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Abstract. Organised motion of air in the roughness sub-layer of the atmosphere were investigated using novel temperature

sensing and data science methods. Despite accuracy draw backs, current fibre-optic temperature (DTS) and thermal imaging

(TIR) instruments offer frequent, moderately precise and highly localized observations of thermal signal in a domain geometry

suitable for micro-meteorological applications near the surface. The goal of this study was to combine DTS and TIR for the

investigation of temperature and wind field statistics. Horizontal and vertical cross-sections allowed a tomographic investiga-5

tion of the spanwise and streamwise evolution of organised motion, opening avenues for analysis without assumptions on scale

relationships. Events in the temperature signal on the order of seconds to minutes could be identified, localized, and classified

using signal decomposition and machine learning techniques. However, small-scale turbulence patterns at the surface appeared

difficult to resolve due to the heterogeneity of the thermal properties of the vegetation canopy, which are not immediately evi-

dent visually. The results highlight a need for physics-aware data sciences techniques that treat scale and shape of temperature10

structures in combination, rather than as separate features.

Copyright statement. T.b.d.

1 Introduction

Available methods to determine energy and scalar fluxes from the terrestrial land surface are relatively imprecise due to a mul-

tiscale of irregularities in the land surface and the turbulent transport mechanisms (Brutsaert, 1998). The most broadly adopted15

micro-meteorological methods for quantification of surface exchange fluxes take an integrative approach to observations in the

atmospheric surface layer (ASL) and have become a crucial component in global Earth System assessments on climate change

mitigation (Foken, 2006). On that account, questions have been asked about additional details contained in such data (e.g.,

Knauer et al., 2017; Klosterhalfen et al., 2019; Clement and Moncrieff, 2019), but also, more pressingly, what we are missing

outside the applicable range of the methodology and assumptions (Mahrt, 2010; Bou-Zeid et al., 2020).20

The complex relationship between the scale and heterogeneity of a source area and observations of turbulence and temper-

ature (and humidity) in the ASL have been broadly recognized (Garratt, 1980; Schmid, 1994; Raupach and Finnigan, 1995;

Mahrt, 1996; Sun et al., 1999; Li et al., 2012; Patton et al., 2016) in decades of work that contributed to the best practise

guidelines for the eddy covariance technique (Lee et al., 2005; Aubinet et al., 2012). The atmosphere, the surface and the plant
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microclimate are in direct exchange in the so-called roughness sublayer, the internal ASL layer below the inertial sublayer25

(Raupach, 1979; Garratt, 1980; Stull, 1988). Finnigan (2000) provides a detailed review on aspects of turbulence within the

RSL, where individual roughness elements modulate the flow in a three-dimensional and inhomogeneous way. The correlation

between the statistics of turbulence, air temperature and skin temperature of vegetation has been investigated using single-point

observations as well as spatial data (Finnigan, 1979; Paw U et al., 1992; Shaw et al., 1995; Katul et al., 1998), highlighting

the presence of organized structures in the RSL in accordance with insights from laboratory experiments on near-wall fluid30

dynamics (Kline et al., 1967). Coherency of eddies has been observed in profiles within the RSL from vector and scalar data,

such as temperature (Antonia et al., 1979; Williams and Hacker, 1992). Many near-surface turbulence studies adopt Taylor’s

hypothesis (frozen convection) to translate wave numbers to length scales, but it could be questioned if and when the under-

lying assumptions hold, particularly for non-ideal conditions (stationarity, ergodicity, homogeneity; see, e.g., Higgins et al.,

2013).35

A way to avoid making such assumptions would be to observe turbulence features explicitly in space and time. Dense

geometrically distributed observations of air and surface temperature in combination with the wind field have not been explored

in great detail outside a wind tunnel, mostly because methods were not available or because the costs would be prohibitive.

However, novel opto-electronic technologies may bring a needed change.

The availability of spatial surface temperature observations has improved with advancements in spectral imaging. Thermal40

infrared imaging (TIR) instruments observe long-wavelength infrared light from which a surface brightness temperature (Tb)

can be derived. TIR instruments have proven to be sufficiently sensitive, as demonstrated in recent studies on spatial temperature

fluctuations (Christen et al., 2011; Katurji and Zawar-Reza, 2016), planar flow fields (Abram et al., 2013; Inagaki et al., 2013;

Burns and Chemel, 2013) and partitioning of energy fluxes (e.g., Kustas and Anderson, 2009). It should be noted that the

sensitivity of TIR to measure Tb is affected by thermal signal other than the surface skin temperature. The quantification of45

Tb outside a controlled laboratory environment is a challenge, in and of itself; there are many possible sources of interference

in thermal imaging, which in a controlled laboratory environment can be anticipated and corrected for. Parameters that affect

the observation of Tb include external influences between the camera sensor and the object, variation in thermal admittance,

thermal reflections, moisture and humidity (Vollmer and Möllmann, 2010; Jones, 1999).

Distributed Temperature Sensing (DTS) provides highly localized temperature observations along optical (silica) fibre50

(Dakin et al., 1985), making it a tool for spatial environmental sensing (Selker et al., 2006; Tyler et al., 2009). The optical

fibre is usually packaged inside a cable for durability and to help minimize attenuation due to (micro-)bending. The cable

jacket adds surface and volume, making the measurement more susceptible to the local energy balance terms (Thomas et al.,

2012; de Jong et al., 2015). Hence, micro-meteorological studies with DTS have primarily been demonstrated for conditions

of nocturnal darkness (Keller et al., 2011; Thomas et al., 2012; Zeeman et al., 2015) or, after adjustments, taking advantage of55

a differentiating thermal signal governed by wind, evaporation or shading of sunlight (Petrides et al., 2011; Euser et al., 2014;

Sayde et al., 2015; Lapo et al., 2020; Schilperoort et al., 2018; van Ramshorst et al., 2020). Fibre-optic cable can be deployed

to form a mesh of horizontal and vertical profiles in complex geometries from the ground up.
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The goal of this study was to combine DTS and TIR for the investigation of temperature and wind field statistics near a

vegetation surface. These novel methods are moderately precise, but constrained in accuracy for observation of air and surface60

temperature. However, both DTS and TIR promise geometrically dense thermal information that could complement single-

point observations using well-known sensing technique, such as ultrasonic anemometry for wind and metal wire resistance

for temperature. The combined granularity may allow us to revisit the investigation of scale and structure in the roughness

sub-layer in more detail. The examination of multi-dimensional data has taken flight with the availability of novel statistics and

machine learning tools, which will also be addressed.65

2 Materials and methods

The study was conducted at the DE-Fen station, Fendt–Peissenberg, Germany, which is a TERerstrial ENvironment Observa-

tories (TERENO) and Integrated Carbon Observation System (ICOS) core site (Zacharias et al., 2011; Zeeman et al., 2017;

Kiese et al., 2018). The site is a permanent grassland situated in a shallow valley bordered to the West by a steep, forested

slope towards a plateau at approximately 150 m higher elevation (Figure 1). During intensive field campaigns at DE-Fen, addi-70

tional experiments were conducted for the investigation of scale interactions between the atmospheric boundary layer and the

surface, as well as validation of measurement techniques (ScaleX; https://scalex.imk-ifu.kit.edu; Wolf et al., 2017). The exper-

iment took place during the ScaleX 2016 campaign in Jun–Aug 2016, but we focus here on the period 18–22 Jul 2016. These

days included a typical summer warm-up phase with mostly clear sky conditions and calm nights, but with limited activity by

uncrewed aerial vehicles (UAV) perturbing the air by down wash and frequent transit through the area.75

2.1 Ultrasonic anemometer (EC) network

A network of wind sensors was deployed, comprising profiles of 3-axis (3D) and 2-axis (2D) ultrasonic anemometers on a

guyed lattice mast and four tripods (Figure 1c; Figure 2; Table 1). The EC network was placed approximately 60 m East of

the micro-meteorological station of DE-Fen. The sensors were cross-calibrated prior to the experiment (Mauder and Zeeman,

2018). An additional EC station (ICOS; EC with trace gas analysers) was temporarily placed at the center of the sensor network80

(Figure 1c; Figure 2).

2.2 Distributed temperature sensing (DTS)

The DTS setup consisted of a high-resolution instrument, custom fibre-optic cable and a calibration setup. The DTS instrument

was configured to measure at 1 Hz and 0.15 m range gate intervals up to 1890 m (model Ultima-HS; Silixa Ltd, Hertford-

shire, UK). The fibre-optic cable consisted of a bend-optimized optical fibre (Giga-Link communications type; 125 µm with85

50 µm core), buffered with aramid fabric (Kevlar) in a white plastic jacket (900 µm outer diameter; AFL Telecommunications,

Spartanburg, SC, USA). Both ends of the fibre-optic cable were connected to separate channels on the DTS instrument for

measurement in both directions (Hausner et al., 2011). The configuration allowed two profiles along the lattice mast up to 8 m

above ground and 316 profiles suspended in the air up to 4.5 m above ground. The latter were spatially configured to form the
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sides of a box of 20×20×3.5 m [L×W×H], or four planes of 80 vertical profiles in 0.25 m intervals, with EC profiles placed90

at each corner (Figure 1c and Figure 2). The dimensions were chosen as a trade-off between DTS range limitations, instrument

spatial resolution and measures to limit systematic shading of direct solar radiation or wind by DTS and EC support structures.

The effective thermal sensitivity is dependent on the instrument, the deployed cable geometry and the location along the fibre,

which previously was estimated to be 0.5 K or better (Zeeman et al., 2015, see Appendix A3.1).

2.3 Thermal infrared imaging (TIR)95

A thermal infrared imaging system was installed inside a weather-proof camera housing at 8.5 m above ground (8–14 µm

spectral range, 40 mK thermal sensitivity, 53◦× 38◦ field of view and 382× 288 pixels optical resolution; model PI 640,

Optris GmbH, Berlin, Germany). The spectroscopic data was recorded at 2 Hz between 00′ and 53′ in the hour with automatic

self-calibration each 9 s.

2.4 Data integration100

Each EC, DTS and TIR record was stored with an accurate time stamp and locations were georeferenced in post-processing.

The calibration and georeference details are provided in Appendix A. The physical meaning of the EC, DTS and TIR derived

temperature measurements must be considered. Until that is fully explained, or until we assure the values match the expectation

in atmospheric research, we should discern the nomenclatures from air temperature (Ta) or surface temperature (Ts). DTS can be

used to measure temperature of air, but we denote it as “cable” temperature (Tc) below, in order to distinguish it from radiation-105

shielded and fan-aspirated sensing standards used for air temperature in micro-meteorology. Following similar argumentation,

Tb and Tv are differentiated here as surface brightness temperature and temperature from the speed of sound (or acoustic

virtual temperature), respectively. The use of the EC-based Tv is common in micro-meteorological studies, once noise and

calibration have been handled with care (Mauder and Zeeman, 2018). Additional air temperature measurements were made

using resistance temperature devices in fan-aspirated enclosures (Table 1; Appendix A).110

2.5 Design considerations

As mentioned above, the setup was not a stand-alone experiment. The design was intended to support studies on atmospheric

processes dedicated to empirical data and in combination with fluid dynamics models. Other experiments were conceptualized

to use the setup, as part of cooperative research during the experimental campaign (ScaleX; see, e.g., https://scalex.imk-ifu.

kit.edu, Brosy et al., 2017; Brenner et al., 2018; Mauder and Zeeman, 2018; Zhao et al., 2018; Ibraim et al., 2019; Hald115

et al., 2019; Zeeman et al., 2019; Kunz et al., 2020). Applications include the investigation of coherent structures, advection

processes and conditional sampling methodology.

The placement of the wind sensors on the corners and at the center of the setup was intended to facilitate the determination

of a representative wind vector at the walls of the DTS array. It was thought that placing tripods at the center of a wall would

result in more uncertainty. The number and heights of the EC profiles were limited by available hardware at the time. Ideally,120
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only 3-axis sonic anemometers would be used. The dimensions and shape of the DTS array were primarily limited by the

maximum range of the DTS instrument model, which can support up to 1.8 km of optical fibre per channel. The DTS profile

height was extended to reach sufficiently above the sonic anemometers at 3 m. Small-scale disturbance in the wake of the DTS

support structure was possible. The distance from the DTS masts to the EC profiles (on tripods) and DTS profiles was 3 m.

The DTS masts had a diameter of 0.1 m. Increasing the distance would have required for the suspension cable to be mounted125

higher and with larger tension force to keep the steel cable straight. This could not safely be realized during the deployment.

In an initial design, the guyed mast would be taller and placed at the center. A compromise had to be made during deployment

and the mast was moved to the NW corner. This had obvious implications for the field of view of the TIR system. The TIR

system was pointed to the ground at a slanted angle to include as much surface within the DTS profile box as well as static

objects for georeferencing.130

In principle, long-term monitoring with the combined setup would be possible. This primarily depends on the stability of

the support structure used to suspend the fibre-optic cable. In addition, it would be important to prevent accidental damage by

animals, particularly wildlife. Precautions can be as simple as increasing the visibility of the setup during the night using a

floodlight and marking the area with bright warning tape. Fibre-optic cable can deteriorate under mechanical stress, but this

was not observed during the two-month deployment. Furthermore, optical cable can be repaired in the field in case of damage135

or, if the budget allows, replaced. The instruments, particularly the EC, TIR and DTS models used in this study, are designed

for long-term (industrial) operation.

2.6 Signal analysis

A Multi Resolution Decomposition (MRD) approach was used to determine the the weighted contribution of different time

scales to the total variance (Howell and Mahrt, 1997; Vickers and Mahrt, 2003). The MRD filter is analogue to a Haar transform140

in use of a rolling window for discrete decomposition of scales (2M to 20 samples) for the computation of (co-)spectral variance.

The difference with Haar is a scale-dependent weighting function to resolve the contribution of each scale to the total variance,

simply by cumulatively subtracting the variance of larger scales from subsequent smaller scales. The largest window size (2M

samples) was linearly detrended before MRD computation.

Complementary to decomposition approaches based on scales (MRD, or wavelet), intermittent events can be identified145

based on characteristics in the turbulence time series. The Turbulence time series Event Detection (TED) approach can identify

potential events in temperature time series and apply a subsequent cluster classification based on statistical features of those

events (Wang et al., 2006; Kang et al., 2013, 2015, see the R-package TED for code examples). More precisely, the cluster

classification is based on a Principal Component Analysis (PCA) on Euclidian distance measures for a set of statistical features,

including kurtosis, skew, variance, minima and maxima within the event time window. The method was modified to use a150

hybrid hierarchical k-means clustering to improve the repeatability of the clustering for the many co-located Tc time series.

The presented results are based on PCA on all events and features detected within the Tc array and for a one-day time window.

Kang et al. (2015) empirically found a number of six clusters for a day of CASES99 temperature data (Kang et al., 2015;

Poulos et al., 2002), which was used accordingly here. Please note that TED does not make assumptions on the duration of
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events, but a minimal rolling window size of approximately two minutes (90 samples) was applied and events longer than 30155

minutes were excluded (Fig. A8).

3 Results

3.1 General patterns

First, we will briefly cover aspects related to wind and radiation for the study period at the site, as trends or variability in

those variables influence air temperature near the surface substantially. The selected days showed an almost cloudless warm-up160

phase with a diurnal cycle in temperature and wind that is characteristic for locations at this latitude and proximity to the

Alps (Figure 3). The different temperature observations show a tooth-shaped pattern with a rapid increase after sunrise and

a maximum mid-afternoon, thereafter temperature drops rapidly and continuous to decrease after sundown under radiative

cooling (Figure 3d–e). Some short-term variability in surface and air temperature can be explained by transient cloud cover,

such as at midnight and at noon on 19 Jul 2016, which changes the radiation balance at the surface by shadowing of sunlight165

(Figure 3d–e). Sudden temperature shifts also occur in conjunction with a passing storm, such as right after sunrise on 21 Jul

2016 (Figure 3f). This particular rapid change in temperature correlated with increased wind speed, that is atypical for the early

morning at this site (Figure 4). Weak wind and absence of clouds allowed unstable conditions to develop after sunrise on these

calm cloudless days, as well as after a rain event on the morning of 21 Jul 2016 (Figure 4b–d). High surface energy fluxes during

the day correlated with a northern wind sector in mid-morning to mid-afternoon observed near the surface. The wind slows and170

turns to a S to E wind sector during the evening transition, with notably weak wind close to the surface and continuing through

the night (Figure 4a–b; Figure 4e). Please note that this reoccurring diurnal pattern of shifting wind direction is sometimes

referred to as ‘Alpine pumping’. As a consequence of very weak wind conditions, eddy-covariance flux computations rarely

produced acceptable results (classified as Acceptable or Ambiguous) in the hours from just before sundown until shortly after

sunrise (Figure 4e–g). It is clear that the assessment criteria for quality of flux computations leave plausible values mostly for175

the unstable case, as expected. In the past, alternative stability classifications have been formulated from bulk Richardson or

temperature gradients, which are provided here for comparison (Figure 4g; Appendix B). Using higher resolution temperature

gradient information, Tc reveals a vertical deviation in stable classification above 1.5 m and unstable below in the late afternoon,

which is confirmed by Ta (Figure 4g). The match foremost highlights agreement in temperature gradient observations between

the methods. The stability details are shown here to point out that with sufficient spatial resolution, simple indicators become180

a means to reveal physical patterns. This will be discussed below.

3.2 Temperature

The air temperature observations agree between the methods (Figure 3a–c). Some dissimilarity between Ta and Tc can be

seen at the lowest part of the profile (< 0.5 m) during the day, where the effects of sensor shading and aspiration on Ta can be

expected to be most pronounced (Figure 3a–b). A stable temperature profile develops at night in excess of 3 K in the lowest 9 m185
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depth (Figure 3a–c; Figure 5a–b). The unstable daytime temperature gradient is small in comparison, but temperature variance

can be significantly larger and increases towards the surface (Figure 5c–f; Figure 5g, positive kurtosis). Furthermore, the shape

of the variance distribution of those daytime observations indicate a moderate dominance of short-term hot excursions from

the mean (Figure 5g, positive skew). Those are not new findings, but again describe the general conditions at the site.

3.3 Temperature time scale decomposition190

In addition to aggregating statistics for fixed time intervals, we can decompose the air temperature signal in contributing

time scales (Figure 6). The multi-resolution decomposition (MRD) results confirm a variance maximum at the surface during

the day, but at night the dominant contribution was found between 0.5 and 2.5 m depth (Figure 6b; details about MRD in

Appendix B). Not surprisingly, highest daytime variance was found after the rain storm on 21 Jul 2016 under wet surface

conditions (Figure 3f; Figure 5; Figure 6b). During the day, scales of less than 3 minutes contributed most to total variance,195

whereas periods of 5 minutes or more were prominent at night (Figure 6c). For each of the decomposition levels we can

determine a height of maximum contribution to variance. During the day, a peak contribution was observed at the bottom of the

profile, also corresponding to higher decomposition levels (M > 7, lower frequency signal). During the day, the sunlit surface

acts as a slow-response buffer in transfer of energy to the air in closest contact. The height of the maximum variance for smaller

decomposition scales (M < 6, higher frequency contribution) was shown to transition from below 0.5 m before noon, to the200

top of the profile. During the night, the height of the variance maximum for the large and small decomposition levels could

be found to coincide, as shown between 1 and 2 m depth on the night of 19 to 20 Jul 2016 (Figure 6d). The simultaneous

occurrence of multiple scales at the same location (height) and time suggests an interaction, perhaps cascading of energy from

one scale to another.

The decomposed variance scales for the surface brightness temperature differ in distinct aspects, but generally follow a205

similar pattern (Figure 7). Similar to Tc, there is a increase in contribution of lower decomposition levels (M < 7, higher

frequency signal) during the day (Figure 7b). However, the total variance at the surface is very low during the night (Figure 7c).

This confirms the results for Tc, and suggests that the stable stratification at night allows the air (a layer) closest to the vegetation

to decouple from the atmosphere aloft. Interestingly, spatial patterns do emerge from the Tb variance that correlate to location,

also at night when total variance is very low. This is discussed in more detail in Section 3.5.210

Please note that the MRD results helped identify noise peaks affecting the whole thermal image in the early morning on

most days. This noise signal is likely caused by direct sunlight at very low zenith angles (Figure 7a). Furthermore, the Tb

signal shows limited information in the lowest decomposition scales (M < 2, high frequency), which is assumed to be a design

feature of the camera and likely governed by noise-reduction algorithms that result in a low temporal sensitivity. The Tc results

contain more high-frequency signal than the Tb, as is evident from the the lowest decomposition levels and typical for lidar215

data such as DTS.
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3.4 Temperature event classification

The MRD and other decomposition methods, such as wavelet, help decompose variance in time, but do not necessarily discern

the shape of the variance events. In fact, the outcomes of MRD differ substantially between a signal with sinewave or ramp

shape, which both commonly occur in air temperature time series. For the same event duration, MRD can classify a wave and a220

ramp shape one decomposition level apart. It is therefore helpful to investigate the shape of variance events in more detail. An

indicator for event shapes that likely show a more saw-tooth or ramp-like pattern is positive skewness. The difference between

the first half and second half of the event provides addition detail. Such statistical features can be used to identify events, and

this is the basis of methods like TED (Kang et al., 2013, 2015, see Appendix B). The original TED classification is based on

differences between variance events in Euclidean space, i.e., k-means clustering on principle components analysis of event225

statistics. Different event types may occur though-out the day and through-out the vertical profile (Figure 8). The classification

of some clusters appeared to coincide with the timing and height of dominant variance scales identified and localized by MRD

(Figure 6d). This is seem most clearly at night.

The accuracy of event classification statistics dependents on the signal and the ability to separate the noise it includes. Not

investigated here is how such statistical event features translate between different sensor types with different noise profiles. Fur-230

ther analysis of lagged spatial correlations would be beneficial for the identification of patterns and the evolution of structures,

which the applied algorithms currently do not address.

3.5 Spatial temperature patterns

Based on the scale decomposition and cluster results we focus on a nighttime and daytime period more closely, starting 03:00

UTC 20 Jul 2016 and 10:00 UTC 21 Jul 2016, respectively. An example of night and daytime observations can be viewed in235

an animation (see Video supplement). During the daytime animated period, the mean wind is mostly aligned with the DTS

measurement setup, i.e., either perpendicular or parallel to the walls of the box-shaped array, with mean flow from a SSE

direction. Both the daytime and nighttime case show intermittent structures. However, animations reveal scale interactions that

are not easily identified in the decomposition or classification statistics.

The surface was not homogeneous in terms of TIR signature. Some signal in the TIR image time series were revealed when240

and where the background (the surface) and foreground (air that had interacted with a surface upstream) show a different heat

signature. Therefore, motion was revealed from hot air advecting away from relatively hot areas in the plant canopy, against

a background of cooler surfaces. First, hot plumes or thermal streets advect laterally through the observation volume during

the day and appear correlated to stream-wise oriented hot and cold streaks on the surface. The plumes maintain a moderately

constant spanwise position (Figure 9). Motion of the heat structures is not necessarily aligned with the mean wind as recorded245

by the EC profiles. Please note that this is in part an issue of apparent (co-variant) alignment of the vertical planes with the

flow (Zeeman et al., 2015). Surface heat emits from hot areas in the vegetation, which are mostly sunlit leaves at the top

of the canopy. Remnants of tractor tracks are visible parallel to the DTS setup and field track in a WSW to ENE direction

(Figure A5; on close inspection also in Figure 2). The vegetation canopy was higher where tractor tires did not disturb the soil
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and vegetation during the previous harvest. The streaks of hot and cold air appear to move independent of the orientation of250

those tracks, although hot Tb signal shows up more clearly against the cool background of low vegetation in the tractor tracks,

making its visual appearance dependent on the approach use here in which all variance scales are included. It is assumable, that

patterns in thermal brightness signal relate to heat and moisture released by evapotranspiration, where variability in moisture

contributes to a spatial differentiation in emissivity. Those emissivity values are unknown, hence the Tb signal is not necessarily

an accurate measure of Ts. Nevertheless, we can clearly identify structures from motion in the Tb signal during the day. Analysis255

of decomposed Tc signal are needed to accurately distinguish the heterogeneity in the transmission of heat, related to canopy

structure. Second, occasionally, gusts cause divergent motion at the surface, revealed in Tb as a cold patches that are reminiscent

of gust landing on flat water, forming so-called capillary waves (see, e.g., Dorman and Mollo-Christensen, 1973). Third, shear-

induced wave and wave-breaking patterns were shown at multiple scales in the night-time case, but no clear signal was found

in Tb at the surface (Figure 10). The location of the shear (and wave) interfaces coincided with the MRD and TED determined260

heights for variance maxima discussed above. Most nighttime events correlated with wind direction shifts in the profile. Wind

shear events were shown to cause cascades of ripples, which occasionally are only visible in one section of Tc but not elsewhere,

suggesting the disturbances could be local.

The computed turbulent kinetic energy (TKE, e) supports this observation (Figure 11). Although TKE is an order of mag-

nitude less during the night than during the day, peaks that did occur at 3 m were not necessarily registered at all corners of265

the observation domain, or at others heights in the profile. A peak at 3.0 m at 03:28 UTC on 20 Jul 2016 exemplifies this

(Figure 11b and (Figure 10). The decomposed variance and identified clusters for this event provided further evidence that the

wave interaction did not perturb the air closest to the surface (Figure 12). Classified TED events were detected at the same

height as the variance maximum from the MRD decomposition, but an exact match to the timing of dominant variance peaks

and structures did not occur. Possible explanations were the minimum event window size of approximately 120 s and the effect270

of high-frequency noise in the Tc time series. Please note that these particular night-time events are characterised by abrupt

negative temperature anomalies. A sudden jump in TKE shortly after sunrise on 21 jul 2016 is correlated to the passing of brief

rain storm (Figure 11c; Figure 3f; Figure 4b).

The Tc and Tb methods resolve an order of magnitude more locations than Tv or Ta data, but can only reveal structures that

exhibit substantial temperature differences and spatial (auto-)correlation. Combining the observations of horizontal and vertical275

planes allows combined investigation of spanwise and streamwise correlations. A decomposition along multiple dimensions

(e.g, two-dimensional space), a classification of two-dimensional shape features and the quantification of time-sequential mo-

tion are outside the scope of this study.

3.6 Experimental design

There are limitations in the described approach using DTS and TIR data which would require further thought on experimental280

design. First, the support structures of the fibre-optics and other sensors were placed as far away as practicable with a suspension

cable system (Appendix A3.1), but this did not prevent shadows on the surface and profiles at lower zenith angles. The shadow

effects are systematic and can be overcome by careful selection of data points. Vertical shadows are less of a concern, as these
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affect only a small number of vertical profiles at a time, and nighttime data is less affected. Second, a circle-shaped geometry

for the fibre-optic cable setup would make up- and downwind pairs equidistant, potentially simplifying analysis by making285

the lateral gradients independent of wind direction. Third, in retrospect after analysis, placement of three-dimensional sonic

anemometers at lower heights in the profile would have been advantageous. It would have been informative to compare vertical

wind speed, TKE and stability information to height levels of interest below 3 m. Fourth, parallax issues caused by objects

in view of the thermal camera can only be overcome by using multiple cameras from different viewpoints. An uncluttered,

regular grid matrix is helpful for time-sequential analysis of motion, for instance, using algorithms developed in computer290

vision research. Fifth, continuous thermal imaging data would be needed. The hourly interruption of the recording of Tb in

this experiment was caused by a meanwhile resolved software issue. Sixth, the addition of a reference surface temperature

measurement within view of the TIR camera will be useful for the assessment of noise in the image time-sequence. Seventh,

the use of a thinner fibre-optic cable design with a lower thermal inertia could improve the Tc response, although the sensitivity

of DTS technique may become a limitation at high recording frequencies (see Appendix A3; 0.2 K white noise at 0.5 Hz).295

Eight, the TED skill may be improved with the information from the scale decomposition, e.g., by applying the method on a

variance subset from which high and low frequency contributions are excluded. Nine, the use of supervised machine learning

techniques benefits from the availability of statistical features with a physical meaning. The use of additional event metrics,

particularly those supported by past research on RSL processes, should be explored. Even simplified stability indicators could

turn out useful for data exploration, in favor of the moderately high computational costs of signal decomposition (e.g, MRD300

and TED) applied to high-resolution sensor networks.

4 Conclusions

Despite accuracy drawbacks, current DTS and TIR applications promise frequent (0.2 Hz or better), moderately precise (0.2 K

or better) and highly localized (0.25 m or better) observations of thermal signal in a spatial domain suitable for micro-

meteorological applications near the surface (2.5-dimensional or better). The fingerprints of motion and turbulence structure305

could be identified in horizontal and vertical planes. Horizontal and vertical cross-sections allow a tomographic investigation of

spanwise and streamwise organised motion, in a novel combination with time-sequential thermography. However, small-scale

turbulence is difficult to resolve due to the heterogeneous thermal properties of the vegetation surface and sensor precision

at short signal integration times. The heterogeneity in thermal activity of the vegetation points at ecophysiological traits that

may be contributing factors in the formation and distribution of coherent structures near the surface, which needs to be inves-310

tigated further. The ability to trace coherent motion in space and time may proof useful for the development of conditional

sampling methods that complement the eddy-covariance technique. The comparability of TED results between time series

could be improved with a (hybrid-)hierarchical clustering modification, but the modifications only partly resolved limitations

of repeatability of the cluster analysis. The identification and classification of events in turbulence time series will benefit from

the development of physics-aware machine learning techniques that quantify combinations of scale and shape features, instead315

of treating those as separate properties. In addition, a supervised approach for event detection using machine learning tech-
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niques may lead to new avenues for investigation of turbulence interactions near the surface from increasingly high-resolution

observations of atmospheric properties.

Code and data availability. Data from this study are available with Open Access (DOI: 10.5281/zenodo.4267887, 10.5281/zenodo.4267810

and 10.5281/zenodo.4061242). Software code are available as notebooks for python and R (https://gitlab.imk-ifu.kit.edu/scalex/) or from the320

author.

Video supplement. The video supplement contains an animation of high-resolution data for a nighttime and daytime hour (DOI: 10.5446/50229).

Appendix A: Data procedures

A1 Time synchronisation

Sensor data from each EC profile were recorded by a datalogger system with accurate time keeping, comprising a low-power325

computer (model Beaglebone Black, BeagleBoard.org Foundation, Oakland Twp, MI, USA), four digital communication ports

(RS232), a temperature-compensated hardware clock (model ChronoDot, DS3231; Maxim Integrated Products Inc., San Jose,

CA, USA) operated by a modified operating system with accurate time synchronisation (Debian Linux; Chrony software

module). In addition, an asynchronous network framework was used to record up to four EC sensors simultaneously with low

latency (Python 2.7; Twisted software module). Similar systems were used as time reference device in the local computer330

networks of the DTS and TIR, recording time offset continuously. The time offset between the data logging systems was

determined before, during and after the campaign and showed no measurable drift. A GPS unit was used as a backup reference

to world time, as access to internet real-time services could not be guaranteed at all times. Please note that time is reported in

UTC, but local time was CEST (UTC+02:00; CET summer time).

A2 Georeferencing335

The EC and TIR sensors were referenced by measurement tape compared to the central EC location (ICOS station). The same

was done for the rings used in the support structure for the DTS fibre-optic cable.

A2.1 Wind direction

The orientation of each sonic anemometer was determined using a magnetic compass. However, this appeared imprecise and

relative offsets (< |4◦|) were determined from a period of data with strong wind from a persistent N direction, along the valley340

axis. The wind vectors in all EC time series were corrected accordingly.
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A2.2 Fibre-optic cable

The DTS fibre cable was suspended using white rings with grooves in which the fibre-optic cable was held in place by gravity

and light tension (Figure A1). All coils and turns made with the fibre-optic cable throughout the setup, including the temperature

calibration, were made to match the diameter of the grooves of these rings (cut from polypropylene drainage pipe; Ø 0.25 m).345

The rings were kept in place and aligned with a support cable through the center of the ring. The locations of the straight vertical

sections were initially identified in the DTS signal with ice packs at known locations. However, the fibre-optic cable developed

in the initial days of deployment (June 2016, prior to the experiment), as the material of the outer jacket stretched under heat

and tension until it matched the almost non-elastic Kevlar buffer. Slack in the fibre-optic cables was removed by adding tension

to the steel suspension cables using pulleys and by coiling excess cable on the bottom rings. As the position of some sections of350

cable could still change, e.g., accidentally or by re-adjustment, the location of the straight vertical sections were re-confirmed

by detection of peaks in signal attenuation (Stokes signal) that correlate to the bend sections of fibre on the rings, as well as

temperature differences at noon (bottom rings are warm, compared to top) and after sundown (bottom rings are cold, compared

to top). The latter also helped confirm the direction and height of each vertical profile (Figure A2; Figure A3). The algorithm to

detect ring-coiled sections of cable used a combination of (wavelet-)filters on the DTS signals and their derivatives, including355

minima, maxima and zero-crossing points in [T ′c(xi)] and [T ′′c (xi)], where xi is the DTS range-gate interval distance along the

fibre. The optical fibre is packaged loosely inside the cable with up to 10 % “overstuff”, hence measurement along the cable

exterior are only an approximation of location of DTS range gates. A 0.15 m section along the fibre translated to a fibre-optic

cable section of approximately 0.125 m.

A2.3 Image projection360

To map image pixels to real-world locations, the lens optical distortion was determined, as well as the location, the height, and

the roll, pitch and yaw rotation of the sensor (Figure A4). The spatial resolution at the surface varied with distance away from

the mast due to camera perspective and parallax. To facilitate computation, the image time series were resampled to a regular

0.125 m grid, aligned with the spatial resolution and orientation of the DTS setup (Figure A4; Figure A5), excluding pixels

far outside the 20× 20 m domain or depicting objects. For the translation from a perspective view to an orthogonal map, the365

surface was assumed to be flat.

A3 Temperature reference

A3.1 DTS cable temperature (Tc)

The DTS observations were calibrated using reference temperature measurements. Reference temperature sensors (two PT-

1000 probes) are an integral part of the DTS instrument and recorded automatically. The sensors were placed inside two370

insulated water baths in close proximity to sections of fibre-optic cable. One bath was heated using an aquarium heater (32 ◦C;

model Fluval E-100, Hagen GmbH, Holm, Germany), the other bath was chilled using a laboratory flow-through cooler (4 ◦C;
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model Titan 500, AB Aqua Medic GmbH, Bissendorf, Germany), and both baths were continuously mixed using aquarium

pumps (10 L min-1 flow rate, directed horizontally at half depth; model PondoCompact 600, PonTec, Hörstel, Germany). At

both ends of the fibre-optic cable and in both calibration baths, at least 20 m of cable was placed loosely on a submerged spool375

made of mesh material, in order to keep the cable away from the walls of the bath and achieve temperature equilibrium with

the water. For each measurement, the span and offset values determined for both ends of the cable were linearly interpolated

and applied to all intervals in-between the calibration sections (see, e.g., Hausner et al., 2011; Zeeman et al., 2015). Between

0.1 and 0.2 K of variance can be attributed to white noise, as shown from an Allan deviation plot on data before calibration

(Figure A6; see, e.g., Werle, 2010).380

A3.2 TIR brightness temperature (Tb)

The imaging data was converted to a time-series of brightness temperature assuming an emissivity of 0.96. However, a high-

frequency noise was found in the time series that affected the whole image. The signal was assumed to be an artifact of small

variations in the exposure time of the detector and sensitivity to the interruptions by the automatic self-calibration mechanism.

The signal could effectively be removed by subtracting the mean temperature of the whole image (or a selected area) from the385

value of each pixel. Although this effectively applies a high-pass filter in the time domain, the image data are improved in a

meaningful way for the applicability of time-sequential thermography.

A3.3 EC temperature from speed of sound (Ts)

A measure of temperature can be derived from the speed of sound and is commonly provided as computed records directly

from the 3-axis ultrasonic anemometers (Table 1). The EC sensors therefore require factory calibration for temperature. In390

addition, a cross-validation of Ts was performed based on a period of operation prior to this experiment during which all sonic

anemometers were installed at equal height (Mauder and Zeeman, 2018).

A3.4 Aspirated air temperature (Ta)

Air temperature measurements were made with resistance temperature devices in fan-aspirated enclosures at four heights along

the mast (RTD PT1000; model 41347 and 43502, R.M. Young Company, Traverse City, MI, USA; see Table 1) and recorded395

at 0.5 Hz (model CR5000, Campbell Scientific Inc, Logan, UT, USA). The temperature sensors were calibrated for span and

offset prior to the campaign using a well-mixed water bath (see Appendix A3.1), while increasing the temperature along an

approximate ambient range (18–27 ◦C; PT100 based digital thermometer, model GMH 3710, Greisinger Electronics GmbH,

Regenstauf, Germany; Wolz, 2016).

A3.5 Cross-comparison400

A comparison was made between temperature measurements by the different systems, using sensors that were closely located

in space (Table 1). For the cross-comparison, sensors were selected nearest to the Ta observations at 3 m height and during
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a period with approximately equal number of daytime and nighttime hours (12:00 UTC 19 Jul 2016 to 04:00 UTC 20 Jul

2016). The results show that both Tc and Ts are linearly correlated with Ta but did not exactly match the aspirated temperature

in absolute value and high frequency variance (Figure A7). The Ta sensors exhibit a slower thermal constant due to the size405

of the metal sensor rod, leading to a dampened high-frequency response compared to Ts and TcḞurthermore, Ts was cross-

calibrated among the EC sensors prior to this experiment, but not calibrated against a temperature reference scale (Mauder

and Zeeman, 2018). This shows a need to include the calibration of Ts in future experiments. However, differences between

aspirated and non-aspirated sensing methods are inevitable and explain part of the deviation between sensing systems seen

here. A comparison between Tc and Ts showed linearity between the signals, which appeared to improve during the night410

in absence of direct solar radiation (Figure A7). However, the computed coherence between Tc and Ts deteriorated at high

frequency (> 0.1 Hz; Figure A7d). This can in part be explained by noise in one or both of the systems, as well as small

differences between the locality and path length of the sensors being compared.

A4 System integration

Some additional measures were needed to integrate all systems. In order to avoid AC power hazards, to limit electrical cross-415

interference and to accommodate voltage drops on long cables, all outdoor devices were connected to a central 24 V DC power

supply and grounding to earth, with subsequent local down-regulation to 5 or 12 V DC. Similarly, network connections were

made using fibre-optic links instead of metal wire cables. The DTS system, including a temperature calibration setup, was

operated inside a temperate-regulated housing. To accommodate data storage requirements for continuous operation, all data

were automatically transferred on an hourly (DTS, TIR) or daily (EC) basis. Python was used for data acquisition, analysis and420

figures (Python 3.7; Hoyer and Hamman, 2017; Virtanen et al., 2020; Anaconda, 2020; Plotly Technologies Inc., 2020), with

additional analysis produced by R (R Core Team, 2018; Sarkar, 2008; Wickham et al., 2020).
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Appendix B: Definitions

The comparison of computed variables included:

U =

u after double rotation√
u2 + v2 otherwise

(B1)425

e= 1
2 (u′u′+ v′v′+w′w′) (B2)

u∗ =
4

√
u′w′

2
+ v′w′

2
(B3)

∆T =
T (z1)−T (z2)

z1− z2
where [z1 > z2] (B4)

RB =
g

T (z1)

[
T (z1)−T (z2)

z1− z2

]
[
U(z1)−U(z2)

z1− z2

]2 where [z1 > z2] (B5)

L=− u3∗ T

κ g (w′T ′)
(B6)430

ζ =
z

L
(B7)

where U is the total horizontal wind velocity, e is the turbulent kinetic energy (TKE), u∗ is the friction velocity, ∆T is the

vertical temperature gradient and RB the bulk Richardson number, with z the height above ground and g the acceleration due

to gravity, L is the Obukhov length with κ the von Karmann constant and ζ a dimensionless scaling parameter (Stull, 1988).

The overbars denote averaging in time. Double rotation refers to a method of alignment of the coordinate system into the mean435

wind (Kaimal and Finnigan, 1994). Stability classes were taken from literature and repeated for completion in Table A1.
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Table 1. Overview of profile instruments. The 2-axis and 3-axis ultrasonic anemometer are referred to as 2D and 3D, respectively.

Profile Height (m) Type Model Manufacturer Serial number

EC & TIR mast 9.0 3D uSonic-3 Omni METEK GmbH 106054006

6.0 3D 1210R3 Gill Instruments Ltd. 595

9.0 RTD 43347, 43502 R. M. Young Company 15087

3.0 RTD 43347, 43502 R. M. Young Company 15080

1.0 RTD 43347, 43502 R. M. Young Company 15084

0.5 RTD 43347, 43502 R. M. Young Company 15081

EC tripod NW 3.0 3D CSAT3 Campbell Scientific Inc. 1791

2.0 2D WindSonic Gill Instruments Ltd. 08460064

1.0 2D WindSonic Gill Instruments Ltd. 08460063

EC tripod NE 3.0 3D 81000 R. M. Young Company 003149

2.0 2D WindSonic Gill Instruments Ltd. 08460059

1.0 2D WindSonic Gill Instruments Ltd. 08470015

EC tripod SE 3.0 3D 81000 R. M. Young Company 003154

2.0 2D WindSonic Gill Instruments Ltd. 08460065

1.0 2D WindSonic Gill Instruments Ltd. 08460074

EC tripod SW 3.0 3D CSAT3 Campbell Scientific Inc. 0771-1

2.0 2D WindSonic Gill Instruments Ltd. 08460066

1.0 2D WindSonic Gill Instruments Ltd. 08470017

EC tripod ICOS 3.0 3D HS Gill Instruments Ltd. 152903
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Figure 1. The location of the study site with aspects of (a) topography and runoff, (b) land use and (c) the sensor network setup. Data layers:

© ESA Copernicus EU-DEM. © OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License.
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Figure 2. Overview of the setup in (top) schematic perspective and (bottom) a bird-eye view from the South. Still image modified from an

aerial video by M. Schörner (24 Jul 2016, ISSE/University of Augsburg).
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Figure 3. The 1-min mean of (a) air temperature, (b) air temperature from fibre-topic cable (c), air temperature from the speed of sound,

(d) surface brightness temperature from radiance (e) net short-wave radiation, Rns, and net long-wave radiation, Rnl, terms, and (f) relative

humidity and precipitation.
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Figure 4. The 30-min mean height profile of (a) wind direction, (b) wind speed, and for 3 m height the (c) the stability length parameter, (d)

the friction velocity, (e) latent heat (LE) and sensible heat (H) flux, (f) quality and stability classification, and (g) stability against height.

See text for details.
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Figure 5. Shown against time are (a)(b) fibre optic cable temperature (Tc) for a selected night and 30 min and 1 min averaging, respectively,

(c) the Tc gradient relative to the top of the profile, (d) the Tc variance against height, (e)(f) the inter-quartile range (IQR) relative to the

median (P0.5) for 6.0 and 0.5 m above ground, respectively, (g) the kurtosis and skewness of Tc against height, respectively.
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Figure 6. For the Multiresolution Decomposition (MRD) of Tc are shown (a) the decomposition levels (M), and against time and height (b)

the total sum of variance, σMTc, (c) the relative contribution of each level and (d) the height of maximum mean variance for three groups of

M.
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Figure 7. For the Multiresolution Decomposition (MRD) of Tb are shown against time (a) the sum of variance for the full thermal image,

(b) the relative contribution of each decomposition level, (c) the total sum of variance, σMTb, and (d) the total sum of variance per grid cell

in a subset image area. The subset includes grid cells depicting vegetation within 1 m of a fibre-optic profile, for which the cell location is

expressed relative to the center of the domain. See text for details.
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Figure 8. For each TED-determined cluster are shown the number of events per 30-min time interval and height. The clusters are ranked

according to frequency, with least frequent in the bottom panel.
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Figure 9. Daytime example of structures and motion in air and surface temperature represented by fibre-optic cable temperature (Tc) and

surface brightness temperature (Tb) variance, respectively. Shown are (a) a viewpoint from NNW, (b) a perspective from above and (c) an

conceptual interpretation. Observations of wind are shown as cones pointing in the direction of the mean wind (U ).
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Figure 10. Night-time example of structures and motion in air and surface temperature represented by fibre-optic cable temperature (Tc) and

surface brightness temperature (Tb) variance, respectively. Shown are (a) a viewpoint from NNW, (b) a perspective from above and (c) an

conceptual interpretation. Observations of wind are shown as cones pointing in the direction of the mean wind (U ).
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Figure 11. The turblent kinetic energy (TKE; e) was computed for corner locations at 3.0 or 6.0 m above ground and shown for (a) an

example daytime hour, (b) and example night-time to dusk hour and (c) the study period. Night-time is highlighted with dark areas.
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Figure 12. Shown for a night-time instance are (a) the variance for selected Multiresolution Decomposition levels (M) of Tc and (b) the

dominant clusters corresponding to detected events within a 45 s window. See text for details.
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Figure A1. Details of the field setup showing (a) a close-up of the 9 m mast, (b) a view along a vertical plane of DTS profiles, (c)(e) details

of the DTS support structure, (d) a view inside a calibration bath and (f) the DTS instrumentation.
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Figure A2. The distance relative to the lower support rings were determined for DTS intervals in (a)(b) opposite sensing direction. Intervals

in contact with the rings were excluded from the analysis, leaving 8286 usable locations.
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Figure A3. The alignment of DTS profiles was validated using a fit (hyperbole cosine) and smoothing (Savitzky-Golay) function.
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Figure A4. The projection of thermal images to real-world coordinates required (a) correction for lens optical distortion and (b) project after

camera rotation. The numbers refer to pixel count relative to the image top-left corner.
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Figure A5. The (a)(b) thermal image data were (c)(f) spatially resampled in a regular grid of 0.25× 0.25 m, matching the orientation of the

fibre-optic array (DTS). At least (d) three observations should fall within a grid cell, or else (e) the nearest value within a 0.35 m radius was

used for computation.
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Figure A6. Allan deviation for four DTS range gates in different sections of the fibre-optic cable, in cold and hot baths and at the start

and end of the cable, respectively. The –1 slope towards high frequency (τ < 100 s) indicates white noise. Calculations were made before

calibration on 24 hours of Tc data.
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Figure A7. Shown are the correlation between (a) Ta and Ts (b) Ta and Tc, and (c) Ts and Tc as colour contours representing probability

density (PD), as well as (d) the coherence between Ts and Tc against frequency.
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Figure A8. The TED method samples events in temperature time series and applies a k-means clustering on event statistics. Clusters are

ranked by fraction of total events, shown as percentage below the violin-box plot distribution of the event duration.
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Table A1. Stability categories and Pasquill–Gifford classes based on literature, as a function of bulk Richardson number (Rb), Obukhov

length (L) and the temperature gradient with height.

Stability Class f(Rb) f(L)P f(L)R f(∆T/∆z) [K/100m]

Very Unstable A Rb <−0.86 −3.5< L< 0 −100< L< 0 T <−1.9

Moderately Unstable B −0.86<Rb <−0.37 −8< L<−3.5 −200< L<−100 −1.9< T <−1.7

Weakly Unstable C −0.37<Rb <−0.1 −15< L<−8 −500< L<−200 −1.7< T <−1.5

Neutral D −0.1<Rb < 0.053 L > 75 | L <−15 | L |> 500 −0.5< T < 1.5

Weakly Stable E 0.053<Rb < 0.134 35< L< 75 200< L< 500 1.5< T < 4.0

Moderately Stable F Rb > 0.134 8< L< 35 50< L< 200 T >= 4.0

Very Stable G N/A 0< L< 8 0< L< 50 N/A

Pasquill (1961) Gifford (1976) Pasquill and Smith (1971) Gryning et al. (2007) Woodward (1998)
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