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Abstract. The last two decades have seen substantial technological advances in the development of low-cost air pollution 

instruments using small sensors. While their use continues to spread across the field of atmospheric chemistry, the air quality 15 

monitoring community, as well as for commercial and private use, challenges remain in ensuring data quality and comparability 

of calibration methods. This study introduces a seven-step methodology for the field calibration of low-cost sensor systems 

using reference instrumentation with user-friendly guidelines, open access code, and a discussion of common barriers to such 

an approach. The methodology has been developed and is applicable for gas-phase pollutants, such as for the measurement of 

nitrogen dioxide (NO2) or ozone (O3). A full example of the application of this methodology to a case study in an urban 20 

environment using both Multiple Linear Regression (MLR) and the Random Forest (RF) machine-learning technique is 

presented with relevant R code provided, including error estimation. In this case, we have applied it to the calibration of metal 

oxide gas-phase sensors (MOS). Results reiterate previous findings that MLR and RF are similarly accurate, though with 

differing limitations. The methodology presented here goes a step further than most studies by including explicit, transparent 

steps for addressing model selection, validation, and tuning, as well as addressing the common issues of autocorrelation and 25 

multicollinearity. We also highlight the need for standardized reporting of methods for data cleaning and flagging, model 

selection and tuning, and model metrics. In the absence of a standardized methodology for the calibration of low-cost sensor 

systems, we suggest a number of best practices for future studies using low-cost sensor systems to ensure greater comparability 

of research. 

  30 
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1. Introduction 

Air pollution remains a leading cause of premature death globally (Landrigan et al., 2018). The recent trend in air pollution 

research of using low-cost sensors (LCS) to measure common gas-phase and particulate air pollutants (e.g. CO, NOx, O3, PM) 

is an attempt to close gaps in our understanding of air pollution and make its measurement cheaper, widespread, and more 35 

accessible (Kumar et al., 2015; Lewis et al., 2016; Lewis et al., 2018). The development of these new technologies represents 

a paradigm shift that has opened up air pollution monitoring to a much wider audience (Morawska et al., 2018; Snyder et al., 

2013). In recent years, LCS have been used to develop or supplement existing air pollution monitoring networks to provide 

higher spatial resolution (e.g. CitiSense, U.S. EPA Village Green), as well as in a citizen science contexts to report on and 

share information about air quality (e.g. AirVisual, Purple Air) (Morawska et al., 2018; Muller et al., 2015). Projects like these 40 

are a promising step towards empowering citizens with greater knowledge of their local air quality.  

 

However, as there are myriad commercially available LCSs that use a variety of sensors and have substantial differences in 

quality, standardizing their application remains challenging and urgent (Karagulian et al., 2019). In measuring gas-phase 

pollutants, for example, metal oxide sensors (MOS) and electrochemical sensors (EC) are often used which have different 45 

limits of detection and cross-sensitivities that need to be taken into account (Lewis et al., 2016; Lewis et al., 2018; Rai et al., 

2017). Under ambient conditions, the performance of these two sensor types varies substantially, with some studies reporting 

moderate to good agreement with concentrations measured by reference instrumentation, whereas others find very poor 

agreement (Lewis et al., 2018). A further challenge is that many LCS are in the form of small sensor systems1 sold as ready-

to-use products to customers, most often using a “black box” proprietary calibration algorithm for producing concentrations 50 

which, along with raw data, is not publicly available (Karagulian et al., 2019). Furthermore, a wide range of calibration 

techniques have been applied to LCS in field studies, but lack uniformity in metrics used, experimental setup, reference 

equipment, and environmental conditions, making it difficult to draw conclusions about their overall performance (Karagulian 

et al., 2019; Rai et al., 2017).  

 55 

In general, pairwise reference calibration has been done on an individual sensor system basis as well as a sensor system cluster 

basis, also known as “sensor fusion” (Barcelo-Ordinas et al., 2019). The former tends to be more accurate but becomes 

logistically and computationally intensive for large numbers of LCS and is more sensitive to sensor decay and medium-scale 

drift. The latter has been shown to be effective at calibrating groups of sensors when using the median sensor signal of a co-

located cluster of sensors to develop a single calibration model applicable to all sensors (Smith et al., 2017; Smith et al., 2019). 60 

Using a cluster-based approach has been shown to produce calibration factors that may be more robust over longer time frames, 

 
1 In this case “sensor” and “LCS” refer to the sensor components which react chemically with various air pollutants, whereas 

“sensor system” refers to the complete device, including sensors, housing unit, data storage, etc. 
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but have higher margins of error for individual sensors. Both methods have their advantages and disadvantages that must be 

balanced based on the desired application for the sensor systems. Further methods for calibration beyond pairwise reference 

calibration include node-to-node calibration (Kizel et al., 2018) or proxy calibration (Miskell et al., 2018). 

 65 

Previous research has used linear regression, multiple linear regression (MLR), and machine-learning techniques such as 

random forest (RF), artificial neural networks (ANN), and support vector regression (SVR) to calibrate LCS with reference 

instrumentation for gas-phase pollutants. Here too, there is a lack of standardization, as MLR, RF, ANN, and SVR have all 

been found to be the most accurate method across various studies (Bigi et al., 2018; Cordero et al., 2018; Hagan et al., 2018; 

Karagulian et al., 2019; Lewis et al., 2016; Malings et al., 2019; Smith et al., 2019; Zimmerman et al., 2018). Only linear 70 

regression has been consistently identified as an unsuitable model, largely because it fails to take into account cross-

sensitivities and environmental influences on sensor functioning and because sensors responses are often non-linear. For this 

same reason, nonparametric methods such as the aforementioned machine-learning techniques tend to be more accurate, as 

they are better at modelling non-linear sensor responses while being able to better take into account interferences in sensor 

functioning (Barcelo-Ordinas et al., 2019; Karagulian et al., 2019). However, it must be said that any of these statistical 75 

methods can be applied as long as they properly account for autocorrelation, multicollinearity, and non-linearity in the data 

with relevant transformations. 

 

There are several key issues with previous work on calibrating LCS that must be acknowledged. First, the metrics used to 

report model suitability vary substantially. Karagulian et al. (2019) found in their comprehensive review of the LCS literature 80 

that only the coefficient of determination (R²) was applicable for cross-comparison of all studies. While this metric can be 

useful in measuring the agreement between LCS data and reference measurements, it does not give a sense of the model error. 

Future studies should, at a minimum, report R², root mean square error (RMSE), and mean average error (MAE), when 

discussing calibration performance (Barcelo-Ordinas et al., 2019; Karagulian et al., 2019). Second, while there are many 

studies that calibrate LCS with MLR or machine-learning techniques, the associated model selection, validation, and tuning 85 

methods are rarely reported. The latter of these is especially important for machine-learning (ML) techniques with many tuning 

parameters, where the problem of over-fitting is more common. Some studies do report steps for model validation (Hagan et 

al., 2018; Spinelle et al., 2015; Zimmerman et al., 2018) or model tuning (Bigi et al., 2018; Spinelle et al., 2015), but they do 

not go into depth as to how these were determined or optimized. Especially with “black box” techniques such as ANN, SVR, 

or RF, reporting steps taken to validate the model and optimize parameters is crucial to ensuring consistency among studies. 90 

Last, the issues of multicollinearity and autocorrelation, which are common among LCS time series data and of substantial 

importance when using MLR, are rarely addressed. If at all mentioned, they are referred to as being better handled by non-

linear ML techniques such as SVR or RF (Bigi et al., 2018) or as potentially obscuring the statistical significance of models 

(Masiol et al., 2018). This study seeks to take a step forward in ensuring these issues are addressed in future LCS calibration 

studies. 95 
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In the absence of a standardized calibration methodology, the ever-growing body of LCS literature will continue to be largely 

incomparable, with research running in parallel using varied methods. Though several comprehensive reviews of LCS have 

been completed which establish helpful guidelines for their use (Lewis et al., 2018; Williams et al., 2014), best practices for 

calibration with reference instruments that should be undertaken in any field deployment were not specifically reported. More 100 

recently, Barcelo-Ordinas et al. (2019) published an extensive study on the calibration of LCS, including some general 

calibration guidelines. While these are a helpful guide for calibration methodologies, they lack important details on the post-

processing of data during the model-building process. This study seeks to expand upon this work and specifically address the 

standardization of individual pairwise calibration of LCS housed in sensor systems with reference instrumentation by 

presenting user-friendly guidelines, open access code, and a discussion of common barriers to field calibration. With the 105 

publication of this step-by-step methodology for the statistical calibration of low-cost sensor systems, we hope to establish a 

framework from which calibration methods can be better compared.  

 

2. Methods 

The following section outlines a methodology for the deployment and field calibration of LCS for the measurement of gas-110 

phase pollutants. First, some key considerations for the experimental deployment of small sensor systems will be discussed. 

Second, a 7-step statistical calibration methodology for the post-processing of data will be described. Last, an example of the 

use of this methodology, both for deployment and calibration, using data collected during a measurement campaign in 2017 

and 2018, is provided (Section 3).  

 115 

For this methodology, it is important to first establish under which circumstances the following steps would apply. This is a 

reference-based pairwise method for the individual calibration of small sensor systems and therefore the user will need to have 

access to reference instrumentation with which the small sensor systems can be co-located, whether their own or in 

collaboration with e.g. a city monitoring network. This makes the methodology inapplicable for individual users in a citizen 

science context that may not have access to reference instrumentation. These reference instruments should adhere to 120 

standardized guidelines on accuracy (i.e. EU Air Quality Directive (2008/50/EC), U.S. National Ambient Air Quality 

Standards (NAAQS)). A co-location in this sense refers to the installation of the small sensor systems in the close vicinity (ca. 

1-3 meters) of the reference instruments, so that they receive the same parcels of air. This paper focuses on the usage of field 

(i.e. in-situ) co-locations in calibrating small sensor systems. If access to reference data or the raw small sensor data is not 

possible, then this methodology cannot be applied. Furthermore, while it was applied here to sensor systems containing metal 125 

oxide LCS, this methodology is also equally as applicable to electrochemical (EC) LCS or photoionization detectors (PID), as 

these produce a similar measure of voltage that varies in response to changing concentrations of gas-phase species and have 

similar cross-sensitivities to temperature and relative humidity. It is not directly applicable for optical particle counters (OPC) 

for the measurement of particulate matter, as the transformation of the raw data into concentrations during calibration functions 
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differently, though some of the principles discussed here are still relevant. For an application of this methodology to EC 130 

sensors, please see Schmitz et al., (2021). 

 

2.1 Key considerations for the experimental deployment of small sensor systems 

When calibrating small sensor systems, the experimental deployment and co-location of devices is a key step with several 

important considerations that must be accounted for. First, the co-location with reference instrumentation should ideally occur 135 

at the same test site where the small sensor systems are to be deployed. If unfeasible for logistical reasons, an analogue site 

should be selected. Criteria for analogue selection entail similar characteristics as those for test site selection. The analogue 

site should: 1) have similar sources and ranges of concentrations of air pollutants as the test site; 2) experience comparable 

meteorological conditions and similar circulation dynamics; and 3) be physically located in the same region as the test site. 

While it is unlikely that there will be a perfect analogue site, any field calibration should take these criteria into consideration 140 

in order to enhance validity of experimental results.  

 

Second, the frequency and timing of co-locations should reflect site-specific variations in meteorological conditions. 

Generally, these should be done often enough so that co-location data cover similar ranges of meteorological conditions and 

concentrations of air pollutants as the experimental data, but not so often that there is a concomitant loss of experimental data. 145 

A rule-of-thumb for long-term experiments (>6 months) in temperate seasonal environments is a 2-week co-location every 2-

3 months. For short- to medium-term experiments, a 2-week co-location before and after and perhaps one in-between, 

depending on changes in meteorological conditions, should suffice. Regular co-location allows for the establishment of 

datasets that cover not only changes in meteorology, but also sensor functioning and interactions of potentially cross-sensitive 

species. If these considerations are taken into account during the experimental deployment, the likelihood that these datasets 150 

will be of good quality will be higher. In this study, we focus primarily on stationary field deployment of low-cost sensor 

systems. There are, however, other forms of deployment, including indoor and mobile, for which these criteria also apply. It 

is important to mention that there may be other considerations required in such alternative forms of deployment, e.g. more 

scrutinous data cleaning in mobile deployments due to impacts of rapidly changing environments on sensor performance. 

 155 

2.2 The 7-step statistical calibration method 

Raw data from small sensor systems, if treated and transformed properly, can provide informative air pollutant concentrations. 

This treatment must, however, be rigorous if the resultant concentrations are to be used in further analysis. This section 

provides a general description of a seven-step methodology for the post-processing and calibration of LCS data gathered with 

small sensor systems. Multiple Linear Regression (MLR) and Random Forest (RF) were selected as calibration methods to be 160 

used in this methodology, although it can be generally applied to other regression or machine learning methods. Information 

on the functions and packages from the open-source R statistical software program (R Core Team, 2019) used in this 
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methodology is provided for each step. This information and the code can be found in the open-source repository Zenodo (see 

below for DOI). 

 165 

 

Figure 1. Schematic representation of the seven-step calibration method for processing small sensor system data. 

 

2.2.1 Step 1: Analyze and understand raw data distribution 

The first step is to gain a general understanding of the data. Specifically, establishing an overview of data distributions and 170 

potential data quality issues (data gaps, presence of outliers, changes in baselines, etc.) is helpful for identifying problems and 

solutions during calibration. It should also be checked that all associated metadata are available for all datasets.  

 

In this study, all variables that were to be used in model selection were assessed in this step. For example, the distributions of 

the reference concentrations, small sensor system raw data, and meteorological variables from the co-location and experimental 175 

datasets were analyzed. Meteorological variables including temperature, relative humidity, and wind speed and direction across 

the co-location and experimental datasets were compared. Additional variables that could be considered but were not analyzed 

here include precipitation, boundary layer height, and insolation, among others. A visual assessment of these data using 

histograms, violin plots, and time series plots was conducted. This step provided information about the structure of each 

available co-location dataset and the experimental dataset crucial to decision-making in later steps.  180 

 

2.2.2 Step 2: Data cleaning 

Next, the datasets should be cleaned of erroneous outliers and unreliable data. This step is crucial, as outliers can have a 

particularly strong effect on calibration models and especially so on linear regression models.  

 185 
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To accomplish this, the time series plots generated in step 1 were first used to visually evaluate the data. Sequence outliers 

resultant from sensor warm-up time or sensor malfunctioning were identified and removed using an automated function. Next, 

an algorithm was tested, trained, and implemented that uses a simple z-test with a running mean and standard deviation to 

detect point outliers resultant from instrument measurement error. Tests of normality with datasets greater than 50 points are 

irrelevant in determining whether parametric tests can be used or not (Ghasemi and Zahediasl, 2012). Analysis of the data in 190 

this study revealed the same, as data segments of less than 30 points consistently passed the Shapiro-Wilk test, but with 

progressively larger data segments, more and more of the data failed the test. Therefore, it was assumed that the data aligned 

enough with the normal distribution for this test to apply. The size of the moving time frame from which the running mean 

and standard deviation were calculated and the z-score threshold used to designate ‘outlierness’ were tested and optimized. 

Durations of 1, 2, 5, 10, 30, 60, 120, and 300 minutes were considered for the moving window and thresholds of 3, 4, 5, and 6 195 

were tested. This was done for each variable individually. The points flagged as outliers with this method were then graphically 

assessed against neighboring datapoints to prevent inadvertent removal of peak emission events. In other cases where assessing 

all outliers is impractical, it is recommended to do so with a random subset of outliers. Furthermore, if substantial short-term 

events are expected due to the deployment environment, such as during mobile measurements, a more thorough check of 

potential outliers should be done. Other outlier detection functions using AutoRegressive Integrated Moving Average 200 

(ARIMA) and Median Absolute Deviation (MAD) were tested and were found to be inappropriate for this data. 

 

2.2.3 Step 3: Flag data for further scrutiny 

Experimental data outside the range of the co-location data (i.e., beyond the minimum and maximum values) should be flagged 

as they may be less reliably predicted than those which are in-range and should be given a higher level of uncertainty (Smith 205 

et al., 2019). Flagging such data points strikes a balance between removing them from the analysis and highlighting their 

associated uncertainty.  

 

Once flagged, these data points were treated differently in later analysis (Section 3.5). Similarly, co-location data outside the 

range of the experimental data received a flag. During the model selection process, these flags were used to remove data that 210 

may serve to bias the model. While this may seem unnecessary, if the experimental range of environmental conditions is much 

smaller than those of the co-locations, it could be that using a smaller, more comparable range of co-location data is more 

suitable for model selection. This is data and model dependent, however, and was therefore tested in Step 6.  

 

2.2.4 Step 4: Model selection and tuning 215 

Model selection and tuning is a seldom-reported step that is vital in ensuring the calibration model is suitable for use. 

Rigorously scrutinizing a variety of potential models and optimizing their parameters provides reproducible justification for 

the final model selected. This is particularly important for machine-learning techniques which can have a wide array of 

parameters for tuning model performance. Furthermore, appropriate methods used in model selection ensure that problems of 
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multicollinearity and autocorrelation can be corrected for, as superfluous predictors suffering from these issues will be 220 

identified and removed. Before building and selecting potential models, the relationships between predictors and response 

variable, including potential transformations, must be determined. This is important for linear regression models, but is not 

relevant for ML techniques which do not take these transformations into account. Often the sensor specifications indicate what 

type of transformation (exponential, log-linear, etc.) may be necessary.  

 225 

The co-location data were used in this step to train various models and determine the best fitting MLR and RF models. In this 

case, log transformations were recommended for the MOS sensors used, but were cross-checked with other common 

transformations including: log-log, square-root, and inverse. Model selection proceeded through backwards selection using 

the coefficient of determination (R²), root mean squared error (RMSE), and the Akaike Information Criterion (AIC) (Akaike, 

1973) for MLR or Variable Importance (VI) (Breiman, 2001) for RF as criteria. To determine the best models, the training 230 

data set was broken up into smaller sets by using a moving window of four days to train the models and the fifth day to test.  

The models with the best average RMSE over the various fifth day predictions were selected.  

 

For RF the model parameters of mtry (the number of randomly selected variables at each node), min.node.size (the minimum 

number of data points in the final node), and splitrule (the method by which data are split at each node) were optimized by 235 

testing various combinations and selecting the most accurate in terms of RMSE, with data split in the same manner as for 

MLR. Subsequently, measures of AIC for the regression model and VI for the random forest model were assessed to determine 

which predictors should remain in the model. For MLR, this involved the repeated bootstrapping of the training set combined 

with stepwise selection, using the AIC to robustly determine predictor inclusion. The models were then finally tested on the 

test subset and assessed using RMSE and R². The most accurate MLR and RF models were then sent to the next step for 240 

validation.  

 

2.2.5 Step 5: Model validation 

Model validation is often overlooked but is necessary to ensure that the most accurate model selected is reliable (i.e. has good 

predictive power for independent data). While a singular instance of splitting the dataset during the model selection process 245 

into training and testing subsets is one method of validating the model, an additional step ensures more rigorous validation.  

 

In this case, to validate the MLR and RF models selected in Step 4, the co-location data was repeatedly split into training and 

testing subsets at a ratio of 75/25. This was done by splitting the co-location training set into continuous blocks representing 

25% of the training data (in this case 6 days) as test subsets and using the rest of the co-location data to train the model. A 250 

robustness cross-check with various splitting ratios was conducted and found that changing the splitting ratio did not 

significantly impact the results. Using continuous blocks instead of random sampling is necessary to account for the 

autocorrelation in the data (Carslaw and Taylor, 2009). The accuracy of the final models was then assessed on the continuous 
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blocks using R², RMSE, and Variable Importance. These metrics were then graphed across all continuous blocks to assess 

model stability. In this case, instability refers to major differences in R² and RMSE between folds likely caused by differing 255 

field conditions among the training and test folds. If this is seen, it indicates that the model may be too sensitive to changes in 

field conditions. If the graphs showed instability across the various folds, Step 4 was repeated and a new model was selected 

for validation.  

 

2.2.6 Step 6: Export final predictions 260 

Once the selected model has been validated, the next step in the process is to export predictions of the experimental data as 

concentrations. Only co-location data deemed relevant from the Steps 1-3 should be used to train the model, which is then 

used to predict experimental concentrations. 

 

In this case, the co-location data was used to train the best MLR and RF models identified in Steps 4 and 5. These models were 265 

then applied to the raw experimental data in order to predict final concentrations. The final predictions were then graphed and 

compared using time plots and histograms. 

 

2.2.7 Step 7: Calculate total predictive error 

Last, it is vital that overall error and confidence intervals for the predictions are reported in this step. Most models have 270 

associated methods for reporting metrics such as standard error which can be used to establish confidence intervals around the 

predictions. Compounded to this must be the technical error associated with measurements from the reference instruments. 

Thus, the overall error should combine technical and statistical error.   

 

In this study, to test the impact of the precision of the reference measurements on model accuracy, the reference NO2 and O3 275 

data were smeared using a normal distribution with each point as the mean and each instrument’s measure of imprecision as 

the standard deviation. Smearing refers to transforming the data by shifting the actual value within the range of uncertainty. 

This test therefore determined whether the imprecision given by each instrument’s specifications should be factored into the 

overall predictive error. This was done over 50 iterations to see how model accuracy responded to shifts in reference 

concentrations within the margins of error. Co-location data were split 75/25 into a training set and testing set, respectively. In 280 

each iteration, separate MLR and RF models for NO2 and O3 were trained; each was trained once with the reference 

measurements and once with smeared reference measurements. All models were then tested for predictive accuracy on the 

testing subset, to compare the impact of smeared versus measured reference data on model performance.  

 

Last, the overall uncertainty was calculated. For the reference instruments, the technical measurement was taken from their 285 

specifications. This was added to the overall statistical error, for which the median MAE across all blocks from the model 
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validation step was used. Both the MLR and RF model calculated a measure of standard error, which was compared with the 

combined uncertainty measure. The more appropriate of the two was then added to the final predictions from Step 6.  

 

3. Example application of the methodology 290 

3.1 Small sensor systems used 

The small sensor systems used in this example are EarthSense Systems, Ltd. “Zephyr” prototypes2, henceforth referred to as 

“Zephyrs”. This term refers to the whole small sensor system including housing, sensors, GPS, etc. Installed within the Zephyr 

prototypes were a number of Metal Oxide Sensors (MOS) that measure reducing gases, oxidizing gases (used here for detection 

of nitrogen dioxide), ozone, and ammonia, as well as a meteorological sensor for temperature and relative humidity; see Table 295 

1 for more on these sensor specifications. These MOS sensors typically experience significant amounts of drift four months 

after initial calibration, which is why in this study co-locations were conducted at high frequency, before and after each 

experiment. For greater detail on the development, functioning, and operation of the sensors housed within these prototypes 

see Peterson et al. (2017).  

 300 

Table 1. Sensors installed within the EarthSense Zephyr prototypes. Table reproduced from Peterson et al. (2017). 

Gases Measured Sensor Model Method of detection Gas detected and 

detection limits 

Reducing gases 
SGX Sensortech MICS-

4514 
Redox reaction 

CO: 1-1000 ppm 

NH3: 1-500 ppm 

C2H5OH: 10-500 ppm 

H2: 1-1000 ppm 

CH4: >1000 ppm 

Oxidising gases 
SGX Sensortech MICS-

4514 
Redox reaction 

NO2: 0.05-10 ppm 

H2: 1-1000 ppm 

Ozone 
SGX Sensortech MICS-

2614 
Redox reaction 10-1000 ppb 

Ammonia 
SGX Sensortech MICS-

5914 
Redox reaction 

NH3: 1-500 ppm 

C2H5OH: 10-500 ppm 

H2: 1-1000 ppm 

C3H8: >1000 ppm 

C2H8(CH4)2: >1000 

ppm 

Temperature and relative 

humidity 

GE Measurement and 

Control CC2D25 
Polyamide capacitance 

Temp.: -40 – 125 °C 

RH: 0 – 100% 

 

3.2 Reference instruments 

The reference instrumentation included a Teledyne Model T-200 NO/ NO2 /NOx Analyzer and a 2B Technologies, Inc. Ozone 

Monitor. These instruments were intercompared with reference instruments – CAPS (Aerodyne, U.S.A.), CLD 770 AL ppt 305 

 
2 The Earthsense Zephyrs have since evolved substantially and, as such, this study does not represent current performance or 

configuration. 
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(ECOPHYSICS, Switzerland) and O242M (Environnement S.A., France) –  from the Forschungszentrum Jülich as part of the 

measurement campaign and showed decent agreement (R2 = 0.70) for NO2 and good agreement (R2 = 0.88) for O3 (see Figures 

S1-S3 in the supplemental information). Ambient air temperature and relative humidity (Lambrecht, PT100) data one block 

away from the experimental site were provided by the Free University Berlin for two measurement campaigns (more 

information in section 3.3). Wind speed and direction (Campbell Scientific, IRGASON), were measured 10m above the roof 310 

of the main building of the Technical University Berlin (TUB) at Campus Charlottenburg, which is located across the street 

from the experimental site. This site is part of the Urban Climate Observatory (UCO) Berlin operated by the TUB for long-

term observations of atmospheric processes in cities (Scherer et al., 2019a). 

 

3.3 Experimental deployment 315 

Measurements were conducted in a street canyon on the Charlottenburg Campus of the TUB, on the façade of the Mathematics 

Building (52° 30' 49.7" N, 13° 19' 34.5" E) as a part of several measurement campaigns of the joint project 'Three-dimensional 

observation of atmospheric processes in cities' (3DO) (Scherer et al., 2019a), which was part of the larger research program 

Urban Climate Under Change [UC]2 (Scherer et al., 2019b). The area directly around the measurement site consists of 

university buildings with a wide main thoroughfare (Strasse des 17. Juni) that runs from East to West through Berlin (see 320 

Figure S6 in the supplementary information). These occurred during two measurement campaigns which are henceforth 

referred to as the Summer Campaign (SC), which includes all 2017 measurements, and the Winter Campaign (WC) which 

includes the 2018 measurements, respectively (Figure 2).  

 

For the field calibration the Zephyrs were co-located with the aforementioned reference instruments at the deployment site. 325 

The reference station for co-location was set up in an office on the 6th floor of the Mathematics building on the south facing 

façade that provided constant power for reference instrumentation and the Zephyrs, as well as space for air inlet tubing to be 

passed through the windows to the reference instrumentation (Figure 3). The Zephyrs and the air inlets were attached next to 

each other on the same railing outside the office. This ensured that all instruments were receiving the same parcels of air 

throughout the co-location. One Zephyr was co-located with reference instrumentation throughout the summer campaign (s71) 330 

and one throughout the winter campaign (s72). The reference station measurements were continuous throughout the co-

locations and the experiments. The experiments took place from July 29th – August 28th and from September 20th – October 

12th in 2017, and from January 27th – February 23rd in 2018. Five co-locations were conducted in total across the two 

campaigns. These took place from July 18th – July 27th, August 29th – September 7th and October 14th – October 27th (all 

in 2017) during the SC and from January 13th – January 24th and February 23rd – March 8th (both in 2018) during the WC. 335 

All dates refer to time frames of the data presented, as the first and last days of deployment or co-location were not used owing 

to different start and end times of installation, as well as sensor warm up times. To compare sensor performance between s71 

and s72, an intercomparison of available co-location raw data was conducted for the oxidizing MOS (Oxa) and ozone MOS 

(O3a). During all co-locations, the sensors had a linear relationship and an R² > 0.95 (Figures S4 and S5). In only one instance 
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was this not the case (co-location 2, O3a), where the R² was 0.59 and a deviation from linearity was detected. This relationship 340 

was linear and normal in all other co-locations.  

 

Figure 2. Timeline of SC and WC depicting the relationship between co-locations and experiments. Due to technical issues of 

individual instruments, data were unavailable for the segments marked in red.  

 345 

This example focuses on Zephyr s71 during the SC and Zephyr s72 during the WC. For the sake of brevity, all graphs and 

tables included in this section pertain only to the former. Those relevant for the latter can be found in the Supplementary 

Information. Due to continuous co-location of these two sensors, the statistical models established using the 7-step method 

could be trained with co-location data and, atypically, assessed for their accuracy using reference concentrations during the 

entire experimental window. What follows is a thorough description of the application of the seven-step method for calibration. 350 

 

In order to calibrate the Zephyrs, reference NO2 and O3 data, meteorological data, and raw data from the Zephyr sensors were 

used. Concentrations of NO2 from the Teledyne T200 NOx Analyzer and O3 from the O3-2B Technologies instruments were 

used as response variables in the models. Ambient temperature (Tamb) and relative humidity (RHamb) data as well as wind speed 

(ws) and direction (wd) data were tested as predictors in the statistical models. Four variables from the Zephyrs themselves 355 

were also tested in the statistical models as predictors: 1) Oxa, a measure of resistance from one MOS sensor used to detect 

oxidizing substances (in this case NO2); 2) O3a, another measure of resistance from a MOS sensor that detects O3; 3) a measure 

of temperature collected by the Zephyr (Tint); and 4) a measure of relative humidity collected by the Zephyr (RHint). Finally, 

the binary time-of-day (ToD) variable was created to distinguish between night and day, as the chemistry of the analyzed 

species changes significantly. Further reference data on other species would have been beneficial to this calibration, as the 360 

MOS do exhibit cross-sensitivities to other species, but resources were insufficient, and these data were not collected. 
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Figure 3. Set-up of the co-location of the prototype Zephyrs with reference instruments on the 6th floor of the Maths building. The 

grey units are the Zephyrs and the two inlet tubes connect to the reference devices located inside the office. 

 365 

3.4 Seven-step calibration of the Zephyrs 

The temperature and relative humidity from the Zephyrs (Tint and RHint) reflect the conditions within the sensor system and 

typically parallel ambient data, however, with an offset. These data are henceforth referred to as “internal” temperature and 

relative humidity. Throughout the example, both internal and ambient T and RH are used to assess their comparative influence 

on model accuracy. This was tested as ambient T and RH from reference instruments are not always available at experimental 370 

sites, whereas the internal T and RH of the Zephyrs are always available. The reference and meteorological data had an original 

time resolution of 1 minute whereas the Zephyr data was collected at a time resolution of 10 seconds. Analysis during the 

seven-step process was conducted using 5-minute averages except for outlier detection, which was done at original time 

resolution.  

 375 

3.4.1 Step 1: Analyze raw data distribution 

The distributions of the reference, meteorological, and Zephyr data were first compared between each co-location individually, 

both co-locations together, and the experimental deployment data of Experiment 1. The violin plots of ambient RH and T, 

NO2, and O3 for co-location 2 (Figure 4) show that the meteorological conditions and pollutant concentrations experienced 

were quite similar to those of the experiment. The ranges, median values, and the interquartile ranges are quite similar. This is 380 

further reflected by the similarity in distributions of both the Zephyr MOS sensor data (Oxa and O3a) and the reference 

instrument data between the 2nd co-location and the experiment.  
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By contrast, the distributions of the same variables for the 3rd co-location (Figure 4) are demonstrably different from the other 

co-location and the experimental data. The ambient temperature and relative humidity conditions were significantly cooler and 385 

wetter in the 3rd co-location than during the experiment and the NO2 and O3 concentrations were much higher and lower, 

respectively. Furthermore, the MOS sensor data in this co-location have a much different median and IQR than the experiment 

although the overall range is similar.  

 

With both locations combined (Figure 4), the distributions of all variables are representative of the experimental data, but with 390 

worse agreement than with co-location 2 alone. These results suggested that the 2nd co-location alone could be the best training 

set for the model building process. In order to further assess this hypothesis, co-location 2, co-location 3, and a combination 

of both were used in exporting final model predictions and evaluated using the atypical co-located experimental data as a 

“comparison” dataset. 

 395 

Figure 4. Violin plots of a) reference NO2, b) reference O3, c) Oxa, d) O3a, e) Tamb, f) RHamb, g) Tint, and h) RHint for co-location 2, 

co-location 3, both co-locations combined, and the experimental data. 
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3.4.2 Step 2: Data cleaning 

Point outliers were determined using the developed outlier detection function. The threshold and running window parameters 400 

were optimized individually for each variable. This was done through visual assessment of points identified as outliers under 

various parameters, in order to determine if the designation was appropriate. For the reference NO2 and O3 data, using a z-

score threshold of five and a running mean calculated with 120 data points (equivalent to two hours of data) was optimal for 

identifying true outliers. Using a lower threshold often falsely identified the extremes of normal data spikes as outliers. Figure 

5 shows example outliers that were identified using the function described above for the reference data. The reference relative 405 

humidity and temperature data provided by the Free University had been pre-processed and as such no outliers were identified 

in those data. 

 

As part of normal operation, the Zephyrs send logged data via GSM connection every 15 minutes to a database maintained by 

EarthSense. When this occurs, all metal oxide sensors in the device turn off. The MOS sensors by design, however, run quite 410 

hot and require a constant input of power to maintain their temperature. As can be seen in Figure 6, each time the MOS sensors 

turn off, they need to warm-up again before stabilizing. The time series plots developed in Step 1 were key to identifying and 

addressing this issue. By developing a function in R that analyzes the MOS sensor data patterns following time-gaps due to 

GSM connection, we developed a rule-of-thumb for identifying and removing these data. Analysis of this issue showed that 

the sensors required two and a half minutes to warm-up and return to normal functionality.  415 

 

Once the time-gap anomalies were removed from the Zephyr data, the outlier detection function was applied to the four Zephyr 

variables in original time resolution. As can be seen in Figure 7, outliers were detected for the four Zephyr variables with a z-

score threshold of five and a running mean of 360 data points (equivalent to one hour of data). It is likely that these anomalous 

data points all result from brief technical failures within the instrument. 420 

 

Figure 5: Examples of outliers detected on reference data using a z-test with running mean for the SC. A value of “TRUE” means 

the point was deemed an outlier by the z-test. 
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Figure 6: Example of outliers due to MOS sensor warm-up following a GSM connection of the Zephyrs. A value of “TRUE” indicates 425 

the point was included in the 2.5 minute MOS warm-up period. 

 

Figure 7: Examples of outliers detected on Zephyr s71 data using a z-test with running mean for the SC. A value of “TRUE” means 

the point was deemed an outlier. 

 430 

3.4.3 Step 3: Flagging the data 

Given that the data coverage from the 2nd co-location encompassed most of the experimental data, only a few points during 

the experiment were flagged for being out-of-bounds of the 2nd co-location set. As can be seen in Figure 8a, only low NO2 

concentrations from the experimental set were flagged. The 3rd co-location experienced a narrower range of NO2 

concentrations, as can be seen in Figure 4 from Step 1. As such, more experimental data points of lower concentrations and 435 

some of high concentrations were flagged for this co-location (Figure 8b). This shows the utility of comparing the results of 

Step 1 with the flags generated in Step 3. 
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Similarly, the 2nd co-location dataset received few flags, as most variables had comparable ranges to those of the experimental 

dataset. For example, only a few data points in which the internal Zephyr temperature dipped below ~289K were flagged 440 

(Figure 8c). For the 3rd co-location, which was conducted in colder conditions in October, far more data points were flagged 

(Figure 8d). This indicated that a larger portion of the 3rd co-location could be unsuitable for use in calibration. It also proved 

valuable for later analysis when analyzing the final predicted concentrations of the model in Step 6. 

 

Figure 8. a) and b) Example time series plots of the experimental data with points out-of-bounds of the 2nd and 3rd co-location 445 

flagged, respectively. c) Time series plot of the 2nd co-location with points flagged for being out-of-bounds of the experimental data 

set. d) Time series plot of the 3rd co-location with points flagged for being out-of-bounds of the experimental data set. 

 

3.4.4 Step 4: Model selection 

The results of the model selection process can be seen in Tables 2-5. For readability, these tables reflect a later stage in the 450 

process, after which a wide range of other models had already been tested and excluded on the basis of AIC and accuracy 

metrics. A combination of these metrics was used to designate the “best” models in which RMSE and R² received a higher 

priority than AIC. The most accurate MLR model for predicting NO2 was determined to be one in which Oxa, O3a, RH, and 

T were included as single terms with interactions between all variables. The relationship between NO2 and Oxa was determined 

to be logarithmic, whereas the relationship to T was determined to be inverse. This is in line with what would be expected in 455 

urban environments, as T can be seen as a proxy for insolation, which causes the photolysis of NO2. For O3 the most accurate 

MLR model had Oxa, O3a, RH, and T included as single terms with interactions. The relationship between Oxa and O3 was 

also determined to be logarithmic. For both NO2 and O3, MLR models using ambient T and RH were consistently more accurate 

than those using internal T and RH.  

  460 
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Table 2. Results of the MLR model selection process for NO2. The most accurate model is in bold font. RMSE and MAE are in units 

of ppb. 

Formula R² RMSE MAE AIC 

NO2~ log(Oxa) * O3a * RHamb * (1/Tamb) 0.82 3.90 3.02 26527.04 

NO2~ log(Oxa) + O3a + RHamb + (1/Tamb) 0.83 4.11 3.20 27027.58 

NO2~ log(Oxa) * O3a * RHamb * Tamb 0.77 4.26 3.57 25896.72 

NO2~ log(Oxa) + O3a + RHamb + Tamb 0.84 4.15 3.33 26602.66 

NO2~ log(Oxa) * O3a * RHint * (1/ Tint) 0.77 4.61 3.65 27552.32 

NO2~ log(Oxa) + O3a + RHint + (1/ Tint) 0.81 4.59 3.89 28174.42 

NO2~ log(Oxa) * O3a * RHint * Tint 0.78 5.78 4.49 26621.64 

NO2~ log(Oxa) + O3a + RHint + Tint 0.80 4.62 3.92 27936.49 

 

Table 3. Results of the MLR model selection process for O3. The most accurate model is in bold font. RMSE and MAE are in units 

of ppb. 465 

Formula R² RMSE MAE AIC 

O3 ~ log(Oxa) * O3a * RHamb * Tamb 0.91 3.38 2.59 23842.89 

O3 ~ log(Oxa) + O3a + RHamb + Tamb 0.94 3.05 2.46 25023.60 

O3 ~ log(Oxa) * O3a * (1/RHamb) * Tamb 0.92 2.91 2.29 24088.18 

O3 ~ log(Oxa) + O3a + (1/RHamb) + Tamb 0.94 3.20 2.44 25077.30 

O3 ~ log(Oxa) * O3a * RHint * Tint 0.81 4.06 2.80 26173.68 

O3 ~ log(Oxa) + O3a + RHint + Tint 0.92 3.67 2.69 28054.23 

O3 ~ log(Oxa) * O3a * (1/ RHint) * Tint 0.82 4.30 3.03 26374.23 

O3 ~ log(Oxa) + O3a + (1/ RHint) + Tint 0.91 3.67 2.78 28178.23 

 

Table 4. Results of the RF model selection process for NO2. Min.node.size and split rule were optimized in a previous step not shown 

here for brevity and are therefore constant. RMSE and MAE are in units of ppb. 

Formula mtry 
min. 

node.size 
Split rule R² RMSE MAE 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD + wd + ws 7 5 extratrees 0.70 4.49 3.62 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD + wd 6 5 extratrees 0.71 4.58 3.49 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD 5 5 extratrees 0.75 4.43 3.51 

NO2 ~ Oxa + O3a + RHamb + Tamb 4 5 extratrees 0.76 4.01 3.25 

NO2 ~ Oxa + O3a + RHamb 3 5 extratrees 0.74 4.08 3.26 

NO2 ~ Oxa + O3a + Tamb 2 5 extratrees 0.76 4.64 3.92 

NO2 ~ Oxa + O3a 2 5 extratrees 0.70 4.44 3.38 

NO2 ~ Oxa + O3a + RHint + Tint + ToD + wd + ws 7 5 extratrees 0.60 5.06 3.97 

NO2 ~ Oxa + O3a + RHint + Tint + ToD + wd 6 5 extratrees 0.58 5.20 4.09 

NO2 ~ Oxa + O3a + RHint + Tint + ToD 5 5 extratrees 0.58 5.34 4.00 

NO2 ~ Oxa + O3a + RHint + Tint 3 5 extratrees 0.63 5.12 3.93 

NO2 ~ Oxa + O3a + RHint 2 5 extratrees 0.65 5.59 4.37 

NO2 ~ Oxa + O3a + Tint 2 5 extratrees 0.70 4.86 3.79 
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 470 
Table 5. Results of the RF model selection process for O3. Min.node.size and split rule were optimized in a previous step not shown 

here for brevity and are therefore constant. RMSE and MAE are in units of ppb. 

Formula mtry 
min. 

node.size 
Split rule R² RMSE MAE 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD + wd + ws 4 5 extratrees 0.92 3.37 2.42 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD + wd 4 5 extratrees 0.90 3.20 2.53 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD 2 5 extratrees 0.90 3.10 2.45 

O3 ~ Oxa + O3a + RHamb + Tamb 2 5 extratrees 0.92 3.39 2.52 

O3 ~ Oxa + O3a + RHamb 2 5 extratrees 0.93 3.71 2.62 

O3 ~ Oxa + O3a + Tamb 2 5 extratrees 0.93 2.95 2.36 

O3 ~ Oxa + O3a 2 5 extratrees 0.90 4.09 2.87 

O3 ~ Oxa + O3a + RHint + Tint + ToD + wd + ws 4 5 extratrees 0.90 3.44 2.46 

O3 ~ Oxa + O3a + RHint + Tint + ToD + wd 4 5 extratrees 0.90 3.60 2.46 

O3 ~ Oxa + O3a + RHint + Tint + ToD 2 5 extratrees 0.91 3.64 2.42 

O3 ~ Oxa + O3a + RHint + Tint 2 5 extratrees 0.87 3.72 2.65 

O3 ~ Oxa + O3a + RHint 2 5 extratrees 0.87 3.92 2.77 

O3 ~ Oxa + O3a + Tint 2 5 extratrees 0.85 3.78 2.66 

 

For random forest, the most accurate NO2 model was determined to be one that included Oxa, O3a, ambient RH, and ambient 

R. The optimal mtry parameter was determined to be 4, with a minimum node size of 5. For predicting O3 the results were 475 

similar to those of NO2, except that ambient T replaced ambient RH. For both NO2 and O3 the use of ambient T and RH 

produced more accurate models. Overall, the random forest models performed very similarly to the MLR models, with only 

slight differences in R² and RMSE. 

 

3.4.5 Step 5: Model validation 480 

For MLR and RF, the R² and RMSE for each block were saved and plotted (Figure 9a-d). As can be seen, the models using 

ambient T and RH for both O3 and NO2 remained relatively stable across all blocks. They consistently have a higher R² and a 

lower RMSE than the models trained with internal T and RH, for both NO2 and for O3. Conversely, the models trained with 

internal T and RH are much more volatile in terms of R² and RMSE, for both NO2 and O3. In addition, blocks 11, 12, and 13 

show a marked decrease in R² and increase in RMSE across all models with internal T and RH. This trend was true for several 485 

models tested at this step, indicating that the internal T and RH were less stable for these blocks. Generally, the differences in 

RMSE between ambient and internal T and RH were more pronounced for NO2 than for O3. This is true across most blocks 

and indicates that the final concentrations should be predicted using ambient T and RH data instead of internal. Tables 6 and 

7 show the median R² and RMSE for all selected models for NO2 and O3, respectively. They reveal MLR and RF using ambient 
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T and RH are similarly accurate at predicting NO2 and O3. The differences in accuracy are more pronounced for the models 490 

using internal T and RH. 

 

Of all predictors included in the RF models, the MOS variable O3a had the highest VI for predicting both O3 and NO2 (Figure 

10a-d). The MOS variable Oxa was also of relative importance, usually as the 2nd most important variable, with the exception 

of the O3 models for which temperature (internal or ambient) was sometimes the 2nd most important variable. Results from 495 

these graphs indicate that all variables should remain in the RF models. 

 

Table 6. Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient T and RH for NO2. 

RMSE and MAE are reported in units of ppb. 

 
NO2 

Median 

R² 

Median 

RMSE 

Median 

MAE 

 

MLR 
NO2 ~ log(Oxa) * O3a * RHamb * (1/Tamb) 0.82 4.35 3.54 Model 1a 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.67 6.12 4.10 Model 1b 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb  0.75 4.88 3.90 Model 2a 

NO2 ~ Oxa + O3a + Tint  0.72 5.29 3.89 Model 2b 

 500 

Table 7. Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient T and RH for O3. 

RMSE and MAE are reported in units of ppb. 

 
O3 

Median 

R² 

Median 

RMSE 

Median 

MAE 

 

MLR 
O3 ~ log(Oxa) * O3a * (1/RHamb) * Tamb 0.91 3.83 2.86 Model 3a 

O3 ~ log(Oxa) * O3a * (1/RHint) * Tint 0.82 4.81 3.79 Model 3b 

RF 
O3 ~ Oxa + O3a +  Tamb  0.90 3.77 3.00 Model 4a 

O3 ~ Oxa + O3a +  Tint +  RHint  + ToD  0.86 5.20 4.10 Model 4b 
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Figure 9. a) R² and b) RMSE over the 19 test blocks for the MLR models (1a, 1b, 3a, 3b), respectively. c) R² and d) RMSE over the 

19 blocks for the RF models (2a, 2b, 4a, 4b), respectively.  505 

 

Figure 10. Variable importance over the 19 test blocks of a) model 2a, b) model 4a, c) model 2b, and d) model 4b.  
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3.4.6 Step 6: Predicting final concentrations 

Final concentrations predicted for NO2 and O3 using the MLR and RF models with both ambient and internal T and RH can 510 

be seen in Figure 11. While the results indicated that ambient T and RH should be used, both are included here for further 

analysis beyond the seven step methodology. For NO2, the MLR models predict a much narrower range of concentrations and 

occasionally predict negative concentrations (Figure 11a). The RF models tend to predict higher concentrations than MLR, 

have a wider range, and don’t predict negative concentrations (Figure 11b). For O3, the differences between MLR and RF are 

less pronounced, with both capturing the diurnal cycle well (Figure 11c-d). In all figures it can be seen that models using 515 

ambient T and RH consistently predict higher concentrations than those using internal T and RH. This indicates that there is a 

difference between predictions using Zephyr internal versus reference temperature and relative humidity sensors. 

 

3.4.7 Step 7: Calculating predictive error 

As can be seen in Figure 12, smearing the reference data had minimal impact on the predictive accuracy of all models. This 520 

indicates that the uncertainty of the reference instruments did not impact the predictive accuracy of the models and can 

therefore in this case be ignored as a potential interference. Overall predictive error was then calculated as the reference error 

plus median MAE of each model across all blocks from the model validation step. The T-200 NOx instrument has a 

measurement uncertainty of 0.5% of the measurement above 50 ppb or an uncertainty of 0.2 ppb below 50 ppb. For the Tech 

2B Ozone Monitor, the uncertainty was the larger between 2% of the measurement or 1 ppb. This can be seen in Figure 13, 525 

which depicts the MLR and RF predicted concentrations for Experiment 1 with shaded regions representing the uncertainty. 

The uncertainty of the RF and MLR models was fairly similar, but was higher for NO2 than for O3. This reflects the findings 

from Steps 4-6 in which O3 was predicted more accurately than NO2 by both models. The standard error for MLR models was 

found to not reflect the realistic accuracy of the predicted concentrations in relation to actual concentrations, as it was found 

to be very low. The RF models calculated a more appropriate measure of standard error using the infinitesimal jackknife 530 

method (Wager et al., 2014), but for consistency with the MLR models, this measure was not used. The accuracy of the final 

models in predicting on experimental data for which reference concentrations are not available for comparison is then best 

reflected by combining the uncertainty of the reference instruments with the median MAE of the test blocks during Step 5 

(Tables 6 and 7). 

 535 

3.5 Extra validation step 

To further test the impact of using more representative training datasets, the final models identified in Steps 4 and 5 were 

trained with each co-location individually as well as with both combined. The predictive accuracy of these separate models 

was then compared using the experimental dataset for which reference NO2 and O3 measurements were available, as Zephyr 

s71 was co-located throughout the experiment. Additionally, these datasets were also tested with data points flagged in Step 3 540 

removed to understand further influences on model accuracy. This extra validation allowed for better evaluation of the 
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performance in predicting experimental concentrations of the MLR and RF models selected with the seven-step method. This 

is, however, atypical for field studies, as these sensor systems are intended to be deployed independently of reference 

instrumentation. 

 545 

Table 8 shows the results of training these various models for NO2. The most accurate model at predicting experimental 

concentrations was the RF model using internal T and trained with data only from co-location 2. The same model trained with 

all available co-location data was slightly more inaccurate. Co-location 3 was the least accurate of the training subsets, 

reiterating findings from Step 1. For the MLR models, this dip in accuracy when using exclusively co-location 3 as the training 

set was most pronounced, as can be seen in Table 8 and Figures 14g-h. When filtering out flagged data points, most NO2 550 

models improved slightly in predictive accuracy. This was most pronounced for those using co-location 3 as a training set, 

which improved substantially in terms of R². This alludes largely to the impact of seasonal changes on co-location 3, which 

experienced different meteorological and pollution conditions than were present during experiment 1. While results show that 

this co-location was not useful for accurate prediction, it is likely that it would have been more relevant for prediction on 

experiment 2, during which the environmental conditions were more comparable. Similarly, co-location 1 would likely have 555 

been more valuable for prediction with experiment 1 than with experiment 2. However, due to the loss of data from s71, this 

could not be assessed more closely in this study.  

 

For O3, the most accurate model was the RF model using internal T and RH and trained exclusively using data from co-location 

2, though the MLR internal model for the same co-location was of comparable accuracy. The RMSE for this model was 560 

substantially lower than the one trained using ambient T and RH. With the MLR models, this difference in predictive accuracy 

between models trained with internal and ambient T and RH was much greater, again favoring the internal models. Co-location 

3 was highly inaccurate at predicting experimental data, further reiterating findings from Step 1 that indicated the unsuitability 

of this co-location for use in predicting final concentrations. Figures 15e-f clearly depict the boundaries for predictions with 

RF models when the training data are unsuitable, as is the case with co-location 3. This is a fundamental flaw of RF models as 565 

they cannot predict outside the bounds of the co-location data they are trained with. Filtering out the points flagged in Step 3 

did not improve the predictive accuracy of models trained exclusively with co-location 2, but it substantially improved those 

trained with co-location 3, especially those using internal T and RH.  

 

  570 
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Figure 11. Time series plots and boxplots for Experiment 1 of a) predicted NO2 concentrations using the MLR model, b) predicted 

NO2 concentrations using the RF model, c) predicted O3 concentrations using the MLR model, d) predicted O3 concentrations using 

the RF model. ‘Ambient’ and ‘internal’ refer to the use of ambient or internal T and RH data in each model.  
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 575 

Figure 12. RMSE of models trained using smeared reference measurements versus actual reference measurements for a) NO2 with 

MLR, b) NO2 with RF, c) O3 with MLR, and d) O3 with RF. 

 

Figure 13. Time series plots of both MLR and RF predictions for Experiment 1 including the measurement uncertainty as shaded 

regions for a) NO2 and b) O3. Data were averaged to 30 minute resolution. 580 
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Table 8. Results of RF and MLR models for NO2 trained with co-location 2, co-location 3, or a combination of both when tested on 

the comparison experimental dataset. In the lower half of the table, the models are trained with the same datasets but are tested on 

the experimental dataset with data points outside the ranges of each training dataset filtered out. 

 585 

 

 

 

 

 590 

 

 

 

 

 595 

Table 9. Results of RF and MLR models for O3 trained with co-location 2, co-location 3, or a combination of both when tested on 

the comparison experimental dataset. In the lower half of the table, the models are trained with the same datasets but are tested on 

the experimental dataset with data points outside the ranges of each training dataset filtered out. 

 

 NO2 Co-location 2 Co-location 3 Both co-locations 

 
 

R² RMSE R² RMSE R² RMSE 

MLR 
NO2 ~ log(Oxa) * O3a * RHamb *(1/Tamb) 0.66 5.49 0.22 12.08 0.61 5.66 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.66 6.41 0.57 10.99 0.67 5.55 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb 0.67 5.23 0.41 6.64 0.66 4.97 

NO2 ~ Oxa + O3a + Tint 0.73 4.44 0.61 5.60 0.68 4.87 

        

 NO2 – filtered        

MLR 
NO2 ~ log(Oxa) * O3a * RHamb *(1/Tamb) 0.63 5.53 0.45 12.88 0.62 5.62 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.63 6.49 0.64 11.17 0.69 5.54 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb 0.65 5.09 0.66 5.64 0.56 4.90 

NO2 ~ Oxa + O3a + Tint 0.71 4.38 0.65 6.01 0.68 4.85 

 O3 Co-location 2 Co-location 3 Both co-locations 

 
 

R² RMSE R² RMSE R² RMSE 

MLR 
O3 ~ log(Oxa) * O3a *  (1/RHamb) *  Tamb 0.86 7.00 0.86 5.12 0.88 6.06 

O3 ~ log(Oxa) * O3a *  (1/RHint) *  Tint 0.94 3.37 0.16 17.20 0.91 3.94 

RF 
O3 ~ Oxa + O3a +  Tamb 0.91 5.14 0.73 7.77 0.91 5.14 

O3 ~ Oxa + O3a +  Tint +  RHint  + ToD 0.94 3.31 0.67 9.95 0.92 3.80 

        

 O3 – filtered        

MLR O3 ~ log(Oxa) * O3a *  (1/RHamb) *  Tamb 0.85 6.78 0.85 4.13 0.87 5.97 

 O3 ~ log(Oxa) * O3a *  (1/RHint) *  Tint 0.93 3.33 0.52 9.24 0.91 3.90 

RF O3 ~ Oxa + O3a +  Tamb 0.91 5.18 0.77 5.13 0.90 5.15 

 O3 ~ Oxa + O3a +  Tint +  RHint  + ToD 0.93 3.30 0.65 7.53 0.91 3.82 
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 600 

Figure 14: Scatter plots of predicted NO2 versus reference NO2 concentrations for the experimental data using MLR and RF models 

trained with co-location 2 (i-l), co-location 3 (e-h), and both combined (a-d). All concentrations are reported in ppb. 

 

Figure 15. Scatter plots of predicted O3 versus reference O3 concentrations for the experimental data using MLR and RF models 

trained with co-location 2 (i-l), co-location 3 (e-h), and both combined (a-d). All concentrations are reported in ppb. 605 
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4. Discussion  

The results of this study have several implications for the field of low-cost sensors. In line with other research, this study found 

that MLR and RF were similarly accurate in predicting experimental concentrations of NO2 and O (Karagulian et al., 2019), 

though the differences in accuracy between MLR and RF were more pronounced for O3 than for NO2. In fact, it was found 610 

that RF was the better predictor of both O3 and NO2 concentrations when evaluated with the longer experimental data set, 

albeit only slightly. This contrasts with findings from the model selection and validation process, as the MLR models were 

consistently more accurate at predicting on subsets of the co-location data. What this indicates is that models found to be more 

accurate during “calibration” may have differing model performance when assessed with a “comparison” dataset, in this case 

the experimental dataset that was co-located throughout for one sensor. This is a result that has been found previously, where 615 

the R² is lower for comparison datasets than for calibration (Karagulian et al., 2019). If RF, MLR, or other ML techniques are 

selected for their accuracy when predicting on calibration data and are not tested on comparison data, it may well be that the 

performance does not hold for new experimental data. Given the similarity between RF and MLR in predicting NO2 and O3 

found in this study, as well as in the literature, either method can be used. However, as MLR is simpler to implement than 

most ML techniques, has fewer parameters that need to be optimized, and the model calculations are well understood, unlike 620 

the black-box calculations of RF and most ML techniques, this should be the preferred option to achieve greater model 

transparency and control.  

 

Further important to the proper evaluation of model accuracy is the reporting of multiple metrics such as RMSE and MAE, in 

addition to R². It is quite clear from Tables 8 and 9 that R² is not the best metric with which to measure predictive accuracy of 625 

calibration models. Models trained with co-location 3 exclusively to predict O3, for example, had an R² greater than 0.70, 

which is acceptable agreement. Those same models, however, had an RMSE of >7 ppb, which is much more inaccurate than 

an R² of 0.70 alone would reveal. As another example, the same models trained exclusively with co-location 2 for O3 (Table 

9) had an R² between 0.86 and 0.94, but had a wide range of RMSE between 3.30-7.00 ppb. It is therefore crucial that multiple 

performance metrics are used to evaluate calibration models before final decisions are made on their suitability. At a minimum, 630 

R² and RMSE should be reported. 

 

Multicollinearity is an issue common not only to MLR, but also to small sensor systems, which often have multiple LCSs 

measuring the same or similar species with heavily auto-correlated data. While uncommonly addressed in the literature, except 

for a few studies mentioning its influence on MLR models (Bigi et al., 2018; Hagan et al., 2018; Masiol et al., 2018), the 635 

solution, as presented in Steps 4 and 5, is relatively straightforward. To ensure that the predictor variables included in the final 

model are, in fact, explanatory, the model should be repeatedly validated using bootstrapped samples. To deal with 

autocorrelation, this validation should be done using continuous blocks and not with random sampling. Including these steps 

in the model-building process is simple and should be considered best practice. 



29 

 

 640 

Further underlining the importance of repeated validation is the variation in results when using ambient or internal T and RH. 

While the inclusion of ambient meteorological data led to more accurate models during calibration, this did not hold for the 

comparison dataset. Instead, for the prediction of both NO2 and O3, it was internal T and RH data that led to more accurate 

prediction. This indicates that for the prediction of NO2 and O3 concentrations with EarthSense Zephyrs, not only are the 

internal T and RH sensors acceptable for use in predictive models, but they are likely more representative of normal operating 645 

conditions. Given that the MOS sensors radiate large amounts of heat, the conditions inside the Zepyhrs are significantly 

different than ambient conditions. As such, the internal T and RH sensors likely better represent the exact environmental 

conditions under which species are adsorbing to the MOS sensors. However, given that models using ambient data were more 

accurate during the validation step and significant differences between predictions of models trained with internal vs ambient 

T and RH were identified, these results require closer inspection, which should be the subject of future research. 650 

 

The final results also reveal the value of pre-processing the data in Steps 1-3. It became clear by looking at the distribution of 

the co-location datasets in Step 1 that co-location 3 might be unsuitable for use in predicting the experimental concentrations. 

These data were then flagged in Step 3. While the models trained exclusively with co-location 3 were substantially less accurate 

than those using data from co-location 2, their accuracy increased when flagged experimental data points outside the range 655 

were removed. In essence, the 3rd co-location was useful for predicting on experimental data within its range of conditions, 

but very inaccurate for those outside of that range. Co-location 2, on the other hand, was identified as being well-suited for 

prediction in Step 1 and received few flagged points in Step 3. Final results indicate that MLR and RF models trained with co-

location 2 perform better than those trained with co-location 3, for both NO2 and O3. Combining the two co-locations did not 

improve the predictive accuracy for NO2 or O3, when compared with the more-suitable 2nd co-location (Tables 8 and 9). As 660 

such, training calibration models with co-location 2 exclusively would have been correctly justified using evidence from Step 

1. What is evident from this analysis is that ensuring quality of training data used in calibration is crucial to accurate prediction. 

Incorporating quality control into the calibration methodology is therefore an important best practice.  

 

Finally, LCS data should be reported with associated error values. While we discussed RMSE in the context of model fit and 665 

validation, as well as a method for evaluating whether reference instrument accuracy affects the model output, error values 

should be reported not just in the assessment of the LCSs themselves, but also with some form of representative error associated 

to the reported concentration data. Our recommendation is to combine the uncertainty of the reference instruments with the 

median MAE across blocks from the model validation step. As can be seen in Tables 8 and 9, the RMSE of predictions tested 

with the comparison experimental dataset are quite similar to the median RMSE values in Tables 6 and 7. This indicates that 670 

using median error from the model validation step is quite representative of the LCS uncertainty. However, over longer 

measurement campaigns, this should be repeatedly tested and validated with additional co-location training sets, so as to 

account for sensor drift, deteriorating functionality, and varying meteorological conditions.  
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5. Conclusions 675 

While many details of this methodology are already well-known, they are often overlooked or go unreported in published 

literature. In most cases not all aspects are included. As a result, many studies assessing pairwise calibration methodologies 

for low-cost sensors cannot be compared. In the absence of calibration standards for these technologies in a field that continues 

to diversify and grow, researchers must start to consolidate around an agreed-upon set of best practices. This study has 

highlighted several of them. First, details on model selection, validation, and tuning must be reported if researchers are to be 680 

able to effectively compare results across studies. If models are not rigorously tested for suitability using standardized methods, 

especially with “black-box” machine-learning techniques, then their comparison will remain challenging at best. Second, 

models should be validated not only on the calibration dataset, but also on a separate comparison dataset, if possible. All 

validation should be done using R² and RMSE, at a minimum. This will provide greater insight into the suitability of selected 

models for prediction on experimental data as well as better comparability across studies. Third, pre-processing the data, 685 

including visual inspection, outlier removal, and data-flagging are an integral part of an effective calibration methodology. 

Understanding the quality and distribution of available data is important to identifying problems and solutions encountered 

during calibration.  

 

Last, it is clear that a standardized methodology for the calibration of low-cost sensors is needed if they are to be incorporated 690 

into air quality monitoring programs and contribute new insights to the field of atmospheric chemistry. This seven-step 

methodology seeks to fill a gap in the literature up until now left largely unreported. In addition, this methodology, complete 

with relevant R code, is the first to be completely transparent and open-access. This is a valuable contribution to a young, but 

rapidly growing body of literature surrounding low-cost sensors. With this work, we hope to begin pulling back the curtains 

on the black box of sensor calibration. 695 
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