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Abstract 16 

Sub-grid variability (SGV) of atmospheric trace gases within satellite pixels is a key issue 17 
in satellite design and interpretation and validation of retrieval products. However, characterizing 18 
this variability is challenging due to the lack of independent high-resolution measurements. Here 19 
we use tropospheric NO2 vertical column (VC) measurements from the Geostationary Trace gas 20 
and Aerosol Sensor Optimization (GeoTASO) airborne instrument with a spatial resolution of 21 
about 250 m ´ 250 m to quantify the normalized SGV (i.e., the standard deviation of the sub-grid 22 
GeoTASO values within the sampled satellite pixel divided by the mean of the sub-grid GeoTASO 23 
values within the same satellite pixel) for different hypothetical satellite pixel sizes over urban 24 
regions. We use the GeoTASO measurements over the Seoul Metropolitan Area (SMA) and Busan 25 
region of South Korea during the 2016 KORUS-AQ field campaign, and over the Los Angeles 26 
Basin, USA, during the 2017 SARP field campaign. We find that the normalized SGV of NO2 VC 27 
increases with increasing satellite pixel sizes (from ~10% for 0.5 km ´ 0.5 km pixel size to ~35% 28 
for 25 km ´ 25 km pixel size), and this relationship holds for the three study regions, which are 29 
also within the domains of upcoming geostationary satellite air quality missions. We also quantify 30 
the temporal variability of the retrieved NO2 VC within the same hypothetical satellite pixels 31 
(represented by the difference of retrieved values at two or more different times in a day). For a 32 
given satellite pixel size, the temporal variability within the same satellite pixels increases with 33 
the sampling time difference over SMA. For a given small (e.g., <=4 hours) sampling time 34 
difference within the same satellite pixels, the temporal variability of the retrieved NO2 VC 35 
increases with the increasing spatial resolution over the SMA, Busan region, and the Los Angeles 36 
basin. 37 
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The results of this study have implications for future satellite design and retrieval 38 
interpretation, and validation when comparing pixel data with local observations. In addition, the 39 
analyses presented in this study are equally applicable in model evaluation when comparing model 40 
grid values to local observations. Results from the Weather Research and Forecasting model 41 
coupled with Chemistry (WRF-Chem) model indicate that the normalized satellite SGV of 42 
tropospheric NO2 VC calculated in this study could serve as an upper bound to the satellite SGV 43 
of other species (e.g., CO and SO2) that share common source(s) with NO2 but have relatively 44 
longer lifetime. 45 

 46 

1. Introduction 47 

Characterizing sub-grid variability (SGV) of atmospheric chemical constituent fields is 48 
important in both satellite retrievals and atmospheric chemical-transport modeling. This is 49 
especially the case over urban regions where strong variability and heterogeneity exist. The 50 
inability to resolve sub-grid details is one of the fundamental limitations of grid-based models 51 
(Qian et al., 2010) and has been studied extensively (e.g., Boersma et al., 2016; Ching et al., 2006; 52 
Denby et al., 2011; Pillai et al., 2010; Qian et al., 2010). Pillai et al. (2010) found that the SGV of 53 
column-averaged carbon dioxide (CO2) can reach up to 1.2 ppm in global models that have a 54 
horizontal resolution of 100 km. This is an order of magnitude larger than sampling errors that 55 
include both limitations in instrument precision and uncertainty of unresolved atmospheric CO2 56 
variability within the mixed layer (Gerbig et al., 2003). Denby et al. (2011) suggested that the 57 
average European urban background exposure for nitrogen dioxide (NO2) using a model of 50-km 58 
resolution is underestimated by ~44% due to SGV. 59 

In contrast, much less attention has been paid to the sub-grid variability within satellite 60 
pixels (e.g., Broccardo et al., 2018; Judd et al., 2019; Tack et al., 2020). Indeed, some previous 61 
studies (e.g., Kim et al., 2016; Song et al., 2018; Zhang et al., 2019; Choi et al., 2020) used satellite 62 
retrievals to study SGV in models, and calculated representativeness errors of model results with 63 
respect to the satellite measurements (e.g., Pillai et al., 2010). Even though satellite retrievals of 64 
atmospheric composition often have smaller uncertainties than model results, it has not been until 65 
recently that the typical spatial resolution of atmospheric composition satellite products has 66 
reached scales comparable to regional atmospheric chemistry models (< ~10 km).  67 

Quantification of satellite SGV has historically been limited by insufficient spatial 68 
coverage of in situ measurements, and is a key issue in designing, understanding, validating and 69 
correctly interpreting satellite observations. This is especially important in the satellite instrument 70 
development process during which the required measurement precision and retrieval resolution 71 
need to be defined in order to meet the mission science goals. In addition, when validating and 72 
evaluating relatively coarse-scale satellite retrievals by comparing with surface in situ observations, 73 
SGV introduces large uncertainties on top of the existing uncertainty introduced by imperfect 74 
knowledge of the trace gas vertical profiles. Accurate quantification of satellite SGV can therefore 75 
facilitate the estimate of sampling uncertainty for satellite product validation/evaluation. Temporal 76 
variability within sampled satellite pixels is also an important issue in satellite design, validation, 77 
and application. For polar-orbiting satellites, knowledge of temporal variability is necessary to 78 
analyze the representativeness of satellite retrievals at specific overpass times. For geostationary 79 
Earth orbit (GEO) satellites, developing a measure of the temporal variability of fine-scale spatial 80 
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structure will be important for assessing coincidence during validation of the new hourly 81 
observations. This work is partly motivated by validation requirements and considerations for the 82 
upcoming GEO satellite constellation for atmospheric composition that includes the Tropospheric 83 
Emissions: Monitoring Pollution (TEMPO) mission over North America (Chance et al., 2013; 84 
Zoogman et al., 2017), the Geostationary Environment Monitoring Spectrometer (GEMS) over 85 
Asia (Kim et al., 2020), and the Sentinel-4 mission over Europe (Courrèges-Lacoste et al., 2017).  86 

 Airborne mapping spectrometer measurements provide dense observations within the 87 
several-kilometer footprint of a typical satellite pixel. This feature of airborne mapping 88 
spectrometer measurements provides a unique opportunity to estimate satellite SGV in addition to 89 
their role in satellite validation. For example, Broccardo et al. (2018) used aircraft measurements 90 
of NO2 from an imaging differential optical absorption spectrometer (iDOAS) instrument to study 91 
intra-pixel variability in satellite tropospheric NO2 column over South Africa, whilst Judd et al. 92 
(2019) evaluated the impact of spatial resolution on tropospheric NO2 column comparisons with 93 
in situ observations using the NO2 measurements of the Geostationary Trace gas and Aerosol 94 
Sensor Optimization (GeoTASO). GeoTASO is an airborne remote sensing instrument capable of 95 
high spatial resolution retrieval of UV-VIS absorbing species such as NO2 and formaldehyde 96 
(HCHO; Nowlan et al., 2018) and sulfur dioxide (SO2; Chong et al., 2020), and has measurement 97 
characteristics similar to the GEMS and TEMPO GEO satellite instruments. The GeoTASO data 98 
used here were taken in gapless, grid-like patterns – or “rasters” – over the regions of interest, 99 
providing essentially continuous spatial coverage that was repeated during multiple flights up to 100 
four times a day in some cases. As such, the GeoTASO data (with a spatial resolution of ~250 m 101 
´ 250 m) provide a preview of the type of sampling that is expected from the GEO satellite sensors, 102 
making the data particularly suitable for our study. We focus on the GeoTASO measurements 103 
made during the Korea United States Air Quality (KORUS-AQ) field experiment in 2016 104 
(Crawford et al., 2021). The measurements from KORUS-AQ have been widely used by 105 
researchers for various air quality topics, including quantification of emissions and model and 106 
satellite evaluation (e.g., Deeter et al., 2019; Huang et al., 2018; Kim et al., 2018; Miyazaki et al., 107 
2019; Spinei et al., 2018; Tang et al., 2018, 2019; Souri et al., 2020, Gaubert et al., 2020). We 108 
further compare our findings from KORUS-AQ with flights conducted during the NASA Student 109 
Airborne Research Program (SARP) in 2017 over the Los Angeles (LA) Basin to test the general 110 
applicability of our findings over a different urban region. The KORUS-AQ mission took place 111 
within the GEMS domain, while the SARP in 2017 is within the domain of TEMPO. Given the 112 
similarity between the TEMPO and GEMS instruments in terms of spectral ranges, spectral and 113 
spatial resolution, and retrieval algorithms (Al-Saadi et al., 2014), such comparison is reasonable 114 
and useful in facilitating the generalization of the results from the study. 115 

We use the tropospheric NO2 vertical column (VC) retrieved by GeoTASO as a tool to 116 
assess satellite SGV and temporal variability for different hypothetical satellite pixel sizes over 117 
urban regions. Because spatial SGV and temporal variability both vary with satellite pixel size, the 118 
two need to be considered together to enhance the accuracy of satellite product analyses. NO2 is 119 
an important air pollutant that is primarily generated from anthropogenic sources such as emissions 120 
from the energy, transportation, and industry sectors (Hoesly et al., 2018). It is a reactive gas with 121 
a typical lifetime of a few hours in the planetary boundary layer (PBL), although it can also be 122 
transported over long distance in the form of peroxyacetyl nitrate (PAN) and nitric acid. NO2 is a 123 
precursor of tropospheric ozone and secondary aerosols and has a negative impact on human health 124 
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and the environment (Finlayson-Pitts et al., 1997). The results from this paper’s analysis of NO2 125 
also have implications for other air pollutants that share common source(s) with NO2, but that have 126 
somewhat longer lifetimes, for example, carbon monoxide (CO) and SO2.  127 

In this study, we apply a satellite pixel random sampling technique and the spatial structure 128 
function analysis to GeoTASO data (described in Section 2) to quantify the SGV of satellite pixel 129 
NO2 VC over three urban regions at a variety of spatial resolutions. We analyze the relationship 130 
between satellite pixel size and satellite SGV, and the relationship between satellite pixel size and 131 
the temporal variability of NO2 observations (Section 3). We then discuss the implications for 132 
satellite design, satellite retrieval interpretation, satellite validation and evaluation, and satellite–133 
in situ data comparisons (Section 4). Implications for general local observations and grid data 134 
comparisons are also discussed. Section 5 presents our conclusions. 135 

2. Data and methods 136 

In this section, we describe the GeoTASO instrument, campaign flights and the different 137 
analysis techniques used to characterize the satellite pixel SGV. We outline two approaches: 138 
satellite pixel random sampling to investigate separately both spatial variability and temporal 139 
variability, and the construction of spatial structure functions for an alternative measure of spatial 140 
variability. 141 

2.1 GeoTASO instrument 142 

In this study, we focus on GeoTASO retrievals of tropospheric NO2 VC. GeoTASO is a 143 
hyperspectral instrument (Leitch et al., 2014) that measures nadir backscattered light in the 144 
ultraviolet (UV; 290–400 nm) and visible (VIS; 415–695 nm). As one of NASA’s airborne UV–145 
VIS mapping instruments, it was designed to support the upcoming GEO satellite missions by 146 
acquiring high temporal and spatial resolution measurements with dense sampling for optimizing 147 
and experimenting with new retrieval algorithms (Leitch et al., 2014; Nowlan et al., 2016; Lamsal 148 
et al., 2017; Judd et al., 2019).  149 

NO2 is retrieved from GeoTASO spectra using the Differential Optical Absorption 150 
Spectroscopy (DOAS) technique. The retrieval methods and Level 2 data processing are described 151 
in Lamsal et al. (2017) and Souri et al. (2020) for KORUS-AQ and in Judd et al. (2019) for SARP. 152 
Although beyond the scope of this work, it is important to recognize that assumptions made in the 153 
retrieval process (e.g., assumed vertical distribution of the NO2 profile) could affect the final 154 
variability of the retrieved NO2 fields. GeoTASO has a cross-track field of view of 45° (+/- 22.5° 155 
from nadir), and the retrieval pixel size is approximately 250 m´250 m from typical flight altitudes 156 
of 24,000–28,000 feet (7.3–8.5 km). The dense sampling of airborne remote sensing measurements 157 
such as GeoTASO is a unique feature that provides the opportunity to study the expected spatial 158 
and temporal variability within satellite retrieved NO2 pixels at high resolution. We use cloud-free 159 
GeoTASO data in this study. GeoTASO NO2 VC retrievals have been validated with aircraft in 160 
situ data and ground-based Pandora remote sensing measurements during KORUS-AQ. Validation 161 
of GeoTASO NO2 VC retrievals with aircraft in situ data suggested ~25% average difference, 162 
while agreement with Pandora is better with a difference of ~10% on average. Mean difference 163 
between Pandora and aircraft in situ data is ~20%. These validation results of GeoTASO NO2 VC 164 
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retrievals are better than that reported by Nowlan et al. (2016). GeoTASO NO2 VC retrievals 165 
during 2017 SARP have also been validated with Pandora data (Judd et al., 2019). 166 

2.2 The 2016 KORUS-AQ field campaign 167 

The KORUS-AQ field measurement campaign (Crawford et al., 2021), took place in May–168 
June 2016, to help understand the factors controlling air quality over South Korea. One of the goals 169 
of KORUS-AQ was the testing and improvement of remote sensing algorithms in advance of the 170 
launches of the GEMS, TEMPO, and Sentinel-4 satellite missions. It is hoped that the high-quality 171 
initial data products from the GEO missions will facilitate their rapid uptake in air quality 172 
applications after launch (Al-Saadi et al., 2014; Kim et al., 2020). During KORUS-AQ, GeoTASO 173 
flew onboard the NASA LaRC B200 aircraft. We focus on the data taken over the Seoul 174 
Metropolitan Area (SMA) that is highly urbanized and polluted, and the greater Busan region that 175 
is less urbanized and less polluted than SMA (Figure 1). Figure 2 shows the 12 GeoTASO data 176 
rasters (i.e., gapless maps) acquired over SMA. It took ~4 hours to sample the large-area rasters 177 
(i.e., 0511AM, 0517AM, 0517PM, 0528PM), and ~2 hours to sample small-area rasters (i.e., 178 
0601PM, 0602AM, 0605AM, 0609AM, and 0609PM). Figure S1 shows the 2 GeoTASO rasters 179 
acquired over the Busan region. 180 

2.3 The 2017 SARP field campaign 181 

 During the NASA Student Airborne Research Program (SARP) flights in June 2017, 182 
(https://airbornescience.nasa.gov/content/Student_Airborne_Research_Program), GeoTASO was 183 
flown onboard the NASA LaRC UC-12B aircraft over the LA Basin (Figure S2, which also shows 184 
the landcover). A detailed description and analysis of these data can be found in Judd et al. (2018; 185 
2019). In this study, we compare our analyses of the KORUS-AQ GeoTASO data with that from 186 
SARP over the LA Basin to test the general applicability of our findings.  187 

2.4 Satellite pixel random sampling for spatial variability 188 

The sampling strategy with GeoTASO provides a raster of continuous measurements in a 189 
mapped gapless pattern at high spatial resolution (Figures 2, S1, and S2). This dataset allows us to 190 
sample and study the SGV of coarser spatial resolution hypothetical satellite pixels sampling the 191 
same domain. To mimic satellite observations and quantify the satellite SGV, we randomly sample 192 
the GeoTASO data with hypothetical satellite pixels spanning 27 different pixel sizes (0.5 km´0.5 193 
km, 0.75 km´0.75 km, 1 km´1 km, 2 km´2 km, up to 25 km´25 km). Because of the transition to 194 
better spatial resolution for the future satellite missions, and the coverage limitation in the 195 
maximum hypothetical satellite pixel size sampled using the random sampling method, the 196 
analysis of SGV only goes up to 25 km ´ 25 km. This sampling process is conducted for each hour 197 
of each selected flight over the regions of interest during the KORUS-AQ and SARP campaigns. 198 
For every sampled satellite pixel, the mean (MEANpixel) and standard deviation (SDpixel) of the 199 
GeoTASO tropospheric NO2 VC data within the pixel are calculated to represent the satellite SGV. 200 
Normalized satellite SGV is calculated as the standard deviation of the GeoTASO data within the 201 
sampled satellite pixel divided by the mean of the GeoTASO data within the same sampled satellite 202 
pixel (SDpixel/MEANpixel). 203 
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We use a set of 10,000 hypothetical satellite pixels at each size to include all of the 204 
GeoTASO data in the analysis and to cover as many locations as possible. Because the data are 205 
located closely in space but may be sampled at slightly different times for the same flight, we 206 
separate GeoTASO data into hourly bins for each flight before pixel sampling in order to reduce 207 
the impact of temporal variability of the GeoTASO data within a single satellite pixel sample. 208 

As an illustration, we describe the procedure below for the May 17th afternoon flight 209 
(Figure 3) that was conducted from 13:00 to 17:00 local time: (1) the GeoTASO data during this 210 
flight were divided into four hourly groups according to the measurement time, i.e., 13:00-14:00, 211 
14:00-15:00, 15:00-16:00, and 16:00-17:00; (2) for each of the 27 hypothetical satellite pixel sizes, 212 
we randomly generate 10,000 satellite pixel locations within each hourly group. Therefore, for 213 
each hour, we sample 270,000 satellite pixels (27 different satellite pixel sizes and 10,000 samples 214 
for each size), and for this example flight, we have a total of up to 1,080,000 possible satellite 215 
pixels in each of 4 hourly groups. Note that only ~10% of these samples are used in the analysis 216 
because we discarded a sampled satellite pixel if less than 75% of its area is covered by GeoTASO 217 
data. After applying this 75% area coverage filter, the actual sample size decreases when the pixel 218 
size increases. The number of samples is sufficient as our sensitivity tests indicate that the results 219 
do not change by halving the sample size. We also tested other choices of the coverage threshold 220 
over SMA in addition to 75% (not shown here). The results are similar for small pixels (< ~10 221 
km2) as they are more likely to be covered by GeoTASO data regardless of the threshold value. 222 
For larger pixels (> ~15 km2), the satellite SGV is slightly lower when using 30% or 50% as the 223 
area coverage threshold because larger pixels act like smaller pixels when only partially covered. 224 
The threshold of 75% was chosen as a trade-off between sample size and representation.  225 

2.5 Satellite pixel random sampling for temporal variability 226 

 We also quantify the temporal variability of the retrieved NO2 VC within the same satellite 227 
pixels for different satellite pixel sizes. To calculate temporal variability within a hypothetical 228 
satellite pixel, we need GeoTASO data to cover the hypothetical satellite pixel at different times 229 
during the day. During the KORUS-AQ and 2017 SARP campaigns, rasters were treated as single 230 
units (Judd et al., 2019). Each raster produces a contiguous map of data that we consider as roughly 231 
representative of the mid-time of the raster. Unlike the calculation of SGV, which is based on data 232 
separated into hourly bins (section 2.4) to reduce the impact of temporal variability in the 233 
calculated spatial variability, the satellite pixel random sampling to assess temporal variability is 234 
based on rasters, and only conducted for days with multiple rasters. This is to ensure that the 235 
sampled hypothetical satellite pixels have multiple values at different times of the day and hence 236 
maximize the sample size. 237 

To assess temporal variability within the hypothetical satellite pixels, we randomly select 238 
50,000 pixel locations for each of the 27 hypothetical satellite pixel sizes, and use this same set of 239 
pixel locations to sample the GeoTASO data for each raster across all flights for a given day. This 240 
process is repeated for all days with multiple rasters, and the 75% of area coverage threshold is 241 
also applied. When there are two or more raster values of MEANpixel for a given pixel location 242 
separated by time Dt, the temporal mean difference (TeMD) within the satellite pixel is calculated 243 
as: 244 

TeMD(Dt) = average(	 MEAN12345 t − MEAN12345 t + Dt 	)  (1) 245 
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This procedure is repeated for each satellite pixel size.  246 

2.6 Spatial structure function 247 

 Structure functions have been applied to in situ measurements and model-generated 248 
tropospheric trace gases to analyze their spatial and temporal variability in previous studies (Harris 249 
et al., 2001). The Spatial Structure Function (SSF) (Fishman et al., 2011; Follette-Cook et al., 2015) 250 
is an alternative measure to the satellite pixel random sampling described above for quantifying 251 
spatial variability, and in this work, we apply the SSF to GeoTASO data to assist our analysis of 252 
satellite SGV. The main difference between the two measures is that the SSF is based on individual 253 
GeoTASO data points, while the results from satellite pixel random sampling are based on sampled 254 
satellite pixels. The locations of the GeoTASO pixel centers are used to calculate the distances. 255 
The SSF as defined here follows Follette-Cook et al. (2015): 256 

𝑓 𝑁𝑂;,=>, 𝐷 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(	 𝑁𝑂;,=> 𝑥 + 𝐷 − 𝑁𝑂;,=> 𝑥 	)  (2) 257 

where 𝑁𝑂;,=> is tropospheric NO2 VC. 𝑓 𝑁𝑂;,=>, 𝐷  calculates the average of the absolute value 258 
of 𝑁𝑂;,=> differences across all data pairs (measured in the same hourly bin) that are separated by 259 
a distance 𝐷. To calculate SSF, the first step is the same as the first step of the satellite pixel 260 
random sampling: we group GeoTASO data hourly for each flight to reduce the impact of temporal 261 
variability of the GeoTASO data, and we only pair each GeoTASO data point with all the other 262 
GeoTASO data in the same hourly bin. More details on structure functions can be found in Follette-263 
Cook et al. (2015). 264 

2.7 WRF-Chem simulation 265 

To briefly demonstrate the application of this technique on model evaluation and other 266 
species, we show results of a WRF-Chem simulation (Weather Research and Forecasting model 267 
coupled to Chemistry) with a resolution of 3 km ´ 3 km over SMA in Section 4. The simulation 268 
used NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids as initial 269 
and boundary conditions, and the model meteorological fields above the PBL were nudged 6-270 
hourly. KORUS version 3 anthropogenic emissions and FINN version 1.5 fire emissions 271 
(Wiedinmyer et al., 2011) were used. 272 

 273 

3. Results 274 

In this section, we discuss the results for SGV over the different regions considered. Results 275 
are presented for the hypothetical satellite pixel random sampling for spatial variability and 276 
temporal variability, and for the spatial structure function analysis. We note that the three regions 277 
analyzed in this study are urban. Although we expect the results here to be generally applicable 278 
over urban regions, we have not tested the approach over cleaner background areas that are 279 
characterized by much less heterogeneity. 280 

3.1 Sub-grid variability (SGV) within satellite pixels 281 



 8 

SMA, the Busan region, and the LA Basin have different levels of pollution – the average 282 
values of the GeoTASO NO2 VC data over the SMA, the Busan region, and the LA Basin are 283 
2.3´1016 molecules cm-2, 1.1´1016 molecules cm-2, and 1.3´1016 molecules cm-2, respectively. 284 
Over the three regions, the mean values (MEANpixel) and standard deviation (SDpixel) of the 285 
hypothetical satellite pixels sampled over GeoTASO NO2 VC data are different (Figure S3). This 286 
is consistent with previous studies suggesting SGV can vary regionally (Judd et al., 2019; 287 
Broccardo et al., 2018). However, we find that the normalized satellite SGV (calculated as the 288 
ratio of SDpixel to MEANpixel for a sampled pixel) is similar over each of the areas, regardless of 289 
the absolute level of pollution as represented by MEANpixel (Figure 4). Over SMA (Figure 4a), the 290 
mean normalized satellite SGV of tropospheric NO2 VC increases smoothly from ~10% for the 291 
pixel size of 0.5 km ´ 0.5 km, to ~35% for the pixel size of 25 km ´ 25 km. The interquartile 292 
variation of the satellite SGV also increases with satellite pixel sizes. The patterns of the sampled 293 
satellite pixels over the Busan region (Figure 4b) and LA Basin (Figure 4c) are also found to be 294 
similar to those over SMA. Furthermore, Figures S4 and S5 show that even the normalized SGV 295 
of individual flights over the three domains generally follow the same pattern, except in the case 296 
of the June 9 PM flight. 297 

We also compare normalized satellite SGV for different levels of pollution, regardless of 298 
their regions (Figure S6). The normalized satellite SGV for the less polluted pixels (MEANpixel 299 
being lower than the average value of all pixels, i.e., 2´1016 molecules cm-2) also shows an overall 300 
similar pattern as for the more polluted pixels (MEANpixel being higher than the average value of 301 
all pixels). We notice that at small pixel sizes, less polluted pixels have higher normalized satellite 302 
SGV, possibly contributed by relatively higher retrieval noise at lower pollution levels. 303 

We show the normalized SGV for individual rasters over SMA (Figure 5) to indicate the 304 
uncertainty range of the normalized SGV shown in Figure 4. The spread of SGV across different 305 
individual rasters represents the uncertainties of using the averaged normalized SGV for a specific 306 
case. Note that the variation of normalized SGV with pixel size for individual rasters generally 307 
follows the same pattern (i.e., increases with satellite pixel size), especially when the pixel size is 308 
small (£10 km ́  10 km). The normalized SGV increases from ~10% to ~25%, with the uncertainty 309 
range consistently being ±5% when the pixel size is smaller than 10 km ´ 10 km. When the pixel 310 
size is larger than 10 km ´ 10 km, the uncertainty range broadens with pixel sizes from ±5% (10 311 
km ´ 10 km) to ±15% (25 km ´ 25 km). This means that when the satellite pixel size is large, 312 
using the mean normalized SGV in Figure 4 to represent specific cases may lead to larger 313 
uncertainties. Below the resolution of 10 km ´ 10 km, SGV can be characterized by the mean 314 
value with relatively smaller uncertainty (±5%) and hence high confidence, even with large diurnal 315 
or day-to-day variations. The spatial resolutions of TEMPO, GEMS, Sentinel-4, and TROPOMI 316 
(TROPOspheric Monitoring Instrument, Veefkind et al., 2012; Griffin et al., 2019; van Geffen et 317 
al., 2019) are within this £10 km ´ 10 km range, while the resolution of OMI (Levelt et al., 2006; 318 
2018) is not. This means that applying this study (e.g., Figure 4) to OMI for a specific case study 319 
(e.g., a specific day) requires extra caution. 320 

The GeoTASO data located closely in space may be sampled at slightly different times for 321 
the same flight. To explore the impact of temporal variability on this SGV analysis, we performed 322 
two sensitivity tests. The typical time period for a complete flight is ~4 hours. In the first test, we 323 
sampled GeoTASO data with hypothetical satellite pixels grouped by each complete flight, rather 324 
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than grouping the data by each hour (i.e., hourly bins). The resulting patterns and relationships are 325 
similar to those derived from grouping data into hourly bins, except that the normalized satellite 326 
SGV increases ~5% for small pixels due to temporal variability (Figure S7a). In the second test, 327 
we sampled GeoTASO data with hypothetical satellite pixels grouped by each raster. The results 328 
are still similar to those derived from grouping data into hourly bins (Figure 4), except that the 329 
normalized satellite SGV increases ~1% for small pixels due to the inclusion of temporal 330 
variability (Figure S7b). This is because sampling by raster includes smaller temporal variability 331 
than sampling by flight, but larger temporal variability than sampling by hourly bins. 332 

The three regions investigated in this work have different levels of urbanization and air 333 
pollution (Figures 1 and S2). PBL conditions are also different in the morning and afternoon 334 
(Figure S8). The similarity of the relationships between the satellite pixel size and the normalized 335 
satellite SGV over these different regions (Figure 4) suggests that this relationship may be 336 
generalizable to NO2 VC over urban regions with different levels of urbanization and air pollution, 337 
and different PBL conditions. Moreover, Figures 4 and 5 point to the possibility of developing a 338 
generalized look-up table for the expected normalized satellite SGV for NO2 VC over urban 339 
regions at different satellite pixel sizes, especially for small pixel sizes (e.g., TEMPO, GEMS, and 340 
TROPOMI). This would be useful in satellite design, satellite retrieval evaluation and 341 
interpretation, and satellite–in situ data comparisons. For example, the satellite pixel size of 342 
tropospheric NO2 VC retrievals from GEMS, TEMPO, TROPOMI, and OMI are highlighted in 343 
Figure 4. Following Judd et al. (2019), we choose 3 km ´ 3 km, 5 km ´ 5 km, 7 km ´ 8 km, and 344 
18 km ´ 18 km pixels to represent the expected area of the satellite pixels for TEMPO (2.1 km ´ 345 
4.4 km), TROPOMI (3.5 km ´ 7 km), GEMS (7 km ´ 8 km), and OMI (18 km ´ 18 km), 346 
respectively. The expected normalized satellite SGV for TEMPO, TROPOMI, GEMS, and OMI 347 
are 15–20%, ~20%, 20–25%, and ~30%, respectively. Taking the TEMPO example, this implies 348 
that the satellite SGV could potentially lead to uncertainties of 15–20% in a validation exercise 349 
comparing a satellite retrieval with local measurements of NO2 VC, from a Pandora spectrometer 350 
for example, that may be unrepresentative of the wider pixel area. 351 

3.2 Temporal variability (TeMD) within the same satellite pixels 352 

In addition to satellite spatial SGV, we also analyze the temporal variability (i.e., TeMD) 353 
within the same hypothetical satellite pixels. Figure 6 shows TeMD of satellite retrieved 354 
tropospheric NO2 VC over SMA as a function of hypothetical satellite pixel size and the separation 355 
time (Dt) between flight rasters as described in Section 2.5. The results for 27 satellite pixel sizes 356 
analyzed are shown by different colors, while results for selected satellite pixel sizes are 357 
highlighted by thicker lines. For all the pixel sizes, TeMD increases monotonically with the time 358 
difference Dt between two sampled raster values within the same pixel. The TeMD of tropospheric 359 
NO2 VC is around 0.75´1016 molecules cm-2 for a Dt of 2 hours over SMA for all the sampled 360 
satellite pixel sizes and increases to ~2´1016 molecules cm-2 for Dt of 8 hours. This indicates that, 361 
along with improvements in the satellite retrieval spatial resolution with smaller pixels, improving 362 
the satellite retrieval temporal resolution with higher frequency measurements is also an effective 363 
way to enhance capability in resolving variabilities of NO2.  364 

To investigate the TeMD shown in Figure 6 we consider the particular factors driving NO2 365 
variability over SMA. NO2 has a relatively short lifetime (~ a few hours) and a strong diurnal cycle 366 
due to emission activities, chemistry and changing photolysis rate (Fishman et al., 2011; Follette-367 
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Cook et al., 2015). The diurnal cycle of the PBL may also play a large role because horizontal 368 
dispersion occurs as the PBL thickens during the day. Early in the morning, the PBL is low (~1400 369 
m during 9:00-11:00 in SMA during KORUS-AQ) and strong source locations are evident such as 370 
traffic on major highways, etc. As the day progresses, the PBL height increases (~1800 m during 371 
15:00-17:00; Figure S8) due to enhanced convection, which further induces a stronger horizontal 372 
divergence at the top of the convective cell that allows for greater horizontal dispersion to take 373 
place along with the divergence. By early afternoon, emissions from all the major sources in the 374 
central region have mixed together to form a wide area of high pollution over the urban center with 375 
strong gradients of decreasing NO2 out to the surrounding areas. In addition, changing wind 376 
conditions (speed and direction; Figure S9) during the day can also lead to a shift in pollution 377 
pattern, and result in different pollution conditions for the same pixel at different time of a day. 378 
For example, Raster 1 of the 0609AM (9.17 local time) and Raster 2 of 0609PM (17 local time) 379 
are used to calculate TeMD for Dt equals 8 hours. The differences in wind conditions (Figure S9) 380 
and the pollution patterns (Figure 2) are large. Judd et al. (2018) point out that the topography over 381 
SMA also plays a role in the ability to mix horizontally as the PBL grows. Therefore, the TeMD 382 
can be large between morning and afternoon (i.e., for Dt larger than 6 hours). 383 

For a small Dt (2 or 4 hours), TeMD increases at higher spatial resolution (i.e., smaller 384 
pixel size). This is especially true for short time periods (e.g., 2 hours and 4 hours), which is more 385 
important for the GEO satellite measurements. For example, for Dt of 2 hours, TeMD for satellite 386 
pixels of 1 km ´ 1 km is about 0.80´1016 molecules cm-2, while TeMD for satellite pixels of 25 387 
km ́  25 km is about 0.73´1016 molecules/cm2 (~9% lower); when Dt is 4 hours, TeMD for satellite 388 
pixels of 1 km ´ 1 km is about 1.3´1016 molecules cm-2, while TeMD for satellite pixels of 25 km 389 
´ 25 km is about 1.1´1016 molecules/cm2 (~15% lower). This indicates that when decreasing pixel 390 
size, the temporal variability of the retrieved values will increase, even though the normalized 391 
satellite spatial SGV decreases. This is expected because averaging over a larger region with high 392 
small-scale spatial variability smooths out temporal variability, and therefore produces smaller 393 
hourly differences. Our finding here is consistent with that of Fishman et al. (2011).  394 

As the time difference Dt increases, the temporal variability TeMD increases for all pixel 395 
sizes. However, the TeMD is now greater at large pixel size which is in contrast to the higher 396 
TeMD at small pixel size for shorter Dt. This is a result of the pollution pattern that develops over 397 
the SMA during the day (June 9th, 2019) as described above. The higher TeMD reflects the fact 398 
that many of the large pixels now span the strong NO2 gradient between the urban and surrounding 399 
area resulting in a much higher spatial variability than earlier in the day at a spatial scale not 400 
captured with the smaller pixels. As a caution, we note that TeMD for 8 hours is determined by 401 
only the difference between Raster 1 of the 0609AM and Raster 2 of 0609PM (Figure 2), and that 402 
the regional coverage for Raster 2 of 0609PM is different from the coverage of the other PM rasters. 403 
Therefore, the relationship of TeMD and spatial resolution for a large Dt (e.g., 6 or 8 hours) over 404 
SMA requires further study. 405 

GeoTASO data over the Busan region is limited. Given the fewer flights, we are not able 406 
to show how TeMD changes with Dt over the Busan region in this study. However, we are able to 407 
show the relationship between TeMD and satellite pixel sizes. During KORUS-AQ, there were 408 
only two rasters sampled over Busan with a Dt of 2 hours (Figure S10). For this Dt of 2 hours, 409 
TeMD increases slightly at higher satellite retrieval spatial resolution (smaller pixel size). More 410 
data over the Busan region would help significantly for this analysis. For the LA Basin GeoTASO 411 
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data, sampled hypothetical satellite pixels show TeMD increases at higher spatial resolution for 412 
the available Dt equal to 4 and 8 hours (Figure S11). However, TeMD is fairly constant at these 413 
two time differences which is different to what was observed over SMA (Figure 6). We note that 414 
with only 2 flight days of flight data, the GeoTASO data over LA is also limited, which may be 415 
the main driver of the difference. Besides the limited data, one possible reason is the different wind 416 
fields over the two regions. As mentioned previously, Raster 1 of the 0609AM and Raster 2 of 417 
0609PM are used to calculate TeMD for Dt equals 8 hours over SMA. The differences in wind 418 
direction (Figure S9) for the two rasters are large (almost opposite in some cases). However, over 419 
LA, the differences in wind direction (Figure S12) for the two rasters (Rasters 1 and 3 for 0627 420 
flight) are relatively small, compared to the differences over SMA. Despite the limited sample 421 
sizes, TeMD increases when increasing the satellite retrieval spatial resolution over both the Busan 422 
region and the LA Basin, which is consistent with the relationships over the SMA for a small Dt. 423 

3.3 Results from Spatial Structure Function (SSF) 424 

 In this section, we show the analysis of SSF over SMA (Figure 7) as a complement to our 425 
analysis in Section 3.1. As mentioned before, SSF and SGV are different measures of spatial 426 
variability and are not directly comparable. This is because SSF is calculated based on differences 427 
between a single GeoTASO measurement and all the other GeoTASO measurements on the map, 428 
while SGV is derived based on variation among all the GeoTASO measurements within a 429 
hypothetical satellite pixel unit. SSF measures the averaged spatial difference at a given distance, 430 
while SGV directly quantifies the expected spatial variability within a satellite pixel at a given size. 431 
As both SSF and SGV are related to spatial variability, we include SSF in this study as an extension 432 
to SGV. 433 

Figure 7a shows that the SSF in SMA initially increases with the distance between data 434 
points, peaks at around 40-60 km during most flights, and then decreases with distance between 435 
60 and 140 km. The number of paired GeoTASO data points when the distance is larger than 100 436 
km is relatively small (Figure S13) therefore conclusions beyond this distance are not included in 437 
this analysis. The increases in SSF for distances in the range of 1-25 km (Figure 7b) are consistent 438 
with the relationship between pixel sizes and the normalized satellite SGV shown in Figure 4. For 439 
example, over the 1-25 km range, Fig 4a shows the median increases from around 8% to around 440 
28%, an increase by a factor of 3.5, and the black line in Figure 7 shows an approximately similar 441 
factor (from 0.33 ´1016 molecules/cm2 for 1 km to 1.5´1016 molecules/cm2 for 25 km). This 442 
increase of SSF between 1-25 km is also seen over the Busan region and the LA Basin (Figure 443 
S14). We also notice that SSF shows a relatively strong dependence on the particular GeoTASO 444 
flight, while SGV is less sensitive, especially for small pixel sizes. 445 

The shapes of the SSF are generally consistent with previous studies for modeled or in situ 446 
observations of NO2 (Fishman et al., 2011; Follette-Cook et al., 2015). Previous studies also 447 
suggest that different aircraft campaigns may share the common shape of SSF but different 448 
magnitudes, which is strongly related to the fraction of polluted samples versus samples of 449 
background air in the campaign (Crawford et al., 2009; Fishman et al., 2011). Differences in the 450 
shape and size of particular cities also contribute to the differences in the SSF. For example, at a 451 
certain distance SSF may compare polluted areas within the same urban region, while over a 452 
different smaller city, the comparison at the same distance reveals the gradient between the 453 
polluted city and cleaner surrounding background air, so resulting in different peak values. Valin 454 
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et al. (2011) found that the maximum in OH feedback in a NOx-OH steady-state relationship 455 
corresponds to a NO2 e-folding decay length of 54 km in 5m/s winds. This may partially explain 456 
the peak between 40~60 km in SSF. As shown in Figures 2 and S7, the overall spatial variability 457 
over SMA is higher in the afternoon. Over SMA, the SSF in the morning is generally smaller than 458 
in the afternoon, indicating higher spatial variability of tropospheric NO2 VC in the afternoon (see 459 
also Judd et al., 2018). As described in Section 2.6, SSF is calculated based on hourly binned data. 460 
However, the overall shapes of SSF (Figure S15) calculated on raster basis are similar to SSF 461 
calculated on hourly basis (Figure 7). 462 

Previous studies (Fishman et al., 2011; Follette-Cook et al., 2015) used SSF values at a 463 
particular distance to indicate the satellite precision requirement at a corresponding resolution in 464 
order to resolve spatial structure over the pixel scale. For GEMS, the expected spatial differences 465 
over the scale of its pixel for the SMA and Busan regions are ~7.5´1015 molecules cm-2 and 466 
~3.5´1015 molecules cm-2, respectively, taking the SSF values at 5 km to be representative. For 467 
TEMPO, the spatial difference is ~2.8´1015 molecules cm-2 over LA Basin taking the SSF value 468 
at 3 km. Assuming the NO2 measurement precision requirement to be 1´1015 molecules cm-2 for 469 
both TEMPO and GEMS (Chance et al., 2013; Kim et al., 2020), the expected spatial differences 470 
over the three regions are considerably higher than the precision requirement and should be easily 471 
characterized by both the GEMS and TEMPO missions. 472 

4. Discussions and implications 473 

The relationship between satellite pixel sizes and the normalized satellite SGV is fairly 474 
robust over the three different urban regions studied here, and Figure 4 points to the possibility of 475 
developing a generalized look-up table if more data were available in other urban regions. We note 476 
that the GeoTASO data used in this study were sampled during spring and summer. In our future 477 
study, we will include more GeoTASO data in the analysis to test the applicability of the look-up 478 
table approach under different seasonal conditions and sources. A generalized relationship 479 
between satellite pixel sizes and the temporal variability (Figure 6) is not as evident as the 480 
relationship between satellite pixel sizes and the normalized satellite SGV due to limited data. 481 
However, it is still useful for satellite observations over SMA, which is in the GEMS domain and 482 
should be helpful in satellite retrieval interpretation. 483 

Previous studies recognized the challenges in satellite validation/evaluation for NO2 484 
retrievals due to satellite SGV and representativeness error of in situ measurements (e.g., Nowlan 485 
et al., 2016, 2018; Judd et al., 2019; Pinardi et al., 2020; Tack et al., 2020). The gapless airborne 486 
mapping datasets of GeoTASO with sufficient spatiotemporal resolution are a promising way to 487 
address the issue of satellite SGV and representativeness errors in satellite validation/evaluation 488 
(e.g., Nowlan et al., 2016, 2018; Judd et al., 2019). 489 

Challenges due to SGV also have implications for other trace gas column measurements. 490 
For example, in Tang et al. (2020), satellite SGV and representativeness errors of in situ 491 
measurements introduced uncertainties in validation of CO retrievals from the MOPITT 492 
(Measurement Of Pollution In The Troposphere) satellite instrument. Normalized SGV of the 493 
GeoTASO tropospheric NO2 VC might serve as an upper bound to the SGV of CO, SO2 and other 494 
species that share common source(s) with NO2 but with relatively longer lifetimes than NO2, even 495 
if their spatial distributions have different patterns (e.g., Chong et al., 2020). For example, at the 496 
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resolution of 22 km ´ 22 km (resolution of MOPITT CO retrievals), the expected normalized 497 
satellite SGV of tropospheric NO2 VC is ~30%. Therefore, we might expect the normalized 498 
satellite SGV for tropospheric CO VC to be lower than this value.  499 

To demonstrate this idea, we use the WRF-Chem regional model as an intermediary step. 500 
At the model resolution, if the SVG of the WRF-Chem model and GeoTASO NO2 VC agree 501 
reasonably well, then the model can be used to predict the SVG of other species that are chemically 502 
constrained with NO2 at the model and coarser resolutions. This is shown in Figure 8 which 503 
illustrates how SGV varies with satellite pixel size for NO2 VC, CO VC, SO2 VC, and HCHO VC 504 
calculated from a WRF-Chem simulation. The modeled NO2, CO, SO2, and HCHO concentrations 505 
are converted to VC, and are filtered to match the rasters of GeoTASO measurements (Figure S16). 506 
As expected, SGV of modeled NO2 VC is higher than SGV of modeled CO VC, SO2 VC, and 507 
HCHO VC. We also notice that SGV for modeled NO2 VC, CO VC, SO2 VC, and HCHO VC 508 
increases with pixel size, which is similar to that for GeoTASO measurements. The SGV for 509 
GeoTASO NO2 shown in this figure (black lines) is calculated based on GeoTASO data that are 510 
regridded to the WRF-Chem grid (3 km ´ 3 km), making it slightly different from that in Figure 511 
4. We note that the modelled NO2 SGV is greater than that calculated from the GeoTASO data 512 
indicating that further work is required to reconcile difference due to model descriptions of 513 
emissions, chemistry and transport. And ideally, dense GeoTASO-type measurements of CO and 514 
other species would allow for a more comprehensive assessment of this approach. 515 

This study is also relevant to model comparison and evaluation with in situ observations. 516 
Whenever in situ observations are compared to grid data (e.g., comparisons between satellite 517 
retrievals and in situ observations, comparisons between grid-based model and in situ observations, 518 
and in data assimilation), SGV will introduce uncertainties that need to be quantified to better 519 
interpret and understand the comparison results. For example, we note that at the resolution of 14 520 
km´14 km (a typical resolution for the forward-looking Multi-Scale Infrastructure for Chemistry 521 
and Aerosols Version 0; MUSICA-V0, https://www2.acom.ucar.edu/sections/multi-scale-522 
chemistry-modeling-musica; Pfister et al. (2020)), Figure 8 shows that the expected normalized 523 
SGV of tropospheric NO2 VC is ~25-30%. This suggests that when comparing model simulations 524 
at coarser resolution with local observations of tropospheric NO2 VC, a larger normalized SGV 525 
than this ~25-30% might be expected. If comparing for a specific vertical layer instead of vertical 526 
column, an even larger normalized SGV may occur. 527 

For data assimilation and inverse modeling application (e.g., top-down emission 528 
estimations from satellite observations), it is essential to accurately characterize the observation 529 
error covariance matrix R (Janjíc et al., 2017). The first component of R is the instrument error 530 
covariance matrix due to instrument noise and retrieval uncertainty in the case of trace gas satellite 531 
data. The second component is the representation error covariance matrix, arising from 532 
fundamental differences of the atmospheric sampling, typically when assimilating a local point 533 
measurement into a grid-based model (Boersma et al, 2016). The observation error covariance due 534 
to representativeness error is difficult to define, but can be parameterized when calculating super 535 
observations by inflating the observation error variances (Boersma et al., 2016) and quantified by 536 
a posteriori diagnostics estimation (Gaubert et al. 2014). Knowledge of the fine-scale model sub-537 
grid variability is therefore essential to verify those assumptions and inform error statistics for 538 
application to chemical data assimilation studies. Our results suggest large potential improvements 539 
in emission estimates when assimilating high spatial resolution TROPOMI and GEO satellite data 540 
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with SGV of ~10%–20% (Figure 4), compared to OMI data with SVG of ~30% (Figure 4), in line 541 
with the existing literature for NO2 (e.g., Valin et al., 2011). We have also shown that significant 542 
temporal variability of NO2 is expected at higher spatial resolutions. This observed signal will 543 
open new avenue for space-based monitoring of atmospheric chemistry and will reduce errors of 544 
inverse estimates of fluxes. 545 

5. Conclusions 546 

Satellite SGV is a key issue in interpreting satellite retrieval results. Quantifying studies 547 
have been lacking due to limited observations at high spatial and temporal resolution. In this study, 548 
we have quantified likely GEO satellite SGV by using GeoTASO measurements of tropospheric 549 
NO2 VC over the urbanized and polluted Seoul Metropolitan Area (SMA) and the less-polluted 550 
Busan region during KORUS-AQ, and the Los Angeles (LA) Basin during the 2017 SARP 551 
campaigns. The main findings of this work are the following: 552 

(1) The normalized satellite SGV increases with pixel size based on random sampling of hourly 553 
GeoTASO data, from ~10% (±5% for specific cases such as an individual day/time of day) for 554 
a pixel size of 0.5 km ́  0.5 km to ~35% (±10% for specific cases such as an individual day/time 555 
of day) for the pixel size of 25 km ´ 25 km. This conclusion holds for all of the three urban 556 
regions in this study despite their different levels of urbanization and pollution, and for time 557 
of day being morning or afternoon. 558 

(2) Due to its relatively shorter atmospheric lifetime, normalized satellite SGV of tropospheric 559 
NO2 VC could serve as an upper bound to satellite SGV of CO, SO2 and other species that 560 
share common source(s) with NO2. This conclusion is supported by high-resolution WRF-561 
Chem simulations. 562 

(3) The temporal variability (TeMD) increases with sampling time differences (Dt) over SMA. 563 
TeMD ranges from ~0.75´1016 molecules cm-2 at Dt of 2 hours to ~2´1016 molecules cm-2 564 
(about three times higher) at Dt of 8 hours. TeMD is caused by temporal variation in emission 565 
activities, photolysis, and meteorology throughout the day. Improving the satellite retrieval 566 
temporal resolution is an effective way to enhance the capability of satellite products in 567 
resolving temporal variability of NO2. 568 

(4) Temporal variability (TeMD) increases as pixel size decreases in SMA when time difference 569 
is less than 4 hours. Analysis confidence at greater time differences would require more flight 570 
datasets with longer time separations during the day. For example, when Dt is 2 hours, TeMD 571 
for satellite pixels with the size of 25 km ´ 25 km is about 20% lower compared to TeMD for 572 
satellite pixels with the size of 1 km ´ 1 km. Thus, ideally, temporal resolution should be 573 
increased along with any increase in spatial resolution in order to enhance the accuracy of 574 
satellite products. 575 

(5) The spatial structure function (SSF) at first increases with the distance between points, peaking 576 
at around 40-60 km during most flight days before decreasing at greater distances. This is 577 
generally consistent with previous studies. 578 

(6) SSF analyses suggest that GEMS will encounter NO2 VC pixel scale spatial differences of 579 
~7.5´1015 and ~3.5´1015 molecules cm-2 over the SMA and Busan regions, respectively. 580 
TEMPO will encounter NO2 VC spatial differences at its pixel scale of ~2.8´1015 molecules 581 
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cm-2 over the LA Basin. These differences should be easily resolved by the instruments at the 582 
stated measurement precision requirement of 1´1015 molecules cm-2. 583 

(7) These findings are relevant to future satellite design and satellite retrieval interpretation, 584 
especially now with the deployment of the high-resolution GEO air quality satellite 585 
constellation, GEMS, TEMPO, and Sentinel-4. This study also has implication for satellite 586 
product validation and evaluation, satellite–in situ data comparisons, and more general point-587 
grid data comparisons. These share similar issues of sub-grid variability and the need for 588 
quantification of representativeness error.  589 

We note that this study has some uncertainties and limitations. (1) The variability at a 590 
resolution finer than 250 m ´ 250 m (i.e., GeoTASO’s resolution) may introduce uncertainties to 591 
the analysis here, although this is beyond the scope of this study. (2) Even though a large number 592 
of GeoTASO retrievals have been analyzed in this study, we would still benefit from more 593 
GeoTASO flights with a broader spatiotemporal coverage. More GeoTASO-type data over the 594 
Busan region and LA Basin will help in testing the consistence in TeMD over different regions. 595 
(3) The KORUS-AQ campaign was conducted in Spring (May and June), and the 2017 SARP 596 
campaign was also conducted in June. More GeoTASO-type measurements over South Korea 597 
during different season(s) would be particularly helpful to understand and generalize the findings 598 
in this study. (4) The three regions analyzed in this study are urban regions, and the results are not 599 
tested over cleaner background areas that may be characterized by less heterogeneity. 600 

This work demonstrates the value of continued flights of GeoTASO-type instruments for 601 
obtaining continuous, high spatial resolution data several times a day for assessing SGV. This will 602 
be a particularly useful reference in the comparisons of satellite retrievals and in situ measurements 603 
that may have representativeness errors. 604 

 605 
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 865 
Figure 1. Domain of the study over South Korea and the land cover. Boxes indicate location of 866 
the SMA (upper left) and the Busan region (lower right) domains. The bold polygons in the two 867 
boxes represents political boundaries (upper left) of Seoul and Busan (lower right). Land cover 868 
data are from MODIS Terra and Aqua MCD12C1 L3 product, version V006, annual mean at 0.05° 869 
resolution; Friedl et al., 2015.  870 
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 872 

 873 
 874 

Figure 2. GeoTASO data of tropospheric NO2 vertical column (molecules cm-2) measured during 875 
KORUS-AQ over the Seoul region. Each panel shows a separate raster. Panel titles show month, 876 
day, AM/PM, raster number on that date, and mean time of raster acquisition. There were nine 877 
flights sampling rasters over Seoul. The May 01 AM, May 17 AM, May 17 PM, May 28 PM, June 878 
01 PM, and June 02 AM flights each sampled one raster. The June 05 AM, June 09 AM, and June 879 
09 PM flights each sampled two rasters. As a result, there were two flights and two rasters on May 880 
17th, one flight and two rasters on June 5th, and two flights and four rasters on June 9th. The bold 881 
polygons in each panel represent political boundary of Seoul. 882 
  883 
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 884 

 885 
 886 
 887 
Figure 3. Demonstration of the hypothetical satellite pixel random sampling method. Each subplot 888 
is an hour during May 17th PM flight. For each hour, we randomly sample 10000 hypothetical 889 
satellite pixels at each different pixel sizes (i.e., 0.5 km´0.5 km, 0.75 km´0.75 km, 1 km´1 km, 2 890 
km´2 km, … , 25 km´25 km) over the GeoTASO data of tropospheric NO2 vertical column 891 
(molecules cm-2) every hour. The sampled pixel size (from 0.5 km´0.5 km to 25 km´25 km) are 892 
shown in the lower-left corner of each sub-plot. Only 100 samples for pixel size of 7 km´7 km 893 
(thick black box) and 100 samples for 18 km ´ 18 km are shown for demonstration purposes. 894 
Samples that fail to pass the 75% coverage threshold are not shown. Coastlines, 895 
Province/Metropolitan City boundaries are shown by gray solid lines. Main roads are shown by 896 
blue dashed lines (data are from http://www.diva-gis.org/gdata).  897 
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 898 

 899 
 900 
Figure 4. Boxplot (with medians represented by red bars, interquartile ranges between 25th and 901 
75th percentiles represented by blue boxes, and the most extreme data points not considered 902 
outliers represented by whiskers) for the normalized satellite sub-grid variability (SGV) over the 903 
Seoul Metropolitan Area (a), the Busan region (b), and Los Angeles Basin (c). Normalized satellite 904 
SGV is calculated as the standard deviation of the GeoTASO data within the sampled satellite 905 
pixel divided by the mean of the GeoTASO data within the sampled satellite pixel. The black lines 906 
represent the mean of the normalized satellite SGV at a given size. The resolutions of TEMPO, 907 
TROPOMI, GEMS, and OMI are highlighted by the yellow shade in the Figure. 908 
 909 
 910 
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 911 
 912 
Figure 5. Average of the normalized satellite sub-grid variability (SGV) sampled individually 913 
from the twelve rasters (represented by the colored lines), and sampled from all the twelve rasters 914 
together (represented by the black line) over the Seoul Metropolitan Area during KORUS-AQ. 915 
Normalized satellite SGV is calculated by the standard deviation of the GeoTASO data within the 916 
sampled satellite pixel divided by the mean of the GeoTASO data within the sampled satellite 917 
pixel. 918 
  919 
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 920 

 921 
 922 

Figure 6. Temporal mean differences (TeMD) of hypothetical satellite pixels (molecules cm-2) 923 
over the Seoul Metropolitan Area as a function of time difference (Dt). Results for each pixel size 924 
are color-coded, with selected sizes shown with thicker lines for reference. See also text for details. 925 
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 928 
 929 

 930 

 931 
Figure 7. (a) Spatial Structure Function (SSF) for GeoTASO data of tropospheric NO2 vertical 932 
column molecules cm-2) over the Seoul Metropolitan Area (SMA) during KORUS-AQ and (b) the 933 
zoom-in version of panel (a) for distance range of 1-25 km. The SSF calculates average of absolute 934 
value of 𝑁𝑂;,=> differences (i.e., mean difference; y-axis) across all data pairs (measured in the 935 
same hourly bin) that are separated by different distance (x-axis). The SSF based on GeoTASO 936 
data measured during morning flights are in solid colored lines while the SSF based on GeoTASO 937 
data measured during afternoon flights are in dashed colored lines. The SSF based on all the data 938 
is in the black solid line. 939 
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Figure 8. Boxplot of hypothetical satellite normalized SGV of NO2 vertical column (VC), SO2 950 
VC, CO VC, and formaldehyde (HCHO) VC derived from the WRF-Chem simulation with a 951 
resolution of 3 km ´ 3 km (colored lines), and GeoTASO NO2 VC that gridded to the WRF-Chem 952 
grid (black lines) over the Seoul Metropolitan Area. Medians are represented by red bars, 953 
interquartile ranges between 25th and 75th percentiles by blue boxes, and the most extreme data 954 
points not considered outliers by whiskers. The modeled NO2, CO, SO2, and HCHO are filtered to 955 
match the rasters of GeoTASO measurements. 956 

 957 


