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Abstract

Sub-grid variability (SGV) of atmospheric trace gases within satellite pixels is a key issue

in satellite design and interpretation and validation of retrieval products. However, characterizing .-
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this variability is challenging due to the lack of independent high-resolution measurements. Here
we use tropospheric NO; vertical column (VC) measurements from the Geostationary Trace gas
and Aerosol Sensor Optimization (GeoTASO) airborne instrument with a spatial resolution of
about 250 m x 250 m to quantify the normalized SGV (i.e., the standard deviation of the sub-grid

GeoTASO values within the sampled satellite pixel divided by the mean of the sub-grid GeoTASO -

{ Deleted: their

values within the same satellite pixel) for different hypothetical satellite pixel sizes over urban .-

regions. We use the GeoTASO measurements over the Seoul Metropolitan Area (SMA) and Busan
region of South Korea during the 2016 KORUS-AQ field campaign, and over the Los Angeles
Basin, USA, during the 2017 SARP field campaign. We find that the normalized SGV of NO, VC
increases with increasing satellite pixel sizes (from ~10% for 0.5 km x 0.5 km pixel size to ~35%
for 25 km x 25 km pixel size), and this relationship holds for the three study regions, which are
also within the domains of upcoming geostationary satellite air quality missions. We also quantify
the temporal variability of the retrieved NO, VC within the same hypothetical satellite pixels
given satellite pixel size, the temporal variability within the same satellite pixels increases with
the sampling time difference over SMA. For a given small (e.g., <=4 hours) sampling time
difference within the same satellite pixels, the temporal variability of the retrieved NO, VC
increases with the increasing spatial resolution over the SMA, Busan region, and the Los Angeles
basin.

{ Deleted: sampled

{ Deleted: of




The results of this study have implications for future satellite design and retrieval
interpretation, and validation when comparing pixel data with local observations. In addition, the
analyses presented in this study are equally applicable in model evaluation when comparing model
grid values to local observations. Results from the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) model indicate that the normalized satellite SGV of
tropospheric NO, VC calculated in this study could serve as an upper bound to the satellite SGV
of other species (e.g., CO and SO,) that share common source(s) with NO, but have relatively
longer lifetime.

1. Introduction

Characterizing sub-grid variability (SGV) of atmospheric chemical constituent fields is
important in both satellite retrievals and atmospheric chemical-transport modeling. This is
especially the case over urban regions where strong variability and heterogeneity exist. The
inability to resolve sub-grid details is one of the fundamental limitations of grid-based models
(Qian et al., 2010) and has been studied extensively (e.g., Boersma et al., 2016; Ching et al., 2006;
Denby et al., 2011; Pillai et al., 2010; Qian et al., 2010). Pillai et al. (2010) found that the SGV of
column-averaged carbon dioxide (CO;) can reach up to 1.2 ppm in global models that have a
horizontal resolution of 100 km. This is an order of magnitude larger than sampling errors that
include both limitations in instrument precision and uncertainty of unresolved atmospheric CO»
variability within the mixed layer (Gerbig et al., 2003). Denby et al. (2011) suggested that the
average European urban background exposure for nitrogen dioxide (NO,) using a model of 50-km
resolution is underestimated by ~44% due to SGV.

In contrast, much less attention has been paid to the sub-grid variability within satellite
pixels (e.g., Broccardo et al., 2018; Judd et al., 2019; Tack et al., 2020). Indeed, some previous
studies (e.g., Kim et al., 2016; Song et al., 2018; Zhang et al., 2019; Choi et al., 2020) used satellite
retrievals to study SGV in models, and calculated representativeness errors of model results with
respect to the satellite measurements (e.g., Pillai et al., 2010). Even though satellite retrievals of
atmospheric composition often have smaller uncertainties than model results, it has not been until
recently that the typical spatial resolution of atmospheric composition satellite products has
reached scales comparable to regional atmospheric chemistry models (< ~10 km).

Quantification of satellite SGV has historically been limited by insufficient spatial .-
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coverage of in situ measurements, and is 2 key issue in designing, understanding, validating and -~

correctly interpreting satellite observations. This is especially important in the satellite instrument

development process, during which the required measurement precision and retrieval resolution

need to be defined in order to meet the mission science goals. In addition, when validating and

evaluating relatively coarse-scale satellite retrievals by comparing with surface in situ observations,

SGV introduces large uncertainties_on top of the existing uncertainty introduced by jmperfect

knowledge of the trace gas vertical profiles. Accurate quantification of satellite SGV can therefore
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sufficient spatiotemporal coverage . As a result, it has been

challenging to quantify satellite SGV, even though this is
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facilitate the estimate of sampling uncertainty for satellite product validation/evaluation. Temporal
variability within sampled satellite pixels is also an important issue in satellite design, validation
and application. For polar-orbiting satellites, knowledge of temporal variability is necessary to
analyze the representativeness of satellite retrievals at specific overpass times. For geostationary
Earth orbit (GEO) satellites, developing a measure of the temporal variability of fine-scale spatial
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structure will be important for assessing coincidence during validation of the new hourly
observations. This work is partly motivated by validation requirements and considerations for the

upcoming GEQ, satellite constellation for atmospheric composition that includes the Tropospheric .-

Emissions: Monitoring Pollution (TEMPO) mission over North America (Chance et al., 2013;

Zoogman et al., 2017), the Geostationary Environment Monitoring Spectrometer (GEMS) over
Asia (Kim et al., 2020), and the Sentinel-4 mission over Europe (Courréges-Lacoste et al., 2017).

JAirborne mapping spectrometer measurements provide dense observations within the -

several-kilometer footprint of a typical satellite pixel. This feature of airborne mapping
spectrometer measurements provides a unique opportunity to estimate satellite SGV in addition to
their role in satellite validation. For example, Broccardo et al. (2018) used aircraft measurements
of NO, from an imaging differential optical absorption spectrometer (iDOAS) instrument to study
intra-pixel variability in satellite tropospheric NO> column over South Africa, whilst Judd et al.
(2019) evaluated the impact of spatial resolution on tropospheric NO, column comparisons with
in situ observations using the NO, measurements of the Geostationary Trace gas and Aerosol
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Sensor Optimization (GeoTASO). GeoTASQ,js an airborne remote sensing instrument capable of .-

high spatial resolution retrieval of UV-VIS absorbing species such as NO, and formaldehyde

characteristics similar to the GEMS and TEMPO GEO satellite instruments. The GeoTASO data -

used here were taken in gapless, grid-like patterns — or “rasters” — over the regions of interest,
providing essentially continuous spatial coverage that was repeated during multiple flights up to
four times a day in some cases. As such, the GeoTASO data (with a spatial resolution of ~250 m
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x 250 m) provide a preview of the type of sampling that is expected from the GEO satellite sensors,
making the data particularly suitable for our study. We focus on the GeoTASO measurements
made during the Korea United States Air Quality (KORUS-AQ) field experiment in 2016
(Crawford et al., 2021). The measurements from KORUS-AQ have been widely used by
researchers for various air quality topics, including quantification of emissions and model and
satellite evaluation (e.g., Deeter et al., 2019; Huang et al., 2018; Kim et al., 2018; Miyazaki et al.,
2019; Spinei et al., 2018; Tang et al., 2018, 2019; Souri et al., 2020, Gaubert et al., 2020). We
further compare our findings from KORUS-AQ with flights conducted during the NASA Student
Airborne Research Program (SARP) in 2017 over the Los Angeles (LA) Basin to test the general
applicability of our findings over a different urban region. The KORUS-AQ mission took place
within the GEMS domain, while the SARP in 2017 is within the domain of TEMPO. Given the
similarity between the TEMPO and GEMS instruments in terms of spectral ranges, spectral and
spatial resolution, and retrieval algorithms (Al-Saadi et al., 2014), such comparison is reasonable
and useful in facilitating the generalization of the results from the study.

We use the tropospheric NO, vertical column (VC) retrieved by GeoTASO as a tool to
assess satellite SGV and temporal variability for different hypothetical satellite pixel sizes over
urban regions. Because spatial SGV and temporal variability both vary with satellite pixel size, the
two need to be considered together to enhance the accuracy of satellite product analyses. NO, is
an important air pollutant that is primarily generated from anthropogenic sources such as emissions
from the energy, transportation, and industry sectors (Hoesly et al., 2018). It is a reactive gas with
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a typical lifetime of a few hours in the planetary boundary layer (PBL), although it can also be
transported over long distance in the form of peroxyacetyl nitrate (PAN) and nitric acid. NO; is a
precursor of tropospheric ozone and secondary aerosols,and has a negative impact on human health

{ Deleted: ,




150
151
h52

153
154
hs5
156
157
158
159
160

161

162
163
164
165
166

167

68
169
170
171
172
173
L74

175
176
77
178
179
180
181
182
183
184
185
186
187
188
189

and the environment (Finlayson-Pitts et al., 1997). The results from this paper’s analysis of NO,
also have implications for other air pollutants that share common source(s) with NO», but that have
somewhat longer lifetimes, for example, carbon monoxide (CO) and SO».

In this study, we apply a satellite pixel random sampling technique and the spatial structure
function analysis to GeoTASO data (described in Section 2) to quantify the SGV of satellite pixel
NO; VC over three urban regions at a variety of spatial resolutions. We analyze the relationship
between satellite pixel size and satellite SGV, and the relationship between satellite pixel size and
the temporal variability of NO, observations (Section 3). We then discuss the implications for
satellite design, satellite retrieval interpretation, satellite validation and evaluation, and satellite—
in situ data comparisons (Section 4). Implications for general local observations and grid data
comparisons are also discussed. Section 5 presents our conclusions.

2. Data and methods

In this section, we describe the GeoTASO instrument, campaign flights and the different
analysis techniques used to characterize the satellite pixel SGV. We outline two approaches:
satellite pixel random sampling to investigate separately both spatial variability and temporal
variability, and the construction of spatial structure functions for an alternative measure of spatial
variability.

2.1 GeoTASO instrument

In this study, we focus on GeoTASO retrievals of tropospheric NO, VC, GeoTASO isa .-~

hyperspectral instrument (Leitch et al., 2014) that measures nadir backscattered light in the
ultraviolet (UV; 290-400 nm) and visible (VIS; 415-695 nm). As one of NASA’s airborne UV—
VIS mapping instruments, it was designed to support the upcoming GEO satellite missions by
acquiring high temporal and spatial resolution measurements with dense sampling for optimizing
and experimenting with new retrieval algorithms (Leitch et al., 2014; Nowlan et al., 2016; Lamsal
etal., 2017; Judd et al., 2019).

NO,_is retrieved from GeoTASO spectra using the Differential Optical Absorption
Spectroscopy (DOAS) technique. The retrieval methods and Level 2 data processing are described
in Lamsal et al. (2017) and Souri et al. (2020) for KORUS-AQ and in Judd et al. (2019) for SARP.
Although beyond the scope of this work, it is important to recognize that assumptions made in the
retrieval process (e.g., assumed vertical distribution of the NO, profile) could affect the final

variability of the retrieved NO, fields. GeoTASO has a cross-track field of view of 45° (+/- 22.5°

from nadir), and the retrieval pixel size is approximately 250 mx250 m from typical flight altitudes -

0f'24,000-28,000 feet (7.3—8.5 km). The dense sampling of airborne remote sensing measurements
such as GeoTASO js a unique feature that provides the opportunity to study the expected spatial

and temporal variability within satellite retrieved NO, pixels at high resolution. We use cloud-free

GeoTASO data jn this study, GeoTASO NO, VC retrievals have been validated with aircraft jn

situ data and ground-based Pandora remote sensing measurements during KORUS-AQ. Validation -

of GeoTASO NO, VC retrievals with aircraft in situ data suggested ~25% average difference
while agreement with Pandora is better with a difference of ~10% on average. Mean difference

between Pandora and aircraft in situ data is ~20%. These validation results of GeoTASO NO,, VC ]
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retrievals are better than that reported by Nowlan et al. (2016). GeoTASO NO, VC retrievals

during 2017 SARP have also been validated with Pandora data (Judd et al., 2019),

2.2 The 2016 KORUS-AQ field campaign

The KORUS-AQ field measurement campaign (Crawford et al., 2021), took place in May—

June 2016, to help understand the factors controlling air quality over South Korea. One of the goals
of KORUS-AQ was the testing and improvement of remote sensing algorithms in advance of the
launches of the GEMS, TEMPO, and Sentinel-4 satellite missions. It is hoped that the high-quality
initial data products from the GEO missions will facilitate their rapid uptake in air quality
applications after launch (Al-Saadi et al., 2014; Kim et al., 2020). During KORUS-AQ, GeoTASO
flew onboard the NASA LaRC B200 aircraft. We focus on the data taken over the Seoul

Metropolitan Area (SMA) that is highly urbanized and polluted, and the greater Busan region that -
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KORUS-AQ with Pandora shows ~10% difference on
average. The uncertainty estimate is lower than that reported
by Nowlan et al. [2016].

| Deleted: Al-Saadi et al., 2014

{ Deleted: ,

is Jess urbanized and less polluted than SMA (Figure 1). Figure 2 shows the 12 GeoTASO data -

rasters (i.e., gapless maps) acquired over SMA. It took ~4 hours to sample the large-area rasters
(i.e., 0511AM, 0517AM, 0517PM, 0528PM), and ~2 hours to sample small-area rasters (i.e.
0601PM, 0602AM, 0605AM, 0609AM. and 0609PM). Figure S1 shows the 2 GeoTASO rasters
acquired over the Busan region.

2.3 The 2017 SARP field campaign

During the NASA Student Airborne Research Program (SARP) flights in June 2017,
(https://airbornescience.nasa.gov/content/Student Airborne Research Program), GeoTASO was
flown onboard the NASA LaRC UC-12B aircraft over the LA Basin (Figure S2, which also shows
the landcover). A detailed description and analysis of these data can be found in Judd et al. (2018;

2019). In this study, we compare our analyses of the KORUS-AQ GeoTASO data with that from .-~
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SARP over the LA Basin to test the general applicability of our findings.

2.4 Satellite pixel random sampling for spatial variability

The sampling strategy with GeoTASO provides a raster of continuous measurements in a

mapped gapless pattern at high spatial resolution (Figures 2, S1, and S2). This dataset allows usto -
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sample and study the SGV of coarser spatial resolution hypothetical satellite pixels sampling the
same domain. To mimic satellite observations and quantify the satellite SGV, we randomly sample
the GeoTASO data with hypothetical satellite pixels spanning 27 different pixel sizes (0.5 kmx0.5
km, 0.75 kmx0.75 km, 1 kmx1 km, 2 kmx2 km, up to 25 kmx25 km). Because of the transition to

better spatial resolution for the future satellite missions, and the coverage limitation in the .~
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maximum hypothetical satellite pixel size sampled using the random sampling method, the
analysis of SGV only goes up to 25 km x 25 km. This sampling process is conducted for each hour
of each selected flight over the regions of interest during the KORUS-AQ and SARP campaigns.
For every sampled satellite pixel, the mean (MEAN ;1) and standard deviation (SDpix1) of the
GeoTASO tropospheric NO, VC data within the pixel are calculated to represent the satellite SGV.

Normalized satellite SGV is calculated as the standard deviation of the GeoTASO data within the -

{ Deleted: by

sampled satellite pixel divided by the mean of the GeoTASO data within the same sampled satellite
pixel (SDpixel/MEANpixel).
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We use a set of 10,000 hypothetical satellite pixels at each size to include all of the

GeoTASO data in the analysis and to cover as many locations as possible. ‘Because the data are

located closely in space but may be sampled at slightly different times for the same flight, we
separate GeoTASO data into hourly bins for each flight before pixel sampling in order to reduce
the impact of temporal variability of the GeoTASO data within a single satellite pixel sample.

As an illustration, we describe the procedure below for the May 17" afternoon flight
(Figure 3) that was conducted from 13:00 to 17:00 local time: (1) the GeoTASO data during this
flight were divided into four hourly groups according to the measurement time, i.e., 13:00-14:00,
14:00-15:00, 15:00-16:00, and 16:00-17:00; (2) for each of the 27 hypothetical satellite pixel sizes,
we randomly generate 10,000 satellite pixel locations within each hourly group. Therefore, for
each hour, we sample 270,000 satellite pixels (27 different satellite pixel sizes and 10,000 samples
for each size), and for this example flight, we have a total of up to 1,080,000 possible satellite

pixels in each of 4 hourly groups. Note that only ~10% of these samples are used in the analysis .-

because we discarded a sampled satellite pixel if less than 75% of its area is covered by GeoTASO
data. After applying this 75% area coverage filter, the actual sample size decreases when the pixel
size increases. The number of samples is sufficient as our sensitivity tests indicate that the results

~"| Moved down [3]: Our sensitivity test indicates that the

results do not change by halving the sample size.
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do not change by halving the sample size, We also tested other choices of the coverage threshold
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over SMA in addition to 75% (not shown here). The results are similar for small pixels (< ~10 %

km?), as they are more likely to be covered by GeoTASO data regardless of the threshold value.

For larger pixels (> ~15 km®), the satellite SGV is slightly lower when using 30% or 50% as the
area coverage threshold, because larger pixels act like smaller pixels when only partially covered.

The threshold of 75% was chosen as a trade-off between sample size and representation.
2.5 Satellite pixel random sampling for temporal variability

We also quantify the temporal variability of the retrieved NO, VC within the same satellite
pixels for different satellite pixel sizes. To calculate temporal variability within a hypothetical
satellite pixel, we need GeoTASO data to cover the hypothetical satellite pixel at different times
during the day. During the KORUS-AQ and 2017 SARP campaigns, rasters were treated as single
units (Judd et al., 2019). Each raster produces a contiguous map of data that we consider as roughly
representative of the mid-time of the raster. Unlike the calculation of SGV, which is based on data
separated into hourly bins (section 2.4) to reduce the impact of temporal variability in the
calculated spatial variability, the satellite pixel random sampling to assess temporal variability is
based on rasters, and only conducted for days with multiple rasters. This is to ensure that the

sampled hypothetical satellite pixels have multiple values at different times of the day,and hence -~
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maximize the sample size.

To assess temporal variability within the hypothetical satellite pixels, we randomly select
50,000 pixel locations for each of the 27 hypothetical satellite pixel sizes, and use this same set of
pixel locations to sample the GeoTASO data for each raster across all flights for a given day. This
process is repeated for all days with multiple rasters, and the 75% of area coverage threshold is
also applied. When there are two or more raster values of MEAN;;x. for a given pixel location
separated by time Dt, the temporal mean difference (TeMD) within the satellite pixel is calculated
as:

TeMD(Dt) = average( |MEAN pjye1 () — MEAN ;e (t+DD)|) (1)
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This procedure is repeated for each satellite pixel size.
2.6 Spatial structure function

Structure functions have been applied to in situ measurements and model-generated
tropospheric trace gases to analyze their spatial and temporal variability in previous studies (Harris
etal., 2001). The Spatial Structure Function (SSF) (Fishman et al., 2011; Follette-Cook et al., 2015)
is an alternative measure to the satellite pixel random sampling described above for quantifying
spatial variability, and in this work, we apply the SSF to GeoTASO data to assist our analysis of
satellite SGV. The main difference between the two measures is that the SSF is based on individual
GeoTASO data points, while the results from satellite pixel random sampling are based on sampled
satellite pixels. The locations of the GeoTASO pixel centers are used to calculate the distances.

The SSF as defined here follows Follette-Cook et al. (2015):
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f(NO,yc, D) = average( |[NOyyc(x + D) — NO,yc(x)]) ()

where NO, y is tropospheric NO, VC. f (N OZ,VC',D) calculates the average of the absolute value -

of NO, y differences across all data pairs (measured in the same hourly bin) that are separated by
a distance D. To calculate SSF, the first step is the same as the first step of the satellite pixel
random sampling: we group GeoTASO data hourly for each flight to reduce the impact of temporal
variability of the GeoTASO data, and we only pair each GeoTASO data point with all the other
GeoTASO data in the same hourly bin. More details on structure functions can be found in Follette-
Cook et al. (2015).

2.7 WRF-Chem simulation

To briefly demonstrate the application of this technique on model evaluation and other
species, we show results of a WRF-Chem simulation (Weather Research and Forecasting model

coupled to Chemistry) with a resolution of 3 km x 3 km over SMA in Section 4. The simulation .-
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used NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids as initial
and boundary conditions, and the model meteorological fields above the PBL were nudged 6-
hourly. KORUS version 3 anthropogenic emissions and FINN version 1.5 fire emissions
(Wiedinmyer et al., 2011) were used.

3. Results

In this section, we discuss the results for SGV over the different regions considered. Results
are presented for the hypothetical satellite pixel random sampling for spatial variability and

temporal variability, and for the spatial structure function analysis, We note that the three regions .-
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analyzed in this study are urban. Although we expect the results here to be generally applicable
over urban regions, we have not tested the approach over cleaner background areas that are
characterized by much less heterogeneity.

3.1 Sub-grid variability (SGV) within satellite pixels
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SMA, the Busan region, and the LA Basin have different levels of pollution — the average
values of the GeoTASO NO, VC data over the SMA, the Busan region, and the LA Basin are
2.3x10"® molecules cm™, 1.1x10'® molecules cm™, and 1.3x10'® molecules cm™, respectively.
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Over the three regions, the mean values (MEANx1) and ‘standard deviation (SDyixe) of the |

hypothetical satellite pixels sampled over GeoTASO NO, VC data are different (Figure S3). This
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is consistent with previous studies suggesting SGV can vary regionally (Judd et al., 2019; B

Broccardo et al., 2018). However, we find that the normalized satellite SGV (calculated as the
ratio of SDpixel to MEAN i for a sampled pixel) is similar over each of the areas, regardless of
the absolute level of pollution as represented by MEAN i1 (Figure 4). Over SMA (Figure 4a), the
mean normalized satellite SGV of tropospheric NO, VC increases smoothly from ~10% for the
pixel size of 0.5 km x 0.5 km, to ~35% for the pixel size of 25 km x 25 km. The interquartile
variation of the satellite SGV also increases with satellite pixel sizes. The patterns of the sampled
satellite pixels over the Busan region (Figure 4b) and LA Basin (Figure 4c) are also found to be
similar to those over SMA. Furthermore, Figures S4 and S5 show that even the normalized SGV

of individual flights over the three domains generally follow the same pattern, except in the case -
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of the June 9 PM flight.

We also compare normalized satellite SGV for different levels of pollution, regardless of
their regions (Figure S6). The normalized satellite SGV for the less polluted pixels (MEANxel
being lower than the average value of all pixels, i.e., 2x10"® molecules cm™) also shows an overall
similar pattern as for the more polluted pixels (MEAN; being higher than the average value of
all pixels). We notice that at small pixel sizes, less polluted pixels have higher normalized satellite
SGV, possibly contributed by relatively higher retrieval noise at lower pollution levels,,
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We show the normalized SGV for individual rasters over SMA (Figure 5) to indicate the
uncertainty range of the normalized SGV shown in Figure 4. The spread of SGV across different
individual rasters represents the uncertainties of using the averaged normalized SGV for a specific
case. Note that the variation of normalized SGV with pixel size for individual rasters generally
follows the same pattern (i.e., increases with satellite pixel size), especially when the pixel size is
small (<10 km x 10 km). The normalized SGV increases from ~10% to ~25%, with the uncertainty
range consistently being £5% when the pixel size is smaller than 10 km x 10 km. When the pixel
size is larger than 10 km x 10 km, the uncertainty range broadens with pixel sizes from £5% (10
km x 10 km) to £15% (25 km x 25 km). This means that when the satellite pixel size is large,
using the mean normalized SGV in Figure 4 to represent specific cases may lead to larger

uncertainties. Below the resolution of 10 km x 10 km, SGV can be characterized by the mean .~

value with relatively smaller uncertainty (+5%) and hence high confidence, even with large diurnal

or day-to-day variations. The spatial resolutions of TEMPO, GEMS, Sentinel-4, and TROPOMI
(TROPOspheric Monitoring Instrument, Veefkind et al., 2012; Griffin et al., 2019; van Geffen et

al., 2019) are within this <10 km x 10 km range, while the resolution of OMI (Levelt et al., 2006; .
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spatial resolution at about 10 km x 10 km.
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2018) is not. This means that applying this study (e.g., Figure 4) to OMI for a specific case study
(e.g., a specific day) requires extra caution.

The GeoTASO data located closely in space may be sampled at slightly different times for
the same flight. To explore the impact of temporal variability on this SGV analysis, we performed
two sensitivity tests. The typical time period for a complete flight is ~4 hours. In the first test, we
sampled GeoTASO data with hypothetical satellite pixels grouped by each complete flight, rather
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than grouping the data by each hour (i.e., hourly bins). The resulting patterns and relationships are
similar to those derived from grouping data into hourly bins, except that the normalized satellite
SGV increases ~5% for small pixels due to temporal variability (Figure S7a). In the second test.
we sampled GeoTASO data with hypothetical satellite pixels grouped by each raster. The results
are still similar to those derived from grouping data into hourly bins (Figure 4), except that the
normalized satellite SGV increases ~1% for small pixels due to the inclusion of temporal
variability (Figure S7b). This is because sampling by raster includes smaller temporal variability

than sampling by flight, but larger temporal variability than sampling by hourly bins,,

The three regions investigated in this work have different levels of urbanization and air
pollution (Figures 1 and S2). PBL conditions are also different in the morning and afternoon
(Figure S&). The similarity of the relationships between the satellite pixel size and the normalized

satellite SGV over these different regions (Figure 4) suggests that this relationship may be

generalizable to NO, VC over urban regions with different levels of urbanization and air pollution,
and different PBL conditions. Moreover, Figures 4 and 5 point to the possibility of developing a
generalized look-up table for the expected normalized satellite SGV for NO, VC over urban
regions at different satellite pixel sizes, especially for small pixel sizes (e.g., TEMPO, GEMS, and
TROPOMI). This would be useful in satellite design, satellite retrieval evaluation and
interpretation, and satellite—in situ data comparisons. For example, the satellite pixel size of
tropospheric NO, VC retrievals from GEMS, TEMPO, TROPOMI, and OMI are highlighted in
Figure 4. Following Judd et al. (2019), we choose 3 km x 3 km, 5 km x 5 km, 7 km x 8 km, and
18 km x 18 km pixels to represent the expected area of the satellite pixels for TEMPO (2.1 km x
4.4 km), TROPOMI (3.5 km x 7 km), GEMS (7 km x 8 km), and OMI (18 km x 18 km),
respectively. The expected normalized satellite SGV for TEMPO, TROPOMI, GEMS, and OMI
are 15-20%, ~20%, 20-25%, and ~30%, respectively. Taking the TEMPO example, this implies
that the satellite SGV could potentially lead to uncertainties of 15-20% in a validation exercise

comparing a satellite retrieval with local measurements of NO, VC, from a Pandora spectrometer .-

~| Deleted: We tested the sensitivity of the results over SMA to

sampling GeoTASO data with hypothetical satellite pixels
grouped by complete flight, rather than grouping the data by
time in hourly bins. The resulting patterns and relationships
are similar, except that the normalized satellite SGV
increases ~5% for pixels of small sizes due to the inclusion
of temporal variability (Figure S8a). We also tested the
results for sampling satellite pixels by raster instead of
within hourly bins. The results are again similar to Figure 4,
except that the normalized satellite SGV increases ~1% for
pixels of small sizes due to the inclusion of temporal

" | variability (Figure S8b).
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for example, that may be unrepresentative of the wider pixel area,,

3.2 Temporal variability (TeMD) within the same satellite pixels

In addition to satellite spatial SGV, we also analyze the temporal variability (i.e., TeMD)
within the same hypothetical satellite pixels. Figure 6 shows TeMD of satellite retrieved
tropospheric NO, VC over SMA as a function of hypothetical satellite pixel size and the separation

time (Dt) between flight rasters as described in Sgction 2.5. The results for 27 satellite pixel sizes .-

~| Deleted: as might be obtained from a Pandora spectrometer.

As a result, we should caution that calculating a pixel mean
bias when evaluating against local measurements within the
pixel sometimes may be optimistic due to the cancellation of
sub-grid positive and negative biases.

{ Deleted: s

analyzed are shown by different colors, while results for selected satellite pixel sizes are
highlighted by thicker lines. For all the pixel sizes, TeMD increases monotonically with the time
difference Dt between two sampled raster values within the same pixel. The TeMD of tropospheric
NO, VC is around 0.75x10'® molecules cm™ for a Dt of 2 hours over SMA for all the sampled

satellite pixel sizes,and increases to ~2x10" molecules cm™ for Dt of 8 hours. This indicates that, .-~

{ Deleted: ,

along with improvements in the satellite retrieval spatial resolution with smaller pixels, improving
the satellite retrieval temporal resolution with higher frequency measurements is also an effective
way to enhance capability in resolving variabilities of NO,.

To investigate the TeMD shown in Figure 6 we consider the particular factors driving NO»
variability over SMA. NO» has a relatively short lifetime (~ a few hours) and a strong diurnal cycle
due to emission activities, chemistry and changing photolysis rate (Fishman et al., 2011; Follette-
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Cook et al., 2015). The diurnal cycle of the PBL may also play, a large role because horizontal { Deleted: s

dispersion occurs as the PBL thickens during the day. Early in the morning, the PBL is low (~1400

m during 9:00-11:00 in SMA during KORUS-AQ) and strong source locations are evident such as { Deleted: s

traffic on major highways, etc. As the day progresses, the PBL height increases (~1800 m during
15:00-17:00; Figure S8) due to enhanced convection, which further induces a stronger horizontal
divergence at the top of the convective cell that allows for greater horizontal dispersion to take

place along with the divergence, By early afternoon, emissions from all the major sources in the .| Deleted: As the day progresses, the PBL height increases

central region have mixed together to form a wide area of high pollution over the urban center with (~1800 m during 15:00-17:00; Figure $9) allowing for
greater horizontal mixing to take place.

strong gradients of decreasing NO, out to the surrounding areas. In addition, changing wind
conditions (speed and direction; Figure S9) during the day can also lead to a shift in pollution
pattern, and result in different pollution conditions for the same pixel at different time of a day.
For example, Raster 1 of the 0609AM (9.17 local time) and Raster 2 of 0609PM (17 local time)
are used to calculate TeMD for Dt equals 8 hours. The differences in wind conditions (Figure S9)
and the pollution patterns (Figure 2) are large. Judd et al. (2018) point out that the topography over
SMA also plays a role in the ability to mix horizontally as the PBL grows. Therefore, the TeMD
can be large between morning and afternoon (i.e., for Dt larger than 6 hours).

For a small Dt (2 or 4 hours), TeMD increases at higher, spatial resolution (i.e., smaller { Deleted:

when increasing theat higher

pixel size). This is especially true for short time periods (e.g., 2 hours and 4 hours), which is more { Deleted:

satellite retrieval

important for the GEO satellite measurements. For example, for Dt of 2 hours, TeMD for satellite
pixels of 1 km x 1 km is about 0.80x10"® molecules cm™, while TeMD for satellite pixels of 25
km x 25 km is about 0.73x10'® molecules/cm? (~9% lower); when Dt is 4 hours, TeMD for satellite
pixels of 1 km x 1 km is about 1.3x10"® molecules cm™, while TeMD for satellite pixels of 25 km

i

ncreasing

the satellite retrieval spatial resolution (decreasing

)

SO

x 25 km is about 1.1x10'® molecules/cm? (~15% lower). This indicates that when decreasing pixel . { Deleted:
size, the temporal variability of the retrieved values will increase, even though the normalized { Deleted:
satellite spatial SGV decreases. This is expected because averaging over a larger region with high - { Deleted:
small-scale spatial variability smooths out temporal variability, and therefore produces, smaller { Deleted:
hourly differences. Our finding here is consistent with that of Fishman et al. (2011). { Deleted:
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As the time difference Dt increases, the temporal variability TeMD increases for all pixel
sizes. However, the TeMD is now greater at large pixel size which is in contrast to the higher
TeMD at small pixel size for shorter Dt. This is a result of the pollution pattern that develops over

the SMA during the day (June 9™, 2019) as described above. The higher TeMD reflects the fact { Formatted: Superscript

that many of the large pixels now span the strong NO, gradient between the urban and surrounding
area resulting in a much higher spatial variability than earlier in the day at a spatial scale not
captured with the smaller pixels. As a caution, we note that TeMD for 8 hours is determined by
only the difference between Raster 1 of the 0609AM and Raster 2 of 0609PM (Figure 2), and that
the regional coverage for Raster 2 of 0609PM is different from the coverage of the other PM rasters.
Therefore, the relationship of TeMD and spatial resolution for a large Dt (e.g., 6 or 8 hours) over
SMA requires further study.

GeoTASO data over the Busan region is limited. Given the fewer flights, we are not able
to show how TeMD changes with Dt over the Busan region in this study. However, we are able to
show the relationship between TeMD and satellite pixel sizes. During KORUS-AQ, there were

only two rasters sampled over Busan with a Dt of 2 hours (Figure S10). For this Dt of 2 hours, . { Deleted: 0

TeMD increases slightly at higher satellite retrieval spatial resolution (smaller pixel size). More { Deleted: when increasing the

data over the Busan region would help significantly for this analysis. For the LA Basin GeoTASO
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data, sampled hypothetical satellite pixels show TeMD increases at higher spatial resolution for
the available Dt equal to 4 and 8 hours (Figure S11). However, TeMD is fairly constant at these

two time differences which is different to what was observed over SMA (Figure 6). We note that .

with only 2 flight days of flight data, the GeoTASO data over LA is also limited, which may be
the main driver of the difference. Besides the limited data, one possible reason is the different wind
fields over the two regions. As mentioned previously, Raster 1 of the 0609AM and Raster 2 of
0609PM are used to calculate TeMD for Dt equals 8 hours over SMA. The differences in wind
direction (Figure S9) for the two rasters are large (almost opposite in some cases). However, over
LA, the differences in wind direction (Figure S12) for the two rasters (Rasters 1 and 3 for 0627

Deleted: over the LA Basin, for a given Dt, TeMD increases
when increasing the satellite retrieval spatial resolution
(smaller pixel size) for Dt equal to 4 and 8 hours (Figure
S11).

flight) are relatively small, compared to the differences over SMA. Despite the limited sample

{ Deleted:

sizes, TeMD increases when increasing the satellite retrieval spatial resolution over both the Busan
region and the LA Basin, which is consistent with the relationships over the SMA for a small Dt.

3.3 Results from Spatial Structure Function (SSF)

In this section, we show the analysis of SSF over SMA (Figure 7) as a complement to our
analysis in Section 3.1. As mentioned before, SSF and SGV are different measures of spatial
variability and are not directly comparable. This is because SSF is calculated based on differences
between a single GeoTASO measurement and all the other GeoTASO measurements on the map,
while SGV is derived based on variation among all the GeoTASO measurements within a
hypothetical satellite pixel unit. SSF measures the averaged spatial difference at a given distance,
while SGV directly quantifies the expected spatial variability within a satellite pixel at a given size.
As both SSF and SGV are related to spatial variability, we include SSF in this study as an extension
to SGV.

Figure 7a shows that the SSF in SMA initially increases with the distance between data
points, peaks at around 40-60 km during most flights, and then decreases with distance between
60 and 140 km. The number of paired GeoTASO data points when the distance is larger than 100
km is relatively small (Figure S13) therefore conclusions beyond this distance are not included in

{ Deleted: 2

this analysis. The increases in SSF for distances in the range of 1-25 km (Figure 7b) are consistent
with the relationship between pixel sizes and the normalized satellite SGV shown in Figure 4. For
example, over the 1-25 km range, Fig 4a shows the median increases from around 8% to around
28%, an increase by a factor of 3.5, and the black line in Figure 7 shows an approximately similar
factor (from 0.33 x10'® molecules/cm® for 1 km to 1.5x10'® molecules/cm® for 25 km). This
increase of SSF between 1-25 km is also seen over the Busan region and the LA Basin (Figure
S14). We also notice that SSF shows a relatively strong dependence on the particular GeoTASO

) { Deleted: 3

flight, while SGV is less sensitive, especially for small pixel sizes.

The shapes of the SSF are generally consistent with previous studies for modeled or in situ
observations of NO, (Fishman et al., 2011; Follette-Cook et al., 2015). Previous studies also
suggest that different aircraft campaigns may share the common shape of SSF but different
magnitudes, which is strongly related to the fraction of polluted samples versus samples of
background air in the campaign (Crawford et al., 2009; Fishman et al., 2011). Differences in the
shape and size of particular cities also contribute to the differences in the SSF. For example, at a
certain distance SSF may compare polluted areas within the same urban region, while over a
different smaller city, the comparison at the same distance reveals the gradient between the
polluted city and cleaner surrounding background air, so resulting in different peak values. Valin
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et al. (2011) found that the maximum in OH feedback in a NOx-OH steady-state relationship
corresponds to a NO, e-folding decay length of 54 km in 5m/s winds. This may partially explain
the peak between 40~60 km in SSF. As shown in Figures 2 and S7, the overall spatial variability
over SMA is higher in the afternoon. Over SMA, the SSF in the morning is generally smaller than
in the afternoon, indicating higher spatial variability of tropospheric NO, VC in the afternoon (see

also Judd et al., 2018). As described in Section 2.6, SSF js calculated based on hourly binned data, -

Deleted: discussed here (Figure 7)

However, the overall shapes of SSF (Figure S15) calculated on raster basis are similar to SSF

calculated on hourly basis (Figure 7).

Previous studies (Fishman et al., 2011; Follette-Cook et al., 2015) used SSF values at a
particular distance to indicate the satellite precision requirement at a corresponding resolution in
order to resolve spatial structure over the pixel scale. For GEMS, the expected spatial differences
over the scale of its pixel for the SMA and Busan regions are ~7.5x10"° molecules cm™ and
~3.5x10" molecules cm?, respectively, taking the SSF values at 5 km to be representative. For
TEMPO, the spatial difference is ~2.8x10"* molecules cm™ over LA Basin taking the SSF value
at 3 km. Assuming the NO, measurement precision requirement to be 1x10"* molecules cm™ for
both TEMPO and GEMS (Chance et al., 2013; Kim et al., 2020), the expected spatial differences
over the three regions are considerably higher than the precision requirement and should be easily
characterized by both the GEMS and TEMPO missions.

4. Discussions and implications

The relationship between satellite pixel sizes and the normalized satellite SGV is fairly
robust over the three different urban regions studied here, and Figure 4 points to the possibility of
developing a generalized look-up table if more data were available in other urban regions. We note
that the GeoTASO data used in this study were sampled during spring and summer. In our future
study, we will include more GeoTASO data in the analysis to test the applicability of the look-up
table approach under different seasonal conditions and sources. A generalized relationship
between satellite pixel sizes and the temporal variability (Figure 6) is not as evident as the
relationship between satellite pixel sizes and the normalized satellite SGV due to limited data.
However, it is still useful for satellite observations over SMA, which is in the GEMS domain and
should be helpful in satellite retrieval interpretation.

Previous studies recognized the challenges in satellite validation/evaluation for NO,
retrievals due to satellite SGV and representativeness error of in situ measurements (e.g., Nowlan
etal., 2016, 2018; Judd et al., 2019; Pinardi et al., 2020; Tack et al., 2020). The gapless airborne
mapping datasets of GeoTASO with sufficient spatiotemporal resolution are a promising way to

address the issue of satellite SGV and representativeness errors in satellite validation/evaluation

(e.g., Nowlan et al., 2016, 2018; Judd et al., 2019).

Challenges due to SGV also have implications for other trace gas column measurements.

For example, in Tang et al. (2020), satellite SGV and representativeness errors of in situ
measurements introduced uncertainties in validation of CO retrievals from the MOPITT

(Measurement Of Pollution In The Troposphere) satellite instrument. Normalized SGV of the

GeoTASO tropospheric NO, VC might serve as an upper bound to the SGV of CO, SO, and other

species that share common source(s) with NO, but with relatively longer lifetimes than NOp, even

if their spatial distributions have different patterns (e.g., Chong et al., 2020). For example, at the
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resolution of 22 km x 22 km (resolution of MOPITT CO retrievals), the expected normalized
satellite SGV of tropospheric NO, VC is ~30%. Therefore, we might expect the normalized
satellite SGV for tropospheric CO VC to be lower than this value.

JTo demonstrate this idea, we use the WRF-Chem regional model as an intermediary step. .-~
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At the model resolution, if the SVG of the WRF-Chem model and GeoTASO NO, VC agree
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reasonably well, then the model can be used to predict the SVG of other species that are chemically
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constrained with NO; at the model and gcoarser resolutions. This is shown in Figure 8 which .-
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HCHO VC. We also notice that SGV for modeled NO, VC, CO VC, SO, VC, and HCHO VC
increases with pixel size, which is similar to that for GeoTASO measurements. The SGV for
GeoTASO NO; shown in this figure (black lines) is calculated based on GeoTASO data that are
regridded to the WRF-Chem grid (3 km x 3 km), making it slightly different from that in Figure

4. We note that the modelled NO, SGV is greater than that calculated from the GeoTASO data .-

indicating that further work is required to reconcile difference due to model descriptions of

Deleted: Note that a more comprehensive comparison
requires further work and ideally actual

emissions, chemistry and transport. And ideally, dense GeoTASO-type measurements of CO and

other species would allow for a more comprehensive assessment of this approach,

~| Deleted: to address differences due to local sources on the
background concentrations

This study is also relevant to model comparison and evaluation with in situ pbservations. .
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Whenever in situ observations are compared to grid data (e.g., comparisons between satellite | Deleted: local
retrievals and in situ pbservations, comparisons between grid-based model and in situ pbservations, Deleted: local
and in data assimilation), SGV will introduce uncertainties that need to be quantified to better (D eleted: local
interpret and understand the comparison results. For example, we note that at the resolution of 14
kmx14 km (a typical resolution for the forward-looking Multi-Scale Infrastructure for Chemistry
and Aerosols Version 0; MUSICA-VO0, https://www?2.acom.ucar.edu/sections/multi-scale-
chemistry-modeling-musica; Pfister et al. (2020)), Figure 8 shows that the expected normalized { Deleted: }
SGV of tropospheric NO, VC is ~25-30%. This suggests that when comparing model simulations _ { Deleted: [2020] }
at coarser resolution with local observations of tropospheric NO, VC, a larger normalized SGV { Deleted: satellite }
than this ~25-30% jmight be expected. If comparing for a specific vertical layer instead of vertica { Deleted: W }
column, an even larger normalized SGV may occur. { Deleted: a }
For data assimilation and inverse modeling application (e.g., top-down emission {Demed: local }
estimations from satellite observations), it is essential to accurately characterize the observation [ Deleted: for }
error covariance matrix R (Janjic et al., 2017). The first component of R is the instrument error % Deleted: larger %
Deleted: may

covariance matrix due to instrument noise and retrieval uncertainty in the case of trace gas satellite

data. The second component is the representation error covariance matrix, arising from
fundamental differences of the atmospheric sampling, typically when assimilating a local point
measurement into a grid-based model (Boersma et al, 2016). The observation error covariance due
to representativeness error is difficult to define, but can be parameterized when calculating super
observations by inflating the observation error variances (Boersma et al., 2016) and quantified by
a posteriori diagnostics estimation (Gaubert et al. 2014). Knowledge of the fine-scale model sub-
grid variability is therefore essential to verify those assumptions and inform error statistics for
application to chemical data assimilation studies. Our results suggest large potential improvements
in emission estimates when assimilating high spatial resolution TROPOMI and GEO satellite data
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with SGV of ~10%—-20% (Figure 4), compared to OMI data with SVG of ~30% (Figure 4), in line
with the existing literature for NO, (e.g., Valin et al., 2011). We have also shown that significant
temporal variability of NO,_is expected at higher spatial resolutions. This observed signal will
open new avenue for space-based monitoring of atmospheric chemistry and will reduce errors of
inverse estimates of fluxes.

5. Conclusions

Satellite SGV is a key issue in interpreting satellite retrieval results. Quantifying studies

have been lacking due to limited observations at high spatial and temporal resolution. In this study, { Deleted: high-resolution

we have quantified likely GEO satellite SGV by using GeoTASO measurements of tropospheric
NO, VC over the urbanized and polluted Seoul Metropolitan Area (SMA) and the less-polluted
Busan region during KORUS-AQ, and the Los Angeles (LA) Basin during the 2017 SARP
campaigns. The main findings of this work are the following:

(1) The normalized satellite SGV increases with pixel size based on random sampling of hourly .-~ : hypothetical satellite

GeoTASO data, from ~10% (+5% for specific cases such as an individual day/time of day) for -

HN

apixel size of 0.5 km x 0.5 km to ~35% (£10% for specific cases such as an individual day/time : satellite pixel

of day) for the pixel size of 25 km x 25 km. This conclusion holds for all of the three urban .-~ : study

regions_in this study, despite their different levels of urbanization and pollution, and for time .-

of day being, morning or afternoon.

(2) Due to its relatively shorter atmospheric lifetime, pormalized satellite SGV of tropospheric  The

NO; VC could serve as an upper bound to satellite SGV of CO, SO, and other species that

Deleted: but have relatively longer lifetime,

share common source(s) with NO,, This conclusion is supported by high-resolution WRF-
Chem simulations. \

(3) The temporal variability (TeMD) jncreases with sampling time differences (Dt) over SMA.

1 -2 1 -2
TeMD ranges from ~0.75x10'® molecules cm™ at Dt of 2 hours to ~2x10'® molecules cm Deleted: within the same hypothetical satellite pixels

activities, photolysis, and meteorology throughout fhe day. Improving the satellite retrieval cycle of NO, due to

temporal resolution is an effective way to enhance the capability of satellite products in

resolving temporal variability, of NO,.

(4) Temporal variability (TeMD) increases as pixel size decreases, in SMA when time difference x

is less than 4 hours. Analysis confidence at greater time differences would require more flight

datasets with longer time separations during the day. For example, when Dt is 2 hours, TeMD | Deleted: and PBL evolution during

for satellite pixels with the size of 25 km x 25 km is about 20% lower compared to TeMD for Deleted: ies

Deleted: when increasing the satellite retrieval spatial
resolution (i.e., smaller pixel size)

satellite pixels with the size of 1 km x 1 km. Thus, ideally, temporal resolution should be
increased along with any increase in spatial resolution in order to enhance the accuracy of

satellite products., Deleted:

(5) The spatial structure function (SSF) at first,increases with the distance between points, peaking+ | Formatted: Key Points, Space Before: 0 pt
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at around 40-60 km during most flight days, before decreasing at greater distances. This is ;

generally consistent with previous studies. Deleted: between data points,
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(6) SSF analyses suggest that GEMS will encounter NO, VC pixel scale spatial differences of
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~7.5x10"° and ~3.5x10'"> molecules cm™ over the SMA and Busan regions, respectively.
TEMPO will encounter NO, VC spatial differences at its pixel scale of ~2.8x10'° molecules
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cm™ over the LA Basin. These differences should be easily resolved by the instruments at the
stated measurement precision requirement of 1x10"° molecules cm™.

(7) These findings are relevant to future satellite design and satellite retrieval interpretation,
especially now with the deployment of the high-resolution GEO air quality satellite
constellation, GEMS, TEMPO, and Sentinel-4. This study also has implication for satellite
product validation and evaluation, satellite—in situ data comparisons, and more general point-
grid data comparisons. These share similar issues of sub-grid variability and the need for
quantification of representativeness error.

We note that this study has some uncertainties and limitations. (1) The variability at a
resolution finer than 250 m x 250 m (i.e., GeoTASO’s resolution) may introduce uncertainties to
the analysis here, although this is beyond the scope of this study. (2) Even though a large number
of GeoTASO retrievals have been analyzed in this study, we would still benefit from more
GeoTASO flights with a broader spatiotemporal coverage, More GeoTASO-type data over the

Busan region and LA Basin will help in testing the consistence in TeMD over different regions.
(3) The KORUS-AQ campaign was conducted in Spring (May and June), and the 2017 SARP
campaign was also conducted in June. More GeoTASO-type measurements over South Korea
during different season(s) would be particularly helpful to understand and generalize the findings
in this study. (4) The three regions analyzed in this study are urban regions, and the results are not
tested over cleaner background areas that may be characterized by less heterogeneity.

This work demonstrates the value of continued flights of GeoTASO-type instruments for
obtaining continuous, high spatial resolution data several times a day for assessing SGV. This will
be a particularly useful reference in the comparisons of satellite retrievals and in situ measurements
that may have representativeness errors.
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Figure 1. Domain of the study over South Korea and the land cover. Boxes indicate location of
the SMA (upper left) and the Busan region (lower right) domains. The bold polygons in the two
boxes represents political boundaries (upper left) of Seoul and Busan (lower right). Land cover
data are from MODIS Terra and Aqua MCD12C1 L3 product, version V006, annual mean at 0.05°
resolution; Friedl et al., 2015.
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Figure 2. GeoTASO data of tropospheric NO, vertical column (molecules cm™) measured during
KORUS-AQ over the Seoul region. Each panel shows a separate raster. Panel titles show month,
day, AM/PM, raster number on that date, and mean time of raster acquisition. There were nine
flights sampling rasters over Seoul. The May 01 AM, May 17 AM, May 17 PM, May 28 PM, June
01 PM, and June 02 AM flights each sampled one raster. The June 05 AM, June 09 AM, and June
09 PM flights each sampled two rasters. As a result, there were two flights and two rasters on May
17th, one flight and two rasters on June 5th, and two flights and four rasters on June 9th. The bold
polygons in each panel represent political boundary of Seoul.
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Figure 3. Demonstration of the hypothetical satellite pixel random sampling method. Each subplot
is an hour during May 17" PM flight. For each hour, we randomly sample 10000 hypothetical
satellite pixels at each different pixel sizes (i.e., 0.5 kmx0.5 km, 0.75 kmx0.75 km, 1 kmx1 km, 2
kmx2 km, ... , 25 kmx25 km) over the GeoTASO data of tropospheric NO; vertical column
(molecules cm™) every hour. The sampled pixel size (from 0.5 kmx0.5 km to 25 kmx25 km) are
shown in the lower-left corner of each sub-plot. Only 100 samples for pixel size of 7 kmx7 km
(thick black box) and 100 samples for 18 km x 18 km are shown for demonstration purposes.
Samples that fail to pass the 75% coverage threshold are not shown. Coastlines,
Province/Metropolitan City boundaries are shown by gray solid lines. Main roads are shown by
blue dashed lines (data are from http://www.diva-gis.org/gdata).
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Figure 4. Boxplot (with medians represented by red bars, interquartile ranges between 25th and
75th percentiles represented by blue boxes, and the most extreme data points not considered
outliers represented by whiskers) for the normalized satellite sub-grid variability (SGV) over the
Seoul Metropolitan Area (a), the Busan region (b), and Los Angeles Basin (c). Normalized satellite
SGYV is calculated as the standard deviation of the GeoTASO data within the sampled satellite
pixel divided by the mean of the GeoTASO data within the sampled satellite pixel. The black lines
represent the mean of the normalized satellite SGV at a given size. The resolutions of TEMPO,
TROPOMI, GEMS, and OMI are highlighted by the yellow shade in the Figure.
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1287  Figure 7. (a) Spatial Structure Function (SSF) for GeoTASO data of tropospheric NO, vertical
1288  column molecules cm™) over the Seoul Metropolitan Area (SMA) during KORUS-AQ and (b) the
1289  zoom-in version of panel (a) for distance range of 1-25 km. The SSF calculates average of absolute
1290  value of NO, y( differences (i.e., mean difference; y-axis) across all data pairs (measured in the
1291  same hourly bin) that are separated by different distance (x-axis). The SSF based on GeoTASO
1292  data measured during morning flights are in solid colored lines while the SSF based on GeoTASO
1293  data measured during afternoon flights are in dashed colored lines. The SSF based on all the data
1294  is in the black solid line.
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Figure 8. Boxplot of hypothetical satellite normalized SGV of NO, vertical column (VC), SO,
VC, CO VC, and formaldehyde (HCHO) VC derived from the WRF-Chem simulation with a
resolution of 3 km x 3 km (colored lines), and GeoTASO NO, VC that gridded to the WRF-Chem
grid (black lines) over the Seoul Metropolitan Area. Medians are represented by red bars,
interquartile ranges between 25th and 75th percentiles by blue boxes, and the most extreme data
points not considered outliers by whiskers. The modeled NO,, CO, SO,, and HCHO are filtered to
match the rasters of GeoTASO measurements.
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In addition to the comparison between different domains and pollution levels, we also compare
this relationship in the morning and afternoon. The variation of normalized SGV and pixel size in
the morning and afternoon are generally similar for the three regions (Figure S7), except for the
large size pixels over SMA, where the normalized SGV is larger in the afternoon than in the
morning. This difference is driven by the GeoTASO data from June 9 PM (Figure S4), as the
normalized SGV pattern for the afternoon agrees well with the normalized SGV pattern for the
morning when the June 9 PM data are excluded. Figure S1 shows that the June 9 PM NO; pollution
level is higher than other days under meteorological conditions of light winds and moderate
temperatures. The MEAN,ixe values increases ~60% going from 1 km x 1 km to 25 km x 25 km
pixel size, while SDy;y| dramatically increases ~7 times from 1 km x 1 km to 25 km x 25 km. This
is higher than any other day, and results in the highest SGV encountered over SMA at the large
pixel sizes. We also notice that the normalized SGV does not generally change significantly in the
range of 20 km x 20 km to 25 km x 25 km. However, in the case of SMA for June 9 PM, the
normalized SGV (as well as SDyix1) increases significantly and monotonously with pixel size in
the range of 20 km x 20 km to 25 km x 25 km.
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