
Response to the report of reviewer 2: 
 
Thank the reviewer for the valuable suggestions and comments, which are very helpful to 
improve the readability of this work. The comments have been addressed below and the 
manuscript is revised accordingly.  
 
“Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep 
neural network forward model” uses a deep neural network (NN) to replace traditional forward 
model with radiative transfer code as part of the aerosol and ocean color algorithm for multiangle 
polarimetric sensor HARP2 and future sensors such as PACE. As more and more machine 
learning techniques have been implemented in Earth science field, this research is inspiring and 
informative to the community. The research is well conducted, and the article is nicely 
organized and written. I have some comments regarding clarification of the procedures and 
readability of the article. 

1. Page 2Line 10 delete “the” before “top-of-atmosphere”  
Corrected. 
 

2. Page 4 Line 32 delete “both”  
Corrected. 
 

3. Page 5 Line 3 here says “20 viewing angles” but page 3 line 1 says “10 viewing angles” 
Page 5 Line 3 refers to AirHARP instrument, while page 3 line 1 refers to HARP2 
instrument.  To make their difference clear, we add a sentence in the manuscript as 
highlighted below: 
 
“AirHARP measures the total and linearly polarized radiance at 60 viewing angles at the 
660 nm band, and at 20 viewing angles at the 440, 550, and 870 nm bands. Different 
from AirHARP, HARP2 reduces the number of viewing angles to 10 at 440, 550, 
and 870 nm, and maintains 20 viewing angles at 660 nm, in order to fulfill the 
bandwidth requirement and preserve information content as much as possible.”  
 

4. Page 6 Line 1 is there any reference for this “0.01”? 
The value is from communication with the HARP team, and is a conservative estimate as 
noted in the manuscript. A reference is added for the lab calibration: 
 
“AirHARP was calibrated in the lab with an accuracy of 3-5 % for reflectance, and 0.005 
for DoLP (McBride et al, IAC 2019). In-flight uncertainty for the AirHARP DoLP is 
conservatively estimated to be at most 0.01 without an onboard calibrator.” 

 
 

5. Page 7 Line 16, why is imaginary reflective assumed flat among wavelengths? There are 
many studies show changing absorption as function of AOD, especially over smoke 
plume. What is the uncertainty related to this assumption? 
 
Thank you for the comments.  Aerosols over ocean with spectrally flat spectra, such as 
sea salt, are common, and can be sufficiently described by our model.  



 
For smoke plume over ocean, having a spectrally constant imaginary index for the visible 
spectral region assumes that the absorption is caused by black carbon.  The primary 
issue with making this assumption is that it neglects brown carbon.  Taylor et al 
(https://doi.org/10.5194/acp-2020-333) estimate that for their observations of highly aged 
biomass burning smoke over the SE Atlantic brown carbon contributes ~10% of the 
absorption at 405 nm. The results of Pistone et al. (https://doi.org/10.5194/acp-19-9181-
2019, 2019) are also consistent with absorption being dominated by black carbon with a 
somewhat smaller contribution from brown carbon.  However brown carbon 
contributions to absorption decrease rapidly with increasing wavelength so we regard the 
assumption of a spectrally constant imaginary index as reasonable for the measurements 
analyzed in this study. 

 
 

6. Table 1 It is very confusing, as all parameters are calculated from the forward model, 
but the description says reflectance measured at BOA/TOO. Are they calculated or 
measured? Also are these reflectances upwards or downwards? 
 
Thank you for the comments. All quantities defined in Table 1 are from forward model 
calculation. We removed the word “measured” in the table to avoid confusion.  
 
The reflectance is defined in Eq (1), which is the ratio of the upwelling radiance and the 
downwelling solar irradiance.  

 
7.  Page 9 line 20. I am not in the field of ocean color, thus, it is confusing for me to read 

“represented by the spectral remote sensing reflectance” and given Rrs equals to 
radiance/irradiance. Because reflectance has no unit and Rrs has a unit of sr-1, which I 
learnt later in the paper in Figure 5. 

 
The reviewer is correct. Rrs has an unit of sr^-1.  Since we are discussing both aerosol 
and ocean color retrievals, we are relying on the terminology established in both fields. 
We added a few words in the sentence as highlighted below to clarify “remote sensing 
reflectance” as an defined quantity in ocean color studies: 
 
“An important task for the joint retrievals is to obtain the water leaving signal, which 
is often represented in ocean color studies by the spectral remote sensing reflectance 
defined as Rrs=Lw+/Ed+(Mobley et al 2016)…” 

 
8. Page 10 Line 3, is the transmittance 𝑡!
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upward, due to 𝑡!
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Thank you for the discussion. 𝑡!
",$ is the transmittance of the water leaving radiance from 

BOA to the sensor. To estimate it, we need first compute the water leaving signal at 
BOA, and the water leaving signal which has reached to the sensor. This is why in Eq(13) 



we need to remove the contributions from the ocean surface and atmosphere. The 

equation 𝑡!
",$ = (!

"

(!
",$ =
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"

(!,%$&
",$  provided above cannot separate the transmittance for water 

leaving signal.  
 
 

9. Page 11 paragraph one, is the height of the aerosol considered? How will NN response 
when AOD is greater than 0.5, which is often during fire/dust events? 
The aerosol height is assumed as a constant of 2km as discussed in section 2.1 for the 
forward model.  

 
Since our NN is only trained with training data within AOD < 0.5,  the NN predictions 
will not be reliable outside that range. Our current research interest is to study both 
aerosol properties and ocean color. For optically thick aerosol events, it will be hard to 
observe ocean signals.  

 
10.  Page 12 Line 1 how are these 1000 testing data selected? 

The 1000 testing data points are randomly selected and not included in the training and 
validation process. Only after the training is done, the testing data is used to evaluate the 
final NN performance. We revised the sentence for more clarity: 
 
“We randomly selected 20,000 cases out of the total 21,000 simulated cases for the 
training and validation processes, and the remaining 1000 random cases will be used as 
test cases to evaluate the NN accuracy..” 

 
11.  Figure 4 The y axis labeling is confusing, if the lines are shifted the y axis tick values 

should be shifted as well to give a right number. Use minor ticks to show the magnitude. 
Thank you for the suggestion. We have a sentence in the caption to indicate the shifted y 
axis.  “For each plot, the data points for the 550, 660 and 870nm bands are shifted 
upward by constant offsets consecutively as indicated by the solid cyan lines” 

 
We attempted to label each shifted y axis with a shifted value, but the y-axis becomes too 
crowded. One benefit for our current way is that the relative magnitude indicated by the 
minor ticks still works without explicitly labeling them. We will try to improve if we 
figure out a better solution.  

 
12.  Page 16 paragraph one, the percentage error is clearly as a function of reflectance. It 

can be larger than 3% when reflectance at near-IR is low. Giving one value of percentage 
error might be misleading, especially when compared with measurement error. 
We agree with the reviewer (I cannot locate relevant discussion in Page 16 paragraph 
one- I believe the reviewer is referring to Page 14 paragraph one).  We revised the 
sentence as follows to indicate the larger percentage uncertainties in 870nm band: 
 
“This translates to a difference for both reflectance and DoLP mostly less than 1%. The 
maximum percentage difference can be as large as 3% for 870nm bands due to the 
small reflectance magnitude.” 



 
We add further discussions above Table 4 as follows: 
“… However, due to the smaller reflectance magnitude at 870nm, the corresponding 
RMSE for the percentage reflectance difference as shown in Fig.4 is increased from 
0.4% at 440nm to 1.0%  at 870nm.” 
 

 
13.  Page 17 line 14. “the water leaving signals are represented by the remote sensing 

reflectance”. Again, this sentence is misleading. 
We added a reference to the definition of the remote sensing reflectance: 
“the water leaving signals are represented by the remote sensing reflectance defined in 
Eq. (10) (Mobley et al 2006)“ 

 
14.  Page 18 Line 8. The global mean AOD is around 0.2, which means error of AOD is 

around 14% and it will be even larger when applied to real data due to aerosol 
assumptions and surface models. 
Thank you for the comments. I cannot locate relevant sentence in Page 18 Line 8, but I 
believe the reviewer is referring to the results in Figure 9 for the percentage uncertainty 
of AOD. The reviewer is correct about the uncertainties we obtained in this study.  

 
 

15.  Figure 7 and 8, Please add percentage error plots similar to relative error plots shown in 
the lower panel. 
Thank you for the suggestions. We feel adding percentage residuals will not add 
significant new information, but we will attempt to include it in the next revision.  

 
16.  Page 22 Line 11, “value magnitude”, delete “value” or “magnitude”. 

Corrected 
 

17. Page 22 Line 20-24. After I read the next paragraph, I understand better that Rrs is the 
main goal of this procedure, even though AOD and Chla are usually final products. 
Thank you for the comment. Our approach is to conduct Rrs and aerosol retrieval in a 
coupled atmosphere and ocean system, and therefore they are interconnected.  

 
18.  Section 5, HSRL and AERONET data need to be introduced in the beginning of this 

session especially regarding their accuracies. 
 

The HSRL and AERONET data are introduced in the second paragraph of Section 5. To 
further address their uncertainties, we added the following sentence for AERONET: 
 
“The estimated AERONET AOD uncertainty is from 0.01 to 0.02 with the maximum 
uncertainty in the UV channels (Giles et al. 2019).” 

 
 

For HSRL AOD , we added a sentence as highlighted below: 
  



“The HSRL-2 instrument from ACEPOL provided useful aerosol optical depth ground 
truth at 355 and 532 nm (Hair et al.,2008; Burton et al., 2016), which was used for the 
validation of the aerosol retrieval algorithm using the AirHARP data. TheHSRL-2 
measures the pixels along the track as shown in Fig. 12, where an assumed lidar ratio of 
40 sr is multiplied by the aerosol backscatter coefficient derived from the HSRL 
technique to produce aerosol extinction and AOD at 532 nm. For the low aerosol cases 
considered in this study,  the assumed lidar ratio approach produces a systematic 
uncertainty ±50 % (Fu et al 2020).”  

 
We further compared HSRL AOD with AERONET AOD to confirm they are consistent in 
this study: 
“AOD from the AERONET data product version 3 level 2.0 data was used in this study, 
which is also consistent with the HSRL-2 AOD at 532nm as shown latter in Fig. 19.” 

 
19.  Figure 14-16, What are the dots on AOD panels? Also please include RGB images for 

visualization purpose. 
The dots are the HSRL AOD(532nm). We added the following sentence to the figure 
caption: 
“The HSRL AOD at 532 nm are indicated by the colored dots in the AOD plots.” 

 
 RGB images are added for visualization as follows: 

 
Figure 13. The RGB images (670,550,440 nm bands) for the three scenes at near 
nadir viewing directions. Scene 1 and 2 observe only ocean, while scene 3 observes 
both ocean and land. Sparse thin clouds are visible from scene 1 and 2.  
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Abstract. NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023,

will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two Multi-Angle Polarimeters

(MAP): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXplo-

ration one (SPEXone). The MAP measurements contain rich information on the microphysical properties of aerosols and

hydrosols, and therefore can be used to retrieve accurate aerosol properties for complex atmosphere and ocean systems. Most5

polarimetric aerosol retrieval algorithms utilize vector radiative transfer models iteratively in an optimization approach, which

leads to high computational costs that limit their usage in the operational processing of large data volumes acquired by the

MAP imagers. In this work, we propose a deep neural network (NN) model to represent the radiative transfer simulation of

coupled atmosphere and ocean systems, for applications to the HARP2 instrument and its predecessors. Through the evaluation

of synthetic datasets for AirHARP (airborne version of HARP2), the NN model achieves a numerical accuracy smaller than the10

instrument uncertainties, with a running time of 0.01s in a single CPU core or 1 ms in GPU. Using the NN as a forward model,

we built an efficient joint aerosol and ocean color retrieval algorithm called FastMAPOL, evolved from the well-validated

Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm. Retrievals of aerosol properties and water leaving signals were

conducted on both the synthetic data and the AirHARP field measurements from the Aerosol Characterization from Polarimeter

and Lidar (ACEPOL) campaign in 2017. From the validation with the synthetic data and the collocated High Spectral Resolu-15

tion Lidar (HSRL) aerosol products, we demonstrated that the aerosol microphysical properties and water leaving signals can

be retrieved efficiently and within acceptable error. The FastMAPOL algorithm can be used to operationally process the large

volume of polarimetric data acquired by PACE and other future Earth observing satellite missions with similar capabilities.

1



1 Introduction

Atmospheric aerosols are tiny particles suspended in the atmosphere, such as dust, sea salt, and volcanic ash, that play important

roles in air quality (Shiraiwa et al., 2017; Li et al., 2017) and Earth’s climate (Boucher et al., 2013). Aerosols influence the

Earth’s reflectivity directly through scattering and absorption of solar light, and indirectly through interactions with clouds.

The radiative forcing from aerosols is one of the main uncertainties in studies of global climate change (Boucher et al., 2013).5

When deposited into ocean waters, aerosols also contribute to the availability of nutrients needed for phytoplankton growth,

and thereby influence ocean ecosystems (Westberry et al., 2019). Accurate knowledge of aerosol optical properties is also

important for atmospheric correction in ocean color remote sensing, wherein the spectral water leaving radiances are retrieved

by subtracting the contributions of the atmosphere and ocean surface from the spaceborne or airborne measurements made

at the top-of-the-atmosphere
::
top

:::
of

::::::::::
atmosphere (Mobley et al., 2016). The resulting water leaving signals provide valuable10

information to derive biogeochemical quantities for monitoring the global ocean ecosystem (Dierssen and Randolph, 2013),

and quantifying ocean biochemical processes (Platt et al., 2008). Accurate assessments of aerosol optical and microphysical

properties are thus important for both atmospheric and oceanic studies.

Multi-angle polarimeters (MAPs) measure polarized light at continuous or discrete spectral bands and at multiple viewing

angles, providing rich information on aerosol optical and microphysical properties (Mishchenko and Travis, 1997; Chowdhary15

et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012). The Polarization and Directionality of the Earth’s

Reflectance (POLDER) instrument pioneered the spaceborne MAP, which was hosted on Advanced Earth Observing Satellite

missions (ADEOS-I; 1996-1997 and ADEOS-II; 2002-2003), and Polarization and Anisotropy of Reflectances for Atmospheric

Sciences Coupled with Observations from a Lidar (PARASOL; 2004-2013) mission (Tanré et al., 2011). The Hyper-Angular

Rainbow Polarimeter (HARP) CubeSat, a small satellite with 3U volume, was launched from the International Space Station20

on Feburary of 2020 and has captured scientific images (UMBC Earth and Space Institute). There are several satellite missions

with MAP instruments scheduled to be launched in the time frame of 2023-2024, including ESA’s Multi-viewing Multi-channel

Multi-polarisation Imager (3MI) (Fougnie et al., 2018) and NASA’s Multi-Angle Imager for Aerosols (MAIA) (Diner et al.,

2018) and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) (Werdell et al., 2019) missions. A thorough review of the MAP

instruments and algorithms can be found in Dubovik et al. (2019).25

The PACE mission will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two MAPs:

a next generation UMBC (University of Maryland, Baltimore County) Hyper-Angular Rainbow Polarimeter (HARP2) (Martins

et al., 2018), and the SRON (Netherlands Institute for Space Research) Spectro-Polarimeter for Planetary EXploration one

(SPEXone) (Hasekamp et al., 2019a). OCI will provide continuous spectral measurements from the ultraviolet (340 nm) to

near-infrared (890 nm) with Full Width Half Maximum of 5 nm resolution and sampling every 2.5 nm, plus a set of seven30

discrete shortwave infrared (SWIR) bands centered at 940, 1038, 1250, 1378, 1615, 2130, and 2260 nm. SPEXone performs

multiangle measurements at 5 along track viewing angles of 0◦, ±20◦ and ±58◦, with a surface swath of 100km, and a

continuous spectral range spanning 385-770 nm at resolutions of 2-3 nm for intensity and 10-40 nm for polarization (Rietjens

et al., 2019). HARP2 is a wide field-of-view imager that measures the polarized radiances at 440, 550, 670, and 870 nm,
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where the 670 nm band will measure 60 viewing angles and the other bands 10 viewing angles, with a swath of 1,556 km at

nadir on the Earth surface. To facilitate cross calibrations and validations, a PACE Level-1C common data format has been

developed, with the purpose of projecting all three PACE instruments onto an uniform spatial grid (Plankton, Aerosol, Cloud,

ocean Ecosystem (PACE) mission, 2020). The PACE instruments will provide an unprecedented opportunity to improve the

characterization of the atmosphere and ocean states (Remer et al., 2019a, b; Frouin et al., 2019).5

To retrieve the aerosol information from polarimetric measurements over oceans, several advanced aerosol retrieval algo-

rithms have been developed for both airborne and spaceborne MAPs, such as POLDER/PARASOL(Hasekamp et al., 2011;

Dubovik et al., 2011, 2014; Li et al., 2019; Hasekamp et al., 2019b; Chen et al., 2020), the Airborne Multiangle SpectroPo-

larimetric Imager (AirMSPI) (Xu et al., 2016, 2019), SPEX Airborne (the airborne version of SPEXone ) (Fu and Hasekamp,

2018; Fu et al., 2020; Fan et al., 2019), the Research Scanning Polarimeter (RSP) (Chowdhary et al., 2005; Wu et al., 2015;10

Stamnes et al., 2018; Gao et al., 2018, 2019, 2020), the Directional Polarimetric Camera (DPC)/GaoFen-5 (Wang et al., 2014;

Li et al., 2018). The retrieval algorithms are mostly based on iterative optimization approaches that utilize vector radiative

transfer (RT) models as the forward model. The high computational cost of the RT simulations pose great challenges in the

operational processing of the large data volumes acquired by the MAP imagers. To alleviate this issue, the SPEX team repre-

sented the polarimetric reflectance for an open ocean system using a deep neural network (NN) and coupled it with a radiative15

transfer model for the atmosphere (Fan et al., 2019). This hybrid forward model avoids the direct calculation of the scattering

and absorption properties inside the ocean, and still maintains high accuracy, therefore enabling sufficient efficiency for SPEX-

one data retrieval. For coastal waters, Mukherjee et al. (2020) developed a NN model to predict the polarimetric reflectance

associated with complex water optical properties. This NN model can be combined with a flexible atmosphere model for MAP

aerosol retrievals over complex waters.20

For non-polarimetric remote sensing studies, several NN approaches have been developed to derive aerosol and ocean prop-

erties simultaneously (Fan et al. (2017); Shi et al. (2020) and reference within). Fan et al. (2017) developed NN models to

directly invert the aerosol optical depth (AOD) and remote sensing reflectance Rrs(λ) (sr−1) from the NASA Moderate Res-

olution Imaging Spectroradiometer (MODIS) measurements. Shi et al. (2020) developed a NN radiative transfer scheme for

coupled atmosphere and ocean systems including both open and coastal waters, which is then applied in an optimal estimation25

algorithm for the Cloud and Aerosol Imager-2 (CAI-2) hosted on the Greenhouse gases Observing Satellite-2 (GOSAT-2).

A number of NN models have been developed to directly invert the aerosol microphysical properties from MAP measure-

ments. Di Noia et al. (2015) discusses the NN employed to retrieve aerosol refractive index, size, and optical depth (AOD) from

GroundSPEX (a ground version of SPEX instrument) measurements. Di Noia et al. (2017) developed a NN inversion method

for airborne MAP measurement over land from RSP. In both works, the results from the NN inversion are further used as initial30

values for iterative optimization, and both efficiency and the retrieval accuracy are shown to be improved. Using NN to conduct

direct inversion is efficient, but it is often viewed as a black box and it is difficult to account for measurement uncertainties.

The combination of a NN inversion with an iterative optimization method shows promise for MAP retrievals.

Even with such ample progress, it is still challenging for current state-of-the-art algorithms to process MAP data opera-

tionally through iterative optimization. In this work, we present a joint retrieval algorithm for aerosol properties and water35
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leaving signals that uses a deep NN model to replace the radiative transfer forward model for simulation of the polarimetric

reflectances. This approach is one step further than (Fan et al., 2019), as both the atmospheric and oceanic radiative transfer

processes are represented by the NN. The NN forward model is then used in an iterative retrieval algorithm that is significantly

more computationally efficient than approaches that use traditional radiative transfer. The benefits using a NN model as the

forward model in retrieval algorithms can be summarized as follows with details provided in later sections:5

– Fast: NN models mostly involve matrix operations that can be evaluated efficiently.

– Accurate: Given sufficient training data volumes and accuracies, NN models can be trained with high precision.

– Differentiable: The Jacobian matrix of NN models can be represented analytically and therefore further improves effi-

ciency and accuracy in retrievals.

– Transferable: The parameters of a NN can be exported and implemented into existing retrieval algorithms.10

The retrieval algorithm we developed is called FastMAPOL, which is evolved from the well-validated Multi-Angular Polari-

metric Ocean coLor (MAPOL) algorithm (Gao et al., 2018, 2019, 2020) by replacing its forward model with NN models. To

validate the retrieval algorithm, we applied FastMAPOL to both synthetic and field measurements from AirHARP (the airborne

version of HARP2 and HARP CubeSat) for the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign in

2017 (Knobelspiesse et al., 2020). The synthetic AirHARP data is a supplement of the field measurements with a wider range15

of aerosol and ocean optical properties, and solar and viewing geometries. The AOD derived from coincident High Spectral

Resolution Lidar (HSRL, Hair et al. (2008)) and Aerosol Robotic Network (AERONET, Holben et al. (1998)) measurements

are used to evaluate the performance of the AOD retrieval from the AirHARP field measurements. Using the retrieved aerosol

properties, atmospheric correction is applied to the AirHARP measurements to derive the water leaving signal at four AirHARP

bands. The retrieved aerosol products from MAP can also assist hyperspectral atmospheric correction on instruments such as20

PACE OCI as previously demonstrated using the aerosol properties retrieved from RSP and hyperspectral measurements from

SPEX Airborne (Gao et al., 2020; Hannadige et al., 2020). Retrieval uncertainties of both aerosol and water leaving signals

under various aerosol loadings are also discussed in this study. The retrieval algorithm powered by the NN forward model

provides a practical approach for operational applications of polarimetric aerosol and ocean color retrieval for PACE, and other

satellite missions that utilize polarimeters in the retrieval of geophysical properties from Earth observations.25

The paper is organized into seven sections:, Sect. 2 reviews the retrieval algorithm and its radiative transfer forward model,

Sect. 3 discusses the training and accuracy of the NN forward model, Sec 4. applies the NN forward model to aerosol and water

leaving signal retrievals from the synthetic AirHARP data, Sect. 5. discusses the retrievals on AirHARP field measurements

from ACEPOL campaign, Sect. 6 and 7 provide discussions and conclusions.

2 Joint aerosol and ocean color retrieval algorithm30

In this section, we will discuss the MAPOL retrieval algorithm based on multi-angle polarimetric measurements and the

associated radiative transfer forward model. The retrieval algorithm have been validated using both both synthetic data (Gao
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et al., 2018) and RSP field measurements (Gao et al., 2019, 2020). To apply the retrieval algorithm to AirHARP measurements,

we will first discuss the AirHARP instrument characteristics.

AirHARP measures the total and linearly polarized radiance at 60 viewing angles at the 660 nm band, and at 20 viewing

angles at the 440, 550, and 870 nm bands.
:::::::
Different

:::::
from

:::::::::
AirHARP,

:::::::
HARP2

::::::
reduces

:::
the

:::::::
number

::
of

:::::::
viewing

::::::
angles

::
to

:::
10

::
at

::::
440,

::::
550,

:::
and

:::
870

::::
nm,

:::
and

:::::::::
maintains

::
20

:::::::
viewing

::::::
angles

::
at

:::
660

::::
nm,

::
in

:::::
order

::
to

:::::
fulfill

:::
the

:::::::::
bandwidth

::::::::::
requirement

:::
and

::::::::
preserve5

:::::::::
information

:::::::
content

::
as

:::::
much

::
as

::::::::
possible.

:
HARP instruments (AirHARP, HARP CubeSat, and HARP2) use a modified three-

way Phillips prism located after the front lens to split the incident light into the three orthogonal linear polarization states (0◦,

45◦, and 90◦), which can be recombined to obtain the Stokes parameters Lt, Qt, and Ut at the aircraft altitude (Puthukkudy

et al., 2020). Circular polarization (Stokes parameter V) is not measured by any of the polarimeters in ACEPOL as it is

negligible for atmospheric studies (Kawata, 1978). We use the total measured reflectance (ρt(λ)) and DoLP (Pt(λ)) at the10

height of the aircraft with spectral dependencies hereafter implied, which are defined as

ρt =
πr2Lt
µ0F0

, (1)

Pt =

√
Q2
t +U2

t

Lt
, (2)

where F0 is the extraterrestrial solar irradiance, µ0 is the cosine of the solar zenith angle, r is the Sun-Earth distance correction

factor in astronomical units.15

Based on the MAP measurements, the MAPOL retrieval algorithm is developed to derive both the aerosol properties and

the water leaving signal simultaneously. The retrieval algorithm minimizes the difference between the MAP measurements and

the forward model simulations computed from vector radiative transfer simulations (Zhai et al., 2009, 2010). By assuming the

measurement and modeling uncertainties follow Gaussian statistical distributions, the retrieval parameters can be estimated

through Bayesian theory using the cost function χ2 to quantify the difference between the measurement and the forward model20

simulation (Rogers, 2000):

χ2 (x) =
1

N

∑
i

(
[ρt(i)− ρft (x; i)]2

σ2
ρ(i)

+
[Pt(i)−P ft (x; i)]2

σ2
P (i)

)
(3)

where ρt and Pt are the measured reflectance and DoLP as defined in Eqs. (1) and (2), and ρft and P ft are the corresponding

quantities computed from the forward model. The state vector x contains all retrieval parameters, such as the aerosol size,

refractive indices; the subscript i stands for the index of the measurements at different viewing angles and wavelengths; and25

N is the total number of the measurements used in the retrieval. For AirHARP measurements, the maximum value of N is

120 considering all the viewing angles from the four bands. The total uncertainties of the reflectance and DoLP used in the

algorithm are denoted as σρ and σP , which are contributed by both the measurement uncertainties σm and the forward model

uncertainties σf (more details in Sect). 3.3:

σ2
ρ = σ2

ρ,m +σ2
ρ,f (4)30

σ2
P = σ2

P,m +σ2
P,f (5)
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One important component of σm is the calibration uncertainty. The AirHARP measurement was validated
::::::::
AirHARP

::::
was

::::::::
calibrated in the lab with an accuracy of 3-5 % for reflectance, and 0.005 in DoLP

::
for

::::::
DoLP

::::::::::::::::::
(McBride et al., 2019). In-flight

uncertainties for DoLP are
:::::::::
uncertainty

:::
for

:::
the

:::::::::
AirHARP

:::::
DoLP

::
is
:

conservatively estimated to be at most 0.01 without an

onboard calibrator. In this study, we adopted the calibration uncertainty for reflectance as σρ,cal = 3%ρt and for DoLP as

σP,cal = 0.01 for all four bands. The accuracy of the HARP CubeSat and HARP2 measurements can be further improved5

through onboard calibration (McBride et al., 2020; Puthukkudy et al., 2020). AirHARP conducted high spatial resolution

measurements with a grid size of 55 m. We averaged every 10x10 pixels together (a box of 550m × 550 m). The standard

deviations of the pixels within the box are used to estimate the random noise and the spatial variability of the geophysical

properties (σavg). To account for the total measurement uncertainties, we considered the contributions from both the calibration

(σcal) and pixel averaging (σavg) as10

σ2
m = σ2

cal +σ2
avg (6)

for both reflectance and DoLP. As observed by AirHARP (Puthukkudy et al., 2020) and RSP measurements (Gao et al., 2020),

the sunglint angular pattern cannot be well modeled by an isotropic Cox-Munk model. To minimize the impact of sunglint in

our discussions, we removed the signals within an angle range of 0◦ to 40◦ relative to the solar specular reflection direction.

Furthermore, noise correlation is an import influence on the retrieval accuracy (Knobelspiesse et al., 2012) that is ignored in15

this study due to the lack of knowledge on this characteristic for AirHARP.

The forward model uncertainties σf include the numerical accuracy of the radiative transfer calculation, and can include

any estimation of uncertainties due to the incompleteness of the model to describe the system. For convenience, as discussed

in the next section, we will only consider the uncertainty of the NN forward model (σNN ) and the numerical accuracy of the

radiative transfer simulation used for generating the NN training data (σRT ):20

σ2
f = σ2

RT +σ2
NN . (7)

To fully utilize the information contained in the AirHARP measurements, the forward model needs to achieve an accu-

racy level much better than the measurement uncertainties. This becomes the goal of the NN training in the next section, to

reproduced the forward model within an error that is much less than the measurement uncertainty. Detailed comparisons of

the forward model uncertainties and the measurement uncertainties will be provided in the next section. To minimize the cost25

function defined in Eq. (3), we use an optimization method, called the Subspace Trust-region Interior Reflective (STIR) ap-

proach (Branch et al., 1999) as implemented in the Python SciPy package (Virtanen et al., 2020), to solve the state parameters x

iteratively. The method is based upon the Levenberg-Marquart method (Moré, 1978) and shows good stability for the boundary

constraints.

2.1 Forward model30

We used a vector radiative transfer model based on the successive order of scattering method for coupled atmosphere and ocean

systems (Zhai et al., 2009, 2010) to model the measured reflectance and DoLP. The atmosphere is configured as three layers: a
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top molecular layer above the aircraft with only trace gas presented, a molecular layer below the aircraft in the middle, and an

aerosol and molecular mixing layer on the bottom (assumed uniformly distributed within 2 km from the ground) (Gao et al.,

2019) as shown in the left panel of Fig. 1. The same vertical structure of the atmosphere was successfully used in the inversion

of RSP data (Gao et al., 2019, 2020).

Aerosols are diverse in size, composition, and morphology. To capture their variation in the atmosphere, we modeled the5

size and refractive index for both fine and coarse modes. The aerosol size is represented by the volume density distribution as

a combination of five lognormal distributions:

dV (r)

dlnr
=

5∑
i=1

Vi√
2πσv,i

exp

[
− (lnr− lnrv,i)

2

2σ2
v,i

]
(8)

where Vi is the column volume density for each submode, the mean radius ri and standard deviation σi are fixed with values of

0.1, 0.1732, 0.3, 1.0, 2.9 µm, and 0.35, 0.35, 0.35, 0.5, 0.5 respectively (Dubovik et al., 2006; Xu et al., 2016). The first three10

submodes are categorized as the fine mode aerosol, while the last two submodes are the coarse mode. All aerosols are assumed

to be spherical in the current forward model. The nonspherical particle shape is important in the aerosol model (Dubovik

et al., 2006), and will be considered in future studies. The aerosol refractive index spectra for the fine and coarse modes are

represented by the principal component analysis in MAPOL (Wu et al., 2015; Gao et al., 2018) as

m(λ) =m0 +α1p1(λ), (9)15

where p1(λ) is the first-order principal component computed from the aerosol refractive index dataset including water, sea salt,

dust-like particles, biomass burning, soot, sulfate, water-soluble, and industrial aerosols (Shettle and Fenn, 1979; d’Almeida

et al., 1991). m0 and α1 are two coefficients to determine the spectrum. For the application to AirHARP bands, p1(λ) for the

real part of the refractive index is approximately spectral flat for both the fine and coarse mode aerosols within the visible

spectrum. We further assume the spectral shape for the imaginary refractive spectra is also flat. Therefore, the two parameters20

can be combined into one to represent the refractive index. In this study, only four independent parameters are used to determine

the real and imaginary refractive index spectra for the fine and coarse modes. With the aerosol size and refractive index,

the polarimetric single scattering properties are modeled by the Lorenz-Mie theory and computed by the code developed by

Mishchenko et al. (2002).
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Figure 1. The left panel shows the coupled atmosphere and ocean system used in FastMAPOL including the atmosphere, ocean surface,

and ocean body. The right panel represents a system used for atmospheric correction which only has atmosphere and ocean surface without

scattering in the ocean body. The atmospheres in both systems are modeled as the same three layers. TOA indicates the top of the atmosphere.

The bottom of the atmosphere (BOA) and the top of the ocean (TOO) indicate the locations just above and below the ocean surface,

respectively. As discussed in the next section, all quantities shown in the figures need to be computed from the forward model and represented

by the NN for efficient calculations. Symbols are defined in Table 1.

Table 1. Definition of the symbols for the quantities computed from the forward model (indicated by the superscript f) as shown in Fig. 1.

Symbols Definition

ρft Reflectance at the aircraft level, Eq. (1)

P ft DoLP at the aircraft level, Eq. (2)

ρf,+t Reflectance measured at BOA

ρf,−t Reflectance measured at TOO

ρft,atms+sfc Reflectance at the aircraft level for atmosphere and ocean surface only

ρf,+t,atms+sfc Reflectance at BOA for atmosphere and ocean surface only

T f,+d Irradiance transmittance from TOA to BOA, Eq. (12)

T f,−d Irradiance transmittance from TOA to TOO

tf,+u Radiance transmittance from BOA to sensor, Eq. (13)

The molecular absorption properties are computed by a hyperspectral radiative transfer simulation (Zhai et al., 2009, 2010,

2018), including contributions from ozone, oxygen, water vapor, nitrogen dioxide, methane, and carbon dioxide under the US

standard atmospheric constituent profiles (Anderson et al., 1986). Ozone is the most important gas that influences the absorption

transmittance at the AirHARP bands of 550nm and 660nm. For the application to AirHARP measurements in ACEPOL, we
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use the ozone column density as a free parameter with values from the Modern-Era Retrospective analysis for Research and

Applications, Version 2 (MERRA-2) developed by NASA’s Global Modeling and Assimilation Office (Gelaro et al., 2017) to

rescale the molecular absorption optical depth calculated under the above-mentioned standard atmospheric profile.

For the ocean layer shown in Fig. 1, two ocean bio-optical models are implemented in the forward model of MAPOL:

one with chlorophyll-a concentration (Chla; mgm−3) as the single parameter applicable to open ocean optical properties, and5

the other with seven parameters more suitable to fully describe complex coastal waters (Gao et al., 2019). Since the waters

are mostly clear within the ocean scenes in this study(Gao et al., 2020), open ocean model is used for both NN training and

retrievals. The optical properties of open ocean waters include contributions from pure seawater, colored dissolved organic

matter (CDOM), and phytoplankton, where the CDOM and phytoplankton absorption coefficients, and phytoplankton scatter-

ing coefficient and phase function are parameterized by Chla (Gao et al., 2019). Complex costal water model for NN trainings10

will be investigated in future studies. The ocean surface roughness is modeled by the isotropic Cox-Munk model with a scalar

wind speed.

In summary, the parameters used to represent the forward model include five volume densities (one for each submode), four

independent parameters for the refractive indices of fine and coarse modes, one parameter for wind speed, and Chla. Three

additional geometric parameters are used to set up the system, including the solar zenith angle, viewing zenith angle, and15

relative viewing azimuth angle. Therefore, it requires a total of 15 parameters to conduct the radiative transfer calculation, with

a total of 11 independent state parameters that can be retrieved from optimizing the cost function as defined in Eq. (3).

2.2 Remote sensing reflectance

An important task for the joint retrievals is to obtain the water leaving signal, which is often represented
::
in

:::::
ocean

:::::
color

::::::
studies

by the spectral remote sensing reflectance
::::::
defined

:
as Rrs = L+

w/E
+
d where E+

d is the downwelling irradiance and L+
w is the20

water leaving radiance just above the ocean surface
::::::::::::::::
(Mobley et al., 2016). The remote sensing reflectance can be derived from

the water leaving reflectance reaching the sensor (ρw) via:

Rrs =

[
ρw(θ0,θv)

πr2

]
×

[
CBRDF (θ0,θv)

T f,+d (θ0)tf,+u (θ0,θv)

]
. (10)

where θ0 and θv are the solar and viewing zenith angles. ρw represents the signals originating from scattering in the ocean that

reached the sensor, which can be derived from the atmospheric correction process as25

ρw(θ0,θv) = ρt(θ0,θv)− ρft,atm+sfc((θ0,θv) (11)

where ρt is the measured total reflectance as defined in Eq. (1) and ρft,atms+sfc is the reflectance from a system with only

atmosphere and ocean surface (Mobley et al., 2016) as represented in the right panel of Fig. 1. The same formalism has been

used to derive Rrs from RSP measurements Gao et al. (2019, 2020).

The downwelling irradiance transmittance T fd is for the solar irradiance from TOA to the surface, and the upwelling radiance30

transmittance tf,+u is for the water leaving radiance from BOA to the sensor (Gao et al., 2019). Both T fd and tf,+u are denoted
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in Fig. 1 and represented as follows:

T f,+d (θ0) =
Ef,+d (θ0)

µ0F0
(12)

tf,+u (θ0,θv) =

(
ρft (θ0,θv)− ρft,atm+sfc(θ0,θv)

ρf,+t (θ0,θv)− ρf,+t,atm+sfc(θ0,θv)

)
(13)

where ρf,+t , ρf,+t,atm+sfc are reflectance just above ocean surface also denoted in Figure 1 and Table 1.

To remove the dependency of Rrs on the solar and viewing geometries, a BRDF correction CBRDF is applied to adjust Rrs5

to the observation with a zenith sun and a nadir viewing direction as defined by Morel et al. (2002):

CBRDF (θ0,θv) =
Ro(W )

R(θ′v,W )
× ρf,−t (0,0)

T f,−d (0)

[
ρf,−t (θ0,θ

′
v)

T f,−d (θ0)

]−1
(14)

where Ro/R accounts for reflection and refraction effects when light propagates through the ocean interface. CBRDF in its

original form is defined using the radiance and irradiance just below the ocean surface (Morel et al., 2002), here we have

converted all quantities into the radiance reflectance ρf,−t and the irradiance transmittance T f,−d (θ0) similar to Eqs. (1) and10

(12). In our study, of AirHARP retrievals of remote sensing reflectance, we only consider the minimum viewing angle at each

wavelength which is less than 1◦, the contribution of the R factor is ignored due to its small angular variations (Morel and

Berthon, 1989). All quantities denoted in Fig 1 need to be determined for the forward model and the calculation of remote

sensing reflectance, and will be represented by NN models.

3 Neural network for forward model15

Deep NN models are developing rapidly due to the advancement in machine learning infrastructure and demands in broad

applications (Goodfellow et al., 2016), and are demonstrated to be efficient in approximating physical functions (Lin et al.,

2017). In this study, we employed the deep feed-forward NN (Goodfellow et al., 2016) to represent the MAP measurements. In

this section, we will discuss the procedures to train the NN forward model for AirHARP measurements, with its performance

evaluated.20

3.1 Training data

To train a NN that can represent the forward model accurately for the AirHARP measurements from the ACEPOL field

campaign, we generated the training data according to the average aircraft height of 20.1km on the day of 10/23/2017 from

ACEPOL. We simulated 21,000 cases according to the forward model as discussed in the previous section by considering

general aerosol and ocean properties, as well as a large range of solar and viewing geometries with the minimum and maximum25

values of all parameters summarized in Table 2. The range of solar zenith angle θ0, viewing zenith angle θv , and relative

viewing azimuth angle φv are from 0◦ to 70◦, 60◦ and 180◦, respectively. The reflectance and DoLP with a viewing azimuth

angle larger than 180◦ can be evaluated by the corresponding value less than 180◦ due to symmetry with respect to the principal

plane (defined by φv = 0◦ and φv = 180◦). For each solar zenith angle, the polarized reflectance is calculated for all viewing
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angles within the aforementioned ranges with an angular resolution of 1◦. The solar zenith angle, ozone column density,

refractive index, and wind speed are randomly sampled in a linear scale. Chla is randomly sampled in a log scale. The fine

mode volume fraction is sampled uniformly within [0, 1], which is then randomly partitioned to each submode. To maintain a

uniform distribution of the total AOD, we sampled the AOD at 550nm within [0,0.5] in a linear scale. The volume density Vi

of each submode is determined by the total aerosol optical depth and volume fraction for each mode. Fig. 2 shows one example5

simulation dataset for the angular distribution of reflectance and DoLP.

Table 2. Parameters used to represent the atmosphere and ocean system for the radiative transfer simulation and NN training. θ0 and θv are

the solar and viewing zenith angles. φv is the relative viewing azimuth angle. Vi denote the five volume densities defined in Eq. (8). mr and

mi are the real and imaginary parts of the refractive index. Ozone column density (nO3) in the atmosphere, ocean surface wind speed, and

Chla are also provided. The minimum (min) and maximum (max) values determine the parameter ranges used to generate NN training data,

which are also the constraints in the retrieval algorithm. The initial values are the ones used in the retrieval optimization algorithm, where

θ0, θv , φv and nO3 are assumed to be known from inputs.

Parameters Unit min max initial

θ0 Degree 0 70 (input)

θv Degree 0 60 (input)

φv Degree 0 180 (input)

nO3 Dobson 150 450 (input)

mr(fine) (None) 1.3 1.7 1.5

mr(coarse) (None) 1.3 1.7 1.5

mi(fine) (None) 0 0.03 0.015

mi(coarse) (None) 0. 0.03 0.015

V1 µm3µm−2 0 0.11 0.012

V2 µm3µm−2 0 0.05 0.007

V3 µm3µm−2 0 0.05 0.009

V4 µm3µm−2 0 0.19 0.017

V5 µm3µm−2 0 0.58 0.033

Wind speed m/s 0.5 10 5.0

Chla mg/m3 0.001 30 0.1
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Figure 2. The reflectance (left panel) and DoLP (right panel) from radiative transfer simulation with the wind speed of 4.13m/s, the aerosol

optical depth of 0.26, Chla of 0.05 mg/m3, and ozone column density of 196 Dobsons. The antisolar point is indicated by the red asterisk

with a solar zenith angle θ0 = 46.41◦. θv and φv indicate the viewing zenith and relative azimuth angles. The principal plane is defined by

the viewing azimuth angle of 0◦ and 180◦.

We
::::::::
randomly

:
selected 20,000 cases out of the total 21,000 simulated cases for the training and validation processes, and

the remaining 1000
::::::
random

:
cases will be used as test cases to evaluate the NN accuracy, which will be discussed in the next

section. To enable the NN to predict reflectance and DoLP at any given viewing geometry, for each case, we sampled 100

random pairs of viewing zenith and azimuth angles. If the sampled angles fall outside of the pre-defined angular grids, values

from spline interpolation are used. The sunglint angles within an angle of 40◦ to the solar specular reflection direction are5

removed. Approximately 1 million data points are obtained for each wavelength for training.

3.2 Neural network training

A feed-forward NN can be defined recursively with one input layer, one output layer, and k hidden layers (Aggarwal, 2018):

h1 = Φ(WT
1 x+b1) (15)

hp+1 = Φ(WT
p+1hp +bp+1),p = 1, ...,k−1 (16)10

y = WT
k+1hk +bk+1 (17)

where x is the input parameter vector including all 15 parameters needed to define the forward model as listed in Table 2.

Here x not only contains the retrieval parameters in the state vector defined in Eq. (3) but also include additional non-retrieval

parameters such as the solar zenith angle, viewing zenith and azimuth angles and the ozone column density. y is a four-

dimensional output vector for reflectance or DoLP at the four AirHARP bands. The weight matrix Wp+1 connects the p-th15

and (p+1)-th NN layers. The bias vector for the (p+1) layer is defined as bp+1 . The output of each layer hp+1 becomes the

input of the next layer as shown in Eq. 16. k is the number of hidden layers, k+1 refers to the output layer. In this study, we

tested several NN architectures and eventually chose three hidden layers with the number of nodes of 1024, 256 and 128 as
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shown in Table 3. The nonlinear activation function Φ used in this model is the LeakyReLU function. For each vector element,

it is defined as

Φ(z) =max(0,z) + 0.01×min(0,z). (18)

The training process is to minimize the cost function defined as the mean square error between the training data generated

from radiative transfer simulations and the NN predicted values (Aggarwal, 2018). All parameters in the neural network5

weight matrices and bias vectors, over 670,000 numbers, need to be trained. With this large number of parameters, it is a

challenging task to avoid overfitting where the model works well for the training dataset but poorly for the dataset not used in

the training process. Several training procedures are performed for reflectance and DoLP data to avoid overfitting and improve

NN performance:

1. Both input and output data are normalized before training. We normalize the input data into the range of [0,1] using the10

minimum and maximum values from the datasets as listed in Table 2. The reflectance and DoLP in the output layers are

normalized by dividing their standard deviation of the training data at each wavelength.

2. The Adaptive Momentum (Adam) algorithm (Kingma and Ba, 2014) with weight decay regularization (Loshchilov and

Hutter, 2019) is used to update the weights and bias of the NN. The training dataset is divided into multiple mini-batches,

each with 1024 random samples. The training iterations loop through all mini-batches in the training data (each loop is15

called an epoch). Convergence requires training through multiple epochs, where mini-batches are resampled in each

epoch.

3. The learning rate determines the step size in the parameter update. We use an exponential decay schedule to reduce the

learning rate: we start with a learning rate of 0.005 and reduce the learning rate by a factor of 10 every 200 epoches.

4. To monitor over-fitting in the training process, we split the data into 70% for training and 30% for validation. We conduct20

the optimization based on the training dataset, and meanwhile, we monitor the performance of training by applying the

NN model on the validation dataset. To avoid overfitting, the early-stopping approach is employed where the training is

stopped when the cost function on the validation dataset stops to reduce for a threshold of 50 epochs.

The machine learning Python library Pytorch is used for the training (Paszke et al., 2019). The trained NN model is used to

replace the radiative transfer model to compute the reflectance and DoLP in the retrieval algorithm. The Jacobian matrix used25

in the optimization is computed by the finite difference approximation of the partial derivatives of reflectance and DoLP with

respect to the retrieval parameters. Here central difference method is used. Note that the Jacobian matrix can also be computed

analytically from the NN model using the automatic differentiation techniques based on the chain rule of differentiation (Baydin

et al., 2018). This will be a topic in our future studies.

3.3 Neural network accuracy30

After training the NN model, we evaluated its accuracy using synthetic AirHARP measurements generated from the 1000

simulation cases which have not been used in the training and validation process. Each simulation dataset includes polarized
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reflectance on regular viewing angle grids, which are interpolated to the viewing geometry of AirHARP to create synthetic

measurement data and compare with the NN predictions. Glint angles are excluded from the comparison because the NNs are

not trained over these angles. As one example shown in Fig. 4, both the reflectance and DoLP are in good agreement between

the synthetic data and the NN results, where the maximum absolute differences for reflectance and DoLP are within 0.001 and

0.0025. This translates to a difference for both reflectance and DoLP mostly less than 1%.
::::
The

::::::::
maximum

:::::::::
percentage

:::::::::
difference5

:::
can

::
be

::
as

:::::
large

::
as

:::
3%

:::
for

::::::
870nm

:::::
bands

::::
due

::
to

:::
the

::::
small

::::::::::
reflectance

:::::::::
magnitude.

:
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Figure 3. The synthetic HARP reflectance (left panel) and DoLP (right panel) sampled from the radiative transfer data shown in Fig. 2. The

positive and negative signs of the viewing zenith angles indicate the azimuth angles of φv = 116.2◦ and 180◦ +φv .

The comparison with all 1000 synthetic datasets and their NN predictions are shown in Fig. 4. The mean absolute error

(MAE), and the root mean square error (RMSE) between the simulation data (Ti) and the NN predicted data (Ri) shown in
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Fig. 4 are defined as

MAE =
1

N

N∑
i=1

|Ri−Ti|, (19)

RMSE =

√√√√ 1

N

N∑
i=1

(Ri−Ti)2. (20)

Both MAE and RMSE are useful metrics, where MAE has less dependency on outliers comparing with RMSE.

Figure 4. Comparison between the radiative transfer simulation and NN prediction, left panel: reflectance (ρ); right panel: DoLP (P ). The

scatter plots are shown in the top panel, the absolute different in the middle panel, and the percentage difference in the bottom panel. For

each plot, the data points for the 550, 660 and 870nm bands are shifted upward by constant offsets consecutively as indicated by the solid

cyan lines.
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Analysis shows that the statistics of the differences between the NN prediction and the RT simulations as shown in Fig. 4

can be well modeled by Gaussian distributions and characterized by RMSE. Therefore the RMSE is used to represent the NN

uncertainties for both reflectance (σρ,NN ) and DoLP (σρ,NN ) and will be incorporated into the total uncertainties in the cost

function.
:::::
Table.

:
3
::::::::::
summarizes

:::
the

:::::::::::
uncertainties

::
of

:::
the

:::
NN

:::::::
models.

::::
The σρ,NN at 440 nm is 0.0006, which decreases to 0.0004

at 870 nm. The
::::::::
However,

::::
due

::
to

:::
the

::::::
smaller

::::::::::
reflectance

:::::::::
magnitude

::
at

:::::::
870nm,

:::
the

::::::::::::
corresponding

::::::
RMSE

:::
for

:::
the

::::::::::
percentage5

:::::::::
reflectance

::::::::
difference

::
as

::::::
shown

::
in

::::
Fig.

:
4
::
is

::::::::
increased

::::
from

:::::
0.4%

::
at

::::::
440nm

::
to

:::::
1.0%

::
at

::::::
870nm.

::::
For

:::::
DoLP,

:::
the

:
maximum σP,NN

is 0.003 at 870 nm which decreases to 0.0016 at 440 nm. The uncertainties can be further improved with more training data

points. For the readers’ information, RMSE of the NN model trained with 20,000 cases (1 million data points) decreases by a

factor of
√

2 in comparison with the one using 10,000 cases (0.5 million data points). Table. 3 summarizes the uncertainties of

the NN models. It takes 0.01s in a single-core CPU (AMD EPYC Processor) or 1 ms in a GPU (GeForce GTX 1060) to predict10

all 120 angles for both reflectance and DoLP in the NN forward model.

Table 3. The accuracy of the NN for the corresponding quantities in terms of the RMSE (σNN ) of the difference between the NN predicted

values and the truth values from radiative transfer simulation. The NN architecture denotes the number of the nodes in each layer. Remote

sensing reflectance is computed by Eq.(10) using the NNs for ρft,atms+sfc and [CBRDF /Tdtu] as discussed in Section 3.4.
:::
(The

:::::::::
percentage

:::::
values

::::
listed

:::::
below

::
in

:::
the

::::::::
parenthesis

:::
are

:::
the

::::::::
percentage

::::::::::
uncertainties

::::::
defined

::
as

:::
the

:::::
RMSE

:::
of

::
the

:::::::::
percentage

::::::::
difference

::::::
between

:::
the

:::
RT

::::::::
simulation

:::
and

:::
NN

:::::::::
predictions.)

:

Quantities NN architecture σNN (440nm) σNN (550nm) σNN (670nm) σNN (870nm)

P ft 15× 1024× 256× 128× 4 0.0016 0.0020 0.0024 0.0030

ρft 15× 1024× 256× 128× 4 0.00061(0.4%) 0.00046(0.5%) 0.00041 (0.6%) 0.00039 (1.0%)

ρft,atms+sfc 14× 1024× 256× 128× 4 0.00084(0.4%) 0.00065(0.6%) 0.00057 (0.9%) 0.00055 (1.3%)[
CBRDF
Tdtu

]
15× 128× 128× 4 0.02(0.9%) 0.01(0.7%) 0.01(1.0%) 0.01(1.0%)

Rrs *Eq (10) 0.0004 0.0002 0.0002 0.0001

The assessment of the NN accuracy is relative to the synthetic measurements simulated by the vector radiative transfer

simulations. To account for the modeling uncertainties of the forward model σf , we consider both the NN accuracy σNN

and the numerical accuracy of the radiative transfer simulations σRT for reflectance and DoLP, respectively. Uncertainties

due to incomplete assumptions in the forward model are not considered. Several internal parameters determine the numerical15

accuracy of the radiative transfer simulations. In the framework of the successive order of scattering (Zhai et al., 2008, 2009),

these parameters include the number of scattering orders (Ns), the number of Gaussian quadratures for discretizing the viewing

zenith angle in the atmosphere (Pa) and ocean (Po), and the order of Fourier decomposition (M ) for the viewing azimuth

angle, and the order of Legendre expansion (L) of the single scattering phase function. In this study, we chose N = 20,

Pa = 32, Po = 64, M = 32, and L= 32, which has a higher accuracy than the radiative transfer forward model directly used20

in our previous retrieval studies Gao et al. (2020).
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To quantify the accuracy of the radiative transfer calculation used for generating training data (σRT ), we simulated an

additional 1000 synthetic AirHARP datasets with all internal parameters doubled as the most rigorous calculations, and the

viewing angular resolution was reduced from 1◦ to 0.5◦ in order to reduce interpolation errors. The resultant reflectance and

DoLP values are compared between these two sets of radiative transfer calculations. The RMSE for each band can be used as

a measure of the accuracy for the radiative transfer calculation used to generate the training data (σRT ). The uncertainties σRT5

for reflectance and DoLP are summarized in Table 4, with reflectance uncertainties less than 0.00015 and DoLP uncertainties

less than 0.0007 for all AirHARP bands. σρ,RT is about four times smaller than the NN uncertainties, and σP,RT is about 4 to

10 times smaller. Therefore, NN uncertainties are not dominated by the uncertainties of the RT simulation. The measurement

uncertainties from calibration (σcal) and pixel averaging (σavg) as discussed in Section 2 are also summarized in Table 4,

which shows the total forward model uncertainties σf =
√
σ2
RT +σ2

NN as approximated in Eq. (7) are much smaller than the10

total measurement uncertainties σm =
√
σ2
cal +σ2

avg as defined in Eq. (6). The overall uncertainties used in the retrieval cost

function in Eq (3) are dominated by the measurement contributions as we expected.

Table 4. Comparisons of the uncertainties for reflectance (ρ) and DoLP (P) for both measurement and forward model including calibration

uncertainty (σcal), the uncertainty from averaging AirHARP pixels into a 550 m × 550 m box (σavg), the radiative transfer simulation

uncertainty (σRT ), and the NN uncertainty (σNN ). Same σρ,NN and σP,NN have been shown in Table 3, and are repeated here for compar-

isons. (The
::::
Same

::
as
:::::
Table

:
3,
:::
the

:
percentage

::::
values

:::::
listed in the table indicate the ratio comparing to the corresponding reflectance

::::::::
percentage

:::::::::
uncertainties.)

Uncertainties 440nm 550nm 670nm 870nm

σρ,cal 3% 3% 3% 3%

σρ,avg 0.0006 (0.3%) 0.0004 (0.5%) 0.0004 (1.0%) 0.0004 (1.7%)

σρ,RT 0.00012 (0.08%) 0.00005 (0.07%) 0.00010 (0.2%) 0.00015 (0.4%)

σρ,NN 0.00061 (0.4%) 0.00046 (0.5%) 0.00041 (0.6%) 0.00039 (1.0%)

σP,cal 0.01 0.01 0.01 0.01

σP,avg 0.006 0.006 0.009 0.020

σP,RT 0.0002 0.0002 0.0005 0.0007

σP,NN 0.0016 0.0020 0.0024 0.0030

Furthermore, in this study higher accuracies from the radiative transfer simulations are used for the NN training for compari-

son with the accuracies from the radiative transfer model directly used in our previous retrieval algorithm. Since the simulations

of the training data can be conducted independent to the retrieval algorithm, higher computational costs can be accommodated15

to improve NN forward model accuracy. After the NN model is trained, the model can be applied to the retrieval algorithm

through efficient matrix operations.

17



3.4 Neural network model for remote sensing reflectance

As discussed in Sect. 2.2, the water leaving signals are represented by the remote sensing reflectance .
::
as

::::::
defined

:::
in

:::
Eq.

::::
(10)

:::::::::::::::::
(Mobley et al., 2016).

:
To conduct the atmospheric correction in Eq. (11), we need to determine the reflectance ρft,atmos+sfc at

the aircraft level, transmittance tfu and T fd , and the BRDF correction coefficient CBRDF . Based on Eq. 10, we combined T f,+d ,

tf,+u , and CBRDF into a single term denoted as [CBRDF /Tdtu]. To efficiently determine Rrs, two NNs need to be trained to5

represent ρft,atmos+sfc and [CBRDF /Tdtu], respectively,

Following similar NN training schemes as discussed previously, we conducted 10,000 simulations to determine the re-

flectance at aircraft altitude ρt,atmos+sfc from a system with only atmosphere and ocean surface (right panel of Fig. 1), and

trained the NN for ρt,atmos+sfc in the same way as ρft . Since this system only includes atmosphere and ocean surface but

without ocean body, there are total 14 input parameters (without Chla). To train a NN for [CBRDF /Tdtu] with T f,+d , tf,+u , and10

CBRDF defined in Eqs. (12),(13) and (14), we obtained five additional quantities corresponding to the above-mentioned 10,000

cases with and without ocean body: for the fully coupled system with atmosphere, ocean surface and ocean body (left panel of

Fig. 1), we computed the reflectance just above and below the ocean surface (ρf,+t and ρf,−t ), and irradiance transmittance just

above and below the ocean surface (T f,+d and T f,0d ); for the system without ocean body but with ocean surface (right panel of

Fig. 1), we computed the reflectance just above the ocean surface (ρf,+t,atms+sfc). The accuracy of the NNs for ρft,atmos+sfc and15

[CBRDF /tuTd] are evaluated and shown in Table 3, which are in the same order of uncertainty magnitudes in percentage as

other quantities.

To evaluate the overall accuracy for the Rrs after the BRDF correction, we conducted radiative transfer simulations with a

zenith sun and a nadir viewing direction, and obtained the truth remote sensing reflectance using the upwelling radiance and

downwelling irradiance just above the ocean surface as examples shown in Fig. 5. The predicted Rrs were computed from Eq.20

(10) after the application of two NNs. The RMSE of the difference between the simulated and NN predicted Rrs are shown

in Table 3 with a maximum value of 0.0004 at wavelength 440 nm, and smaller than 0.0002 in other bands. These values

including all uncertainties including the accuracy of the NN and assumptions in the BRDF model.
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Figure 5. Comparison of the truth Rrs (RT) and the neural network (NN) computed Rrs. The truth Rrs is computed from radiative transfer

simulations with a zenith sun and nadir viewing direction. The NN computed Rrs is following Eq. (10).

4 Joint retrieval results on synthetic AirHARP measurements

The NN forward models for reflectance (ρft ) and DoLP (P ft ) are used in the FastMAPOL retrieval algorithm as discussed in

Sect. 2. To evaluate the performance of the retrieval algorithm, we conducted retrievals on the synthetic AirHARP data. The

creation of the synthetic data is discussed in Sect. 3.3. To account for the measurement uncertainties, random noise is added

to the simulated data according to the calibration uncertainties as listed in Table 4. The total uncertainties in the cost function5

include contributions from calibration (σcal), radiative transfer simulation (σRT ), and NN model (σNN ). Uncertainties from

pixel averaging (σavg) for the AirHARP field measurements are not considered in the synthetic dataset.

Using the initial values as listed in Table 2, a total of 1000 synthetic AirHARP cases are retrieved with the cost function

values(χ2) summarized in Fig 6. Retrievals with χ2 < 1.5 are chosen in our following discussion, which includes 96% of all

retrieval cases. Gao et al. (2020) showed that the retrieval results depend on the initial values. Testing with several random sets10

of initial values shows that the statistics of the retrieval results from the 1000 synthetic cases are robust. As demonstrated by

Di Noia et al. (2015) and Di Noia et al. (2017), a better choice of initial values for each pixel in the optimization may further

improve the overall retrieval accuracy.
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Figure 6. Histogram of the cost function values (χ2) with initial values as specified in Table 3 with a total of 1000 cases. The most probable

χ2 is 0.82. A threshold of χ2 < 1.5 is used in the discussion.

With the directly retrieved aerosol refractive index and volume densities (see Table 2) as inputs, the aerosol optical depth

(AOD) and single scattering albedo (SSA) for both the fine and coarse modes, were computed using additional NNs to represent

the Lorenz-Mie calculations in Appendix A. The retrieved total AOD, SSA, wind speed, and Chla are compared with the truth

values as shown in Fig. 7. Total AOD indicates the summation of the fine and coarse mode AODs and total SSA is the ratio

of the total scattering and extinction cross-sections, both are specified in in Appendix A. For fine aerosol, the AOD, SSA,5

refractive index (mr), effective radius (reff ) and variance (veff ) are shown in Fig. 8. The color plots indicate the data point

density (normalized by its maximum value) approximated by a kernel density estimation method (Silverman, 1986).

In order to quantify the variation of the retrieval uncertainties with respect to different aerosol loadings, we computed the

the RMSE between the retrieved and truth values at five AOD ranges including [0.01,0.1], [0.1,0.2], [0.2,0.3],[0.3,0.4] and

[0.4,0.5]. The each AOD ranges includes an approximate 200 cases. Note that as discussed in Sect. 3.3, the total AOD and the10

fine mode volume fraction are uniformly sampled for the simulated data, therefore, there is an equal mixing fraction of fine and

coarse mode aerosol for each AOD range. The retrieval uncertainties for aerosols are shown in Figure 9 with the corresponding

ranges indicated by AOD values from 0.1 to 0.5. All discussions regarding the AOD and SSA are for wavelength of 550nm in

this section.

As shown in Fig. 7 and Fig. 9, the errors of the retrieved total AOD increase with aerosol loadings: the uncertainty (evaluated15

using RMSE) is 0.008 and 0.015 for the AOD range [0.01, 0.1] and [0.1,0.2], and increases to 0.035 for the AOD range [0.4,0.5].

Similar absolute uncertainties are found for both the fine and coarse mode AODs with a value slightly smaller. In percentage,

the total AOD uncertainties is 28.3% at the AOD range [0.01, 0.1] where the large uncertainties is due to the cases with small

AODs. For the AOD range from [0.1,0.2] to [0.4,0.5], the AOD uncertainties further decrease from 14.4% to 5.6%.

Similar to the total AOD uncertainties, the total SSA uncertainties decreases with AOD from 0.05 to 0.02. The fine mode20

SSA uncertainties reduce similarly from 0.05 to 0.03. The uncertainties for coarse mode SSA reduces slightly from 0.1 to 0.08
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which is more than twice larger than the fine mode SSA uncertainties. The uncertainties for the fine mode mr, reff and veff

shows a larger value in the AOD bin of [0.01,0.1] of 0.06, 0.024 µm, 0.08, and then remain close to constant with a value of

0.03, 0.01 µm and 0.03 respectively. The averaged uncertainties for coarse mode mr, reff and veff are approximately 0.08,

0.5 µm and 0.15 respectively weakly AOD dependency. The coarse mode mr uncertainty are more than twice to the fine mode

uncertainty. The larger uncertainty values for coarse mode reff and veff are also related to their large particle size.5
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Figure 7. The comparisons of the retrieved and truth values for total AOD (550 nm), SSA (550 nm), wind speed, and Chla are shown in the

top panels. The dashed line indicates the linear regression fitting with y = βx+α, where β is the slope and α is the intercept. The lower

panels show the difference between the retrieved and truth values of the corresponding upper panel parameters as a function of the total AOD

at 550 nm.
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Figure 8. The comparisons of the retrieved and truth values for the fine mode aerosol parameters including AOD, SSA, refractive index

(mr), effective radius (reff ) and variance (veff ).
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Figure 9. The retrieval uncertainties at various aerosol loadings for AOD, SSA, refractive index (mr), effective radius (reff ) and variance

(veff ), wind speed, and Chla. AOD values at the x-axis from 0.1 to 0.5 indicate the five ranges of total AOD including [0.01,0.1], [0.1,0.2],

[0.2,0.3],[0.3,0.4] and [0.4,0.5] which are used to compute the corresponding uncertainties. Chla uncertainties are evaluated in terms of MAE

in log scale (see Eq. (21)) and all other parameters are evaluated in terms of RMSE. AOD(%) indicate the percentage AOD uncertainties

comparing to the truth AOD.

For wind speed retrievals as shown in Fig. 7 the agreements between the truth and retrievals depend strongly on the wind

speed value itself: when the wind speed is small, there is less retrieval sensitivity due to the removal of glint; for larger

wind speed, the agreements are improved, likely due to the larger range of angles influenced by wind speed. The retrieval

uncertainties are shown in Fig. 9, for wind speed (WS) smaller than 3 m/s, the uncertainty increases from 1.5 to 2.1 m/s for

AOD ranges from [0.1,0.2] to [0.4, 0.5]. While for wind speed larger than 3 m/s, the retrieval uncertainty is almost an constant5

of 1.2 m/s with a small increase less than 0.1 m/s. The retrieved and truth Chla is compared in Fig. 7 where the MAE in log

scale, or MAE(log), is used with definition as:

MAE(log) = 10Y where Y =
1

N

N∑
i=1

| log10(Ri)− log10(Ti)| (21)
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where Ri and Ti denote the retrieval and truth values. MAE(log) is recommended by Seegers et al. (2018) as a better metrics

for Chla, which indicates the averaged ratio between the retrieval and truth values. The dependency of the MAE(log) for Chla

with the aerosol loadings is shown in Fig. 9. The Chla retrieval performance depends on the value magnitude of the Chla.

In this work, we chose four ranges of Chla according to the trophic regions discussed in (Seegers et al., 2018). Note that

Chla from in-situ measurements is typically lager than 0.01mg/m3 and we chose a broader range of Chla with its minimum5

value of 0.001mg/m3 as listed in Table 2 for sensitivity studies. For 0.01mg/m3 < Chla < 0.1mg/m3 and 0.1mg/m3 <

Chla < 1mg/m3, Chla retrieval uncertainties vary within 1.3 to 1.6 when AOD<0.3, and then increase to 2.3 at AOD range

[0.4,0.5]. For Chla > 1mg/m3 and Chla < 0.01mg/m3, the uncertainties are generally larger with a value around 2 to 3.

With the retrieved aerosol and ocean properties, the atmospheric correction procedures can be applied to compute the remote

sensing reflectance as discussed in Section 3.4. The comparison of the retrieved Rrs with the truth data is shown in Fig. 5. To10

account for the various solar geometries, the BRDF correction has been applied on the retrieved Rrs as discussed in Section

3.4. The truthRrs was computed with a zenith sun and a nadir viewing direction, emphasizing the need for the latter correction

to the MAP observations. Overall Rrs uncertainties for the four bands are 0.007, 0.0004, 0.0002 and 0.0002 as shown by the

RMSE in Fig. 10. MAE showed values of 0.0006, 0.0003, 0.0002 and 0.0001, which are less sensitive to the outliers. Note

that the atmospheric correction is applied on the synthetic measurements without adding additional random noise in order to15

evaluate the impacts on Rrs uncertainties from only aerosol and ocean surface properties retrievals. The retrieval uncertainties

for Rrs for each AirHARP bands are shown in Fig. 10 depending on the aerosol loadings: larger uncertainties are found with

larger aerosol optical depth.

The PACE accuracy requirements on ocean color are specified in terms of the water-leaving reflectance, which can be

converted to those of Rrs by dividing them by a factor of π. The resultant requirements in terms of Rrs are 0.0006 sr−1 or 5%20

from 400 to 600 nm, and 0.0002 sr−1 or 10% from 600 to 710 nm (Werdell et al., 2019). As shown in Fig. 11, Rrs at 550nm

are within the requirement of 0.0006 sr−1 for all AOD ranges. For 440 nm band, the Rrs retrieval uncertainties are larger than

the requirement when AOD is larger than 0.3. Rrs at 670 and 870 nm varies in a very small dynamical range and has less

impacts by the aerosol retrievals. Rrs uncertainties at 670 and 870 nm are slightly larger than the requirement of 0.0002 sr−1

when AOD(550nm) is larger than 0.4 and 0.3 respectively. Further work is needed to understand how the uncertainties of the25

retrieved aerosol properties influence the retrievals. Note that from Table 3, the uncertainties of the Rrs computed using NNs

have an uncertainty of 0.0004 to 0.0001 from 440nm to 870nm, which may be further reduced with better training and help the

reduction of the Rrs retrieval uncertainties.
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Figure 11. Retrieval uncertainties for Rrs at the four AirHARP bands. The uncertainties are computed in the same way as for Fig.9 in terms

of RMSE.

5 Joint retrieval results on AirHARP measurements from ACEPOL

The ACEPOL field campaign, conducted from October to November of 2017, included a total of six passive and active instru-

ments on the NASA ER2 high-altitude aircraft (Knobelspiesse et al., 2020) with four MAPs: AirHARP (McBride et al., 2020)),

AirMSPI (Diner et al., 2013), SPEX Airborne (Smit et al., 2019) and the RSP (Cairns et al., 1999), and two lidars: HSRL-2

(Burton et al., 2015) and CPL (the Cloud Physics Lidar) (McGill et al., 2002). Aerosol retrieval algorithms have been applied5

for all four MAPs (Fu et al., 2020; Puthukkudy et al., 2020; Gao et al., 2020). The measurement datasets are available from

the ACEPOL data portal (Knobelspiesse et al., 2020). In this work, we focus on the study of the AirHARP measurements over
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ocean scenes as shown in Fig. 12 on Oct 23, 2017
::::
2017. The viewing angles are within±57◦ along-track, and±47◦ cross-track

as shown in the polar plots in Fig. 12.
:::
Fig.

::
13

::::::
shows

:::
the

:::::
RGB

::::::
images

::::
(670,

::::
550

:::
and

:::::::
440nm)

:::
for

:::
the

::::
three

::::::
scenes

::
at

::::
near

:::::
nadir

::::::
viewing

:::::::::
direction.

Figure 12. The location of the three ocean scenes from AirHARP from ACEPOL on Oct 23, 2017. The flight track is color labeled by the

UTC. The aircraft flew at an altitude of 20.1 km. The viewing zenith and relative azimuth angle (relative to the solar azimuth angle) for the

440 nm band from all pixels in the corresponding scene are shown in the bottom polar plots. The averaged solar zenith angles for the three

scenes are 47.0◦, 45.6◦ and 52.9◦, respectively, as indicated in the polar plots by the red asterisks.
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Figure 13.
:::
The

::::
RGB

:::::
images

::::::::::
(670,550,440

:::
nm

:::::
bands)

:::
for

::
the

::::
three

::::::
scenes

:
at
::::
near

::::
nadir

::::::
viewing

::::::::
directions.

:::::
Scene

:
1
:::
and

:
2
::::::
observe

::::
only

:::::
ocean,

::::
while

::::
scene

::
3
:::::::
observes

:::
both

:::::
ocean

:::
and

::::
land.

:::::
Sparse

:::
thin

::::::
clouds

::
are

:::::
visible

::::
from

:::::
scene

:
1
:::
and

::
2.

The HSRL-2 instrument from ACEPOL provided useful aerosol optical depth ground truth at 355 and 532 nm (Hair et al.,

2008; Burton et al., 2016), which was used for the validation of the aerosol retrieval algorithm using the AirHARP data.

The HSRL-2 measures the pixels along the track as shown in Fig. 12, where an assumed lidar ratio of 40 sr is multiplied by

the aerosol backscatter coefficient derived from the HSRL technique to produce aerosol extinction and AOD at 532 nm.
:::
For

::
the

::::
low

:::::::
aerosol

::::::
loading

:::::
cases

::::::::::
considered

::
in

:::
this

::::::
study,

:::
the

::::::::
assumed

::::
lidar

::::
ratio

::::::::
approach

::::::::
produces

::
a
:::::::::
systematic

::::::::::
uncertainty5

::
of

::::::
±50%

:::::::::::::
(Fu et al., 2020)

:
. In scene 3, the aircraft also flew over an AERONET USC_SEAPRISM site, which is equipped

with a CIMEL-based system called the Sea-Viewing Wide Field-of-View Sensor (Sea-WiFS) Photometer Revision for Incident

Surface Measurements (SeaPRISM) that collects radiances at eight wavelengths of 412, 443, 490, 532, 550, 667, 870, and

1020 nm (Zibordi et al., 2009). AOD from the AERONET data product version 3 level 2.0 data was used in this study, which

is also consistent with the HSRL-2 AOD at 532nm as shown latter in Fig. 20.
:::
The

:::::::::
estimated

:::::::::
AERONET

:::::
AOD

::::::::::
uncertainty

::
is10

::::
from

::::
0.01

::
to

::::
0.02

::::
with

:::
the

:::::::::
maximum

:::::::::
uncertainty

::
in
:::
the

::::
UV

:::::::
channels

::::::::::::::::
(Giles et al., 2019).

:
We compared AOD from AirHARP

retrievals with those from both HSRL and AERONET. Furthermore, to validate the atmospheric correction procedure in the

retrieval algorithm, we compared the retrieved remote sensing reflectance with the AERONET ocean color (OC) products as

reported by the SeaPRISM measurements at the USC_SEAPRISM site.

Here we applied the FastMAPOL algorithm to the AirHARP field measurements from ACEPOL. The solar and viewing15

geometries as shown in Fig. 12, and the ozone column density from MERRA2 are the inputs to the forward model. As discussed

in Section 2, the total uncertainties are modeled as σ2 = σ2
cal+σ2

avg+σ2
RT +σ2

NN for reflectance and DoLP respectively, with

all values listed in Table 4.

The histograms of χ2 for all pixels retrieved in each scene are shown in Fig. 14. Comparing with the histogram in synthetic

data retrievals in Fig. 6, the histograms in Fig. 14 show a longer tail with larger χ2 value. This may due to that some pixels are20

not represented well by the current forward model, and measurement uncertainties are not well quantified in the cost function

as discussed in Sect. 2
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Figure 14. The histogram of the cost function values for the pixels in the three scenes as shown in Fig. 12. Each scene has 3283 pixels used

in the retrievals. The most probable χ2 for the three scenes are 1.5, 0.5, and 1.0. A threshold of χ2 < 1.5 is used in the discussion.

To evaluate the retrieval performance, we plotted the map of the total number of viewing angles used in the retrieval (Nv),

cost function χ2, and retrieved AOD(550nm) for each scene in Figs. 15, 16 and 17. As discussed in Sect. 2, the maximum

number of viewing angles is 120 for AirHARP measurements. Figs 15,16 and 17 show the number of available viewing angles

vary from 0 to 120 due to the removal of glint and other data quality control measures. Discontinuity in the number of angles

can be seen as a stripe, due to the removal of angles influenced by water condensation in the lens, which can also be observed5

in the polar plots in Fig. 12 with the nadir region removed. All three figures show that the number of viewing angles are smaller

at the edges parallel to the flight track, where small χ2 can be achieved but may be less reliable.

For pixels with large χ2, the forward model cannot fit reflectance or DoLP to the measurements, which may be due to the

contamination by cloud (Stap et al., 2015), land, or residuals of glint. The large χ2 values are also correlated with the large

retrieved AOD(550nm) values, for instance, the central region in scene 1. We have excluded retrievals with less confidence and10

only discussed the retrievals simultaneously satisfying the two criteria with Nv > 10 and χ2 < 1.5. Overall about 40% to 60%

pixels are available after applying these two criteria.
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Figure 15. The number of viewing angles used in the retrieval(Nv), cost function value (χ2) and the . retrieved AOD (550 nm) for all pixels

in scene 1. Under the condition of Nv > 10, 94% pixels are available; with χ2 < 1.5, 47% pixels are available; 41% pixels under both

conditions.
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Figure 16. Same as 15 but for scene 2, 88% pixels with Nv > 10, 67% pixels with χ2 > 1.5, and 60% pixels under both conditions.
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Figure 17. Same as 15 but for scene 3, 94% pixels with Nv > 10, 47% pixels with χ2 > 1.5, and 43% pixels under both conditions. The

pixels with large χ2 are mostly influenced by the land (upper region) and island (lower left).

The AOD at 532nm from HSRL data product in all three scenes is in the range from 0.03 to 0.1 as shown in Fig. 18.

After applying the two criteria in Nv and χ2, many pixels from AirHARP retrievals along the HSRL track are not available.

To compare with the HSRL AOD along the track direction, the retrieved AOD is averaged in the cross-track direction, the

averaged values and its standard deviations are shown in Fig. 18. The averaged and standard deviation of all pixels satisfying

the criteria are also shown in the plots. For scenes 1-3, the averaged AOD(550nm) are 0.076, 0.066 and 0.052. The averaged5
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HSRL AOD is 0.079, 0.072 and 0.038. The average AOD values retrieved from FastMAPOL and those from HSRL agree well

for both scene 1 and scene 2. For scene 3, the average AOD value of the FastMAPOL algorithm is larger than the averaged

HSRL AOD by 0.014. This may be due to complex water properties not well represented by the open water bio-optical model

used in the simulation (Gao et al., 2019). Furthermore, the pixels near the coast are potentially impacted by the adjacency effect

of land pixels. However it is challenge to investigate due to the small aerosol loadings. Furthermore, thin cirrus clouds were5

observed on Oct 23 (Knobelspiesse et al., 2020), which might further impact the accuracy of aerosol retrievals and require

future investigations.
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Figure 18. Comparison of the retrieved AOD (550 nm) from AirHARP measurement with the AOD (532 nm) from HSRL. The AOD (550

nm) from AERONET USC_SeaPRISM site is shown in scene 3. The AirHARP retrieved AOD is averaged over cross-track pixels with

standard deviation as plotted by the shaded areas. The averaged and standard deviations of all pixels for both AirHARP and HSRL are also

shown in the texts. Only pixels with Nv > 10 and χ2 < 1.5 are considered.
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Figure 19. The retrievedRrs at the four AirHARP bands. TheRrs from AERONET USC_SeaPRISM site are indicated by the star symbols.

Fig. 19 shows the mean value and standard deviation of Rrs averaged for the cross-track pixels. Rrs from AERONET

USC_SeaPRISM site are compared with the retrievals using the nearest wavelengths to the AirHARP bands. The Rrs values
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for scene 1 and 2 show a larger value of 0.005 to 0.007 at 440nm but reduced to 0.0025 for scene 3, which is closer to the coast.

The decrease of Rrs may be due to the increase of CDOM as its spectra demonstrated in Fig. 5.
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Figure 20. The AOD and Rrs spectra from AERONET USC_SeaPRISM site on Oct 23, 2017, are shown in green triangles. The error

bars indicate the daily average of the AERONET data product. The averaged AOD and Rrs from AirHARP retrievals within 1.1km from

AERONET site are shown by blue circles.

The AERONET AOD is compared with the FastMAPOL retrieved AOD at 550nm in Scene 3 of Fig. 18, and the whole

AOD spectra are compared in Fig. 20. The uncertainties of the AOD and Rrs from retrieval are estimated by the average of

2×2 pixels (in 1.1km×1.1 km box) around the AERONET site. The retrieved AODs at 440nm and 870nm agree well with the5

AERONET results. The difference between the HSRL AOD at 532nm and the AirHARP retrieved AOD near the AERONET

site and is smaller than the one shown in the Scene 3 of Fig. 18, which suggests larger differences are contributed by the pixels

further away. The retrieved Rrs agrees well with the AERONET Rrs with a value slightly larger than the AERONET results at

410nm and 550nm by 0.0005 and 0.0006 sr1. The retrieved Rrs has a small negative value at 670nm, lower than AERONET

by 0.0007 sr1. Their difference at 868 is 0.0002 sr1. There are larger uncertainties when larger spatial box is considered. Note10

that this study is done with the AirHARP measurement with 3% uncertainties in the reflectance measurement, which may

impact the accuracy in the comparison between the retrieval and in-situ measurements.

6 Discussion

The NN model greatly improved the speed of the forward model used in the iterative optimization approach and boosted the

efficiency of the FastMAPOL retrievals. The average retrieval speed for one pixel with FastMAPOL is approximately 2.615

seconds with a single CPU core, or approximately 0.3 seconds with a GPU using the same hardware as mentioned in Sect

3.3. Meanwhile, the NN model maintains a high accuracy as shown in Table 3 and Table 4. For retrieval algorithms running

radiative transfer simulation, the accuracy is often tuned down to reduce simulation time. By training a NN, however, the high

accuracy of the radiative transfer model simulation can be achieved, as has been demonstrated in this work. Thus, despite the
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one time high computational costs in generating the training datasets and conducting the training, the trained NN can be applied

efficiently to large observational datasets in the retrieval algorithm.

In the retrieval of the AirHARP field measurement, each pixel has multiple viewing angles that are aggregated from mea-

surements at different times with slightly different solar zenith angles. The NN used in FastMAPOL computes the polarimetric

measurement for specific solar zenith angles for each viewing direction, and therefore, the variation of the solar zenith angle5

can be captured. These effects may be small for AirHARP measurement in ACEPOL, with a maximum solar zenith angle

difference within 0.6 degrees. However, this capability can help to minimize the impacts of the solar angle for HARP2 in

space-borne measurements, which can reach to a maximum difference of 1.5◦ for HARP2 observations.

With the efficient retrievals from FastMAPOL, we have discussed the retrieval performance and uncertainties for the aerosol

properties, including AOD, SSA, refractive index, and particle sizes. Since the AirHARP measurements share many similar10

characteristics with HARP2 as planned for the PACE mission, the knowledge from the retrieval analysis can help to understand

the retrieval performance for the HARP2 instrument in space-borne measurements. Note that HARP2 is likely to have high

accuracy due to the onboard calibration capability and the potential to conduct cross-calibration with the OCI instrument.

For the development of the NN forward model for space-borne measurements, similar training procedures can be applied

with the sensor altitude at the top of the atmosphere instead of the aircraft altitude used in this study. Due to the impact of15

retrieval capability by geometry (Fougnie et al., 2020), solar and viewing geometries according to the PACE orbits need to be

considered.

The water leaving reflectance is obtained from the atmospheric correction process using the aerosol and ocean properties

retrieved from the AirHARP measurements, and a similar procedure can be applied to HARP2 retrievals. Since the hyperspec-

tral OCI in PACE will provide high accuracy measurements, the retrieved information can be applied to OCI and therefore20

assist hyperspectral atmosphere corrections as demonstrated by Gao et al. (2020); Hannadige et al. (2020). However, aerosol

retrieval and atmospheric correction are challenging in the UV spectral range (Remer et al., 2019a). For the ocean bio-optical

model in this study, the water properties are modeled as open ocean waters parameterized by a single Chla value. For complex

coastal water, complex bio-optical models are preferred in the retrieval of both accurate aerosol properties and water leaving

signals as demonstrated by Gao et al. (2019).25

7 Conclusions

We have demonstrated the application of a NN for highly accurate forward model calculations of polarimetric measurements

for AirHARP. Additional NN models were used to conduct atmospheric correction. These models are used in the FastMAPOL

joint retrieval algorithm to conduct simultaneous aerosol property and water leaving signal retrieval. Applications to both the

synthetic AirHARP data and field measurements from ACEPOL are discussed. The uncertainties of the retrieved aerosol prop-30

erties and remote sensing reflectance are discussed for different aerosol loadings. These results from AirHARP retrievals can

help to evaluate the retrieval capabilities for the HARP2 instrument on PACE. In application to field measurements from ACE-

POL, the impacts of the number of viewing angles and the value of cost function to the retrieval quality are discussed. Further
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comparison with the HSRL and AERONET OC data shows good performance in the retrieval of AOD and remote sensing re-

flectance. Furthermore, the NN forward model and the associated retrieval algorithm enable fast and practical retrievals of the

polarimetric measurement, thus making the algorithm practical for analysis of large data volumes expected from space-borne

imagers such as HARP2. The experience and methodology can be used to help the algorithm development of other satellite

instruments in polarimetric remote sensing.5
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Appendix A: Neural networks for AOD and SSA

As summarized in Table 3, we have discussed the NNs used to represent the total reflectance (ρft ) and DoLP (P ft ) which are25

then used as the forward model in the retrieval algorithm. Using the retrieved aerosol parameters, NNs for ρft,atms+sfc and[
CBRDF

Tdtu

]
are used to compute remote sensing reflectance. To expedite and simplify the calculation of aerosol single scattering
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properties such as AOD and SSA as discussed in Section 4, we developed additional four NNs to represent the AOD and SSA

for both fine and coarse modes, respectively. These NNs are only used to analyze the retrieved aerosol properties and are not

used in the retrieval process. The NN architectures and accuracy are shown in Table A1. The input parameters for the fine mode

SSA and AOD are the three submode volume densities, and the real and imaginary parts of refractive index, with a total of 5

parameter. For coarse mode aerosols, there are a total of 4 parameters with only two submodes used. The outputs are the AOD5

and SSA at the four AirHARP bands.

A total of 10,000 training data points are generated in the same way as in Section 3.1 using the Lorenz-Mie code discussed

in Section 2. The NN model accuracy is evaluated with additional 1000 data points not used in the training. As shown in Table

A1, the accuracy is much smaller than the retrieval uncertainties shown in Figure 9, therefore the NNs for AOD and SSA

provide sufficient accuracy to evaluate the aerosol single scattering properties.10

With the fine and coarse mode AOD and SSA evaluated, the total AOD and SSA can be derived. The total AOD (τt) is the

summation of the fine and coarse mode AODs as

τt = τf + τc (A1)

where τf and τc are the fine and coarse mode AODs. The total (or averaged) SSA (ωt) is defined as the ratio of the total

scattering cross-section and the total extinction cross-section for both fine and coarse modes, which can be computed as15

ωt =
τfωf + τcωc
τf + τc

, (A2)

where ωf and ωc are the fine and coarse mode SSA.

Table A1. The accuracy of the NN for the corresponding quantities in terms of the RMSE (σ) between the NN predicted values and the truth

values from the Lorenz-Mie calculations.

Quantities NN architecture σ(440 nm) σ(550 nm) σ(660 nm) σ(870 nm)

AOD(fine) 5× 64× 64× 4 0.004 0.003 0.002 0.001

AOD(coarse) 4× 64× 64× 4 0.001 0.001 0.001 0.001

SSA(fine) 5× 64× 64× 4 0.002 0.003 0.004 0.006

SSA(coarse) 4× 64× 64× 4 0.01 0.01 0.01 0.01
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