
Response to the report of reviewer 1: 
 
Thanks to the reviewer for his time and efforts in reviewing this work. The comments and 
questions are valuable in improving the clarity of this work. We have responses below with 
manuscript revised accordingly. Improved retrieval results with doubled spatial resolution are 
updated in Sec 5. We also made the datasets including all AirHARP retrieval results publicly 
available with a link specified in the manuscript (https://data.nasa.gov/Earth-
Science/FastMAPOL_ACEPOL_AIRHARP_L2/8b9y-7rgh).  

The authors use a preexisting radiative transfer (RT) code to train a neural network (NN) to 
output polarimetric radiances at the angles and wavelengths of the AirHARP instrument. The 
computationally inexpensive NN forward model is then paired with the inversion module of the 
preexisting MAPOL algorithm to produce a new hybrid retrieval (FastMAPOL) that is less 
computationally expensive than the original method. The FastMAPOL retrieval is tested on both 
synthetic data and real ACEPOL measurements made by the AirHARP instrument and, in both 
cases, good retrieval performance is observed. 

Polarimetric remote sensing has the potential to provide enhanced aerosol information but the 
large number of free parameters in most multiangle polarimeter (MAP) retrieval algorithms 
generally prohibits the use of precomputed lookup tables. This fact frequently necessitates 
computationally expensive online radiative transfer calculations which pose a significant 
challenge for operational algorithms that need to process very large data volumes. The authors 
provide a convincing demonstration of a machine learning approach that significantly reduces 
this computational burden. Care is taken to ensure that the NN reproduces the original RT with 
high fidelity and tests involving synthetic and real data both show good retrieval performance. 
The approach appears to be technically sound and has the potential to serve as a foundation for 
retrieval developments pertaining to PACE and other future missions employing MAPs. 
Furthermore, the content of the manuscript is well organized, and the material is clearly 
appropriate for AMT. Therefore, once the comments below have been addressed, I can 
confidently recommend publication. 

 Thanks for the summary and the positive comments.  

Specific Comments 

1. P2, LN21: The list of MAPS in the sentence beginning on this line seems to have an extra 
"and". It also is inconsistent in its use of the name of sensor or the overarching mission. I 

would recommend rephrasing. 

Thank you for the suggestion. We have revised the sentence as follows: 

“Several satellite missions plan to carry MAP instruments, which are scheduled to 
be launched in the time frame of 2023-2024, including the European Space 
Agency (ESA)’s Multi-viewing Multi-channel Multi-polarisation Imager (3MI) 
on board the Metop-SG satellites (Fougnie et al, 2018), the National 
Aeronautics and Space Administration (NASA)’s Multi-Angle Imager for 



Aerosols (MAIA) (Diner et al, 2018) and Plankton, Aerosol, Cloud, ocean 
Ecosystem (PACE) (Werdell et al 2019) missions.”  

Details on PACE instruments are provided in the next paragraph in the manuscript. .  

2. P3, LN22: Did the authors intended to say "...references within)."? 

Corrected. 

3. P4, LN2: Citation should be inline (no leading parenthesis) 

Corrected. 

4. P4, LN4: Should read "...benefits of using..." 

Corrected. 

5. P4, LN32: "have" should be "has" 

Corrected. 

6. P5, LN8: It would be clearer to say something along the lines of "...observational 
altitude..." since not all members of the HARP family are aircraft instruments. 

Thanks. We have revised the phrase as recommended.   

7. P6, LN6: AirHARP's swath width aboard the ER2 should be provided. 

Thank you for the suggestion. The following sentence is moved to the first paragraph in 
Sec 5 with swath width added: 

“AirHARP conducted high spatial resolution measurements with a grid size of 55 
m and swath width of 42km at nadir (up to 60km at far angles). We averaged 
the reflectance and DoLP respectively within a bin box of 10 x 10 pixels (550m × 

550 m).” 

8. P6, LN8: Is σavg the regular standard deviation of all 100 pixels in the box or is it the 
standard error of the mean (e.g., σ/sqrt(N)=σ/10)? The latter strikes me as a more 
appropriate choice as I believe the retrievals are performed on the means of the 
aggregated 10x10 boxes. The definition of σavg needs to be clarified, and justification for 
that particular definition should be provided. 

Thank you for the discussion. σavg is used to capture the spatial variation of geophysical 
properties within the bin box, which provides a good uncertainty indicator for field 
measurement. This is why we used it in our previous noise model. However, how to 
include σavg in the noise model depends on the assumption of the noise properties. From 



our recent tests, we adjusted our approach and further improved our retrieval 
performance through 1) quality check of the measurement data,  2) adding a constraint in 
aerosol model, 3) using σavg to evaluate measurement uncertainty, but not in the noise 
model. Since σ/sqrt(N)=σ/10 is much smaller than the calibration uncertainty, our new 
noise model is similar to what the reviewer suggested. A corresponding discussion is 
provided in Sec 5: 
 
 

“To assess the spatial variability of field measurement, we computed the standard 

deviations for the reflectance (σr,avg)  and DoLP (σP,avg ) within the bin box. 

Representative values are provided in Table 5. The values of σr,avg and σP,avg at 
870nm band are 4.5% and 0.05, respectively, which suggests larger measurement 
uncertainties at 870nm than other bands probably due to small radiometric 
magnitudes. Meanwhile, our retrieval tests showed larger coarse mode retrieval 
uncertainties than synthetic data results. To better constrain retrievals, we assume 
the coarse mode aerosol as sea salt by setting its imaginary refractive index to 
zero.  All other retrieval parameter range are kept the same as in Table 2. 
Furthermore, we found our forward model cannot predict the angular variation of 
DoLP in 440nm band well (with an estimated MAE of 0.04), which contributes a 
major portion to the cost function and increases both fine and coarse mode 
retrieval uncertainties. Therefore, we exclude DoLP in 440nm band from our 
retrievals in this study.” 

The corresponding results are updated in Sec 5, and more details are provided in the 
responses to comments 27-29.  

9. P6, LN18: As I understand it, σNN is actually the difference between the RT code and 
NN, not the NN's uncertainty in an absolute sense. I would recommend clarifying what is 
meant by “uncertainty” here. 

The reviewer is correct. To evaluate the NN accuracy, we generate a synthetic AirHARP 
datasets with multiple angle setup. This is more realistic than the single angle used in 
training data. The NN accuracy is then computed by the RMSE between the NN 
predictions and the synthetic data.  Detailed discussions are in Sec 3.3. We added the 

following sentence for clarification.  

“σNN is evaluated by comparing with synthetic multi-angle AirHARP 
measurements discussed in Sec 3.3. “ 

10. P6, LN32: I generally take "trace gases" to be those gases in the atmosphere other than 
nitrogen, oxygen, and argon. Was Rayleigh scattering from these three non-trace gases 
taken into account above the aircraft? Please clarify. 

Thank you for the question. Full Rayleigh scatterings is considered. We have revised the 
sentence to be more precise as follows: 



“The atmosphere is configured as three layers: a top molecular layer above the 
aircraft, a molecular layer in the middle below the aircraft, and an aerosol and 
molecular mixing layer on the bottom with a height of 2 km. Aerosols are 
assumed to be uniformly distributed in the mixing layer as shown in the left 
panel of Fig. 1. The same vertical structure of the atmosphere was successfully 
used in the inversion of RSP data (Gao et al 2019, 2020). 
 
 
The atmospheric surface pressure is assumed to be one standard atmosphere 
pressure, which is consistent with the value discussed in Sec 5.  Anisotropic 
molecular Rayleigh scatterings are accounted (Hansen et al 1974) .The 
molecular absorption properties are computed by the hyperspectral line-by-line 
atmospheric radiative transfer simulator (ARTS) (Buehler et al. 2005) with the 
molecular absorption parameters of oxygen, water vapor, methane, and carbon 
dioxide from the HITRAN database (Gordon et al. 2017). The gas absorption of 
ozone and nitrogen dioxide are from Gorshelev et al. 2014, Serdyuchenko et al. 
2014 and Bogumil, K., et al. 2003, respectively. The hyperspectral absorption 
coefficients are then averaged within the instrument spectral response function 
and used in the multiple scattering radiative transfer simulation (Zhai et al 2009, 
2010, 2018). The molecular profile used is the US standard atmospheric 
constituent profiles (Anderson et al, 1986) 
“ 

 
The following references are added: 
 

Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln and C. Verdes (2005),  
ARTS, the Atmospheric Radiative Transfer Simulator, 
J. Quant. Spectrosc. Radiat. Transfer, 91(1), 65-93, 
doi:10.1016/j.jqsrt.2004.05.051. 
 
I.E. Gordon, L.S. Rothman, C. Hill et al., "The HITRAN2016 Molecular 
Spectroscopic Database", Journal of Quantitative Spectroscopy and Radiative 
Transfer 203, 3-69 (2017). 
 
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: 
High spectral resolution ozone absorption cross-sections – Part 1: Measurements, 
data analysis and comparison with previous measurements around 293 K, Atmos. 
Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014. 
 
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: 
High spectral resolution ozone absorption cross-sections – Part 2: Temperature 
dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-
2014, 2014. 
 
Bogumil, K., et al. (2003), Measurements of molecular absorption spectra with 
the SCIAMACHY pre‐flight model: Instrument characterization and reference 



data for atmospheric remote‐sensing in the 230–2380 nm region, J. Photochem. 
Photobiol. A: Chem, 157(2–3), 167–184, doi:10.1016/S1010‐6030(3)00062‐5. 

 

11. P7, LN18: The term "visible spectrum" should be replaced with something that also 
includes HARP's 870 nm NIR channel. 

Thank you for the suggestion. We have revised the sentence as follows: 

“For the application to AirHARP bands, p1 for the real part of the refractive index 
is approximately spectrally flat for both the fine and coarse mode aerosols within 
the AirHARP spectral range.” 

12. P7: The vertical profile assumed for the simulated aerosol should be described. 

Thank you for the question. The aerosol profile is assumed uniform within 2km range. 
Please refer to response to comment 10.  

13. P9, LN13: Only 14 quantities are listed but it’s stated that the forward calculation uses 15 
parameters. The 15th parameter should be included in this summary paragraph 
(presumably ozone column density?). 

Thank you for pointing this out. We have added the ozone density in the sentence as 

follows: 

“In summary, the parameters used to represent the forward model include five 
volume densities (one for each submode), four independent parameters for the 
refractive indices of fine and coarse modes, one parameter for wind speed, ozone 
column density, and Chla.” 

14. P9: Should some of the quantities in the equations of section 2.2 have an azimuthal 
dependence, as well as solar and viewing zenith angle dependence? Why do the equations 

here show these quantities to be functions of the latter two, but not relative azimuth? 

Thank you for the comments. The reviewer is correct. There are dependencies on relative 
azimuth. We revised the equation by explicitly adding the relative azimuth into the 

equations (10), (11), (13) and (14). 

15. P9: Equation (11) contains an extra parenthesis. 

Corrected. 

16. P10, LN11: This sentence needs to be reworked so that it is grammatically correct. Also, 

it should be specified exactly which angle is less than 1° (viewing zenith angle?). 



Thank you for the question.  Previously sentence is not accurate. We revised the sentence 
and add more details:   

“To compute the remote sensing reflectance from the multi-angle AirHARP 
measurement, we only consider the reflectance at the minimum viewing zenith 
angle for each wavelength and apply the atmospheric correction and BRDF 

correction as discussed above. For θ!" < 15∘		(θ!	 < 20∘		), the R%/R factor is 

approximately a constant value of 1, but for larger θ!"   angles the ratio increases 

with both wind speed and θ!"  value (Morel et al 1996, 2002). In this study, we 
ignored the	R%/R	 factor in Eq. (14), which will not impact Rrs retrievals from 
synthetic data due to the small viewing zenith angle used, but may cause 
underestimation of Rrs at the edge of the image, as will be discussed in Sec 4 and 
5.” 

Sec 4 added more details regarding synthetic data: 

“Note that the Ro/R factor will not impact the BRDF correction in computing Rrs 
for the synthetic data, because of the small viewing zenith angle used at the four 
AirHARP bands ,which are 1.22◦,1.17◦,0.03◦,3.52◦ respectively “ 

Further discussions are added for field data (please also refer to response to comment 20): 

“As discussed in Sec 2.2, we chose the minimum viewing zenith angle available 
from the measurements after removing the sunglint. The removal of sunglint 
improves the Rrs calculation for Scene 2 as shown in Fig. 16. Moreover, we 
ignored the R0/R factor in Eq. 14 which may cause underestimation of the Rrs at 

the edge of the image where -& can reach as large as 60o. However, it is 

challenging to analyze its impact at large -& angles. R0/R has a strong 
dependency on wind speed, but the retrieved wind speeds from current retrievals 
show large uncertainties. Further work may require a better treatment of sunglint 

and improved accuracy in wind speed.” 

  

17. P11, L2: A more precise description of the method of random sampling should be given. 
Are the variables being drawn from a uniform distribution (log-uniform distribution in 
the case of Chla)? 

Thank you for the suggestion. We revised the sentence as follows: 

“The solar zenith angle, ozone column density, refractive index, and wind speed 
are randomly sampled from a uniform distribution.  Chla is randomly sampled 
from a log-uniform distribution.” 

 



18. P12, LN14: Here it is stated that separate NNs are used for reflectance and DoLP. Instead 
of two separate NNs, another potential approach would have been to use a single NN 
with an 8-dimensional output (4 reflectance + 4 DoLP values). It would be beneficial if 
the authors could further elaborate on the pros and cons of these two possible approaches, 
and their motivation for using the particular 2 network architecture that was ultimately 
chosen. 

Thank you for the questions. We choose the current approach with the consideration of 
both flexibility and efficiency. Combining two NNs together may lead to better 
efficiency. However, there are several challenges with this strategy: 1) as shown in the 
Figure 2 and 3, reflectance and DoLP differ in angular variations which may increase the 
difficulties in training the neural network without increasing the size of NN: 2) there are 
different accuracy requirements for reflectance and DoLP, which is easier to control 
when the two NNs are separated. There could be other ways to combine reflectance with 

DoLP such as working with I, Q, U directly, which we will explore in future work.  

We added the corresponding discussions into Sec. 3.1: 

“ 
To maintain both flexibility and efficiency, we trained two NN models for reflectance 
and DoLP respectively in the next section. Reflectance and DoLP have different accuracy 
requirements as discussed in Sec. 2, and also differ in angular variations as shown in the 
Figs. 2, therefore, it is convenient to control their accuracy through separated training 
procedures. 
“ 

 

19. P19, LN 5: Is the added noise uncorrelated in angle, polarization and wavelength? If so, 
how would the authors expect more realistic calibration errors (which likely will be 
strongly correlated among these three dimensions) to impact their results? 

Thank you for the question. Yes, we assume no correlation in the added noise. We 
conducted an independent study in which noise was added with correlation in angles, and 

observed overfitting in retrievals (reduction of .').  This is related to the fact that some 
noise variations are long angular range in nature, which can be similar to some true 
signals and thus get fitted by the optimization process. The quantified influence depends 
on the magnitude of the noise and the strength of the correlation (Knobelspiesse OE 
2012), which requires further study.  

20. P22: There is an extra parenthesis in the title of the Chla subplot of Figure 9. 

Removed. 

21. P22, LN5: The last two sentences of this paragraph have several grammatical errors and 
are a bit confusing. I suggest rephrasing. 



We revised the sentence as follows: 

“…For wind speed larger than 3 m/s, the averaged retrieval uncertainty is 1.2 m/s 
with a small variation less than 0.1 m/s. “ 

22. P23, LN14: Should read "...less sensitive to outliers." (No "the") 

Corrected.  

23. P23, LN14: "...applied to the synthetic measurements..." 

Corrected. 

24. P23, LN23: The sentence starting on this line has several grammatical errors and needs 

rewriting. 

We revised the sentence as follows: 

“For 440 nm band, when AOD is less than 0.3, the Rrs retrieval uncertainties are 
less than 0.0005 sr-1; but the uncertainties become as high as 0.001 sr-1 at a larger 

AOD of 0.5”. 

25. P23, LN28: It would be clearer if the phrase "the reduction of" was changed to "reduce". 

Revised.  

26. P25, FIG12: The figure would be easier to interpret if the caption explained that the 
"hole" in the middle of the three polar plots was due to water condensation on the lens. I 
thought it was a plotting artifact, as it lines up the "0°" label, until I read the full 
condensation explanation later in the text. It might even be good to remove the "0°" tick 
completely. 

In addition to the explanation in the main text, we added a sentence in the caption: 

“ The central portion in the viewing angle plots is removed due to water 
condensation on the lens.“ 

We prefer to keep the 0 degree symbol to ensure readers understand the central point 

refers to nadir (with no removal of zenith angles in the plots).   

27. P26, LN20: The last sentence needs to have grammatical errors fixed and its meaning 

clarified. 

As discussed for comment 8, we have improved the retrieval performance with a new χ2 
histogram shown below. The discussion of χ2 is combined with a latter sentence as 

discussed for the next comment.  We revised the sentence as follows: 



“The histograms of χ2 for all pixels retrieved in each scene are shown in Fig. 14. 
The most probable χ2 are 1.1, 1.7, and 1.1 respectively.”

 

Figure 14.The histograms of the cost function values over the three scenes as 
shown in Fig. 12 with total pixel numbers of 13491, 13226,and 9159. Only pixels 
over the ocean are considered. 

 

28. P27, LN5: More discussion of the along-track stripping in χ2 values should be provided. 
In many cases, it does not seem to correlate with the number of view angles available. 
For example, the most prominent ~10 pixel wide dark red strip of χ2 in Figure 15 is 
actually offset to the right by about five pixels of the band of missing angles at nadir. 

What is the cause of this artifact? 

Thank you for checking the images and questions. We investigated the stripes, and found 
anomalies from both measurements and retrieved results, which have been corrected (Fig 
15). Meanwhile, we have updated the retrievals as discussed in comment 8. The spatial 
resolutions are also doubled. The new plots are shown below for Figure 15-17. Note that 
due to the use of smaller uncertainties in the noise model (without contribution from 

/(&)), the overall value of .' increased, but we still have a majority of pixels converging 

to within .' < 2~3. 

More discussion was added to the paragraph (also see response to comment 30): 

“For pixels with larger χ2 as shown in Fig. 14, the forward model cannot fit the 
measured reflectance or DoLP well, which may be due to cloud contamination 
(Stap et al 2015), land, or residuals of glint. In scene 1, the top region with large 
χ2 values is mostly due to the impact of thin cloud which is visible from Fig. 13. 
Larger residuals in the 870nm band between measurement and forward model are 
also observed. The retrieved AODs are over-estimated in this region. In scene 2, 
the region with χ2  >3 correlate closely with the thin clouds (Fig 13), which 
influence nearby AOD and Rrs retrievals. For scene 3, χ2  becomes larger than 2 
when close to the coast. This may be due to complex water properties which are 
not well represented by the open water bio-optical model used in the simulation 



(Gao et al 2019). The pixels near the coast are also potentially impacted by the 
bottom effect and adjacency effect of land pixels.” 

 

Fig. 15.The number of viewing angles used in the retrieval (Nv), cost function 
value (χ2), the retrieved AOD (550 nm) and Rrs (550nm) for all pixels in scene 1. 
The HSRL AODs at 532 nm are indicated by the colored dots in the AOD plot. 

  

 

Figure 16. Same as Fig. 15 but for scene 2. For Rrs, viewing angles at least 40◦ 
away from the solar specular reflection direction are used to avoid sunglint as 
shown in Fig. 13. 

 

 

Figure 17. Same as Fig. 15 but for scene 3. The pixels with large χ2 are 
influenced by the land (upper region) and island (lower left).  The retrieved AOD 
and Rrs over land pixels are not shown. The location of the AERONET 
USC_SEAPRISM site is indicated by a red star symbol. 

 



 

29. P28, FIG15-17: If it is easy to add, it would be informative to include a fourth subplot 
with the retrieved Rrs in these figures. 

Thank you for the suggestion. We have added the Rrs figures as shown above. 

30. P29, FIG18-19: I'm struggling to see the value in these two figures given the very coarse 
across-track averaging. Why resolve along-track data at ~0.5km when averaging across-
track at tens of km? In my mind, a better approach might be to average all pixels within a 
circle of some radius of the HSRL/AERONET/SeaPRISM measurements. Alternatively, 
these figures could be removed altogether, while still reporting the average values for 
each of the 3 scenes. (Much of the pixel-level information is already conveyed in figures 

15-17). 

Thank you for the suggestion. We agree with the reviewer, the original comparison is not 
ideal, but they are useful to make clear comparison with HSRL. To fix the above-
mentioned issue, 1) we conducted new retrievals with a higher resolution,  2) pixels in the 
along track direction with 4x4 pixels are averaged, and 3) we kept most pixels with a 
broader criterion in the plots.  Both Fig 18 and 19 are updated and shown below. 
Discussion for AOD are updated in the paragraph: 

“To compare with the HSRL AOD in the along track direction, the retrieved 
AOD (550nm) is averaged within a box of 2.2km x 2.2km (4 x 4 pixels). The 
averaged AOD (550nm) values and the corresponding standard deviations 
are shown in Fig. 18. Pixels with Nv>30 and χ2  <10 are considered. The overall 
averaged values and their standard deviation are also computed and indicated in 
the plots. The averaged HSRL AODs are 0.079, 0.071 and 0.037 for scenes 1 to 3. 
The averaged retrieved AOD(550nm) are 0.096, 0.078 and 0.049 with relatively 
larger retrieval variation of 0.02 to 0.03. For scene 1,  most χ2  values are larger 
than 2, while for the other two scenes, most are less than 2 except for those pixels 
very close to cloud and coast. The retrieved AOD is larger than that of the HSRL 
by 0.03 in the overlapped region which may be influenced by the remaining effect 
of water condensation. In scene 2, the peaks of the retrieved AOD values 
correspond to the χ2  values larger than 2, which are influenced by the nearby thin 
cloud.  There are no overlapped pixels except the one associated with high AOD 
peaks, but the general trend of the retrieved AOD agrees with the HSRL results. 
For scene 3, the retrieved AOD values agree well with the HSRL AOD with an 
average difference less than 0.01 and χ2 mostly less than 2.  However when the 
pixels are close to the coast, both χ2 and AOD increased significantly as discussed 
previously.” 

 



 

Fig. 18 Comparison of the retrieved AOD (550 nm) from AirHARP measurement 
with the AOD (532 nm) from HSRL for Scenes 1 to 3. The AOD (550nm) from 
AERONET USC_SeaPRISM site is shown in scene 3. The AirHARP retrieved 
AOD is averaged with 4x4 pixels (2.2km x2.2km). The averaged and standard 
deviations for both AirHARP retrievals and HSRL products are provided in the 
text. Pixels with Nv>30 and χ2<10 are considered. 

 

Discussions for Rrs in Figure 19 are also updated: 

“Fig. 19 shows the mean value and standard deviation of Rrs averaged in the 
same way as AOD discussed above. There is similar spatial variation between the 
retrieved Rrs and AOD. Pixels with large Rrs uncertainties are mostly associated 
with the large AOD uncertainties shown in Fig. 18.  The Rrs values at 440nm for 
the three scenes are 0.0055, 0.0072, and 0.0030sr-1, where the decrease of Rrs 
from scene 2 to scene 3 may be due to the increase of CDOM close to the coast as 
demonstrated in Fig. 5. Moreover, Rrs at scene 1 are likely to be under-estimated 

due to the large .' and retrieved AOD over the center of scene 1. The averaged 
Rrs values at 550nm remain approximately constant with a value of 0.0003 sr-1 
over all three scenes. Rrs from AERONET USC_SeaPRISM site are indicated in 

scene 3 of Fig 19 and also compared in Figure 20. …“ 

 



Figure 19. Similar to Fig. 18, the retrieved Rrs are computed for the AirHARP 
band of 440, 550, and 670nm bands. The averaged Rrs and its standard deviation 
are shown in the legends. For scene 3, Rrs from AERONET USC_SeaPRISM site 
at wavelengths corresponding to AirHARP bands are indicated by the star 
symbols. 

 
The comparison with the AERONET (Fig 20) is updated correspondingly: 
 

“To better compare with AERONET results, we only considered the pixels with 
χ2<2 and conducted the same averaging ( 4 x 4 pixels) around the 
USC_SeaPRISM site for the retrieved AOD and Rrs. The averaged values and 
their standard deviations are plotted in Fig. 20. The overall retrieved AOD 
spectrum is similar to AERONET results with a difference smaller than 0.01. The 
results are similar to the retrieval results from the Research Scanning Polarimeter 
as reported by Gao et al. (2020). The retrieved Rrs agrees well with the 
AERONET Rrs with a difference less than 0.001 sr-1. Note that this study is done 
with possible AirHARP measurement uncertainty of 3% in reflectance, which 
may impact atmospheric correction accuracy.” 

 

 
Fig 20: Comparisons of the AOD and Rrs from AirHARP retrievals with 
AERONET products. The retrieval results are averaged with 4×4 pixels 
(2.2km×2.2 km) around the AERONET USC_SeaPRISM site. This is similar to 
Fig. 5 and 19 with error bars indicating the standard deviations, but only pixels 
with χ2<2 are considered. The AERONET AOD and Rrs spectra are taken from 
Oct 23, 2017 with the error bars indicating daily variations. HSRL AOD at 
532nm is also shown. 

 
 

31. P30, LN16: Was the speed up factor of FastMAPOL every specified? How long does a 
retrieval using equivalently accurate RT take with regular MAPOL on the same 

hardware? 

Thank you for the questions. We added the information: 



“Comparing to the retrieval speed of approximately 1 hour per pixel using conventional 
radiative transfer forward model, the computational acceleration is 103 times faster with 

CPU or 104 times with GPU processors.” 

32. P21, LN12: I think the authors intend to say "...HARP2 is likely to have higher 
accuracy..." 

Thank you. I believe the author is referring to P31. We have corrected the sentence.  

Furthermore, we have provided the complete dataset from AirHARP retrievals with brief 
discussion in Sec 5: 

“The complete retrieval results, including the aerosol microphysical properties, 
wind speed, Chla and atmospheric correction related datasets, are provided in  
Data availability. The retrieval uncertainties for aerosol microphysical properties 
are relatively large due to the small aerosol optical depths. Chla retrievals are 
sensitive to the aerosol retrievals, and are more challenging to retrieve accurately 
at small values as discussed in Sec 4. ” 
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Abstract. NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023,

will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two Multi-Angle Polarimeters

(MAP): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXplo-

ration one (SPEXone). The MAP measurements contain rich information on the microphysical properties of aerosols and

hydrosols, and therefore can be used to retrieve accurate aerosol properties for complex atmosphere and ocean systems. Most5

polarimetric aerosol retrieval algorithms utilize vector radiative transfer models iteratively in an optimization approach, which

leads to high computational costs that limit their usage in the operational processing of large data volumes acquired by the MAP

imagers. In this work, we propose a deep neural network (NN)
::::::
forward

:
model to represent the radiative transfer simulation of

coupled atmosphere and ocean systems, for applications to the HARP2 instrument and its predecessors. Through the evaluation

of synthetic datasets for AirHARP (airborne version of HARP2), the NN model achieves a numerical accuracy smaller than the10

instrument uncertainties, with a running time of 0.01s in a single CPU core or 1 ms in GPU. Using the NN as a forward model,

we built an efficient joint aerosol and ocean color retrieval algorithm called FastMAPOL, evolved from the well-validated

Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm. Retrievals of aerosol properties and water leaving signals were

conducted on both the synthetic data and the AirHARP field measurements from the Aerosol Characterization from Polarime-

ter and Lidar (ACEPOL) campaign in 2017. From the validation with the synthetic data and the collocated High Spectral15

Resolution Lidar (HSRL) aerosol products, we demonstrated that the aerosol microphysical properties and water leaving sig-

nals can be retrieved efficiently and within acceptable error.
:::::::::
Comparing

::
to
::::

the
:::::::
retrieval

:::::
speed

:::::
using

:::::::::::
conventional

::::::::
radiative

::::::
transfer

:::::::
forward

::::::
model,

:::
the

::::::::::::
computational

::::::::::
acceleration

::
is
::::
103

:::::
times

:::::
faster

::::
with

::::
CPU

::
or

::::
104

:::::
times

::::
with

:::::
GPU

:::::::::
processors.

:
The

FastMAPOL algorithm can be used to operationally process the large volume of polarimetric data acquired by PACE and other

future Earth observing satellite missions with similar capabilities.20
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1 Introduction

Atmospheric aerosols are tiny particles suspended in the atmosphere, such as dust, sea salt, and volcanic ash, that play impor-

tant roles in air quality (Shiraiwa et al., 2017; Li et al., 2017) and Earth’s climate (Boucher et al., 2013). Aerosols influence

the Earth’s reflectivity directly through scattering and absorption of solar light, and indirectly through interactions with clouds.

The radiative forcing from aerosols is one of the main uncertainties in studies of global climate change (Boucher et al., 2013).5

When deposited into ocean waters, aerosols also contribute to the availability of nutrients needed for phytoplankton growth, and

thereby influence ocean ecosystems (Westberry et al., 2019). Accurate knowledge of aerosol optical properties is also important

for atmospheric correction in ocean color remote sensing, wherein the spectral water leaving radiances are retrieved by sub-

tracting the contributions of the atmosphere and ocean surface from the spaceborne or airborne measurements made at the top

of atmosphere (Mobley et al., 2016). The resulting water leaving signals provide valuable information to derive biogeochem-10

ical quantities for monitoring the global ocean ecosystem (Dierssen and Randolph, 2013), and quantifying ocean biochemical

processes (Platt et al., 2008). Accurate assessments of aerosol optical and microphysical properties are thus important for both

atmospheric and oceanic studies.

Multi-angle polarimeters (MAPs) measure polarized light at continuous or discrete spectral bands and at multiple viewing

angles, providing rich information on aerosol optical and microphysical properties (Mishchenko and Travis, 1997; Chowdhary15

et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012). The Polarization and Directionality of the Earth’s

Reflectance (POLDER) instrument pioneered the spaceborne MAP, which was hosted on Advanced Earth Observing Satellite

missions (ADEOS-I; 1996-1997 and ADEOS-II; 2002-2003), and Polarization and Anisotropy of Reflectances for Atmospheric

Sciences Coupled with Observations from a Lidar (PARASOL; 2004-2013) mission (Tanré et al., 2011). The Hyper-Angular

Rainbow Polarimeter (HARP) CubeSat, a small satellite with 3U volume, was launched from the International Space Station20

on Feburary of 2020 and has captured scientific images (UMBC Earth and Space Institute). There are several satellite missions

with MAP instruments
::::::
Several

:::::::
satellite

:::::::
missions

::::
plan

::
to

::::
carry

:::::
MAP

::::::::::
instruments,

::::::
which

:::
are scheduled to be launched in the time

frame of 2023-2024, including ESA
::
the

::::::::
European

::::::
Space

::::::
Agency

::::::
(ESA)’s Multi-viewing Multi-channel Multi-polarisation Im-

ager (3MI) (Fougnie et al., 2018) and NASA
::
on

:::::
board

:::
the

:::::::::
Metop-SG

:::::::
satellites

::::::::::::::::::
(Fougnie et al., 2018),

:::
the

::::::::
National

::::::::::
Aeronautics

:::
and

:::::
Space

:::::::::::::
Administration

:::::::
(NASA)’s Multi-Angle Imager for Aerosols (MAIA) (Diner et al., 2018) and Plankton, Aerosol,25

Cloud, ocean Ecosystem (PACE) (Werdell et al., 2019) missions. A thorough review of the MAP instruments and algorithms

can be found in Dubovik et al. (2019).

The PACE mission will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two MAPs:

a next generation UMBC (University of Maryland, Baltimore County) Hyper-Angular Rainbow Polarimeter (HARP2) (Martins

et al., 2018), and the SRON (Netherlands Institute for Space Research) Spectro-Polarimeter for Planetary EXploration one30

(SPEXone) (Hasekamp et al., 2019a). OCI will provide continuous spectral measurements from the ultraviolet (340 nm) to

near-infrared (890 nm) with Full Width Half Maximum of 5 nm resolution and sampling every 2.5 nm, plus a set of seven

discrete shortwave infrared (SWIR) bands centered at 940, 1038, 1250, 1378, 1615, 2130, and 2260 nm. SPEXone performs

multiangle measurements at 5 along track viewing angles of 0�, ±20� and ±58�, with a surface swath of 100km, and a
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continuous spectral range spanning 385-770 nm at resolutions of 2-3 nm for intensity and 10-40 nm for polarization (Rietjens

et al., 2019). HARP2 is a wide field-of-view imager that measures the polarized radiances at 440, 550, 670, and 870 nm,

where the 670 nm band will measure 60 viewing angles and the other bands 10 viewing angles, with a swath of 1,556 km at

nadir on the Earth surface. To facilitate cross calibrations and validations, a PACE Level-1C common data format has been

developed, with the purpose of projecting all three PACE instruments onto an uniform spatial grid (Plankton, Aerosol, Cloud,5

ocean Ecosystem (PACE) mission, 2020). The PACE instruments will provide an unprecedented opportunity to improve the

characterization of the atmosphere and ocean states (Remer et al., 2019a, b; Frouin et al., 2019).

To retrieve the aerosol information from polarimetric measurements over oceans, several advanced aerosol retrieval algo-

rithms have been developed for both airborne and spaceborne MAPs, such as POLDER/PARASOL(Hasekamp et al., 2011;

Dubovik et al., 2011, 2014; Li et al., 2019; Hasekamp et al., 2019b; Chen et al., 2020), the Airborne Multiangle SpectroPo-10

larimetric Imager (AirMSPI) (Xu et al., 2016, 2019), SPEX Airborne (the airborne version of SPEXone ) (Fu and Hasekamp,

2018; Fu et al., 2020; Fan et al., 2019), the Research Scanning Polarimeter (RSP) (Chowdhary et al., 2005; Wu et al., 2015;

Stamnes et al., 2018; Gao et al., 2018, 2019, 2020), the Directional Polarimetric Camera (DPC)/GaoFen-5 (Wang et al., 2014;

Li et al., 2018). The retrieval algorithms are mostly based on iterative optimization approaches that utilize vector radiative

transfer (RT) models as the forward model. The high computational cost of the RT simulations pose great challenges in the15

operational processing of the large data volumes acquired by the MAP imagers. To alleviate this issue, the SPEX team repre-

sented the polarimetric reflectance for an open ocean system using a deep neural network (NN) and coupled it with a radiative

transfer model for the atmosphere (Fan et al., 2019). This hybrid forward model avoids the direct calculation of the scattering

and absorption properties inside the ocean, and still maintains high accuracy, therefore enabling sufficient efficiency for SPEX-

one data retrieval. For coastal waters, Mukherjee et al. (2020) developed a NN model to predict the polarimetric reflectance20

associated with complex water optical properties. This NN model can be combined with a flexible atmosphere model for MAP

aerosol retrievals over complex waters.

For non-polarimetric remote sensing studies, several NN approaches have been developed to derive aerosol and ocean prop-

erties simultaneously (Fan et al. (2017); Shi et al. (2020) and reference
::::::::
references

:
within). Fan et al. (2017) developed NN

models to directly invert the aerosol optical depth (AOD) and remote sensing reflectance Rrs(�) (sr�1) from the NASA25

Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Shi et al. (2020) developed a NN radiative transfer

scheme for coupled atmosphere and ocean systems including both open and coastal waters, which is then applied in an opti-

mal estimation algorithm for the Cloud and Aerosol Imager-2 (CAI-2) hosted on the Greenhouse gases Observing Satellite-2

(GOSAT-2).

A number of NN models have been developed to directly invert the aerosol microphysical properties from MAP measure-30

ments. Di Noia et al. (2015) discusses the NN employed to retrieve aerosol refractive index, size, and optical depth (AOD) from

GroundSPEX (a ground version of SPEX instrument) measurements. Di Noia et al. (2017) developed a NN inversion method

for airborne MAP measurement over land from RSP. In both works, the results from the NN inversion are further used as initial

values for iterative optimization, and both efficiency and the retrieval accuracy are shown to be improved. Using NN to conduct
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direct inversion is efficient, but it is often viewed as a black box and it is difficult to account for measurement uncertainties.

The combination of a NN inversion with an iterative optimization method shows promise for MAP retrievals.

Even with such ample progress, it is still challenging for current state-of-the-art algorithms to process MAP data opera-

tionally through iterative optimization. In this work, we present a joint retrieval algorithm for aerosol properties and water

leaving signals that uses a deep NN model to replace the radiative transfer forward model for simulation of the polarimetric5

reflectances. This approach is one step further than (Fan et al., 2019)
::::::::::::::
Fan et al. (2019), as both the atmospheric and oceanic

radiative transfer processes are represented by the NN. The NN forward model is then used in an iterative retrieval algorithm

that is significantly more computationally efficient than approaches that use traditional radiative transfer. The benefits
::
of using

a NN model as the forward model in retrieval algorithms can be summarized as follows with details provided in later sections:

– Fast: NN models mostly involve matrix operations that can be evaluated efficiently.10

– Accurate: Given sufficient training data volumes and accuracies, NN models can be trained with high precision.

– Differentiable: The Jacobian matrix of NN models can be represented analytically and therefore further improves effi-

ciency and accuracy in retrievals.

– Transferable: The parameters of a NN can be exported and implemented into existing retrieval algorithms.

The retrieval algorithm we developed is called FastMAPOL, which is evolved from the well-validated Multi-Angular Polari-15

metric Ocean coLor (MAPOL) algorithm (Gao et al., 2018, 2019, 2020) by replacing its forward model with NN models. To

validate the retrieval algorithm, we applied FastMAPOL to both synthetic and field measurements from AirHARP (the airborne

version of HARP2 and HARP CubeSat) for the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign in

2017 (Knobelspiesse et al., 2020). The synthetic AirHARP data is a supplement of the field measurements with a wider range

of aerosol and ocean optical properties, and solar and viewing geometries. The AOD derived from coincident High Spectral20

Resolution Lidar (HSRL, Hair et al. (2008)) and Aerosol Robotic Network (AERONET, Holben et al. (1998)) measurements

are used to evaluate the performance of the AOD retrieval from the AirHARP field measurements. Using the retrieved aerosol

properties, atmospheric correction is applied to the AirHARP measurements to derive the water leaving signal at four AirHARP

bands. The retrieved aerosol products from MAP can also assist hyperspectral atmospheric correction on instruments such as

PACE OCI as previously demonstrated using the aerosol properties retrieved from RSP and hyperspectral measurements from25

SPEX Airborne (Gao et al., 2020; ?)
:::::::::::::::::::::::::::::::::
(Gao et al., 2020; Hannadige et al., 2021). Retrieval uncertainties of both aerosol and wa-

ter leaving signals under various aerosol loadings are also discussed in this study. The retrieval algorithm powered by the NN

forward model provides a practical approach for operational applications of polarimetric aerosol and ocean color retrieval for

PACE, and other satellite missions that utilize polarimeters in the retrieval of geophysical properties from Earth observations.

The paper is organized into seven sections:, Sect. 2 reviews the retrieval algorithm and its radiative transfer forward model,30

Sect. 3 discusses the training and accuracy of the NN forward model, Sec 4. applies the NN forward model to aerosol and water

leaving signal retrievals from the synthetic AirHARP data, Sect. 5. discusses the retrievals on AirHARP field measurements

from ACEPOL campaign, Sect. 6 and 7 provide discussions and conclusions.
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2 Joint aerosol and ocean color retrieval algorithm

In this section, we will discuss the MAPOL retrieval algorithm based on multi-angle polarimetric measurements and the

associated radiative transfer forward model. The retrieval algorithm have
:::
has been validated using both synthetic data (Gao

et al., 2018) and RSP field measurements (Gao et al., 2019, 2020). To apply the retrieval algorithm to AirHARP measurements,

we will first discuss the AirHARP instrument characteristics.5

AirHARP measures the total and linearly polarized radiance at 60 viewing angles at the 660 nm band, and at 20 viewing

angles at the 440, 550, and 870 nm bands. Different from AirHARP, HARP2 reduces the number of viewing angles to 10 at

440, 550, and 870 nm, and maintains 20 viewing angles at 660 nm, in order to fulfill the bandwidth requirement and preserve

information content as much as possible. HARP instruments (AirHARP, HARP CubeSat, and HARP2) use a modified three-

way Phillips prism located after the front lens to split the incident light into the three orthogonal linear polarization states (0�,10

45�, and 90�), which can be recombined to obtain the Stokes parameters Lt, Qt, and Ut at the aircraft
:::::::::::
observational

:
altitude

(Puthukkudy et al., 2020). Circular polarization (Stokes parameter V) is not measured by any of the polarimeters in ACEPOL

as it is negligible for atmospheric studies (Kawata, 1978). We use the total measured reflectance (⇢t(�)) and DoLP (Pt(�)) at

the height of the aircraft with spectral dependencies hereafter implied, which are defined as

⇢t =
⇡r2Lt

µ0F0
, (1)15

Pt =

p
Q2

t
+U2

t

Lt

, (2)

where F0 is the extraterrestrial solar irradiance, µ0 is the cosine of the solar zenith angle, r is the Sun-Earth distance correction

factor in astronomical units.

Based on the MAP measurements, the MAPOL retrieval algorithm is developed to derive both the aerosol properties and

the water leaving signal simultaneously. The retrieval algorithm minimizes the difference between the MAP measurements and20

the forward model simulations computed from vector radiative transfer simulations (Zhai et al., 2009, 2010). By assuming the

measurement and modeling uncertainties follow Gaussian statistical distributions, the retrieval parameters can be estimated

through Bayesian theory using the cost function �2 to quantify the difference between the measurement and the forward model

simulation (Rogers, 2000):

�2 (x) =
1

N

X

i

 
[⇢t(i)� ⇢f

t
(x; i)]2

�2
⇢
(i)

+
[Pt(i)�P f

t
(x; i)]2

�2
P
(i)

!
(3)25

where ⇢t and Pt are the measured reflectance and DoLP as defined in Eqs. (1) and (2), and ⇢f
t

and P f

t
are the corresponding

quantities computed from the forward model. The state vector x contains all retrieval parameters, such as the aerosol size,

refractive indices; the subscript i stands for the index of the measurements at different viewing angles and wavelengths; and

N is the total number of the measurements used in the retrieval. For AirHARP measurements, the maximum value of N is

120 considering all the viewing angles from the four bands. The total uncertainties of the reflectance and DoLP used in the30

algorithm are denoted as �⇢ and �P , which are contributed by both the measurement uncertainties �m and the forward model

5



uncertainties �f (more details in Sect). 3.3:

�2
⇢

= �2
⇢,m

+�2
⇢,f

(4)

�2
P

= �2
P,m

+�2
P,f

(5)

One important component of �m is the calibration uncertainty. AirHARP was calibrated in the lab with an accuracy of 3-5

% for reflectance, and 0.005 for DoLP (McBride et al., 2019). In-flight uncertainty for the AirHARP DoLP is conservatively5

estimated to be at most 0.01 without an onboard calibrator. In this study, we adopted the calibration uncertainty for reflectance

as �⇢,cal = 3%⇢t and for DoLP as �P,cal = 0.01 for all four bands. The accuracy of the HARP CubeSat and HARP2 mea-

surements can be further improved through onboard calibration (McBride et al., 2020; Puthukkudy et al., 2020). AirHARP

conducted high spatial resolution measurements with a grid size of 55 m. We averaged every 10x10 pixels together (a box of

550m ⇥ 550 m). The standard deviations of the pixels within the box are used to estimate the random noise and the
:
In

::::
this10

:::::
study,

:::
we

:::::::::
considered

:::
the

::::
total

:::::::::::
measurement

:::::::::::
uncertainties

::
as

:::
the

:::::::::::
contributions

::::
only

::::
from

:::
the

:::::::::
calibration

::::::
(�cal):

�m = �cal
::::::::

(6)

::::::::
However,

::::
other

::::::::::::
contributions

::::
such

:::
as
:

spatial variability of the geophysical properties (�avg). To account for the total
::::
may

:::
also

:::::::::
contribute

::
to

:::
the

:
measurement uncertainties, we considered the contributions from both the calibration (�cal) and pixel

averaging (�avg) as15

�2
m
= �2

cal
+�2

avg

for both reflectance and DoLP.
:::::
which

::::
will

::
be

::::::::
discussed

:::
in

:::
Sec

::
5.

:::::::::::
Furthermore,

:::::
noise

:::::::::
correlation

::
is

::
an

::::::
import

::::::::
influence

:::
on

:::
the

:::::::
retrieval

:::::::
accuracy

::::::::::::::::::::::::
(Knobelspiesse et al., 2012)

:::
that

:
is
:::::::
ignored

::
in

::::
this

:::::
study

:::
due

::
to

:::
the

::::
lack

::
of

:::::::::
knowledge

:::
on

::::
this

:::::::::::
characteristic

::
for

:::::::::
AirHARP.

:

As observed by AirHARP (Puthukkudy et al., 2020) and RSP measurements (Gao et al., 2020), the sunglint angular pattern20

cannot be well modeled by an isotropic Cox-Munk model.
:::::
Using

:::::
these

::::
data

:::
will

::::::
require

::::::::::::::
characterization

::
of

:::
the

::::::::::::
corresponding

:::::::::::
measurement

:::
and

::::::
model

:::::::::::
uncertainties.

:
To minimize the impact of sunglint in our discussions, we removed the signals within

an angle range of 0� to 40� relative to the solar specular reflection direction. Furthermore, noise correlation is an import

influence on the retrieval accuracy (Knobelspiesse et al., 2012) that is ignored in this study due to the lack of knowledge on

this characteristic for AirHARP.25

The forward model uncertainties �f include the numerical accuracy
::::::::::
uncertainties of the radiative transfer calculation, and

can include any estimation of uncertainties due to the incompleteness of the model to describe the system. For convenience,

as discussed
::::::::
However,

:::
the

:::::
latter

:::
one

::
is

:::::::
difficult

::
to

::::::::
quantify;

:::
we

:::
will

:::::::
discuss

:::
the

:::::::
possible

::::::
sources

:::
for

::
it in the next section.

::::
For

::::::::::
convenience, we will only consider the uncertainty

::::::::::
uncertainties

:
of the NN forward model (�NN ) and the numerical accuracy

of the radiative transfer simulation used for generating the NN training data (�RT ) :
::
as

:
30

�2
f
= �2

RT
+�2

NN
. (7)

::::
�NN::

is
::::::::
evaluated

::
by

::::::::::
comparing

::::
with

:::::::
synthetic

::::::::::
multi-angle

:::::::::
AirHARP

:::::::::::
measurements

:::::::::
discussed

::
in

::::
Sect.

::::
3.3.
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To fully utilize the information contained in the AirHARP measurements, the forward model needs to achieve an accu-

racy level much better than the measurement uncertainties. This becomes the goal of the NN training in the next section, to

reproduced the forward model within an error that is much less than the measurement uncertainty. Detailed comparisons of

the forward model uncertainties and the measurement uncertainties will be provided in the next section. To minimize the cost

function defined in Eq. (3), we use an optimization method, called the Subspace Trust-region Interior Reflective (STIR) ap-5

proach (Branch et al., 1999) as implemented in the Python SciPy package (Virtanen et al., 2020), to solve the state parameters x

iteratively. The method is based upon the Levenberg-Marquart method (Moré, 1978) and shows good stability for the boundary

constraints.

2.1 Forward model

We used a vector radiative transfer model based on the successive order of scattering method for coupled atmosphere and ocean10

systems (Zhai et al., 2009, 2010) to model the measured reflectance and DoLP. The atmosphere is configured as three layers:

a top molecular layer above the aircraftwith only trace gas presented, a molecular layer below the aircraft in the middle, and

an aerosol and molecular mixing layer on the bottom (assumed uniformly distributed within
::::
with

::
a

:::::
height

::
of

:
2 km from the

ground) (Gao et al., 2019)
:::
km.

::::::::
Aerosols

:::
are

:::::::
assumed

::
to
:::
be

::::::::
uniformly

:::::::::
distributed

::
in

:::
the

::::::
mixing

:::::
layer as shown in the left panel

of Fig. 1. The same vertical structure of the atmosphere was successfully used in the inversion of RSP data (Gao et al., 2019,15

2020).

:::
The

:::::::::::
atmospheric

::::::
surface

:::::::
pressure

::
is
::::::::
assumed

::
to

:::
be

:::
one

::::::::
standard

:::::::::
atmosphere

::::::::
pressure,

::::::
which

::
is

::::::::
consistent

:::::
with

:::
the

:::::
value

::::::::
discussed

::
in

:::
Sec

::
5.

::::::::::
Anisotropic

::::::::
molecular

::::::::
Rayleigh

::::::::
scatterings

:::
are

:::::::::
accounted

:::::::::::::::::::::
Hansen and Travis (1974).

::::
The

::::::::
molecular

:::::::::
absorption

::::::::
properties

:::
are

::::::::
computed

::
by

:::
the

:::::::::::
hyperspectral

::::::::::
line-by-line

::::::::::
atmospheric

::::::::
radiative

::::::
transfer

::::::::
simulator

:::::::
(ARTS)

::::::::::::::::::
(Buehler et al., 2005)

::::
with

:::
the

::::::::
molecular

:::::::::
absorption

::::::::::
parameters

::
of

:::::::
oxygen,

:::::
water

:::::
vapor,

::::::::
methane,

::::
and

::::::
carbon

:::::::
dioxide

::::
from

:::
the

::::::::
HITRAN

::::::::
database20

:::::::::::::::::
(Gordon et al., 2017).

::::
The

:::
gas

:::::::::
absorption

::
of

:::::
ozone

:::
and

:::::::
nitrogen

:::::::
dioxide

::
are

:::::
from

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gorshelev et al. (2014); Serdyuchenko et al. (2014); Bogumil et al. (2003)

:
,
::::::::::
respectively.

::::
The

:::::::::::
hyperspectral

::::::::::
absorption

:::::::::
coefficients

::::
are

::::
then

::::::::
averaged

:::::
within

:::
the

::::::::::
instrument

:::::::
spectral

:::::::
response

::::::::
function

:::
and

::::
used

:::
in

:::
the

:::::::
multiple

:::::::::
scattering

:::::::
radiative

:::::::
transfer

:::::::::
simulation

:::::::::::::::::::::::::
(Zhai et al., 2009, 2010, 2018)

:
.
::::
The

::::::::
molecular

::::::
profile

:::::
used

:
is
:::
the

::::
US

:::::::
standard

::::::::::
atmospheric

::::::::::
constituent

:::::::
profiles

:::::::::::::::::::
(Anderson et al., 1986).

::::::
Ozone

::
is

:::
the

:::::
most

::::::::
important

:::
gas

::::
that

:::::::::
influences

::
the

:::::::::
absorption

::::::::::::
transmittance

::
at

:::
the

::::::::
AirHARP

::::::
bands

::
of

::::::
550nm

:::
and

:::::::
660nm.

:::
For

:::
the

::::::::::
application

::
to

:::::::::
AirHARP

::::::::::::
measurements

::
in25

::::::::
ACEPOL,

:::
we

:::
use

:::
the

::::::
ozone

::::::
column

:::::::
density

::
as

:
a
::::
free

:::::::::
parameter

::::
with

:::::
values

:::::
from

:::
the

::::::::::
Modern-Era

::::::::::::
Retrospective

:::::::
analysis

:::
for

:::::::
Research

::::
and

:::::::::::
Applications,

::::::
Version

::
2

::::::::::
(MERRA-2)

:::::::::
developed

::
by

:::::::
NASA’s

::::::
Global

::::::::
Modeling

:::
and

:::::::::::
Assimilation

:::::
Office

:::::::::::::::::
(Gelaro et al., 2017)

::
to

::::::
rescale

:::
the

::::::::
molecular

:::::::::
absorption

::::::
optical

:::::
depth

::::::::
calculated

::::::
under

::
the

:::::::::::::::
above-mentioned

:::::::
standard

::::::::::
atmospheric

:::::::
profile.

Aerosols are diverse in size, composition, and morphology. To capture their variation in the atmosphere, we modeled the

size and refractive index for both fine and coarse modes. The aerosol size is represented by the volume density distribution as30

a combination of five lognormal distributions:

dV (r)

dlnr
=

5X

i=1

Vip
2⇡�v,i

exp

"
� (lnr� lnrv,i)2

2�2
v,i

#
(8)
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where Vi is the column volume density for each submode, the mean radius ri and standard deviation �i are fixed with values of

0.1, 0.1732, 0.3, 1.0, 2.9 µm, and 0.35, 0.35, 0.35, 0.5, 0.5 respectively (Dubovik et al., 2006; Xu et al., 2016). The first three

submodes are categorized as the fine mode aerosol, while the last two submodes are the coarse mode. All aerosols are assumed

to be spherical in the current forward model. The nonspherical particle shape is important in the aerosol model (Dubovik

et al., 2006), and will be considered in future studies. The aerosol refractive index spectra for the fine and coarse modes are5

represented by the principal component analysis in MAPOL (Wu et al., 2015; Gao et al., 2018) as

m(�) =m0 +↵1p1(�), (9)

where p1(�) is the first-order principal component computed from the aerosol refractive index dataset including water, sea salt,

dust-like particles, biomass burning, soot, sulfate, water-soluble, and industrial aerosols (Shettle and Fenn, 1979; d’Almeida

et al., 1991). m0 and ↵1 are two coefficients to determine the spectrum. For the application to AirHARP bands, p1(�) for10

the real part of the refractive index is approximately spectral flat for both the fine and coarse mode aerosols within the

visible spectrum
::::::::
AirHARP

:::::::
spectral

:::::
range. We further assume the spectral shape for the imaginary refractive spectra is also flat.

Therefore, the two
:::
Two

:
parameters can be combined into one to represent the refractive index. In this study, only

::::::::
Hereafter,

::
we

::::
only

:::::
refer

:::
one

::::::::::
independent

:::::::::
parameter

:::
for

::::
each

::::::::
refractive

:::::
index

::::::::
spectrum.

:::::::::
Therefore,

::::
only

:
four independent parameters are

used
:::::::
required to determine the real and imaginary refractive index spectra for the fine and coarse modes. With the aerosol size15

and refractive index, the polarimetric single scattering properties are modeled by the Lorenz-Mie theory and computed by the

code developed by Mishchenko et al. (2002).
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Figure 1. The left panel shows the coupled atmosphere and ocean system used in FastMAPOL including the atmosphere, ocean surface,

and ocean body. The right panel represents a system used for atmospheric correction which only has atmosphere and ocean surface without

scattering in the ocean body. The atmospheres in both systems are modeled as the same three layers. TOA indicates the top of the atmosphere.

The bottom of the atmosphere (BOA) and the top of the ocean (TOO) indicate the locations just above and below the ocean surface,

respectively. As discussed in the next section, all quantities shown in the figures need to be computed from the forward model and represented

by the NN for efficient calculations. Symbols are defined in Table 1.

Table 1. Definition of the symbols for the quantities computed from the forward model (indicated by the superscript f) as shown in Fig. 1.

Symbols Definition

⇢ft Reflectance at the aircraft level, Eq. (1)

P f

t DoLP at the aircraft level, Eq. (2)

⇢f,+t Reflectance at BOA

⇢f,�t Reflectance at TOO

⇢f
t,atms+sfc

Reflectance at the aircraft level for atmosphere and ocean surface only

⇢f,+
t,atms+sfc

Reflectance at BOA for atmosphere and ocean surface only

T f,+
d

Irradiance transmittance from TOA to BOA, Eq. (12)

T f,�
d

Irradiance transmittance from TOA to TOO

tf,+u Radiance transmittance from BOA to sensor, Eq. (13)

The molecular absorption properties are computed by a hyperspectral radiative transfer simulation (Zhai et al., 2009, 2010, 2018)

, including contributions from ozone, oxygen, water vapor, nitrogen dioxide, methane, and carbon dioxide under the US

standard atmospheric constituent profiles (Anderson et al., 1986). Ozone is the most important gas that influences the absorption

transmittance at the AirHARP bands of 550nm and 660nm. For the application to AirHARP measurements in ACEPOL, we

9



use the ozone column density as a free parameter with values from the Modern-Era Retrospective analysis for Research and

Applications, Version 2 (MERRA-2) developed by NASA’s Global Modeling and Assimilation Office (Gelaro et al., 2017) to

rescale the molecular absorption optical depth calculated under the above-mentioned standard atmospheric profile.

For the ocean layer shown in Fig. 1, two ocean bio-optical models are implemented in the forward model of MAPOL:

one with chlorophyll-a concentration (Chla; mgm�3) as the single parameter applicable to open ocean optical properties, and5

the other with seven parameters more suitable to fully describe complex coastal waters (Gao et al., 2019). Since the waters

are mostly
::::::::
generally clear within the ocean scenes in this study(Gao et al., 2020), open ocean model is used for both NN

training and retrievals. The optical properties of open ocean waters include contributions from pure seawater, colored dissolved

organic matter (CDOM), and phytoplankton, where the CDOM and phytoplankton absorption coefficients, and phytoplankton

scattering coefficient and phase function are parameterized by Chla (Gao et al., 2019). Complex costal water model for NN10

trainings will be investigated in future
:
a

::::::::
separated studies. The ocean surface roughness is modeled by the isotropic Cox-Munk

model with a scalar wind speed.
:::::
White

:::
cap

::
is
:::
not

:::::::::
considered

::
in
:::::::
current

:::::
study.

In summary, the parameters used to represent the forward model include five volume densities (one for each submode),

four independent parameters for the refractive indices of fine and coarse modes, one parameter for wind speed,
:::::
ozone

:::::::
column

::::::
density,

:
and Chla. Three additional geometric parameters are used to set up the system, including the solar zenith angle, viewing15

zenith angle, and relative viewing azimuth angle. Therefore, it requires a total of 15 parameters to conduct the radiative transfer

calculation, with a total of 11 independent state parameters that can be retrieved from optimizing the cost function as defined

in Eq. (3).

2.2 Remote sensing reflectance

An important task for the joint retrievals is to obtain the water leaving signal, which is often represented in ocean color studies20

by the spectral remote sensing reflectance defined as Rrs = L+
w
/E+

d
where E+

d
is the downwelling irradiance and L+

w
is the

water leaving radiance just above the ocean surface (Mobley et al., 2016). The remote sensing reflectance can be derived from

the water leaving reflectance reaching the sensor (⇢w) via:

Rrs =

"
⇢w(✓0,✓v)

⇡r2
⇢w(✓0,✓v,�v)

⇡r2
:::::::::::

#
⇥

2

64
CBRDF (✓0,✓v)

T f,+
d

(✓0)t
f,+
u (✓0,✓v)

CBRDF (✓0,✓v,�v)

T f,+
d

(✓0)t
f,+
u (✓0,✓v,�v)

::::::::::::::::::::

3

75 . (10)

where ✓0 and ✓v are the solar and viewing zenith angles,
:::
�v::

is
:::
the

::::::
relative

:::::::
viewing

:::::::
azimuth

:::::
angle. ⇢w represents the signals25

originating from scattering in the ocean that reached the sensor, which can be derived from the atmospheric correction process

as

⇢w(✓0,✓v,�v
::

) = ⇢t(✓0,✓v,�v
::

)� ⇢f
t,atm+sfc

((✓0,✓v,�v
::

) (11)

where ⇢t is the measured total reflectance as defined in Eq. (1) and ⇢f
t,atms+sfc

is the reflectance from a system with only

atmosphere and ocean surface (Mobley et al., 2016) as represented in the right panel of Fig. 1. The same formalism has been30

used to derive Rrs from RSP measurements Gao et al. (2019, 2020).
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The downwelling irradiance transmittance T f

d
is for the solar irradiance from TOA to the surface, and the upwelling radiance

transmittance tf,+
u

is for the water leaving radiance from BOA to the sensor (Gao et al., 2019). Both T f

d
and tf,+

u
are denoted

in Fig. 1 and represented as follows:

T f,+
d

(✓0) =
Ef,+

d
(✓0)

µ0F0
(12)

tf,+
u

(✓0,✓v,�v
::

) =

0

B@
⇢f
t
(✓0,✓v)� ⇢f

t,atm+sfc
(✓0,✓v)

⇢f,+
t

(✓0,✓v)� ⇢f,+
t,atm+sfc

(✓0,✓v)

⇢f
t
(✓0,✓v,�v)� ⇢f

t,atm+sfc
(✓0,✓v,�v)

⇢f,+
t

(✓0,✓v,�v)� ⇢f,+
t,atm+sfc

(✓0,✓v,�v)
:::::::::::::::::::::::::::::::::

1

CA (13)5

where ⇢f,+
t

, ⇢f,+
t,atm+sfc

are reflectance just above ocean surface also denoted in Figure 1 and Table 1.

To remove the dependency of Rrs on the solar and viewing geometries, a BRDF correction CBRDF is applied to adjust Rrs

to the observation with a zenith sun and a nadir viewing direction as defined by Morel et al. (2002):

CBRDF (✓0,✓v,�v
::

) =
Ro(W )

R(✓0
v
,W )

Ro(W )

R(✓0
v
,�v,W )

:::::::::::

⇥ ⇢f,�
t

(0,0)

T f,�
d

(0)

2

64
⇢f,�
t

(✓0,✓0v)

T f,�
d

(✓0)

⇢f,�
t

(✓0,✓0v,�v)

T f,�
d

(✓0)
:::::::::::::

3

75

�1

. (14)

where Ro/R :::::
R0/R:

accounts for reflection and refraction effects when light propagates through the ocean interface.
::::::
(✓0

v
,�v)10

:
is
:::
the

::::::::
direction

::
of

:::
the

::::::::
upwelling

::::::::
radiance

::::::
beneath

:::
the

:::
sea

:::::::
surface,

::::::
where

::
✓0
v::

is
::::::
defined

:::::::
through

::::::
Snell’s

::::
law:

sin✓0
v
= sin✓v/nw,

:::::::::::::::
(15)

::::
with

:::::
water

::::::::
refractive

:::::
index

:::
nw.

:
CBRDF in its original form is defined using the radiance and irradiance just below the ocean

surface (Morel et al., 2002), here we have converted all quantities into the radiance reflectance ⇢f,�
t

and the irradiance trans-

mittance T f,�
d

(✓0) similar to Eqs. (1) and (12). In our study, of AirHARP retrievals of15

::
To

::::::::
compute

:::
the remote sensing reflectance

::::
from

:::
the

::::::::::
multi-angle

:::::::::
AirHARP

:::::::::::
measurement, we only consider the minimum

viewing angle at each wavelength which is less than 1�, the contribution of the R factor is ignored due to its small angular

variations (Morel and Berthon, 1989)
:::::::::
reflectance

::
at

:::
the

:::::::::
minimum

:::::::
viewing

::::::
zenith

:::::
angle

:::
for

:::::
each

::::::::::
wavelength

:::
and

:::::
apply

::::
the

::::::::::
atmospheric

::::::::
correction

::::
and

:::::
BRDF

:::::::::
correction

::
as

::::::::
discussed

:::::
above.

::::
For

:::::::
✓0
v
< 15�

::::::::::
(✓v < 20�),

::
the

::::::
Ro/R:::::

factor
::
is

::::::::::::
approximately

::
to

:
a
:::::::
constant

:::::
value

::
of

::
1,

::
but

:::
for

:::::
larger

::
✓v::::::

angles,
:::
the

::::
ratio

::::::::
increases

::::
with

::::
both

::::
wind

:::::
speed

:::
and

:::
✓v ::::::::::::::::::::::::::::::::::::

(Morel and Gentili, 1996; Morel et al., 2002)20

:
.
::
In

:::
this

:::::
study

:::
we

:::::::
ignored

:::
the

::::::
Ro/R:::::

factor
::
in
::::

Eq.
:::
14,

:::::
which

::::
will

:::
not

::::::
impact

::::
Rrs::::::::::

calculation
::::
from

::::::::
synthetic

::::
data

:::
due

:::
to

:::
the

::::
small

:::::::
viewing

::::::
zenith

:::::
angle

::::
used,

:::
but

::::
may

::::::
cause

:::::::::::::
underestimation

::
of

::::
Rrs::

at
:::
the

::::
edge

:::
of

:::
the

::::::
image,

::
as

:::
will

:::
be

::::::::
discussed

::
in

::::
Sec

:
4
::::
and

:
5. All quantities denoted in Fig 1 need to be determined for the forward model and the calculation of remote sensing

reflectance, and will be represented by NN models.

3 Neural network for forward model25

Deep NN models are developing rapidly due to the advancement in machine learning infrastructure and demands in broad

applications (Goodfellow et al., 2016), and are demonstrated to be efficient in approximating physical functions (Lin et al.,
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2017). In this study, we employed the deep feed-forward NN (Goodfellow et al., 2016) to represent the MAP measurements.

In this section, we will discuss the procedures to train the NN forward model for AirHARP measurements, with its
::::::
models

:::
for

:::::::::
reflectance

:::
and

:::::
DoLP

:::::::::::
respectively,

::::
with

::::
their

:
performance evaluated.

3.1 Training data

To train a NN that can represent the forward model accurately for the AirHARP measurements from the ACEPOL field5

campaign, we generated the training data according to the average aircraft height of 20.1km on the day of 10/23/2017 from

ACEPOL. We simulated 21,000 cases according to the forward model as discussed in the previous section by considering

general aerosol and ocean properties, as well as a large range of solar and viewing geometries with the minimum and maximum

values of all parameters summarized in Table 2. The range of solar zenith angle ✓0, viewing zenith angle ✓v , and relative

viewing azimuth angle �v are from 0� to 70�, 60� and 180�, respectively. The reflectance and DoLP with a viewing azimuth10

angle larger than 180� can be evaluated by the corresponding value less than 180� due to symmetry with respect to the principal

plane (defined by �v = 0� and �v = 180�). For each solar zenith angle, the polarized reflectance is calculated for all viewing

angles within the aforementioned ranges with an angular resolution of 1�. The solar zenith angle, ozone column density,

refractive index, and wind speed are randomly sampled in a linear scale
::::
from

:
a
:::::::
uniform

::::::::::
distribution. Chla is randomly sampled

in a log scale
::::
from

::
a
::::::::::
log-uniform

::::::::::
distribution. The fine mode volume fraction is sampled uniformly within [0, 1], which is then15

randomly partitioned to each submode. To maintain a uniform distribution of the total AOD, we sampled the AOD at 550nm

within [0,0.5] in a linear scale. The volume density Vi of each submode is determined by the total aerosol optical depth and

volume fraction for each mode. Fig. 2 shows one example simulation dataset for the angular distribution of reflectance and

DoLP.
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Table 2. Parameters used to represent the atmosphere and ocean system for the radiative transfer simulation and NN training. ✓0 and ✓v are

the solar and viewing zenith angles. �v is the relative viewing azimuth angle. Vi denote the five volume densities defined in Eq. (8). mr and

mi are the real and imaginary parts of the refractive index. Ozone column density (nO3) in the atmosphere, ocean surface wind speed, and

Chla are also provided. The minimum (min) and maximum (max) values determine the parameter ranges used to generate NN training data,

which are also the constraints in the retrieval algorithm. The initial values are the ones used in the retrieval optimization algorithm, where

✓0, ✓v , �v and nO3 are assumed to be known from inputs.

Parameters Unit min
:::
Min

:
max

:::
Max initial

:::::
Initial

✓0 Degree 0 70 (input
:::

Input)

✓v Degree 0 60 (input
:::

Input)

�v Degree 0 180 (input
:::

Input)

nO3 Dobson 150 450 (input
:::

Input)

mr(fine) (None) 1.3 1.7 1.5

mr(coarse) (None) 1.3 1.7 1.5

mi(fine) (None) 0 0.03 0.015

mi(coarse) (None) 0. 0.03 0.015

V1 µm3µm�2 0 0.11 0.012

V2 µm3µm�2 0 0.05 0.007

V3 µm3µm�2 0 0.05 0.009

V4 µm3µm�2 0 0.19 0.017

V5 µm3µm�2 0 0.58 0.033

Wind speed m/s 0.5 10 5.0

Chla mg/m3 0.001 30 0.1

Figure 2. The reflectance (left panel) and DoLP (right panel) from radiative transfer simulation with the wind speed of 4.13 m/s, the aerosol

optical depth of 0.26, Chla of 0.05 mg/m3, and ozone column density of 196 Dobsons. The antisolar point is indicated by the red asterisk

with a solar zenith angle ✓0 = 46.41�. ✓v and �v indicate the viewing zenith and relative azimuth angles. The principal plane is defined by

the viewing azimuth angle of 0� and 180�.
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We randomly selected 20,000 cases out of the total 21,000 simulated cases for the training and validation processes, and

the remaining 1000 random cases will be used as test cases to evaluate the NN accuracy, which will be discussed in the next

section. To enable the NN
::::
NNs to predict reflectance and DoLP at any given viewing geometry, for each case, we sampled

100 random pairs of viewing zenith and azimuth angles. If the sampled angles fall outside of the pre-defined angular grids,

values from spline interpolation are used. The sunglint angles within an angle of 40� to the solar specular reflection direction5

are removed. Approximately 1 million data points are obtained for each wavelength for training.

::
To

::::::::
maintain

::::
both

::::::::
flexibility

::::
and

:::::::::
efficiency,

:::
we

::::::
trained

::::
two

:::
NN

:::::::
models

:::
for

:::::::::
reflectance

::::
and

:::::
DoLP

::::::::::
respectively

:::
in

:::
the

::::
next

::::::
section.

::::::::::
Reflectance

:::
and

:::::
DoLP

::::
have

::::::::
different

:::::::
accuracy

:::::::::::
requirements

::
as

::::::::
discussed

::
in

:::::
Sect.

::
2,
::::
and

:::
also

:::::
differ

::
in

::::::
angular

:::::::::
variations

::
as

:::::
shown

::
in
:::
the

:::::
Figs.

::
2,

::::::::
therefore,

::
it

:
is
::::::::::
convenient

::
to

::::::
control

::::
their

::::::::
accuracy

::::::
through

::::::::
separated

:::::::
training

::::::::::
procedures.

3.2 Neural network training10

A feed-forward NN can be defined recursively with one input layer, one output layer, and k hidden layers (Aggarwal, 2018):

h1 = �(WT
1 x+b1) (16)

hp+1 = �(WT
p+1hp +bp+1),p= 1, ...,k�1 (17)

y = WT
k+1hk +bk+1 (18)

where x is the input parameter vector including all 15 parameters needed to define the forward model as listed in Table 2.15

Here x not only contains the retrieval parameters in the state vector defined in Eq. (3) but also include additional non-retrieval

parameters such as the solar zenith angle, viewing zenith and azimuth angles and the ozone column density. y is a four-

dimensional output vector for reflectance or DoLP at the four AirHARP bands. The weight matrix Wp+1 connects the p-th

and (p+1)-th NN layers. The bias vector for the (p+1) layer is defined as bp+1 . The output of each layer hp+1 becomes the

input of the next layer as shown in Eq. ??
::
18. k is the number of hidden layers, k+1 refers to the output layer. In this study, we20

tested several NN architectures and eventually chose three hidden layers with the number of nodes of 1024, 256 and 128 as

shown in Table 3. The nonlinear activation function � used in this model is the LeakyReLU function. For each vector element,

it ,
:::::
which

:
is defined as

�(z) =max(0, z)+ 0.01⇥min(0, z). (19)

::::
Both

::::::::::
LeakyReLU

::::
and

:::::
ReLU

:::::::
(defined

::
as

:::::::::
max(0,z))

::::::::
activation

::::::::
functions

:::
are

::::::
simple

::
in

::::
their

:::::::::::
mathematical

::::::
forms,

::::
and

:::
are

:::::
tested25

::
in

:::
our

:::
NN

::::::::
trainings.

::::::::::
LeakyReLU

::
is
:::::::::
eventually

::::::
chosen

:::
due

:::
to

::
its

::::::
slightly

:::::
better

::::::::
accuracy

::::::::
achieved

::::
than

::
the

::::
NN

::::
with

::::::
ReLU.

The training process is to minimize the cost function defined as the mean square error between the training data generated

from radiative transfer simulations and the NN predicted values (Aggarwal, 2018). All parameters in the neural network

weight matrices and bias vectors, over 670,000 numbers, need to be trained. With this large number of parameters, it is a

challenging task to avoid overfitting where the model works well for the training dataset but poorly for the dataset not used in30

the training process. Several training procedures are performed for reflectance and DoLP data to avoid overfitting and improve

NN performance:
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1. Both input and output data are normalized before training. We normalize the input data into the range of [0,1] using the

minimum and maximum values from the datasets as listed in Table 2. The reflectance and DoLP in the output layers are

normalized by dividing their standard deviation of the training data at each wavelength.

2. The Adaptive Momentum (Adam) algorithm (Kingma and Ba, 2014) with weight decay regularization (Loshchilov and

Hutter, 2019) is used to update the weights and bias of the NN. The training dataset is divided into multiple mini-batches,5

each with 1024 random samples. The training iterations loop through all mini-batches in the training data (each loop is

called an epoch). Convergence requires training through multiple epochs, where mini-batches are resampled in each

epoch.

3. The learning rate determines the step size in the parameter update. We use an exponential decay schedule to reduce the

learning rate: we start with a learning rate of 0.005 and reduce the learning rate by a factor of 10 every 200 epoches.10

4. To monitor over-fitting in the training process, we split the data into 70% for training and 30% for validation. We conduct

the optimization based on the training dataset, and meanwhile, we monitor the performance of training by applying the

NN model on the validation dataset. To avoid overfitting, the early-stopping approach is employed where the training is

stopped when the cost function on the validation dataset stops to reduce for a threshold of 50 epochs.

The machine learning Python library Pytorch is used for the training (Paszke et al., 2019). The trained NN model is used15

to replace the radiative transfer model to compute the reflectance and DoLP in the retrieval algorithm. The Jacobian
:::::
Jacob

::
ian

:
matrix used in the optimization is computed by the finite difference approximation of the partial derivatives of reflectance

and DoLP with
:
respect to the retrieval parameters. Here central difference method is used. Note that the Jacobian matrix can

also be computed analytically from the NN model using the automatic differentiation techniques based on the chain rule of

differentiation (Baydin et al., 2018). This will be a topic in our future studies.20

3.3 Neural network accuracy

After training the NN model, we evaluated its accuracy using synthetic AirHARP measurements generated from the 1000

simulation cases which have not been used in the training and validation process. Each simulation dataset includes polarized

reflectance on regular viewing angle grids, which are interpolated to the viewing geometry of AirHARP to create synthetic

measurement data and compare with the NN predictions. Glint angles are excluded from the comparison because the NNs are25

not trained over these angles. As one example shown in Fig. 4
:
3, both the reflectance and DoLP are in good agreement between

the synthetic data and the NN results, where the maximum absolute differences for reflectance and DoLP are within 0.001 and

0.0025. This translates to a difference for both reflectance and DoLP mostly less than 1%
::
for

::::::
bands

::::
440,

:::
550

::::
and

::::::
670nm. The

maximum percentage difference can be as large as 3% for 870nm bands due to the small reflectance magnitude.
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Figure 3. The synthetic HARP reflectance (left panel) and DoLP (right panel) sampled from the radiative transfer data shown in Fig. 2. The

positive and negative signs of the viewing zenith angles indicate the azimuth angles of �v = 116.2� and 180� +�v .

The comparison with all 1000 synthetic datasets and their NN predictions are shown in Fig. 4. The mean absolute error

(MAE), and the root mean square error (RMSE) between the simulation data (Ti) and the NN predicted data (Ri) shown in

Fig. 4 are defined as

MAE =
1

N

NX

i=1

|Ri �Ti|, (20)

RMSE =

vuut 1

N

NX

i=1

(Ri �Ti)2. (21)5

Both MAE and RMSE are useful metrics, where MAE has less dependency on outliers comparing with RMSE.
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Figure 4. Comparison between the radiative transfer simulation and NN prediction, left panel: reflectance (⇢); right panel: DoLP (P ). The

scatter plots are shown in the top panel, the absolute different in the middle panel, and the percentage difference in the bottom panel. For

each plot, the data points for the 550, 660 and 870nm bands are shifted upward by constant offsets consecutively as indicated by the solid

cyan lines.

Analysis shows that the statistics of the differences between the NN prediction and the RT simulations as shown in Fig.

4 can be well modeled by Gaussian distributions and characterized by RMSE. Therefore the RMSE is used to represent the

NN uncertainties for both reflectance (�⇢,NN ) and DoLP (�⇢,NN ) and will be incorporated into the total uncertainties in the

cost function. Table. 3 summarizes the uncertainties of the NN models. The �⇢,NN at 440 nm is 0.0006, which decreases to

0.0004 at 870 nm. However, due to the smaller reflectance magnitude at 870nm, the corresponding RMSE for the percentage5

reflectance difference as shown in Fig. 4 is increased from 0.4% at 440nm to 1.0% at 870nm. For DoLP, the maximum �P,NN

is 0.003 at 870 nm which decreases to 0.0016 at 440 nm. The uncertainties can be further improved with more training data

points. For the readers’ information, RMSE of the NN model trained with 20,000 cases (1 million data points) decreases by
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a factor of
p
2 in comparison with the one using 10,000 cases (0.5 million data points). It takes 0.01s in a single-core CPU

(AMD EPYC Processor) or 1 ms in a GPU (GeForce GTX 1060) to predict all 120 angles for both reflectance and DoLP in the

NN forward model.
:::::::::::
Furthermore,

:::
the

::::
data

::::
sizes

:::
for

:::
the

::::
NNs

:::
are

::::::::
minimal

:::::
which

:::
are

::::::
1.2MB

:::
for

:::
the

:::::::::
reflectance

::::
and

:::::
DoLP

::::
and

:::
less

::::
than

::::::
100KB

:::
for

:::
the

:::::
factor

:::::::::::::
[CBRDF /Tdtu]:::::::

(details
::
in

::::
Sect.

:::
3.4

::
as

::::::
shown

::
in

:::::
Table

::
3.

Table 3. The accuracy of the NN for the corresponding quantities in terms of the RMSE (�NN ) of the difference between the NN pre-

dicted values and the truth values from radiative transfer simulation. The NN architecture denotes the number of the nodes in each layer.

:::
The

:::::::::::
corresponding

:::
NN

::::
data

::::
sizes

:::
are

:::::::
indicated.

:
Remote sensing reflectance is computed by Eq.(10) using the NNs for ⇢f

t,atms+sfc
and

[CBRDF /Tdtu] as discussed in Section
::::
Sect.3.4.(The percentage values listed below in the parenthesis are the percentage uncertainties

defined as the RMSE of the percentage difference between the RT simulation and NN predictions.)

Quantities NN architecture
:::
Size �NN (440nm) �NN (550nm) �NN (670nm) �NN (870nm)

P f

t 15⇥ 1024⇥ 256⇥ 128⇥ 4
::
1.2

::::
MB 0.0016 0.0020 0.0024 0.0030

⇢ft 15⇥ 1024⇥ 256⇥ 128⇥ 4
::
1.2

::::
MB 0.00061(0.4%) 0.00046(0.5%) 0.00041 (0.6%) 0.00039 (1.0%)

⇢f
t,atms+sfc

14⇥ 1024⇥ 256⇥ 128⇥ 4
::
1.2

::::
MB 0.00084(0.4%) 0.00065(0.6%) 0.00057 (0.9%) 0.00055 (1.3%)h

CBRDF
Tdtu

i
15⇥ 128⇥ 128⇥ 4

:
86

:::
KB

:
0.02(0.9%) 0.01(0.7%) 0.01(1.0%) 0.01(1.0%)

Rrs *Eq (10)
::::
N/A 0.0004 0.0002 0.0002 0.0001

The assessment of the NN accuracy is relative to the synthetic measurements simulated by the vector radiative transfer5

simulations. To account for the modeling uncertainties of the forward model �f , we consider both the NN accuracy �NN

and the numerical accuracy of the radiative transfer simulations �RT for reflectance and DoLP, respectively. Uncertainties

due to incomplete assumptions in the forward model are not considered. Several internal parameters determine the numerical

accuracy of the radiative transfer simulations. In the framework of the successive order of scattering (Zhai et al., 2008, 2009),

these parameters include the number of scattering orders (Ns), the number of Gaussian quadratures for discretizing the viewing10

zenith angle in the atmosphere (Pa) and ocean (Po), and the order of Fourier decomposition (M ) for the viewing azimuth

angle, and the order of Legendre expansion (L) of the single scattering phase function. In this study, we chose N = 20,

Pa = 32, Po = 64, M = 32, and L= 32, which has a higher accuracy than the radiative transfer forward model directly used

in our previous retrieval studies Gao et al. (2020).

To quantify the accuracy of the radiative transfer calculation used for generating training data (�RT ), we simulated an15

additional 1000 synthetic AirHARP datasets with all internal parameters doubled as the most rigorous calculations, and the

viewing angular resolution was reduced from 1� to 0.5� in order to reduce interpolation errors. The resultant reflectance and

DoLP values are compared between these two sets of radiative transfer calculations. The RMSE for each band can be used as

a measure of the accuracy for the radiative transfer calculation used to generate the training data (�RT ). The uncertainties �RT

for reflectance and DoLP are summarized in Table 4, with reflectance uncertainties less than 0.00015 and DoLP uncertainties20

less than 0.0007 for all AirHARP bands. �⇢,RT is about four times smaller than the NN uncertainties, and �P,RT is about 4 to

10 times smaller. Therefore, NN uncertainties are not dominated by the uncertainties of the RT simulation. The measurement
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uncertainties from calibration (�cal) and pixel averaging (�avg) as discussed in Section 2 are also summarized in Table 4, which

shows the .
::::
The total forward model uncertainties �f =

p
�2
RT

+�2
NN

as approximated in Eq. (7) are much smaller than the

total measurement uncertainties �m =
q
�2
cal

+�2
avg

as defined in Eq. (6).
::::
�cal.:The overall uncertainties used in the retrieval

cost function in Eq (3) are dominated by the measurement contributionsas we expected. .
:

Table 4. Comparisons of the uncertainties for reflectance (⇢) and DoLP (P) for both measurement and forward model including calibration

uncertainty (�cal), the uncertainty from averaging AirHARP pixels into a 550 m ⇥ 550 m box (�avg), the radiative transfer simulation uncer-

tainty (�RT ), and the NN uncertainty (�NN ). Same �⇢,NN and �P,NN have been shown in Table 3, and are repeated here for comparisons.

(Same as Table 3, the percentage values listed in the table indicate the percentage uncertainties.)

Uncertainties 440nm 550nm 670nm 870nm

�⇢,cal 3% 3% 3% 3%

�⇢,avg 0.0006 (0.3%) 0.0004 (0.5%) 0.0004 (1.0%) 0.0004 (1.7%) �⇢,RT 0.00012 (0.08%) 0.00005 (0.07%) 0.00010 (0.2%) 0.00015 (0.4%)

�⇢,NN 0.00061 (0.4%) 0.00046 (0.5%) 0.00041 (0.6%) 0.00039 (1.0%)

�P,cal 0.01 0.01 0.01 0.01

�P,avg 0.006 0.006 0.009 0.020 �P,RT 0.0002 0.0002 0.0005 0.0007

�P,NN 0.0016 0.0020 0.0024 0.0030

Furthermore, in this study higher accuracies from the radiative transfer simulations are used for the NN training for compari-5

son with the accuracies from the radiative transfer model directly used in our previous retrieval algorithm. Since the simulations

of the training data can be conducted independent to the retrieval algorithm, higher computational costs can be accommodated

to improve NN forward model accuracy. After the NN model is trained, the model can be applied to the retrieval algorithm

through efficient matrix operations.

3.4 Neural network model for remote sensing reflectance10

As discussed in Sect. 2.2, the water leaving signals are represented by the remote sensing reflectance as defined in Eq. (10)

(Mobley et al., 2016). To conduct the atmospheric correction in Eq. (11), we need to determine the reflectance ⇢f
t,atmos+sfc

at

the aircraft level, transmittance tf
u

and T f

d
, and the BRDF correction coefficient CBRDF . Based on Eq. 10, we combined T f,+

d
,

tf,+
u

, and CBRDF into a single term denoted as [CBRDF /Tdtu]. To efficiently determine Rrs, two NNs need to be trained to

represent ⇢f
t,atmos+sfc

and [CBRDF /Tdtu], respectively,
:
.15

Following similar NN training schemes as discussed previously, we conducted 10,000 simulations to determine the re-

flectance at aircraft altitude ⇢t,atmos+sfc from a system with only atmosphere and ocean surface (right panel of Fig. 1), and

trained the NN for ⇢t,atmos+sfc in the same way as ⇢f
t

. Since this system only includes atmosphere and ocean surface but

without ocean body, there are total 14 input parameters (without Chla). To train a NN for [CBRDF /Tdtu] with T f,+
d

, tf,+
u

, and

CBRDF defined in Eqs. (12),(13) and (14), we obtained five additional quantities corresponding to the above-mentioned 10,00020

cases with and without ocean body: for the fully coupled system with atmosphere, ocean surface and ocean body (left panel of
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Fig. 1), we computed the reflectance just above and below the ocean surface (⇢f,+
t

and ⇢f,�
t

), and irradiance transmittance just

above and below the ocean surface (T f,+
d

and T f,0
d

); for the system without ocean body but with ocean surface (right panel of

Fig. 1), we computed the reflectance just above the ocean surface (⇢f,+
t,atms+sfc

). The accuracy of the NNs for ⇢f
t,atmos+sfc

and

[CBRDF /tuTd] are evaluated and shown in Table 3, which are in the same order of uncertainty magnitudes in percentage as

:::
has

::
an

::::::::
accuracy

::::::
around

:::
1%

::::::
similar

::
to other quantities.5

To evaluate the overall accuracy for the Rrs after the BRDF correction, we conducted radiative transfer simulations with a

zenith sun and a nadir viewing direction, and obtained the truth remote sensing reflectance using the upwelling radiance and

downwelling irradiance just above the ocean surface as examples shown in Fig. 5. The predicted Rrs were computed from Eq.

(10) after the application of two NNs. The RMSE of the difference between the simulated and NN predicted Rrs are shown

in Table 3 with a maximum value of 0.0004 at wavelength 440 nm, and smaller than 0.0002 in other bands. These values10

including all uncertainties including the accuracy of the NN and assumptions in the BRDF model.

Figure 5. Comparison of the truth Rrs (RT) and the neural network (NN) computed Rrs. The truth Rrs is computed from radiative transfer

simulations with a zenith sun and nadir viewing direction. The NN computed Rrs is following Eq. (10).

4 Joint retrieval results on synthetic AirHARP measurements

The NN forward models for reflectance (⇢f
t

) and DoLP (P f

t
) are used in the FastMAPOL retrieval algorithm as discussed in

Sect. 2. To evaluate the performance of the retrieval algorithm, we conducted retrievals on the synthetic AirHARP data. The

creation of the synthetic data is discussed in Sect. 3.3. To account for the measurement uncertainties, random noise is added15

to the simulated data according to the calibration uncertainties as listed in Table 4. The total uncertainties in the cost function

include contributions from calibration (�cal), radiative transfer simulation (�RT ), and NN model (�NN ). Uncertainties from

pixel averaging (�avg) for the AirHARP field measurements are not considered in the synthetic dataset.

Using the initial values as listed in Table 2, a total of 1000 synthetic AirHARP cases are retrieved with the cost function

values(�2) summarized in Fig 6. Retrievals with �2 < 1.5 are chosen in our following discussion, which includes 96% of all20
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retrieval cases. Gao et al. (2020) showed that the retrieval results depend on the initial values. Testing with several random sets

of initial values shows that the statistics of the retrieval results from the 1000 synthetic cases are robust. As demonstrated by

Di Noia et al. (2015) and Di Noia et al. (2017), a better choice of initial values for each pixel in the optimization may further

improve the overall retrieval accuracy.

Figure 6. Histogram of the cost function values (�2) with initial values as specified in Table 3 with a total of 1000 cases. The most probable

�2 is 0.82. A threshold of �2 < 1.5 is used in the discussion.

With the directly retrieved aerosol refractive index and volume densities (see Table 2) as inputs, the aerosol optical depth5

(AOD) and single scattering albedo (SSA) for both the fine and coarse modes, were computed using additional NNs to represent

the Lorenz-Mie calculations in Appendix A. The retrieved total AOD, SSA, wind speed, and Chla are compared with the truth

values as shown in Fig. 7. Total AOD indicates the summation of the fine and coarse mode AODs and total SSA is the ratio

of the total scattering and extinction cross-sections, both are specified in in Appendix A. For fine aerosol, the AOD, SSA,

refractive index (mr), effective radius (reff ) and variance (veff ) are shown in Fig. 8. The color plots indicate the data point10

density (normalized by its maximum value) approximated by a kernel density estimation method (Silverman, 1986).

In order to quantify the variation of the retrieval uncertainties with respect to different aerosol loadings, we computed the

the RMSE between the retrieved and truth values at five AOD ranges including [0.01,0.1], [0.1,0.2], [0.2,0.3],[0.3,0.4] and

[0.4,0.5]. The each AOD ranges includes an approximate 200 cases. Note that as discussed in Sect. 3.3, the total AOD and the

fine mode volume fraction are uniformly sampled for the simulated data, therefore, there is an equal mixing fraction of fine and15

coarse mode aerosol for each AOD range. The retrieval uncertainties for aerosols are shown in Figure 9 with the corresponding

ranges indicated by AOD values from 0.1 to 0.5. All discussions regarding the AOD and SSA are for wavelength of 550nm in

this section.

As shown in Fig. 7 and Fig. 9, the errors of the retrieved total AOD increase with aerosol loadings: the uncertainty (evaluated

using RMSE) is 0.008 and 0.015 for the AOD range [0.01, 0.1] and [0.1,0.2], and increases to 0.035 for the AOD range [0.4,0.5].20

Similar absolute uncertainties are found for both the fine and coarse mode AODs with a value slightly smaller. In percentage,
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the total AOD uncertainties is 28.3% at the AOD range [0.01, 0.1] where the large uncertainties is due to the cases with small

AODs. For the AOD range from [0.1,0.2] to [0.4,0.5], the AOD uncertainties further decrease from 14.4% to 5.6%.

Similar to the total AOD uncertainties, the total SSA uncertainties decreases with AOD from 0.05 to 0.02. The fine mode

SSA uncertainties reduce similarly from 0.05 to 0.03. The uncertainties for coarse mode SSA reduces slightly from 0.1 to 0.08

which is more than twice larger than the fine mode SSA uncertainties. The uncertainties for the fine mode mr, reff and veff5

shows a larger value in the AOD bin of [0.01,0.1] of 0.06, 0.024 µm, 0.08, and then remain close to constant with a value of

0.03, 0.01 µm and 0.03 respectively. The averaged uncertainties for coarse mode mr, reff and veff are approximately 0.08,

0.5 µm and 0.15 respectively weakly AOD dependency. The coarse mode mr uncertainty are more than twice to the fine mode

uncertainty. The larger uncertainty values for coarse mode reff and veff are also related to their large particle size.

Figure 7. The comparisons of the retrieved and truth values for total AOD (550 nm), SSA (550 nm), wind speed, and Chla are shown in the

top panels. The dashed line indicates the linear regression fitting with y = �x+↵, where � is the slope and ↵ is the intercept. The lower

panels show the difference between the retrieved and truth values of the corresponding upper panel parameters as a function of the total AOD

at 550 nm.
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Figure 8. The comparisons of the retrieved and truth values for the fine mode aerosol parameters including AOD, SSA, refractive index

(mr), effective radius (reff ) and variance (veff ).

Figure 9. The retrieval uncertainties at various aerosol loadings for AOD, SSA, refractive index (mr), effective radius (reff ) and variance

(veff ), wind speed, and Chla. AOD values at the x-axis from 0.1 to 0.5 indicate the five ranges of total AOD including [0.01,0.1], [0.1,0.2],

[0.2,0.3],[0.3,0.4] and [0.4,0.5] which are used to compute the corresponding uncertainties. Chla uncertainties are evaluated in terms of MAE

in log scale (see Eq. (22)) and all other parameters are evaluated in terms of RMSE. AOD(%) indicate the percentage AOD uncertainties

comparing to the truth AOD.
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For wind speed retrievals as shown in Fig. 7 the agreements between the truth and retrievals depend strongly on the wind

speed value itself: when the wind speed is small, there is less retrieval sensitivity due to the removal of glint; for larger

wind speed, the agreements are improved, likely due to the larger range of angles influenced by wind speed. The retrieval

uncertainties are shown in Fig. 9, for wind speed (WS) smaller than 3 m/s, the uncertainty increases from 1.5 to 2.1 m/s for

AOD ranges from [0.1,0.2] to [0.4, 0.5]. While for
:::
For wind speed larger than 3 m/s, the

:::::::
averaged retrieval uncertainty is almost5

an constant of 1.2 m/s with a small increase
:::::::
variation less than 0.1 m/s. The retrieved and truth Chla is compared in Fig. 7

where the MAE in log scale , or MAE(log), is used with definition as:

MAE(log) = 10Y where Y =
1

N

NX

i=1

| log10(Ri)� log10(Ti)| (22)

where Ri and Ti denote the retrieval and truth values. MAE(log) is recommended by Seegers et al. (2018) as a better metrics

for Chla, which indicates the averaged ratio between the retrieval and truth values. The dependency of the MAE(log) for10

Chla with the aerosol loadings is shown in Fig. 9. The Chla retrieval performance depends on the magnitude of the Chla.

In this work, we chose four ranges of Chla according to the trophic regions discussed in (Seegers et al., 2018). Note that

Chla from in-situ measurements is typically lager than 0.01mg/m3 and we chose a broader range of Chla with its minimum

value of 0.001mg/m3 as listed in Table 2 for sensitivity studies. For 0.01mg/m3 < Chla < 0.1mg/m3 and 0.1mg/m3 <

Chla < 1mg/m3, Chla retrieval uncertainties vary within 1.3 to 1.6 when AOD<0.3, and then increase to 2.3 at AOD range15

[0.4,0.5]. For Chla > 1mg/m3 and Chla < 0.01mg/m3, the uncertainties are generally larger with a value around 2 to 3.

With the retrieved aerosol and ocean properties, the atmospheric correction procedures can be applied to compute the remote

sensing reflectance as discussed in Section
::::
Sect. 3.4. The comparison of the retrieved Rrs with the truth data is shown in Fig.

5. To account for the various solar geometries, the BRDF correction has been applied on
::
to the retrieved Rrs as discussed in

Section 3.4.
::::
Sect.

:::
3.4.

:::::
Note

:::
that

:::
the

::::::
Ro/R :::::

factor
:::
will

:::
not

::::::
impact

:::
the

::::::
BRDF

::::::::
correction

::
in
:::::::::
computing

::::
Rrs:::

for
:::
the

:::::::
synthetic

:::::
data,20

::::::
because

::
of

:::
the

:::::
small

:::::::
viewing

:::::
zenith

::::::
angles

::::
used

::
at

:::
the

:::
four

:::::::::
AirHARP

:::::
bands,

::::::
which

:::
are

:::::
1.22�,

::::::
1.17�,

:::::
0.03�,

:::::
3.52�,

:::::::::::
respectively.

The truth Rrs was computed with a zenith sun and a nadir viewing direction, emphasizing the need for the latter correction

to the MAP observations. Overall Rrs uncertainties for the four bands are 0.007, 0.0004, 0.0002 and 0.0002 as shown by the

RMSE in Fig. 10. MAE showed values of 0.0006, 0.0003, 0.0002 and 0.0001, which are less sensitive to the outliers. Note

that the atmospheric correction is applied on
:
to

:
the synthetic measurements without adding additional random noise in order to25

evaluate the impacts on Rrs uncertainties from only aerosol and ocean surface properties retrievals. The retrieval uncertainties

for Rrs for each AirHARP bands are shown in Fig. 10 depending on the aerosol loadings: larger uncertainties are found with

larger aerosol optical depth.

The PACE accuracy requirements on ocean color are specified in terms of the water-leaving reflectance, which can be

converted to those of Rrs by dividing them by a factor of ⇡. The resultant requirements in terms of Rrs are 0.0006 sr�1 or 5%30

from 400 to 600 nm, and 0.0002 sr�1 or 10% from 600 to 710 nm (Werdell et al., 2019). As shown in Fig. 11, Rrs at 550nm

are within the requirement of 0.0006 sr�1 for all AOD ranges. For 440 nm band,
:::::
when

::::
AOD

::
is
::::
less

::::
than

:::
0.3,

:
the Rrs retrieval

uncertainties are larger than the requirement when AOD is larger than 0.3
:::
less

::::
than

::::::
0.0005

:::::
sr�1;

:::
but

:::
the

:::::::::::
uncertainties

:::::::
become

::
as

::::
high

::
as

:::::
0.001

:::::::
sr�1at

:
a
:::::
larger

:::::
AOD

:::
of

:::
0.5. Rrs at 670 and 870 nm varies in a very small dynamical range and has less
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impacts by the aerosol retrievals. Rrs uncertainties at 670 and 870 nm are slightly larger than the requirement of 0.0002 sr�1

when AOD(550nm) is larger than 0.4 and 0.3 respectively. Further work is needed to understand how the uncertainties of the

retrieved aerosol properties influence the retrievals. Note that from Table 3, the uncertainties of the Rrs computed using NNs

have an uncertainty of 0.0004 to 0.0001 from 440nm to 870nm, which may be further reduced
:::::::::
minimized with better training

and help the reduction of the
::
to

::::::
reduce

:::
the Rrs retrieval uncertainties.5

Figure 10. The difference between the retrieval and truth Rrs with respect to AOD. The truth Rrs is computed with a zenith sun and a nadir

viewing direction. The retrieved Rrs is following Eq.(10) with the BRDF correction considered. RMSE and MAE are for all retrievals cases

at each wavelength.

Figure 11. Retrieval uncertainties for Rrs at the four AirHARP bands. The uncertainties are computed in the same way as for Fig.9 in terms

of RMSE.
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5 Joint retrieval results on AirHARP measurements from ACEPOL

The ACEPOL field campaign, conducted from October to November of 2017, included a total of six passive and active instru-

ments on the NASA ER2 high-altitude aircraft (Knobelspiesse et al., 2020) with four MAPs: AirHARP (McBride et al., 2020)),

AirMSPI (Diner et al., 2013), SPEX Airborne (Smit et al., 2019) and the RSP (Cairns et al., 1999), and two lidars: HSRL-2

(Burton et al., 2015) and CPL (the Cloud Physics Lidar) (McGill et al., 2002). Aerosol retrieval algorithms have been applied5

for all four MAPs (Fu et al., 2020; Puthukkudy et al., 2020; Gao et al., 2020). The measurement datasets are available from

the ACEPOL data portal (Knobelspiesse et al., 2020). In this work, we focus on the study of the AirHARP measurements over

ocean scenes as shown in Fig. 12 on Oct 23, 2017. The viewing angles are within ±57� along-track, and ±47� cross-track as

shown in the polar plots in Fig. 12. Fig. 13 shows the RGB images (670, 550 and 440nm) for the three scenes at near nadir

viewing direction.
::::::::
AirHARP

:::::::::
conducted

:::::
high

:::::
spatial

:::::::::
resolution

::::::::::::
measurements

:::::
with

:
a
::::
grid

::::
size

::
of

:::
55

::
m

::::
and

:::::
swath

:::::
width

:::
of10

:::::
42km

:
at
:::::
nadir

:::
(up

::
to

:::::
60km

::
at

:::
far

::::::
angles).

:::
We

::::::::
averaged

:::
the

:::::::::
reflectance

:::
and

::::::
DoLP

::::::::::
respectively

:::::
within

::
a

:::
bin

:::
box

::
of

:::
10

:
x
:::
10

:::::
pixels

:::::
(550m

::
×

:::
550

::::
m).
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Figure 12. The location of the three ocean scenes from AirHARP from ACEPOL on Oct 23, 2017. The flight track is color labeled by the

UTC. The aircraft flew at an altitude of 20.1 km. The viewing zenith and relative azimuth angle (relative to the solar azimuth angle) for the

440 nm band from all pixels in the corresponding scene are shown in the bottom polar plots. The
:::::
central

::::::
portion

::
of

::::::
viewing

:::::
angle

:::
plot

:::
are

::::::
removed

:::
due

::
to

::::
water

::::::::::
condensation

::
on

:::
the

::::
lens.

:::
The averaged solar zenith angles for the three scenes are 47.0�, 45.6� and 52.9�, respectively,

as indicated in the polar plots by the red asterisks.
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Figure 13. The RGB images (670,550,440 nm bands) for the three scenes at near nadir viewing directions. Scene 1 and 2 observe only ocean,

while scene 3 observes both ocean and land. Sparse thin clouds are visible from scene 1 and 2.
::::::
Sunglint

:::
can

::
be

:::::::
observed

::
at

:::
the

::::
lower

::::::
portion

:
of
:::::

Scene
::
2

:::::
image.

The HSRL-2 instrument from ACEPOL provided useful aerosol optical depth ground truth at 355 and 532 nm (Hair et al.,

2008; Burton et al., 2016), which was used for the validation of the aerosol retrieval algorithm using the AirHARP data. The

HSRL-2 measures the pixels along the track as shown in Fig. 12, where an assumed lidar ratio of 40 sr is multiplied by the

aerosol backscatter coefficient derived from the HSRL technique to produce aerosol extinction and AOD at 532 nm. For the

low aerosol loading cases considered in this study, the assumed lidar ratio approach produces a systematic uncertainty of ±50%5

(Fu et al., 2020). In scene 3, the aircraft also flew over an AERONET USC_SEAPRISM site ,
:::::::::
(33.564�N,

::::::::::
118.118�W)

:
which

is equipped with a CIMEL-based system called the Sea-Viewing Wide Field-of-View Sensor (Sea-WiFS) Photometer Revision

for Incident Surface Measurements (SeaPRISM) that collects radiances at eight wavelengths of 412, 443, 490, 532, 550, 667,

870, and 1020 nm (Zibordi et al., 2009). AOD from the AERONET data product version 3 level 2.0 data was used in this

study, which is also consistent with the HSRL-2 AOD at 532nm as shown latter in Fig. 20. The estimated AERONET AOD10

uncertainty is from 0.01 to 0.02 with the maximum uncertainty in the UV channels (Giles et al., 2019). We compared AOD

from AirHARP retrievals with those from both HSRL and AERONET. Furthermore, to validate the atmospheric correction

procedure in the retrieval algorithm, we compared the retrieved remote sensing reflectance with the AERONET ocean color

(OC) products as reported by the SeaPRISM measurements at the USC_SEAPRISM site.

Here we applied the FastMAPOL algorithm to the AirHARP field measurements from ACEPOL.
::
To

::::::
assess

:::
the

::::::
spatial15

::::::::
variability

::
of

:::::
field

:::::::::::
measurement,

:::
we

:::::::::
computed

:::
the

:::::::
standard

:::::::::
deviations

:::
for

:::
the

:::::::::
reflectance

:::::::
(�⇢,avg)

:::
and

::::::
DoLP

:::::::
(�P,avg)

::::::
within

::
the

:::
bin

::::
box.

:::::::::::::
Representative

:::::
values

:::
are

::::::::
provided

::
in

:::::
Table

::
5.

:::
The

::::::
values

::
of

:::::
�⇢,avg::::

and
::::::
(�P,avg::

at
::::::
870nm

::::
band

:::
are

:::::
4.5%

:::
and

:::::
0.05,

::::::::::
respectively,

::::::
which

::::::
suggest

:::::
larger

::::::::::::
measurement

:::::::::::
uncertainties

::
at

::::::
870nm

::::
than

:::::
other

:::::
bands

::::::::
probably

::::
due

::
to

:::::
small

::::::::::
radiometric

::::::::::
magnitudes.

::::::::::
Meanwhile,

:::
our

:::::::
retrieval

:::::
tests

::::::
showed

::::::
larger

:::::
coarse

::::::
mode

:::::::
retrieval

:::::::::::
uncertainties

::::
than

::::::::
synthetic

::::
data

::::::
results.

:::
To

:::::
better

::::::::
constraint

::::::::
retrievals,

:::
we

:::::::
assume

::
the

::::::
coarse

:::::
mode

::::::
aerosol

::
as
::::
sea

:::
salt

::
by

::::::
setting

:::
its

::::::::
imaginary

::::::::
refractive

:::::
index

::
to

:::::
zero.

:::
All20

::::
other

:::::::
retrieval

:::::::::
parameter

:::::
range

:::
are

::::
kept

:::
the

::::
same

:::
as

::
in

:::::
Table

::
2.

:::::::::::
Furthermore,

:::
we

:::::
found

:::
our

:::::::
forward

::::::
model

::::::
cannot

::::::
predict

:::
the

::::::
angular

::::::::
variation

::
of

:::::
DoLP

::
in

::::::
440nm

::::
band

::::
well

:::::
(with

::
an

::::::::
estimated

:::::
MAE

:::
of

:::::
0.04),

:::::
which

:::::::::
contributes

::
a
:::::
major

::::::
portion

::
to

:::
the

::::
cost
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:::::::
function

:::
and

::::::::
increases

::::
both

:::
fine

::::
and

:::::
coarse

:::::
mode

:::::::
retrieval

:::::::::::
uncertainties.

:::::::::
Therefore,

:::
we

:::::::
exclude

:::::
DoLP

::
in

::::::
440nm

::::
band

:::::
from

:::
our

:::::::
retrievals

::
in
::::
this

:::::
study.

Table 5.
:::
The

:::::::
standard

::::::::
deviations

::
of

::
the

:::::::::
reflectance

::::::
(�⇢,avg)

:::
and

:::::
DoLP

::::::
(�P,avg)

:::
are

::::::::
calculated

:::::
within

:::::
10x10

::::
pixel

:::
box

:::
and

:::::::
averaged

:::
over

:::
all

::::
angle

:::
and

:::::
pixels

:::
from

:::
the

::::
three

:::::
scenes

::::
(over

:::::
ocean

::::
pixels

:::::
only).

:::
The

::::::::
percentage

:::::
values

:::::
listed

:
in
:::
the

::::
table

::::::
indicate

:::
the

::::::::
percentage

::::::::::
uncertainties.

::::::::::
Uncertainties

:::::
440nm

: :::::
550nm

: :::::
670nm

: :::::
870nm

:

:::::
�⇢,avg :::::

0.0018
::::::
(1.1%)

:::::
0.0011

::::::
(1.3%)

:::::
0.0009

::::::
(2.3%)

:::::
0.0009

::::::
(4.6%)

:::::
�P,avg: ::::

0.015
: ::::

0.016
: ::::

0.024
: ::::

0.052
:

:::
We

::::::::
conducted

:::::::
retrieval

:::::
with

::::::
similar

:::::::::
procedures

::
as

::::::::
discussed

:::
for

::::::::
synthetic

::::
data.

:
The solar and viewing geometries as shown

in Fig. 12, and the ozone column density from MERRA2 are the
:::::
(nO3)

:::
are

::::::
known inputs to the forward model. As discussed in

Section 2, the total uncertainties are modeled as �2 = �2
cal

+�2
avg

+�2
RT

+�2
NN

for reflectance and DoLP respectively, with5

all values listed in Table 4.

:::::::
retrieval

::::::::
algorithm.

::::
The

::::::::
averaged

:::::
values

::
of

::::
nO3::::

from
:::::::::
MERRA2

::::
over

::::
each

::
of

:::
the

:::::
three

:::::
scenes

:::
are

::::::::
obtained,

:::::
which

:::
are

::::::
277.5,

:::::
278.6,

:::::
281.3

:::::::
Dobson

::::::::::
respectively.

::::
The

::::::::
averaged

::::::
surface

::::::::
pressures

:::::
from

::::::::
MERRA2

::::
over

:::
the

:::::
three

::::::
scenes

:::
are

:::::
1.008,

:::::
1.006

::::
and

:::::
1.003

:::::::
standard

::::::::::
atmosphere

:::::::
pressure

:::::
(atm),

::::::
which

::
is

::::::::
consistent

:::::
with

:::
our

:::::::::
assumption

:::
in

:::
the

:::::::::
atmosphere

::::::
model

::
as

:::::::::
discussed

::
in

::::
Sect.

::
3.

:
The histograms of �2 for all pixels retrieved in each scene are shown in Fig. 14. Comparing with the histogram in10

synthetic data retrievals in Fig. 6, the histograms in Fig. 14 show a longer tail with larger
:::
The

:::::
most

:::::::
probable

:
�2 value. This

may due to that some pixels are not represented well by the current forward model, and measurement uncertainties are not well

quantified in the cost function as discussed in Sect. 2
::
are

::::
1.1,

:::
1.7,

::::
and

:::
1.1

::::::::::
respectively.

:

Figure 14. The histogram
::::::::
histograms of the cost function values for

:::
over

:
the pixels in the three scenes as shown in Fig. 12 . Each scene

has 3283 pixels used in the retrievals. The most probable �2 for the three scenes are 1.5
:::

with
:::
total

:::::
pixel

::::::
numbers

::
of
:::::
13491, 0.5

::::
13226, and

1.0
::::
9159.

::::
Only

:::::
pixels

::::
over

::::
ocean

:::
are

::::::::
considered. A threshold of �2 < 1.5 is used in the discussion.
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To evaluate the retrieval performance, we plotted the map of the total number of viewing angles used in the retrieval (Nv),

cost function �2, and
::
the

:
retrieved AOD(550nm)

:::
and

::::
Rrs for each scene in Figs. 15, 16 and 17. As discussed in Sect. 2, the

maximum number of viewing angles is 120 for AirHARP measurements. Figs 15,16 and 17 show the number of available

viewing angles vary from 0 to 120 due to the removal of glint and other data quality control measures. Discontinuity in the

number of angles can be seen as a stripe, due to the removal of angles influenced by water condensation in
::
on

:
the lens, which5

can also be observed in the polar plots in Fig. 12 with the nadir region removed. All three figures show that the number of

viewing angles are smaller at the edges parallel to the flight track, where small �2 can be achieved but may be less reliable.

For pixels with large �2
:
as

::::::
shown

:::
in

::::::
Fig.14, the forward model cannot fit

:::
the

::::::::
measured

:
reflectance or DoLP to the

measurements
::::
well, which may be due to the contamination by cloud

:::::
cloud

:::::::::::
contamination

:
(Stap et al., 2015), land, or residuals

of glint. The
::
In

:::::
scene

::
1,

:::
the

:::
top

::::::
region

::::
with large �2 values

:
is
::::::::
impacted

:::
by

:::
the

:::
thin

:::::
cloud

::::::
which

:
is
::::::

visible
:::::
from

::::::
Fig.13.

::::::
Larger10

::::::
residual

::
in

:::
the

::::::
870nm

:::::
band

:::::::
between

:::::::::::
measurement

:::
and

:::::::
forward

:::::
model

:::
are

::::
also

::::::::
observed.

::::
The

:::::::
retrieved

:::::
AOD are also correlated

with the large retrieved AOD (550nm) values, for instance, the central region in scene 1. We have excluded retrievals with less

confidence and only discussed the retrievals simultaneously satisfying the two criteria with Nv > 10 and �2 < 1.5. Overall

about 40% to 60% pixels are available after applying these two criteria
::::::::::::
over-estimated

::
in

:::
this

::::::
region.

::
In

:::::
scene

::
2,

:::
the

::::::
region

::::
with

::::::
�2 > 3

:::::::
correlate

::::::
closely

::
to
:::
the

::::
thin

::::::
clouds

::::
(Fig.

::::
13),

:::::
which

::::::::
influence

::::::
nearby

:::::
AOD

:::
and

::::
Rrs ::::::::

retrievals.
:::
For

:::::
scene

::
3,
:::
�2

:::::::
become15

:::::
larger

::::
than

:
2
:::::
when

::::
close

::
to
:::
the

::::::
coast.

::::
This

:::
may

:::
be

:::
due

::
to

::::::::
complex

::::
water

:::::::::
properties

:::::
which

:::
are

:::
not

::::
well

::::::::::
represented

::
by

:::
the

:::::
open

::::
water

::::::::::
bio-optical

:::::
model

::::
used

::
in

:::
the

:::::::::
simulation

::::::::::::::
(Gao et al., 2019)

:
.
:::
The

::::::
pixels

::::
near

::
the

:::::
coast

:::
are

::::
also

:::::::::
potentially

:::::::
impacted

:::
by

:::
the

::
the

:::::::
bottom

:::::
effect

:::
and

::::::::
adjacency

:::::
effect

:::
of

::::
land

:::::
pixels.

Figure 15. The number of viewing angles used in the retrieval(Nv), cost function value (�2)and ,
:

the retrieved AOD (550 nm)
::
and

::::
Rrs

::::::
(550nm)

:
for all pixels in scene 1. Under the condition of Nv > 10, 94% pixels are available; with �2 < 1.5, 47% pixels are available; 41%

pixels under both conditions. The HSRL AOD
::::
AODs

:
at 532 nm are indicated by the colored dots in the AOD plot.
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Figure 16. Same as
:::
Fig.

:
15 but for scene 2

:
2.
:::
For

::::
Rrs, 88% pixels with Nv > 10, 67% pixels with �2 > 1.5, and 60% pixels under both

conditions
:::::

viewing
:::::
angles

::
at

::::
least

:::
40�

::::
away

::::
from

:::
the

::::
solar

::::::
specular

:::::::
reflection

:::::::
direction

:::
are

::::
used

::
to

::::
avoid

::::::
sunglint

::
as

:::::
shown

::
in

:::
Fig.

::
13.

Figure 17. Same as
:::
Fig. 15 but for scene 3, 94% pixels with Nv > 10, 47% pixels with �2 > 1.5, and 43% pixels under both conditions.

:
3.
:
The pixels with large �2 are mostly influenced by the land (upper region) and island (lower left).

:::
The

:::::::
retrieved

::::
AOD

:::
and

:::
Rrs::::

over
::::
land

::::
pixels

:::
are

:::
not

:::::
shown.

:::
The

:::::::
location

::
of

::
the

:::::::::
AERONET

::::::::::::::
USC_SEAPRISM

:::
site

:
is
:::::::
indicated

:::
by

:
a
:::
red

:::
star

::::::
symbol.

The AOD at 532nm from HSRL data product in all three scenes is in the range from 0.03 to 0.1 as shown in Fig. 18.

After applying the two criteria in Nv and �2, many pixels from AirHARP retrievals along the HSRL track are not available.

To compare with the HSRL AOD along the
::
in

:::
the

:::::
along

:
track direction, the retrieved AOD is averaged in the cross-track

direction, the averaged values and its
:::::::
(550nm)

::
is

::::::::
averaged

::::::
within

:
a
::::

box
:::
of

:
4
::

x
::

4
::::::
pixels

::::::
(2.2km

::
x
:::::::
2.2km).

::::
The

::::::::
averaged

::::
AOD

::::::::
(550nm)

:::::
values

::::
and

:::
the

::::::::::::
corresponding standard deviations are shown in Fig. 18. The averaged

:::::
Pixels

::::
with

:::::::
Nv > 30

:
and5

standard deviation of all pixels satisfying the criteria are also shown
:::::::
�2 < 10

:::
are

:::::::::
considered.

::::
The

::::::
overall

::::::::
averaged

:::::
values

::::
and

::::
their

:::::::
standard

::::::::
deviation

:::
are

::::
also

::::::::
computed

:::
and

::::::::
indicated

:
in the plots. For scenes 1-3, the averaged

:::
The

::::::::
averaged

:::::
HSRL

::::::
AODs

::
are

::::::
0.079,

:::::
0.071

::::
and

:::::
0.037

::
for

::::::
scenes

::
1
::
to

::
3.

::::
The

:::::::
averaged

::::::::
retrieved

:
AOD(550nm) are 0.076, 0.066 and 0.052. The averaged

HSRL AOD is 0.079, 0.072 and 0.038. The average AOD values retrieved from FastMAPOL and those from HSRL agree well

for both scene 1 and scene 2.
:::::
0.096,

:::::
0.078

:::
and

:::::
0.049

:::::
with

::::::::
relatively

:::::
larger

:::::::
retrieval

::::::::
variation

::
of

::::
0.02

::
to

::::
0.03.

:
For scene 3, the10

average AOD value of the FastMAPOL algorithm
::
1,

::::
most

:::
�2

::::::
values

:::
are

:::::
larger

::::
than

::
2,
:::::
while

:::
for

:::
the

:::::
other

::::
two

::::::
scenes,

:::::
most

::
are

::::
less

::::
than

:
2
::::::

except
:::
for

:::::
those

:::::
pixels

::::
very

:::::
close

::
to

:::::
cloud

:::
and

:::::
coast.

::::
The

::::::::
retrieved

::::
AOD

:
is larger than the averaged

:::
that

::
of

:::
the

HSRL AOD by 0.014. This may be due to complex water properties not well represented by the open water bio-optical model

used in the simulation (Gao et al., 2019). Furthermore, the pixels near the coast are potentially impacted by the adjacency effect

of land pixels . However it is challenge to investigate due to the small aerosol loadings. Furthermore, thin cirrus clouds were15

observed on Oct 23 (Knobelspiesse et al., 2020), which might further impact the accuracy of aerosol retrievals and require
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future investigations.
::::
0.03

::
in

:::
the

:::::::::
overlapped

::::::
region

:::::
which

::::
may

::
be

:::::::::
influenced

:::
by

::
the

:::::::::
remaining

:::::
effect

::
of

:::::
water

::::::::::::
condensation.

::
In

::::
scene

::
2,
:::

the
::::::

peaks
::
of

:::
the

:::::::
retrieved

:::::
AOD

::::::
values

:::::::::
correspond

::
to

:::
the

:::
�2

::::::
values

:::::
larger

::::
than

::
2,

:::::
which

:::
are

:::::::::
influenced

:::
by

:::
the

::::::
nearby

:::
thin

:::::
cloud.

::::::
There

::
are

:::
no

:::::::::
overlapped

:::::
pixels

::::::
except

:::
the

:::
one

:::::::::
associated

::::
with

::::
high

::::
AOD

::::::
peaks,

:::
but

:::
the

::::::
general

::::
trend

::
of

:::
the

::::::::
retrieved

::::
AOD

:::::
agree

::::
with

:::
the

::::::
HSRL

:::::::
results.

:::
For

:::::
scene

::
3,

:::
the

::::::::
retrieved

:::::
AOD

:::::
values

:::::
agree

::::
well

:::::
with

:::
the

:::::
HSRL

:::::
AOD

::::
with

:::
an

:::::::
average

::::::::
difference

:::
less

::::
than

::::
0.01

::::
and

::
�2

::::::
mostly

::::
less

:::
than

::
2.
::::::::
However

:::::
when

:::
the

:::::
pixels

:::
are

::::
close

::
to

:::
the

:::::
coast,

::::
both

:::
�2

:::
and

:::::
AOD

::::::::
increased5

::::::::::
significantly

::
as

::::::::
discussed

:::::::::
previously.

:

Figure 18. Comparison of the retrieved AOD (550 nm) from AirHARP measurement with the AOD (532 nm) from HSRL .
::
for

:::::
Scenes

::
1
::
to

:
3.
:
The AOD (550 nm) from AERONET USC_SeaPRISM site is shown in scene 3. The AirHARP retrieved AOD is averaged over cross-track

pixels with standard deviation as plotted by the shaded areas
:
4

::
⇥

:
4
:::::
pixels

::::::
(2.2km

::
⇥

::::::
2.2km). The averaged and standard deviations of all

pixels for both AirHARP
::::::
retrievals

:
and HSRL

::::::
products

:
are also shown

::::::
provided in the texts

:::
text. Only pixels

::::
Pixels

:
with Nv > 10

:::::::
Nv > 30

and �2 < 1.5
::::::
�2 < 10

:
are considered.

The retrieved Rrs at the four AirHARP bands. The Rrs from AERONET USC_SeaPRISM site are indicated by the star

symbols.

Fig. 19 shows the mean value and standard deviation of Rrs averaged for the cross-track pixels.
::
in

:::
the

:::::
same

::::
way

:::
as

::::
AOD

:::::::::
discussed

::::::
above.

:::::
There

::
is

::::::
similar

::::::
spatial

::::::::
variation

:::::::
between

::::
the

:::::::
retrieved

:
Rrs from AERONET USC_SeaPRISM site10

are compared with the retrievals using the nearest wavelengths to the AirHARP bands.
::
and

::::::
AOD.

::::::
Pixels

::::
with

:::::
large

::::
Rrs

::::::::::
uncertainties

:::
are

::::::
mostly

:::::::::
associated

::::
with

:::
the

::::
large

:::::
AOD

:::::::::::
uncertainties

:::::
shown

::
in
::::
Fig.

:::
18.

:
The Rrs values for scene 1 and 2 show

a larger value of 0.005 to 0.007 at 440nm but reduced to 0.0025 for scene 3, which is closer to the coast. The
::
for

:::
the

:::::
three

:::::
scenes

:::
are

:::::::
0.0055,

::::::
0.0072,

::::
and

::::::::::
0.0030sr�1,

::::::
where

:::
the decrease of Rrs :::

from
:::::
scene

::
2
::
to

:::::
scene

::
3 may be due to the increase of

CDOM as its spectra
::::
close

::
to
:::
the

:::::
coast

::
as

:
demonstrated in Fig. 5.15

The AOD and Rrs spectra from AERONET USC_SeaPRISM site on Oct 23, 2017, are shown in green triangles. The error

bars indicate the daily average of the AERONET data product. The averaged AOD and Rrs from AirHARP retrievals within

1.1km from AERONET site are shown by blue circles.
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The AERONET AOD is compared with the FastMAPOL retrieved AOD
::::::::
Moreover,

::::
Rrs::

at
:::::
scene

:
1
:::
are

:::::
likely

::
to

::
be

:::::::::::::
under-estimated

:::
due

::
to

::::
the

::::
large

:::
�2

::::
and

::::::::
retrieved

:::::
AOD

::::
over

:::
the

::::::
center

:::
of

:::::
scene

::
1.

::::
The

::::::::
averaged

::::
Rrs::::::

values
:
at 550nm in Scene

::::::
remain

::::::::::::
approximately

:::::::
constant

::::
with

::
a
:::::
value

::
of

:::::::::::
0.0003sr�1

::::
over

:::
all

::::
three

:::::::
scenes.

::::
Rrs::::

from
::::::::::

AERONET
:::::::::::::::

USC_SeaPRISM
::::
site

:::
are

:::::::
indicated

:::
in

:::::
scene 3 of Fig. 18, and the whole AOD spectra are

::
19

::::
and

::::
also compared in Fig. 20. The uncertainties of the

AOD and Rrs from retrieval are estimated by the average of
:::
As

::::::::
discussed

::
in

:::
Sec

::::
2.2,

:::
we

:::::
chose

:::
the

::::::::
minimum

:::::::
viewing

::::::
zenith5

::::
angle

::::::::
available

::::
from

:::
the

::::::::::::
measurements

:::::
after

::::::::
removing

:::
the

:::::::
sunglint.

::::
The

:::::::
removal

::
of

:::::::
sunglint

::::::::
improves

:::
the

::::
Rrs

:::::::::
calculation

:::
for

:::::
Scene 2 ⇥2 pixels (in 1.1km⇥1.1 km box) around the AERONET site. The retrieved AODs at 440nm and 870nm agree well

with the AERONET results
:
as

::::::
shown

::
in
::::

Fig.
::::

16.
:::::::::
Moreover,

:::
we

::::
have

:::::::
ignored

:::
the

::::::
R0/R:::::

factor
:::

in
:::
Eq.

:::
14

:::::
which

:::::
may

:::::
cause

:::::::::::::
underestimation

::
of

:::
the

::::
Rrs :

at
:::
the

:::::
edge

::
of

:::
the

:::::
image

:::::
where

:::
✓v :::

can
:::::
reach

::
as

::::
large

::
as

::::
60�.

::::::::
However

:
it
::
is

::::::::::
challenging

::
to

::::::
analyze

:::
its

:::::
impact

::
at
:::::
large

::
✓v::::::

angles.
::::::
R0/R:::

has
::
a

:::::
strong

::::::::::
dependency

:::
on

::::
wind

::::::
speed,

:::
but

:::
the

:::::::
retrieved

:::::
wind

:::::
speeds

:::::
from

::::::
current

::::::::
retrievals10

::::
show

:::::
large

:::::::::::
uncertainties.

::::::
Further

:::::
work

::::
may

::::::
require

:
a
:::::
better

::::::::
treatment

:::
of

:::::::
sunglint

:::
and

::::::::
improved

::::::::
accuracy

::
in

::::
wind

::::::
speed.

Figure 19.
::::::
Similar

:
to
::::
Fig.

::
18,

:::
the

:::::::
retrieved

:::
Rrs:::

are
:::::::
computed

:::
for

:::
the

:::::::
AirHARP

::::
band

::
of

::::
440,

:::
550,

::::
and

:::::
670nm

:::::
bands.

:::
The

:::::::
averaged

::::
Rrs :::

and

::
its

::::::
standard

::::::::
deviation

::
are

::::::
shown

:
in
:::

the
:::::::
legends.

:::
For

::::
scene

::
3,
::::
Rrs ::::

from
:::::::::
AERONET

:::::::::::::
USC_SeaPRISM

:::
site

:
at
::::::::::

wavelengths
:::::::::::
corresponding

::
to

:::::::
AirHARP

:::::
bands

::
are

::::::::
indicated

::
by

::
the

:::
star

:::::::
symbols.

:

::
To

:::::
better

::::::::
compare

::::
with

:::::::::
AERONET

:::::::
results,

:::
we

::::
only

:::::::::
considered

:::
the

:::::
pixels

::::
with

::::::
�2 < 2

::::
and

:::::::::
conducted

:::
the

::::
same

:::::::::
averaging

:
(

::::
4⇥ 4

::::::
pixels)

::::::
around

:::
the

::::::::::::::
USC_SeaPRISM

:::
site

:::
for

:::
the

:::::::
retrieved

:::::
AOD

:::
and

::::
Rrs.

::::
The

:::::::
averaged

::::::
values

:::
and

::::
their

:::::::
standard

:::::::::
deviations

::
are

::::::
plotted

:::
in

:::
Fig.

:::
20.

::::
The

::::::
overall

:::::::
retrieved

:::::
AOD

::::::::
spectrum

::
is

::::::
similar

::
to

:::::::::
AERONET

::::::
results

::::
with

:
a
:::::::::
difference

::::::
smaller

::::
than

:::::
0.01.

:::
The

::::::
results

:::
are

::::::
similar

::
to
:::

the
::::::::

retrieval
::::::
results

::::
from

:::
the

::::::::
Research

::::::::
Scanning

::::::::::
Polarimeter

::
as

::::::::
reported

::
by

::::::::::::::
Gao et al. (2020). The15

difference between the HSRL AOD at 532nm and the AirHARP retrieved AOD near the AERONET site and is smaller than the

one shown in the Scene 3 of Fig. 18, which suggests larger differences are contributed by the pixels further away. The retrieved

Rrs agrees well with the AERONET Rrs with a value slightly larger than the AERONET results at 410nm and 550nm by

0.0005 and 0.0006 sr1. The retrieved Rrs has a small negative value at 670nm, lower than AERONET by 0.0007 sr1. Their

difference at 868 is 0.0002 sr1. There are larger uncertainties when larger spatial box is considered.
::::::::
difference

::::
less

::::
than

:::::
0.00120

:::::
sr�1. Note that this study is done with the AirHARP measurement with

:::::::
possible

::::::::
AirHARP

::::::::::::
measurement

:::::::::
uncertainty

::
of

:
3%
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uncertainties in the reflectancemeasurement
:
in
::::::::::

reflectance, which may impact the accuracy in the comparison between the

retrieval and in-situ measurements
:::::::::
atmospheric

:::::::::
correction

:::::::
accuracy.

Figure 20.
::::::::::
Comparisons

::
of

:::
the

::::
AOD

:::
and

::::
Rrs ::::

from
:::::::
AirHARP

::::::::
retrievals

:::
with

:::::::::
AERONET

:::::::
products.

::::
The

::::::
retrieval

:::::
results

:::
are

:::::::
averaged

::::
with

::::
4⇥ 4

:::::
pixels

:::::
(2.2km

::
⇥

:::
2.2

:::
km)

::::::
around

::
the

:::::::::
AERONET

:::::::::::::
USC_SeaPRISM

::::
site.

:::
This

::
is

:::::
similar

::
to
::::
Fig.

::
18

:::
and

::
19

::::
with

::::
error

:::
bars

::::::::
indicating

:::
the

::::::
standard

::::::::
deviations,

:::
but

::::
only

::::
pixels

::::
with

::::::
�2 < 2

::
are

:::::::::
considered.

:::
The

:::::::::
AERONET

::::
AOD

:::
and

:::
Rrs::::::

spectra
:::
are

::::
taken

::::
from

:::
Oct

::
23,

::::
2017

::::
with

:::
the

:::
error

::::
bars

::::::::
indicating

::::
daily

::::::::
variations.

:::::
HSRL

::::
AOD

::
at

:::::
532nm

::
is

:::
also

::::::
shown.

:::
The

::::::::
complete

:::::::
retrieval

::::::
results,

::::::::
including

:::
the

::::::
aerosol

::::::::::::
microphysical

:::::::::
properties,

:::::
wind

:::::
speed,

::::
Chla

::::
and

::::::::::
atmospheric

:::::::::
correction

:::::
related

::::::::
datasets,

:::
are

:::::::
provided

::
in

::::
Data

::::::::::
availability.

::::
The

:::::::
retrieval

:::::::::::
uncertainties

::
for

:::::::
aerosol

:::::::::::
microphysical

:::::::::
properties

:::
are

::::::::
relatively

::::
large

:::
due

::
to
:::
the

:::::
small

:::::::
aerosol

:::::
optical

:::::::
depths.

::::
Chla

::::::::
retrievals

:::
are

:::::::
sensitive

::
to

:::
the

:::::::
aerosol

::::::::
retrievals,

:::
and

:::
are

:::::
more

::::::::::
challenging

::
to5

::::::
retrieve

:::::::::
accurately

::
at

:::::
small

:::::
values

::
as

::::::::
discussed

::
in
::::
Sec

::
4.

6 Discussion

The NN model greatly improved the speed of the forward model used in the iterative optimization approach and boosted the

efficiency of the FastMAPOL retrievals. The average retrieval speed for one pixel with FastMAPOL is approximately 2.6
:
3

seconds with a single CPU core, or approximately 0.3 seconds with a GPU using the same hardware as mentioned in Sect10

3.3.
:::::::::
Comparing

::
to

:::
the

:::::::
retrieval

:::::
speed

::
of

::::::::::::
approximately

::
1
::::
hour

:::
per

:::::
pixel

:::::
using

:::::::::::
conventional

:::::::
radiative

:::::::
transfer

:::::::
forward

::::::
model,

::
the

:::::::::::::
computational

::::::::::
acceleration

::
is

:::
103

:::::
times

:::::
faster

:::::
with

::::
CPU

::
or

::::
104

:::::
times

::::
with

:::::
GPU

:::::::::
processors.

:
Meanwhile, the NN model

maintains a high accuracy as shown in Table 3 and Table 4. For retrieval algorithms running radiative transfer simulation, the

accuracy is often tuned down to reduce simulation time. By training a NN, however, the high accuracy of the radiative transfer

model simulation can be achieved, as has been demonstrated in this work. Thus, despite the one time high computational costs15

in generating the training datasets and conducting the training, the trained NN can be applied efficiently to large observational

datasets in the retrieval algorithm.

In the retrieval of the AirHARP field measurement, each pixel has multiple viewing angles that are aggregated from mea-

surements at different times with slightly different solar zenith angles. The NN used in FastMAPOL computes the polarimetric
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measurement for specific solar zenith angles for each viewing direction, and therefore, the variation of the solar zenith angle

can be captured. These effects may be small for AirHARP measurement in ACEPOL, with a maximum solar zenith angle

difference within 0.6 degrees. However, this capability can help to minimize the impacts of the solar angle for HARP2 in

space-borne measurements, which can reach to a maximum difference of 1.5� for HARP2 observations.

With the efficient retrievals from FastMAPOL, we have discussed the retrieval performance and uncertainties for the aerosol5

properties, including AOD, SSA, refractive index, and particle sizes. Since the AirHARP measurements share many similar

characteristics with HARP2 as planned for the PACE mission, the knowledge from the retrieval analysis can help to understand

the retrieval performance for the HARP2 instrument in space-borne measurements. Note that HARP2 is likely to have high

:::::
higher accuracy due to the onboard calibration capability and the potential to conduct cross-calibration with the OCI instrument.

For the development of the NN forward model for space-borne measurements, similar training procedures can be applied with10

the sensor altitude at the top of the atmosphere instead of the aircraft altitude used in this study. Due to the impact of retrieval

capability by geometry (Fougnie et al., 2020), solar and viewing geometries according to the PACE orbits need to be considered.

The water leaving reflectance is obtained from the atmospheric correction process using the aerosol and ocean properties

retrieved from the AirHARP measurements, and a similar procedure can be applied to
:::::
future HARP2 retrievals. Since the hyper-15

spectral OCI in PACE will provide high accuracy measurements, the retrieved information can be applied to OCI and therefore

assist hyperspectral atmosphere corrections as demonstrated by Gao et al. (2020); ?
:::::::::::::::::::::::::::::::::
Gao et al. (2020); Hannadige et al. (2021).

However, aerosol retrieval and atmospheric correction are challenging in the UV spectral range (Remer et al., 2019a). For the

ocean bio-optical model in this study, the water properties are modeled as open ocean waters parameterized by a single Chla

value. For complex coastal water, complex bio-optical models are preferred in the retrieval of both accurate aerosol properties20

and water leaving signals as demonstrated by Gao et al. (2019).

7 Conclusions

We have demonstrated the application of a NN for highly accurate forward model calculations of polarimetric measurements

for AirHARP. Additional NN models were used to conduct atmospheric correction. These models are used in the FastMAPOL

joint retrieval algorithm to conduct simultaneous aerosol property and water leaving signal retrieval. Applications to both the25

synthetic AirHARP data and field measurements from ACEPOL are discussed. The uncertainties of the retrieved aerosol prop-

erties and remote sensing reflectance are discussed for different aerosol loadings. These results from AirHARP retrievals can

help to evaluate the retrieval capabilities for the HARP2 instrument on PACE. In application to field measurements from ACE-

POL, the impacts of the number of viewing angles and the value of cost function to the retrieval quality are discussed. Further

comparison with the HSRL and AERONET OC data shows good performance in the retrieval of AOD and remote sensing re-30

flectance. Furthermore, the NN forward model and the associated retrieval algorithm enable fast and practical retrievals of the

polarimetric measurement, thus making the algorithm practical for analysis of large data volumes expected from space-borne

35



imagers such as HARP2. The experience and methodology can be used to help the algorithm development of other satellite

instruments in polarimetric remote sensing.
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Appendix A: Neural networks for AOD and SSA

As summarized in Table 3, we have discussed the NNs used to represent the total reflectance (⇢f
t

) and DoLP (P f

t
) which are

then used as the forward model in the retrieval algorithm. Using the retrieved aerosol parameters, NNs for ⇢f
t,atms+sfc

and25 h
CBRDF
Tdtu

i
are used to compute remote sensing reflectance. To expedite and simplify the calculation of aerosol single scattering

properties such as AOD and SSA as discussed in Section
::::
Sect. 4, we developed additional four NNs to represent the AOD and
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SSA for both fine and coarse modes, respectively. These NNs are only used to analyze the retrieved aerosol properties and are

not used in the retrieval process. The NN architectures and accuracy are shown in Table A1. The input parameters for the fine

mode SSA and AOD are the three submode volume densities, and the real and imaginary parts of refractive index, with a total

of 5 parameter. For coarse mode aerosols, there are a total of 4 parameters with only two submodes used. The outputs are the

AOD and SSA at the four AirHARP bands.5

A total of 10,000 training data points are generated in the same way as in Section
::::
Sect. 3.1 using the Lorenz-Mie code

discussed in Section
::::
Sect.

:
2. The NN model accuracy is evaluated with additional 1000 data points not used in the training.

As shown in Table A1, the accuracy is much smaller than the retrieval uncertainties shown in Figure 9, therefore the NNs for

AOD and SSA provide sufficient accuracy to evaluate the aerosol single scattering properties.

With the fine and coarse mode AOD and SSA evaluated, the total AOD and SSA can be derived. The total AOD (⌧t) is the10

summation of the fine and coarse mode AODs as

⌧t = ⌧f + ⌧c (A1)

where ⌧f and ⌧c are the fine and coarse mode AODs. The total (or averaged) SSA (!t) is defined as the ratio of the total

scattering cross-section and the total extinction cross-section for both fine and coarse modes, which can be computed as

!t =
⌧f!f + ⌧c!c

⌧f + ⌧c
, (A2)15

where !f and !c are the fine and coarse mode SSA.

Table A1. The accuracy of the NN for the corresponding quantities in terms of the RMSE (�) between the NN predicted values and the truth

values from the Lorenz-Mie calculations.

Quantities NN architecture �(440 nm) �(550 nm) �(660 nm) �(870 nm)

AOD(fine) 5⇥ 64⇥ 64⇥ 4 0.004 0.003 0.002 0.001

AOD(coarse) 4⇥ 64⇥ 64⇥ 4 0.001 0.001 0.001 0.001

SSA(fine) 5⇥ 64⇥ 64⇥ 4 0.002 0.003 0.004 0.006

SSA(coarse) 4⇥ 64⇥ 64⇥ 4 0.01 0.01 0.01 0.01
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