur. However, such short-
term (< 10 sec) emissions may occur in certain settings (e.g. traffic emissions of nearby 
passing vehicles, cigarette emissions of passengers etc.).  One advantage of the high 
spatial and temporal resolution of low-cost sensors is that such peak exposures may 
be captured. The proposed method, however, excludes such events. Please include 
this argument when defining the application range of the sensors (Point 2.1). 

We thank the reviewer for this comment. Indeed, this is a significant challenge in data cleaning 
and unfortunately requires, in some cases, subjective assessment for an accurate determination to 
be reached. While it is possible that this data cleaning method removes some non-outlier 
measurements during peak emissions, it is equally possible that such events are indeed outliers 
due to technical sensor error. For this reason, we recommend that identified outliers be graphically 
compared with neighboring points to determine if their removal is justified.  

With the optimized moving window and threshold identified in this study, for sensor system s71, a 
total of 58 outliers were detected from >500,000 data points. In this case individual assessment of 
each point’s ‘outlierness’ was practical, but there may be cases where this is impractical. In such 
cases, we recommend a random subset of outliers be graphically assessed to determine the extent 
to which the data cleaning function is removing actual outliers. This is imperfect, but it is unlikely 
that a data cleaning method exists which can perfectly separate outliers from peak events. It is 
with such peak events that other tested methods such as the AutoRegressive Integrated Moving 
Average performed particularly poorly, identifying most peak events as outliers. If such events are 
expected due to the deployment environment, particular care in the evaluation of potential outliers 
should address this.  



Clarification text has been added to section 2.2.2 regarding this and now reads, “The points flagged 
as outliers with this method were then graphically assessed against neighboring datapoints to 
prevent inadvertent removal of peak emission events. In other cases where assessing all outliers is 
impractical, it is recommended to do so with a random subset of outliers. Furthermore, if 
substantial short-term events are expected due to the deployment environment, such as during 
mobile measurements, a more thorough check of potential outliers should be done.” 

2. Line 115: You state that, while demonstrated here with MOS, the proposed calibration method 
can equally be applied to electrochemical sensors. To strengthen this argument, please add a brief 
physical explanation, a reference, or experimental proof. 

We thank the reviewer for their comment. A brief physical explanation has been added in the text. 
While different in their design, both MOS and EC sensors produce a measure of voltage/resistance 
which varies in response to changing concentrations of gas-phase species, and hence can be 
calibrated using the same methodology. In more recent published work, we have successfully 
applied this methodology for the calibration of EC sensors, see Schmitz et al., (2021). 

The added text reads “Furthermore, while it was applied here to sensor systems containing metal 
oxide LCS, this methodology is also equally as applicable to electrochemical LCS or photoionization 
detectors (PID), as these produce a similar measure of voltage that varies in response to changing 
concentrations of gas-phase species and have similar cross-sensitivities to temperature and 
relative humidity. It is not directly applicable for optical particle counters (OPC) for the 
measurement of particulate matter, as the transformation of the raw data into concentrations 
during calibration functions differently, though some of the principles discussed here are still 
relevant. For an application of this methodology to EC sensors, please see Schmitz et al., (2021).” 

3. Line 221, line 240: Please explain how you have determined the splitting ratio between training 
and validation period. How much differ you results when using other ratios? 

We thank the reviewer for their comment. In this case a standard splitting ratio of 75:25 for training 
and validation test sets was used, as this is common practice in model building. However, we have 
conducted a robustness cross-check with various splitting ratios and found that our results did not 
differ substantially when using other ratios. The training to validation splitting ratios tested were 
90:10, 80:20, 75:25, 70:30, 60:40, and 50:50. For MLR, the median R² across all blocks in Step 5 for 
NO2 models ranged between 0.78 – 0.83 for ambient T/RH and between 0.59-0.74 for internal 
T/RH. For O3 models, the median R² ranged between 0.90 – 0.93 and 0.60 – 0.85 for ambient and 
internal T/RH, respectively. For RF, the median R² across all blocks for NO2 ranged between 0.71 – 
0.77 and 0.61 – 0.74 for ambient and internal T/RH, respectively. For O3 the median R² ranged 
between 0.89 – 0.93 and 0.70 – 0.89 for ambient and internal T/RH, respectively. Given these 
results, we feel that using a splitting ratio of 75:25 is justified, as the results do not differ 
significantly based on this choice.  

Text has been added in section 2.2.5 that reads, “A robustness cross-check with various splitting 
ratios was conducted and found that changing the splitting ratio did not significantly impact the 
results.” 

4. Table 6: Please explain why you are using the medians and not the means of your statistical 
parameters. (whereas in Line 221 you were speaking about the average RMSE) 

We thank the reviewer for pointing out this discrepancy. The median was chosen instead of the 
mean as it is less susceptible to the influence of extreme values. The discrepancy is due to the 



nature of the R function ‘train()’ from the ‘caret’ package used in Step 4, which provides only the 
mean RMSE during operation. In step 5 the calculations were done manually and thus the median 
was preferred. To correct this, the mean RMSE, MAE, and R² from Step 4 were replaced with 
manually calculated medians. This change is reflected in the text and in tables 2-5. 

5. While the manuscript nicely discusses the implications of a finding, it sometimes does not 
offer physical explanations for them: 

• Line 245: “If the graphs showed instability across the various folds, Step 4 was repeated 
and a new model was selected for validation” 
 
What causes this instability and how can you ensure that the model stays stable under 
field conditions? 

We thank the reviewer for this comment. A sentence for clarification has been added to the text. 
We use instability to refer to major changes in R² and RMSE between folds in the model validation 
process. This is likely caused by differences in field conditions between the training and test folds. 
The best way to ensure the model remains stable under field conditions is with repeated co-location 
over longer time periods, in coordination with meteorological changes due to seasonality. The 
more training data available for calibration, the better the chances that the final model will be 
stable under field conditions.  

The added text now reads, “In this case, instability refers to major differences in R² and RMSE 
between folds likely caused by differing field conditions among the training and test folds. If this is 
seen, it indicates that the model may be too sensitive to changes in field conditions.” 

• Section 3.4.4 (model selection): Different relationships between the input variables were 
found for different models, e.g. an inverse temperature dependence for NO2 was found 
for the best fitting MLR but no temperature dependence was found in the case of the 
best fitting RF. How can you explain this and what type of physical relationship (e.g. 
temperature dependence) would you expect? 

We thank the reviewer for this comment. A dependence on temperature was expected for the NO2 
models and was therefore included during the initial model selection process for both the MLR and 
RF models. However, the nature of this physical relationship was not clear, as the sensor 
specifications indicated that expected temperatures during field deployment would not impact the 
functioning of the MOS sensors. Rather, the dependence on temperature was expected due to the 
impact that temperature, as a proxy for insolation, has on daytime chemistry. An inverse 
relationship in this sense makes sense, as NO2 is photolyzed in VOC-sensitive environments to 
produce O3, which is normally the case in urban environments such as Berlin. 

Following the update of the tables in Step 4 to reflect the median RMSE/MAE/R² instead of the 
mean for each model in response to the reviewer’s previous comment, the best RF model for NO2 
was found to include T, which was previously not the case. All subsequent tables and graphs 
throughout the example were updated to reflect this change in the NO2 RF model. Therefore, the 
reviewer’s comment is partially answered, as there is in fact a temperature dependence in the RF 
model.  

In the case of MLR, the final temperature dependence was determined to require an inverse 
transformation, whereas for RF, the relationships are equal in nature, as inverse, logarithmic, etc. 



transformations do not affect the outcome of the RF model. This is principally due to different 
calculations that occur within the mechanisms of each model. For an RF model, this involves 
randomly choosing a variable by which to split the decision tree. This occurs at each node until no 
more splits are possible or the data are collected into final bins containing 5 data points. Therefore, 
any physical transformation of the data will not lead to a change in the calculations that occur in 
an RF model.   

Text has been added to section 3.4.4, which now reads, “This is in line with what would be expected 
in urban environments, as T can be seen as a proxy for insolation, which causes the photolysis of 
NO2.” 

• The model performance was found to be higher when using the ambient environmental 
conditions (T and RH) as parameters (e.g. Tables 6 and 7). However, you pointed out in 
the discussion (Line 619) that the internal conditions are more representative for the 
operating conditions of the sensor. What are possible explanations for this observation? 

We thank the reviewer for this comment. This is indeed an interesting finding that is challenging 
to explain. The ambient T and RH would be expected to be more accurate models, as they are 
better representative of the conditions under which chemical processes occur that produce the 
concentrations of NO2 and O3 measured by the reference instruments. In this regard it makes sense 
that the model performance during validation was better with models trained using ambient T and 
RH than with internal. However, since the actual chemical reactions being measured are those that 
are taking place on the surface of the MOS, it seems that the internal T and RH better represent 
the conditions of the chemistry inside of the sensor system. The signal produced from the internal 
T and RH sensors is then used alongside the MOS signal in the models as markers for the chemistry 
that is occurring inside the sensor system at the time the same parcel of air reaches the sensor 
system and the reference instrument. However, that there are equally valid explanations for both 
outcomes warrants a closer investigation into these results. We feel that this would require much 
more detailed inspection of model predictions and would be outside the scope of this paper, which 
intends primarily to present and explain a methodology for the calibration of LCS. Future work will 
take a closer look at these results to determine why this occurs.  

A sentence has been added to the discussion in line with this comment and another from Reviewer 
#2 that reads, “However, given that models using ambient data were more accurate during the 
validation step and significant differences between predictions of models trained with internal vs 
ambient T and RH were identified, these results require closer inspection, which should be the 
subject of future research.” 

6. Line 292: Please specify “decent” and “good” agreement (e.g. with mean R2 & RMSE) 

Done. R2 of these intercomparisons have been added to the text in addition to the reference to the 
supplemental information. 

7. Line 327: You deployed (at least) two low-cost sensors. Have you quantified the agreement 
between the two sensors? If so, add a small sentence here as it may be a strong argument why it 
is sufficient to only look at the data of one representative sensor. Perhaps summarise the 
performance of the second sensor briefly in the main text. How can you explain the non-linear 
response of sensor s72 (Figure S8)? 

We thank the reviewer for their comment. For this study, we use the two low-cost sensors primarily 
as examples of how to use the seven-step methodology and did not consider their intercomparison 



as we felt it might distract from the main focus of the work. However, we have added graphs 
depicting the agreement between standardized raw LCS data of s71 and s72 during the 2 co-
locations of the winter measurement campaign into the supplemental information (Figures S4 and 
S5). The Oxa and O3a MOS sensors of each sensor system are linearly related, but due to 
differences in sensor sensitivity, have different baselines. In the summer campaign, the relationship 
between the O3a sensors of s71 and s72 during co-location 2 is non-linear but returns to linear 
agreement in co-location 3 and in the winter campaign.  

A reference to the added graphs in SI and a brief discussion of this point in the text was added 
[section 3.3] and reads, “To compare sensor performance between s71 and s72, an 
intercomparison of available co-location raw data was conducted for the oxidizing MOS (Oxa) and 
ozone MOS (O3a). During all co-locations, the sensors had a linear relationship and an R² > 0.95 
(Figures S4 and S5). In only one instance was this not the case (co-location 2, O3a), where the R² 
was 0.59 and a deviation from linearity was detected. This relationship was linear in all other co-
locations.”.  

8. Figure 8 (optional): Adding histograms showing the overlap between colocation and 
experiment would make the Figure easier to comprehend and help to understand the flagging 
procedure. 

We thank the reviewer for this comment. We have decided not to include extra figures to the 
manuscript, as there are already very many. Instead, since the violin plots in Figure 4 would help 
understand the overlap between co-location and experimental data, we have added text that 
compares Figure 8 to Figure 4.  

The added text in section 3.4.3 reads, “This shows the utility of comparing the results of Step 1 with 
the flags generated in Step 3.” 

9. Line 596: Replace “for those who enjoy” with “to achieve” 

Done. 

Technical comments 

10. Please use subscripts for NO2 and O3 and superscripts for R2 throughout the document. 

Done. 

11. Lines 93 and 96: What means SVM? Do you mean SVR (support vector regression)? 

Yes, this was a mix-up between Support Vector Machines and Support Vector Regression. SVM has 
been changed to SVR to match earlier text in this section. 

12. Line 149: Delete “for use in statistical calibration” (the general quality of the final data is likely 
to be higher) 

Done. 

13. Line 154 (Style, optional): Replace “What follows in this section is a” with “This section 
provides a” 



Done. 

14. Line 196: How do you define the range of the colocation data? As the range between the 
minimum and maximum observations? (Or percentiles?) 

Yes, the range between minimum and maximum observations is meant here. This has been added 
to the text. 

15. Line 219: Please provide references for AIC and VI 

Done. 

16. Line 263 (optional): Perhaps add a sentence or reference explaining the term “smearing” as 
the audience might not be familiar with this practice. 

Done. 

17. Line 295: “more information 295 in section 3.2” – this is section 3.2 

This has been changed to “section 3.3”, as is correct. 

18. Table 1: Is it correct that the sensor models for the reducing and the oxidising gases are 
identical? (SGX Sensortech MICS- 4514) 

Yes, this is correct. This sensor detects both reducing and oxidizing species. 

19. Figure 2 (optional): Adding a timeline with (rough) dates would help to comprehend the 
paragraph above quicker. 

Figure 2 has been updated and dates have been added to the timeline.  

20. Figures 4 c, d; 6; 7 a, b; 10 etc: Make sure that all axes have units (even if only arbitrary units). 

Done. 

21. Figures 14 and 15 (optional): Although you have already mentioned them in Tables 8 and 9, 
add the R2 and RMSE values to the graphs to provide a comprehensive overview. 

Done. 

22. Line 503: “the reference instruments did not impact the predictive accuracy of the models and 
can therefore [in this case] be ignored as a potential interference” – can this be generalised for all 
sensors? If not, add “in this case” 

Done. 

23. Line 508: “The uncertainty between RF models and MLR models was fairly similar” - replace 
“between” with “of” 

Done. 
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Reviewer #2 

General comments. The manuscript describes an open source, systematic methodology to 
calibrate low-cost sensors (LCSs). The Authors propose a 7-step statistical method based on: 1) 
preliminary analysis of raw data; 2) data cleaning; 3) flag data; 4) selection of the model by using 
both multiple linear regression and random forest and several statistical parameters; 5) model 
validation; 6) export of the experimental data as concentrations; 7) error predictions. Finally, the 
Authors tested the proposed model with an example during a field campaign in urban 
environment. 

The manuscript shows a very interesting and systematic methodology to calibrate LCSs, suggesting 
to employ a univocal and standardized method to let comparable the LCSs measurements, 
considering the more and more frequently use of this technology. Despite this, the manuscript 
requires revisions before to be accepted for final publication. Following suggestions and specific 
comments. 

We thank the reviewer for their positive overall evaluation of this manuscript. Their comments 
have improved the quality of this manuscript. What follows are point-by-point responses to their 
comments regarding recommended changes to the manuscript. 

Specific comments. 

For this calibration procedure, reference instruments are needed. Trends due to specific events 
(i.e., burning etc…) could be not properly described by the sensors, if not calibrated in the same 
conditions? 

As the reviewer points out, this is a general limitation of low-cost sensors, as they do not have the 
same level of accuracy as reference instruments and are susceptible to various cross-sensitivities. 
It is likely that the low-cost sensors would respond to specific events (i.e., burning), however if they 
were not calibrated with reference instruments under conditions in which such events occur, then 
it would be very challenging to ensure that the applied calibration accurately represented pollutant 
concentrations under substantially different ambient conditions. Where available, external data 
from monitoring stations could be used to identify such events and calibrations could be adjusted 
post-hoc, if need be.  

Text has been added to section 3.3, which reads, “Further reference data on other species would 
have been beneficial to this calibration, as the MOS do exhibit cross-sensitivities to other species, 
but resources were insufficient, and these data were not collected.” 

Moreover, did the Authors try to do a calibration procedure by using chemical standard to produce 
a calibration curve at different concentrations and conditions in laboratory experiment? If yes, 
could the Authors discuss difference between the two approaches? 

We thank the reviewer for this comment. A laboratory calibration was not conducted in this study 
as we did not have the technical resources to do so. Furthermore, calibration curves for various 
species are provided in the technical specifications of the individual sensors and served as a basis 
for understanding their sensitivity. There are many other studies that have produced calibration 
curves or tested LCS in both laboratory and field conditions, but as this methodology focuses on 
the field calibration of LCS, we did not include any discussion of laboratory calibrations. 
Furthermore, as several studies have shown, laboratory calibrations are often not transferrable to 
calibration of ambient measurements, see e.g., Castell et al., (2017), Rai et al., (2017).  



In case of LCSs time drift, did the proposed methodologies take into account of it (or allow to)? Is 
the proposed frequency (2 weeks every 2-3 months) enough to take into account of seasonal 
variations and, eventually, time drift of the sensors? 

We thank the reviewer for this comment. Sensor drift is indeed a significant challenge for long-
term operation of LCS. In our experience, the proposed frequency of co-location is sufficient to 
account for sensor drift, which generally occurs in significant amounts 4 months after initial 
calibration (Peterson et al., 2017). As such, the frequency of co-location in this study would account 
for any significant drift. Between the summer and winter campaigns, drift might have occurred on 
a significant scale, but co-location data were not used from one campaign to train models in the 
other, therefore this should not be a problem. This is, however, an important topic that will be 
explored in future studies with experiments conducted over longer timescales.   

Text has been added to Section 3.1, which reads, “These MOS sensors typically experience 
significant amounts of drift four months after initial calibration, which is why in this study co-
locations were conducted at high frequency, before and after each experiment.” 

Lines 430 and following. LCSs could have a T and RH dependency. Is it appropriate to apply the 
suggested corrections by the manufacturer for T and RH to the raw data before to apply the 
models in the proposed methodology? Could the Authors discuss this aspect and if the models 
relationships with RH and T are in line with what, eventually, suggested by the manufacturer? 

We thank the reviewer for this comment. For these sensors (SGX Sensortech MICS-4514), no direct 
corrections for T or RH are recommended by the manufacturer. Instead, they provide a 
recommended range of operation for these meteorological parameters and discuss the conditions 
under which sensor sensitivity tests were conducted. Other studies (i.e., Peterson et al. (2017)) have 
identified that MOS sensor performance can be affected by T and RH and therefore we include 
these parameters in the model selection process. In this study, as can be seen in Tables 2-5, the 
most accurate models for predicting NO2 and O3 included both T and RH for the MLR models, and 
either T or RH for the RF models.  

Other species could interfere with measurements: if the concentration of those compounds 
changes (season, night-day, etc…), this could affect the sensors response. How the Author suggest 
to deal with this eventuality? 

We thank the reviewer for this comment. Such cross-sensitivities do exist and interfere with the 
performance of low-cost sensors. The methodology presented here accoutns for these types of 
changes by recommending relatively frequent co-locations to capture changes in conditions 
owning to seasonality, etc. and subsequent effects on ambient conditions, including pollutant 
changes. We recognize however, that we cannot attribute changes in the model to changes in 
specific compounds that are interfering. To properly account for all of these, the low-cost sensors 
would need to be rigorously calibrated alongside reference instruments that measure a much wider 
range of the species to which the sensors are potentially cross-sensitive. This was not possible for 
this study and would not be for most studies, and therefore the attribution of impact of these 
species is unfortunately unknown. It is likely that a portion of the uncertainty in these 
measurements can be attributed to the impact of these cross-sensitivities on sensor performance. 

To account for changes in chemistry due to daytime and nighttime conditions, we included a binary 
“Time of Day” variable (see section 3.4.4) in the model selection process, though in most cases it 
was deemed to be unimportant to prediction of NO2 and O3. A sentence has been amended in 



section 2.1, which now reads “Regular co-location allows for the establishment of datasets that 
cover not only changes in meteorology, but also sensor functioning and interactions of potentially 
cross-sensitive species.” 

The Authors showed their experiment results only for NO2 and O3 MOS sensors. Is this 
methodology applicable to other compounds (i.e., VOCs) or technologies (i.e., PID, 
electrochemical) with the same characteristics proposed in the manuscript? This information 
should be included in the manuscript. 

We thank the reviewer for their comment. Reviewer #1 also pointed this out and this has been 
answered as follows: 

A brief physical explanation has been added in the text. While different in their design, both MOS 
and EC sensors produce a measure of voltage which varies in response to changing concentrations 
of gas-phase species, and hence can be calibrated using the same methodology. In more recent 
published work, we have successfully applied this methodology for the calibration of EC sensors, 
see Schmitz et al., (2021). 

The added text reads “Furthermore, while it was applied here to sensor systems containing metal 
oxide LCS, this methodology is also equally as applicable to electrochemical LCS or photoionization 
detectors (PID), as these produce a similar measure of voltage that varies in response to changing 
concentrations of gas-phase species and have similar cross-sensitivities to temperature and 
relative humidity. It is not directly applicable for optical particle counters (OPC) for the 
measurement of particulate matter, as the transformation of the raw data into concentrations 
during calibration functions differently, though some of the principles discussed here are still 
relevant. For an application of this methodology to EC sensors, please see Schmitz et al., (2021).” 

The Authors refer to Ammonia and Reducing gas sensor in the manuscript (see Table 1), but results 
regarding these sensors are not present. Is this due to lacking of reference instrument? 

Yes, this is correct. No reference instrumentation for NH3 was available for this study and the focus 
was on NO2 and O3.  

Could the Author describe in more details how the Step 4 is performed? How the experiment and 
co-location data have been used in this step? The Authors describe that in Step 5 and 6 the co-
locations data were used, but information about data used in Step 4 seem missed. 

We thank the reviewer for this comment. The same co-location data that is used in model 
validation in step 5 and in training the final models in step 6 is used in the model selection process 
of step 4. In this step, the co-location data are broken into multiple continuous training and test 
data sets upon which various statistical models using combinations of the various LCS and 
meteorological variables are tested. Statistical parameters of R², RMSE, MAE, and AIC are used to 
select models of best fit. Once the best-fitting models are determined, these are then passed on to 
step 5, the model validation step. 

Text has been added to section 2.2.4 to clarify that the data used in the model selection process 
are those from the co-locations. This now reads, “The co-location data were used in this step to 
train various models and determine the best fitting MLR and RF models.” 



Did the Authors intercompare between them similar sensors, i.e. two Zephyrs, before and after 
the calibration to check the response of same sensors in same conditions? 

We thank the reviewer for this comment. This same issue was raised by reviewer #1. Our response 
is as follows: 

For this study, we use the two low-cost sensors primarily as examples of how to use the seven-step 
methodology and did not consider their intercomparison as we felt it might distract from the main 
focus of the work. However, we have added graphs depicting the agreement between standardized 
raw LCS data of s71 and s72 during the 2 co-locations of the winter measurement campaign into 
the supplemental information (Figures S4 and S5). The Oxa and O3a MOS sensors of each sensor 
system are linearly related, but due to differences in sensor sensitivity, have different baselines. In 
the summer campaign, the relationship between the O3a sensors of s71 and s72 during co-location 
2 is non-linear but returns to linear agreement in co-location 3 and in the winter campaign.  

A reference to the added graphs in SI and a brief discussion of this point in the text was added 
[section 3.3] and reads, “To compare sensor performance between s71 and s72, an 
intercomparison of available co-location raw data was conducted for the oxidizing MOS (Oxa) and 
ozone MOS (O3a). During all co-locations, the sensors had a linear relationship and an R² > 0.95 
(Figures S4 and S5). In only one instance was this not the case (co-location 2, O3a), where the R² 
was 0.59 and a deviation from linearity was detected. This relationship was linear and normal in 
all other co-locations.”.  

About the data cleaning, how the Authors correct data for possible bias effect? Line 190: the 
duration of the moving window chosen to remove the outliers avoid to exclude from the dataset 
some specific and real events with short duration? 

We thank the reviewer for this comment. A similar comment was made by reviewer #1. Our 
response is as follows: 

Indeed, this is a significant challenge in data cleaning and unfortunately requires, in some cases, 
subjective assessment for an accurate determination to be reached. While it is possible that this 
data cleaning method removes some non-outlier measurements during peak emissions, it is 
equally possible that such events are indeed outliers due to technical sensor error. For this reason, 
we recommend that identified outliers be graphically compared with neighboring points to 
determine if their removal is justified.  

With the optimized moving window and threshold identified in this study, for sensor system s71, a 
total of 58 outliers were detected from >500,000 data points. In this case individual assessment of 
each point’s ‘outlierness’ was practical, but there may be cases where this is impractical. In such 
cases, we recommend a random subset of outliers be graphically assessed to determine the extent 
to which the data cleaning function is removing actual outliers. Furthermore, while peak emissions 
may be misidentified as outliers, these short peaks often occur not as individual points, but as small 
groups that indicate a peak event. As such, the uppermost point might be removed by this data 
cleaning method, but those surrounding points would not, ensuring that the peak emissions event 
remains mostly accounted for. This is imperfect, but it is unlikely that a data cleaning method exists 
which can perfectly separate outliers from peak events. It is with such peak events that other tested 
methods such as the AutoRegressive Integrated Moving Average performed particularly poorly, 
identifying most peak events as outliers. If such events are expected due to the deployment 
environment, particular care in evaluating the outlier removals should address this.  



Clarification text has been added to section 2.2.2 regarding this and now reads, “The points flagged 
as outliers with this method were then graphically assessed against neighboring datapoints to 
prevent inadvertent removal of peak emission events. In other cases where assessing all outliers is 
impractical, it is recommended to do so with a random subset of outliers. Furthermore, if 
substantial short-term events are expected due to the deployment environment, such as during 
mobile measurements, a more thorough check of the outlier removal should be done.” 

 

Lines 218-220. To identify which model better describe the measurements in term of over or under 
estimation, could the Authors consider to include also a statistical parameter such as the 
Fractional Bias?  

We thank the reviewer for this comment. We are unfamiliar with the use of that statistic and while 
we could find its definition, we could find no information on how to assess the uncertainty on the 
central estimate due to sample size. Unless the reviewer can point us to a reference that discusses 
assessment of uncertainty on fractional bias for a given sample size, we have no way of knowing 
if a particular value derived from our sample actually represents significant bias. At this stage, we 
ask the reviewer for greater clarification on how they envision the use of fractional bias in this 
study. 

Lines 365-369. Co-location 3 was at the end of the summer campaign (i.e., October). Anyway data 
for experiment 2 are not available. It seems from Figure 4 there is a seasonal impact. Did the 
Author use this co-location for their calibration for Experiment 1? Did the different season affect 
the calibration procedure? Are the 2 weeks every 2-3 months enough to take into account of it? 

We thank the reviewer for this comment. Indeed, there is a seasonal impact on the data, as the co-
location in October experienced cooler temperatures than co-location 2, which took place at the 
end of the summer. The reason co-location 3 was included in the analysis was to see if the data 
were still useful for training a model that could predict on experiment 1, which took place in August. 
As can be seen in tables 8 and 9, the most accurate models for prediction on experiment 1 were 
those that were trained with co-location 2 exclusively. However, models trained using both co-
locations were only slightly more inaccurate. We would have expected co-location 3 to be more 
relevant for experiment 2, due to the seasonal effects that the reviewer points out. Unfortunately, 
these hypotheses could not be tested due to loss of data for experiment 2 and co-location 1. 

Text has been added to section 3.5, in connection with a separate but similar comment. The text 
reads, “This alludes largely to the fact that seasonal changes caused co-location 3 to experience 
different meteorological and pollution conditions than were present during the experiment. While 
results show that this co-location was not useful for accurate prediction, it is likely that it would 
have been more relevant for prediction on experiment 2, during which the environmental 
conditions were more comparable. Similarly, co-location 1 would likely have been more valuable 
for prediction with experiment 1 than with experiment 2. However, due to the loss of data from 
s71, this could not be assessed more closely in this study.” 

Lines 390-396. Is the GSM the only way to transfer data to a database? The warm up time was 
provided by the manufacturer? 

There are other methods of data transfer, such as through Wi-Fi or a direct data download via 
cable, but these were not incorporated into the prototype Zephyrs and therefore GSM was the best 
method for sending data to the external database. The warm-up time and the impact on sensor 



signal was detected during post-processing and was not provided by the manufacturer but 
confirmed in subsequent discussions with EarthSense. It was known that the sensors needed time 
to warm up before stabilizing, but it was not clear that the sensor signal would fluctuate as 
significantly as it did when the sensors briefly turned off. This further highlights the importance of 
Step 2 in which the raw data are rigorously cleaned. 

Lines 421-423. Since the 3rd co-location is in October, could this be indication that closer and more 
frequent co-location are needed? See also the following Section 3.5 (line 539) and Figures 14-15. 

We thank the reviewer for this comment. If data from co-location 1 and experiment 2 were 
available, this would have been assessed more closely in this study. Tables 8 and 9 reveal that 
inclusion of co-location 3 training data in final models for prediction did not improve predictive 
accuracy on experiment 1. This reflects in large part the impact of seasonality as the reviewer 
points out. However, using training data from co-location 2 alone was suitable for prediction on 
experiment 2 and therefore we do not feel that more frequent co-location was needed in this case. 
While co-location 3 was not necessary for accurate prediction of experiment 1, it would likely have 
been necessary for accurate prediction of experiment 2. Therefore, we feel that the spacing of co-
locations was appropriate for this study, but the technical failures that led to loss of data for co-
location 1 and experiment 2 prevented proper evaluation.  

Text has been added to section 3.5, in connection with a separate but similar comment. The text 
reads, “This alludes largely to the impact of seasonal changes on co-location 3, which experienced 
different meteorological and pollution conditions than were present during the experiment. While 
results show that this co-location was not useful for accurate prediction, it is likely that it would 
have been more relevant for prediction on experiment 2, during which the environmental 
conditions were more comparable. Similarly, co-location 1 would likely have been more valuable 
for prediction with experiment 1 than with experiment 2. However, due to the loss of data from 
s71, this could not be assessed more closely in this study.” 

Figures 14-15. Could the Authors add the 1:1 lines and indicate the R2 in the plots? How the 
Authors can explain the constant thresholds in the plots of panels 15e and 15f? Looking at Figure 
11, the models using internal T and RH seem to give lower O3 and NO2 compare to the ones that 
use the ambient T and RH. In figure 11 this is less evident: could the Authors explain it and the 
reasons/meaning of the slopes (typically lower than the unit) and intercepts? 

We thank the reviewer for this comment. 1:1 lines as well as R² and RMSE have been added to the 
plots, which was also requested by reviewer #1. 

The constant thresholds seen in panels 15e and 15f reflect the nature of the RF models, which 
cannot predict outside the minimum and maximum values of the co-location data they are trained 
with. This is a fundamental flaw of RF models and is referred to in the final paragraph of section 
3.5. More text has been added here to explain this more clearly. 

The text reads, “This is a fundamental flaw of RF models as they cannot predict outside the bounds 
of the co-location data they are trained with.”. 

Regarding the interpretation of slopes and intercepts in figures 14 and 15, a slope greater than 1 
indicates overprediction, whereas a slope less than 1 indicates underprediction. The intercepts 
typically indicate the same (just centered around 0), but in this case, as the models tend to 
overpredict low concentrations and underpredict high concentrations for NO2, the intercepts are 



in some cases offset to be positive. For O3 this is less often the case, as the slopes and intercepts 
more often both agree regarding under or overprediction.  

To be certain that the models trained with ambient and internal T/RH were giving significantly 
different concentrations, their predictions were compared to each other using student’s t-tests and 
mann-whitney-wilcoxon U-tests. In all cases the results were statistically significant, confirming 
the reviewer’s suspicions. The likeliest explanation stems from the differences in raw output of the 
internal and ambient T/RH monitors. These have somewhat non-linear relationships, which in the 
case of RH becomes especially non-linear under high RH conditions. In fact, the internal T is 
consistently higher and RH consistently lower than their ambient counterparts. These differences 
likely lead to the significantly different predictions between ambient and internal MLR and RF 
models, but the magnitude is not large, as T/RH are less relevant to prediction in all cases than the 
MOS Oxa/O3a. As follows with previous comments regarding the differences between models 
trained with internal and ambient T/RH, while the results are interesting and warrant further 
investigation, we feel that this analysis lies outside the scope of this manuscript and should be the 
subject of future research.  

Text that was added to the discussion in line with a previous comment from Reviewer #1 has been 
modified further, and now reads, “However, given that models using ambient data were more 
accurate during the validation step and significant differences between predictions of models 
trained with internal vs ambient T and RH were identified, these results require closer inspection, 
which should be the subject of future research.” 

Supplementary. Why for the winter campaign, the Authors use co-location 1 and 2 instead of 4 
and 5, which are closer to Experiment 3? Comparing Table 9 and Table S4, the models identified 
for O3 are different (and similarly for NO2): how the Authors could explain this? 

We thank the reviewer for this comment and noticing this error. At an earlier stage in the analysis, 
co-locations 4 and 5 were referred to as ‘co-locations 1 and 2’ for the winter campaign. The 
enumeration of the co-locations was not changed in the supplemental information upon 
submission, but this error has now been corrected. 

Technical comments. 

Line 88. See “host”. 

“…a host of…” has been changed to “many”. 

Line 200. Do the Authors refer to Section 3.5? 

Yes, this has been changed. 

Line 291. Decent and good agreement should have to be quantitative and not qualitative 
information. 

These qualitative statements have been changed and replaced with the actual R² of the 
intercomparison between instruments. 



Lines 306-307 and 317-318. Information about the date of the campaigns are confused and should 
be coherent. The information could be furnished only once clearly and I would suggest to add the 
dates in Figure 2, as well. 

The dates for the experiments have been moved to the next paragraph and have been placed 
alongside the dates for the co-locations. Figure 2 has been updated to include the dates. 

Line 328-329. This sentence should be clarified. Zephyr s71 and s72 were located as in Figure 3 or 
with reference in an office on the 6th floor? In the former case, this information is redundant and 
could be included in previous paragraphs, when describing the setting (line 311 and following). In 
the second: how air masses have been sampled? 

This sentence has been moved to the previous paragraph when describing the co-location set-up 
on the 6th floor of the Mathematics building. Text has been modified in the original paragraph of 
this sentence for coherence. 

Line 359. When the Authors refer to “combined” co-location, this means an average of co-location 
1 and 2? 

Combined co-location refers to the use of both co-locations together, not the average. The text has 
been updated to be clearer. 

Lines 419-423. This section is not well described. Could the Authors explain in more details the 
criteria to be used to flag the data? 

We thank the reviewer for this comment. The details regarding the flagging of data are 
provided previously in section 2.2.3 and therefore were not repeated here. If they feel that the 
details in section 2.2.3 are insufficient, then we will gladly be more specific. 

Lines 430. Could the Authors specify in this or previous paragraph the units of the input data? 

Done. Units have also been added to figures where they were missing. 

Lines 436-438. The Author report that relationship between Oxa and O3 was determined be 
inverse; but, since the predictive accuracy for no transformation is similar, they selected the latter. 
Anyway, in Table 3 there is not inverse relationship and a log dependency between O3 and Oxa 
was selected (also in Table 5 there is not inverse transformation). Could the Author explain this 
discrepancy or illustrate better this paragraph? 

We thank the reviewer for identifying this discrepancy. The text was not updated alongside new 
findings during the model selection process, leading to this discrepancy between the text and Table 
3. The findings in Table 3 are correct and the text in section 3.4.4 has now been updated 
accordingly. 

Lines 490-498. A comparison with the reference O3 and NO2 data should be included here (and in 
Figure 11). 

We thank the reviewer for this comment. An earlier version of this manuscript contained 
comparisons to NO2 and O3 concentrations in this section but was removed in the submitted 
version. The justification for this decision was to ensure that in section 3.4, the results were 



described without reference concentrations as under normal experimental deployment, a 
comparison of calibrated LCS data to reference instruments would not be possible. Therefore, to 
keep the example of the use of the methodology more relevant for realistic scenarios, we removed 
the comparisons to reference concentrations in step 6. The comparison between calibrated data 
and reference concentrations was then placed exclusively in section 3.5, which describes the 
atypical extra validation step taken in this study. In this regard, we prefer to not include reference 
concentrations in step 6, as it is not realistic to expect that the experimental deployment of LCS will 
occur alongside reference instrumentation in the majority of future studies and applications. If the 
reviewer feels that the comparisons to reference data made in Tables 8 and 9, as well as in Figures 
14 and 15, are insufficient, then we will reconsider including reference data during Step 6. 

Line 595. See "this is should be".  
 
This grammatical error has been fixed. 
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