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Abstract. As a greenhouse gas with strong global warming potential, atmospheric methane (CH4) 18 

emissions have attracted a great deal of attention. Although remote sensing measurements can provide 19 

information about CH4 sources and emissions, accurate retrieval is challenging due to the influence of 20 

atmospheric aerosol scattering. In this study, imaging spectroscopic measurements from the Airborne 21 

Visible/Infrared Imaging Spectrometer–Next Generation (AVIRIS-NG) in the short-wave infrared are 22 

used to compare two retrieval techniques — the traditional Matched Filter (MF) method and the Optimal 23 

Estimation (OE) method, which is a popular approach for trace gas retrievals. Using a numerically 24 

efficient two-stream-exact-single-scattering radiative transfer model, we also simulate AVIRIS-NG 25 

measurements for different scenarios and quantify the impact of aerosol scattering in the two retrieval 26 

schemes by including aerosols in the simulations but not in the retrievals. The presence of aerosols causes 27 

an underestimation of CH4 in both the MF and OE retrievals; the biases increase with increasing surface 28 

albedo and aerosol optical depth (AOD). Aerosol types with high single scattering albedo and low 29 

asymmetry parameter (such as water soluble aerosols) induce large biases in the retrieval. When 30 

scattering effects are neglected, the MF method exhibits lower fractional retrieval bias compared to the 31 

OE method at high CH4 concentrations (2–5 times typical background values), and is suitable for 32 

detecting strong CH4 emissions. For an AOD value of 0.3, the fractional biases of the MF retrievals are 33 
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between 1.3 and 4.5%, while the corresponding values for OE retrievals are in the 2.8–5.6% range. On 34 

the other hand, the OE method is an optimal technique for diffuse sources (<1.5 times typical background 35 

values), showing up to five times smaller fractional retrieval bias (8.6%) than the MF method (42.6%) 36 

for the same AOD scenario. However, when aerosol scattering is significant, the OE method is superior 37 

since it provides a means to reduce biases by simultaneously retrieving AOD, surface albedo and CH4. 38 

The results indicate that, while the MF method is good for plume detection, the OE method should be 39 

employed to quantify CH4 concentrations, especially in the presence of aerosol scattering.  40 
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1 Introduction 41 

Atmospheric methane (CH4) is about 85 times more potent per unit mass at warming the Earth than 42 

carbon dioxide (CO2) on a 20-year timescale (IPCC, 2013), implying that reduction in CH4 emissions 43 

could be very efficient to slow down global warming in the near term. Global mean CH4 concentrations 44 

have increased from ~700 ppb in the preindustrial era to more than 1860 ppb as of 2019 (NOAA, 2019). 45 

The most effective sink of atmospheric CH4 is the hydroxyl radical (OH) in the troposphere. CH4 reacts 46 

with OH to reduce the oxidizing capacity of the atmosphere and generate tropospheric ozone. Increasing 47 

emissions of CH4 reduce the concentration of OH in the atmosphere. With less OH to react with, the 48 

lifespan of CH4 could also increase, resulting in greater CH4 concentrations (Holmes et al., 2013). Soils 49 

also act as a major sink for atmospheric methane through the methanotrophic bacteria that reside within 50 

them. 51 

Significant natural CH4 sources include wetlands (Bubier et al., 1994, Macdonald et al., 1998; 52 

Gedney et al., 2004), geological seeps (Kvenvolden and Rogers, 2005; Etiope et al., 2009), ruminant 53 

animals, and termites. In addition, increased surface and ocean temperatures associated with global 54 

warming may increase CH4 emissions from melting permafrost (Woodwell et al., 1998; Walter et al., 55 

2006; Schaefer et al., 2014, Schuur et al., 2015) and methane hydrate destabilization (Kvenvolden, 1988; 56 

Archer, 2007). Human activity also contributes significantly to the total CH4 emissions. Rice agriculture 57 

is one of the most important anthropogenic sources of CH4 (Herrero et al., 2016; Schaefer et al., 2016). 58 

Other sources include landfills (Themelis and Ulloa, 2007), wastewater treatment, biomass burning, and 59 

methane slip from gas engines. Global fugitive CH4 emissions from coal mining (Kort et al., 2014), 60 

natural gas and oil systems (Alvarez et al., 2018), hydraulic fracturing (“fracking”) of shale gas wells 61 

(Howarth et al., 2011; Howarth, 2015, 2019), and residential and commercial natural gas distribution 62 

sectors (He et al., 2019) are also of increasing concern. Although the sources and sinks of methane are 63 

reasonably well known, there are large uncertainties in their relative amounts and in the partitioning 64 

between natural and anthropogenic contributions (Nisbet et al., 2014, 2016). This uncertainty is 65 

exemplified by the CH4 “hiatus”, which refers to the observed stabilization of atmospheric CH4 66 

concentrations from 1999–2006, and the renewed rise thereafter (Kirschke et al., 2013). 67 

Satellite monitoring of CH4 can be broadly divided into three categories: solar backscatter, thermal 68 

emission and lidar (Jacob et al., 2016). The first solar backscattering mission was SCIAMACHY 69 

(Frankenberg et al., 2006), which was operational from 2003–2012 and observed the entire planet once 70 

every seven days. It was followed by GOSAT in 2009 (Kuze et al., 2016), and subsequently the next 71 

generation GOSAT-2 in 2018 (Glumb et al., 2014). In between, the TROPOMI mission was also 72 

launched in 2017, which observes the planet once daily with a high spatial resolution of 7×7 km2 (Butz 73 
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et al., 2012; Veefkind et al., 2012). CarbonSat (Buchwitz et al., 2013) is another proposed mission to 74 

measure CH4 globally from solar backscatter with a very fine spatial resolution (2×2 km2) and high 75 

precision (0.4%). GHGSat‐D (McKeever et al., 2017; Varon et al., 2019; Jervis et al., 2020) measures 76 

between 1630–1675 nm, with an effective pixel resolution of 50×50 m2 over targeted 12×12 km2 scenes, 77 

and is intended to detect CH4 emissions from individual industrial sites. In contrast, MethaneSAT (Wofsy 78 

and Hamburg, 2019) has a pixel size of 1–2 km2 and a wide field of view (200 km2) and can quantify 79 

diffuse CH4 emission sources over large areas. Thermal infrared observations of CH4 are available from 80 

the IMG (Clerbaux et al., 2003), AIRS (Xiong et al., 2008), TES (Worden et al., 2012), IASI (Xiong et 81 

al., 2013), and CrIS (Gambacorta et al., 2016) instruments. These instruments provide day/night 82 

measurements at spatial resolutions ranging from 5×8 km2 (TES) to 45×45 km2 (AIRS). GEO-CAPE 83 

(Fishman et al., 2012), GeoFTS (Xi et al., 2015), G3E (Butz et al., 2015), and GeoCarb (Polonsky et al., 84 

2014) are proposed geostationary instruments (GeoCarb was selected by NASA under the Earth Venture 85 

- Mission program), which when operational will have resolutions of 2–5 km over regional scales. The 86 

MERLIN lidar instrument (Kiemle et al., 2014) scheduled for launch in 2021 will measure CH4 by 87 

employing a differential absorption lidar. 88 

By combining a large number of footprints and high spatial resolution, airborne imaging 89 

spectrometers are also well suited for mapping local CH4 plumes. The Airborne Visible/Infrared Imaging 90 

Spectrometer–Next Generation (AVIRIS-NG) measures reflected solar radiance across more than 400 91 

channels between 380 and 2500 nm (Green et al., 1998; Thompson et al., 2015). Strong CH4 absorption 92 

features present between 2100 and 2500 nm can be observed at a spectral resolution of 5 nm full width 93 

at half maximum (FWHM). A number of approaches have been developed to retrieve CH4 from such 94 

hyperspectral data. Roberts et al. (2010) used a spectral residual approach between 2000 and 2500 nm 95 

and Bradley et al. (2011) employed a band ratio technique using the 2298 nm CH4 absorption band and 96 

2058 nm CO2 absorption band. However, these techniques are not suited for terrestrial locations that 97 

have lower albedos and have spectral structure in the SWIR. A cluster-tuned matched filter technique 98 

was demonstrated to be capable of mapping CH4 plumes from marine and terrestrial sources (Thorpe et 99 

al., 2013) as well as CO2 from power plants (Dennison et al., 2013); however, this method does not 100 

directly quantify gas concentrations. Frankenberg et al. (2005) developed an iterative maximum a 101 

posteriori differential optical absorption spectroscopy (IMAP-DOAS) algorithm that allows for 102 

uncertainty estimation. Thorpe et al. (2014) adapted the IMAP-DOAS algorithm for gas detection in 103 

AVIRIS imagery. In addition, they developed a hybrid approach using singular value decomposition and 104 

IMAP-DOAS as a complementary method of quantifying gas concentrations within complex AVIRIS 105 

scenes. 106 
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Accurate assessment of CH4 emissions is particularly challenging in the presence of aerosols 107 

because the latter introduce uncertainties in the light path if not accounted for. In fact, CH4 emissions are 108 

frequently correlated with pollution due to concurrent aerosol emissions. For large aerosols (such as dust), 109 

the low Ångström exponent values result in high aerosol optical depth (AOD) values even in the 110 

wavelength range from 2000 nm to 2500 nm (Seinfeld and Pandis, 2006; Zhang et al., 2015). Therefore, 111 

it is important to obtain a clear understanding of aerosol impacts on CH4 retrievals. In this study, SWIR 112 

AVIRIS-NG measurements are used to analyze the impact of aerosol scattering on CH4 retrievals. 113 

Further, using an accurate but numerically efficient radiative transfer (RT) model (Spurr and Natraj, 114 

2011), we simulate AVIRIS-NG measurements with varying aerosol amounts and quantify the impact of 115 

aerosol scattering using two retrieval techniques, the traditional matched filter (MF) method and the 116 

optimal estimation (OE) method that is widely used in trace gas remote sensing. This article is organized 117 

as follows. The MF and OE retrieval methods are described in Section 2. Section 3 focuses on analysis 118 

of a sample CH4 plume detected by AVIRIS-NG measurements and compares retrievals using the MF 119 

and OE methods. Section 4 presents a detailed evaluation of aerosol impacts on the two retrieval methods 120 

through simulations of AVIRIS-NG spectra for different geophysical parameters. Section 5 provides a 121 

summary of the work and discusses future research. 122 

 123 

2 Methods 124 

2.1 MF method 125 

Real-time remote detection using AVIRIS-NG measurements are traditionally based on the MF 126 

method (Frankenberg et al., 2016). In this method, the background spectra are assumed to be distributed 127 

as a multivariate Gaussian 𝓝 with covariance matrix S and background mean radiance µ. If H0 is a 128 

scenario without CH4 enhancement and H1 is one with CH4 enhancement, the MF approach is equivalent 129 

to a hypothesis test between the two scenarios: 130 

𝐻#:	𝐿'~𝓝(𝝁, 𝚺) (1) 131 

𝐻/:	𝐿'~𝓝(𝝁 + 𝒕𝛼, 𝚺) (2) 132 

where Lm is the measurement radiance; t is the target signature, which is defined in Equation (4); a is the 133 

enhancement value, denoting a scaling factor for the target signature that perturbs the background µ. If 134 

x is a vector of measurement spectra with one element per wavelength, a(x) can be written, based on 135 

maximum likelihood estimates (Manolakis et al., 2014), as follows: 136 

𝛼(𝒙) =
(𝒙 − 𝝁)7𝚺8/𝒕

𝒕7𝚺8/𝒕
(3) 137 
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We utilize the same definitions as in Frankenberg et al. (2016). Specifically, the enhancement value a(x) 138 

denotes the thickness and concentration within a volume of equivalent absorption, and has units of ppm 139 

´ m. The target signature t refers to the derivative of the change in measured radiance with respect to a 140 

change in absorption path length due	to an optically thin absorbing layer of CH4. Note that this definition 141 

has the disadvantage that the accuracy of the result degrades when the absorption is strong and further 142 

attenuation becomes nonlinear. At a particular wavelength 𝜆, t can be expressed as: 143 

𝒕(𝜆) = −𝜅(𝜆)𝝁(𝜆), (4) 144 

where 𝜅  is the absorption coefficient for a near-surface plume with units of ppm8/	m8/ . This is 145 

different from the units of mD ∙ mol8/ traditionally used for the absorption coefficient 𝜅GHIJ in trace 146 

gas remote sensing. Using the ideal gas law to express the volume V (in liters) occupied by one mole of 147 

CH4 at the temperature and pressure corresponding to the plume altitude (V = 22.4 at standard 148 

temperature and pressure), and the relations 1 liter = 108L	mL  and 1 ppm = 108M , we obtain the 149 

following expression for unit conversion (units in parentheses): 150 

𝜅GHIJ	[mD ∙ mol8/] = 𝜅	[ppm8/m8/] 	× 	𝑉	[liter	mol8/] 	×	108L	[mL	liter8/]	/	108M	[ppm8/](5)  151 

Figure 1 shows the target signature, which is calculated based on HITRAN absorption cross-sections 152 

(Rothman et al., 2009). The background mean radiance µ used in Equation 4 is based on the AVIRIS-153 

NG measurement shown in Figure 2; this is described in more detail in Section 3. 154 

2.2 OE method 155 

The OE method is widely used for the remote sensing retrieval of satellite measurements, such as 156 

from the Orbiting Carbon Observatory-2 (OCO-2; O’Dell et al., 2018), the Spinning Enhanced Visible 157 

and Infra-Red Imager (SEVIRI; Merchant et al., 2013), and the Greenhouse Gases Observing Satellite 158 

(GOSAT; Yoshida et al., 2013). It combines an explicit (typically nonlinear) forward model of the 159 

atmospheric state, a (typically Gaussian) prior probability distribution for the variabilities and a (typically 160 

Gaussian) distribution for the spectral measurement errors. In addition, the Bayesian framework used by 161 

the OE approach allows new information (from measurements) to be combined with existing information 162 

(e.g., from models). In many applications, the forward model is nonlinear, and obtaining the optimal 163 

solution requires iterative techniques such as the Levenberg–Marquardt method (Rodgers, 2000), which 164 

has been routinely applied to study the impacts of measurement parameters on the retrieval process (see, 165 

e.g., Zhang et al., 2015). The iteration in this algorithm follows the below procedure. 166 

𝐱𝐢X𝟏 = 𝐱𝐢 + [(1 + 𝛾)𝐒𝖆8/ + 𝐊𝐢7𝐒𝛜8/𝐊𝐢]8/{𝐊𝐢7𝐒𝛜8/[𝐲 − 𝐅(𝐱𝐢)] − 𝐒𝖆8/[𝐱𝐢 − 𝐱𝖆]} (6) 167 

where x is a state vector of surface and atmospheric properties,	𝐒𝖆 is the a priori covariance matrix, 𝐒𝛜 168 

is the spectral radiance noise covariance matrix, K is the Jacobian matrix, 𝐱𝖆 is the a priori state vector 169 

and g is a parameter determining the size of each iteration step. The measured spectral radiance is denoted 170 
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as y; F(x) is the simulated radiance obtained from the forward model. For the retrieval of CH4 from 171 

AVIRIS-NG measurements, the state vector includes the total column amounts of CH4 and H2O, while 172 

for the retrievals from synthetic spectra, the H2O concentration is fixed and the state vector only includes 173 

the CH4 total column. The a priori values are within 10% of the true values; a priori errors are assumed 174 

to be 20% for all state vector elements. The retrieved results are shown as the column averaged mixing 175 

ratio (XCH4, in ppm). Aerosols are not included in the state vector for both the real and synthetic 176 

retrievals. They are, however, considered in the forward model for the synthetic simulations. Table 1 177 

(WCRP, 1986) lists optical properties for four basic aerosol types (dust, water soluble, oceanic and soot). 178 

Table 2 (WCRP, 1986) shows the corresponding properties for three aerosol models that are defined as 179 

mixtures of the basic components from Table 1. We employ the Henyey-Greenstein phase function 180 

(Henyey and Greenstein, 1941), where aerosol composition is determined by two parameters: single 181 

scattering albedo (SSA) and asymmetry parameter (g). The surface albedo is also not retrieved; for both 182 

real and synthetic retrievals, it is held fixed and assumed to be independent of wavelength. 183 

 184 

3 Detection and retrieval of CH4 from AVIRIS-NG measurements 185 

To illustrate the OE retrieval and its difference from the MF method, we perform retrievals for an 186 

AVIRIS-NG measurement made on 4 September 2014 (ang20140904t204546) in Bakersfield, CA, as 187 

shown in Figure 2. The location is to the west of the Kern Front Oil field. This detection is a case study 188 

from the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and 189 

August/September 2014, which includes airborne in situ, airborne non-imaging remote sensing, and 190 

ground-based in situ instruments to provide a real-time remote detection and measurement for CH4 191 

plumes released from anthropogenic sources. An RGB image of flight data is displayed in Figure 2a; the 192 

emission source is a pump jack, as described in Thompson et al. (2015). Figure 2b presents results from 193 

the MF method, which shows that the CH4 plume disperses downwind and has a maximum enhancement 194 

value of about 2800 ppm ´ m. Some artifacts caused by surfaces with strong absorption in the 2100–195 

2500 nm wavelength range, such as oil-based paints or roofs with calcite as a component (Thorpe et al., 196 

2013), also produce large a values in the MF method; these can be removed by an optimization method 197 

such as the column-wise MF technique (Thompson et al., 2015). 198 

Figure 3 displays the measured radiance (a) before normalization and (b) after normalization, 199 

corresponding to two detector elements (in plume and out of plume). Every element is a cross-track 200 

spatial location. The normalization is done by calculating the ratio of the radiance to the maximum value 201 

across the spectral range, such that the values fall between 0 and 1. This is a first order correction for the 202 

effects of surface albedo. Comparing the measured spectrum in plume to that out of plume, there is 203 
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obvious enhancement of CH4 that is particularly evident in the normalized radiance. CH4 is the main 204 

absorber in the 2100–2500 nm wavelength range, and H2O is the major interfering gas. Figure 3b 205 

indicates the absorption peaks due to H2O and CH4. 206 

We choose the plume center with 500 elements to illustrate results obtained using the MF and OE 207 

methods. The former evaluates the CH4 a value compared to the background CH4 concentration, while 208 

the latter retrieves XCH4. In the MF method, the background covariance matrix S and mean radiance 209 

µ are drawn from a reference region close to the CH4 emission source. These are shown in Figure 2, 210 

where the dashed green box denotes the reference region and the source is located within the solid red 211 

box. In the OE method, results are shown as a multiplicative scaling factor compared to a typical XCH4 212 

background of 1.822 ppm. This value is the globally averaged marine surface annual mean for 2014 (Ed 213 

Dlugokencky, NOAA/GML, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/), the year corresponding to the 214 

AVIRIS-NG measurement being studied. We use an accurate and numerically efficient two-stream-215 

exact-single-scattering (2S-ESS) RT model (Spurr and Natraj, 2011). This forward model is different 216 

from a typical two-stream model in that the two-stream approximation is used only to calculate the 217 

contribution of multiple scattering to the radiation field. Single scattering is treated in a numerically exact 218 

manner using all moments of the phase function. This model has been used for remote sensing of 219 

greenhouse gases and aerosols (Xi et al., 2015; Zhang et al., 2015, 2016; Zeng et al., 2017, 2018). 220 

Aerosols are neither included in the forward model nor retrieved in this analysis. The surface albedo is 221 

set to a wavelength-independent value of 0.5. 222 

Results from the two retrieval methods reveal a similar CH4 plume shape (Figure 4), especially for 223 

elements with high CH4 enhancement. However, larger differences in CH4 concentrations are evident in 224 

the OE retrievals (Figure 4b). Since radiance normalization reduces the impact of surface albedo and 225 

aerosols are not included in either retrieval, this might be due to the fact that, in the OE method, H2O and 226 

CH4 are simultaneously retrieved; the CH4 retrieval has added uncertainty due to overlapping absorption 227 

features between these two gases. The large maximum value of about 3000 in the MF method also 228 

contributes to a reduction in relative contrast. While these results provide heuristic information about the 229 

relative performance of the two retrieval techniques, it is difficult to compare the CH4 enhancement 230 

directly between the two methods since the background CH4 concentration used in the MF method cannot 231 

be quantified exactly. Further, evaluating retrieval biases due to ignoring aerosol scattering is not trivial 232 

when real measurements are used. Therefore, we simulate synthetic spectra (see section 4) using the 2S-233 

ESS RT model to study the impacts of aerosol scattering as a function of different geophysical parameters 234 

by varying them in a systematic manner. 235 

 236 
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4 Aerosol impact analysis 237 

4.1 Synthetic spectra 238 

In a real AVIRIS-NG observation, the exact column concentration of CH4 cannot be controlled. 239 

However, synthetic simulations allow us to manipulate parameters such as CH4 concentration, surface 240 

albedo, AOD, g, and SSA, and thereby test aerosol impacts on CH4 retrievals. The 2S-ESS RT model is 241 

used to simulate the AVIRIS-NG spectral radiance. In this model, a prior atmospheric profile with 70 242 

layers from the surface up to 70 km is derived from National Center for Environmental Prediction 243 

reanalysis data (Kalnay et al., 1996); absorption coefficients for all relevant gases are obtained from the 244 

HITRAN database (Rothman et al., 2009). Monochromatic RT calculations are performed at a spectral 245 

resolution of 0.5 cm-1; the radiance spectrum is then convolved using a Gaussian instrument line shape 246 

function with a wavelength-dependent full width at half maximum (FWHM) from a calibrated AVIRIS-247 

NG data file. The signal to noise ratio (SNR) is set to be 300, with Gaussian white noise added. This 248 

procedure results in a wavelength grid with a resolution of about 5 nm. The spectral wavelength range 249 

used to retrieve CH4 is from 2100 nm to 2500 nm. 250 

The additional atmospheric and geometric variables included in the model are listed in Table 3, 251 

which are held constant unless otherwise mentioned. The observation geometry parameters are taken 252 

from a real AVIRIS-NG measurement. Recent AVIRIS-NG fight campaigns have sensor heights ranging 253 

from 0.43 to 3.8 km; we choose a value of 1 km, the same as the highest level where aerosol is present 254 

in our simulations. The influence of AOD on CH4 retrieval as a function of SSA and g is analyzed in 255 

Section 4.3; in all other cases, SSA and g are held constant at 0.95 and 0.75, respectively, which is 256 

representative of aerosols in the Los Angeles region (Zhang et al., 2015). 257 

4.2 Aerosol impact in the MF method 258 

We simulate synthetic spectra at different AOD, surface albedo and CH4 concentration values, use 259 

the MF method to obtain the CH4 enhancement, and compare differences in a between scenarios without 260 

and with aerosol. The covariance matrix and background mean radiance are calculated from a simulated 261 

zero AOD background with surface albedos from 0.1 to 0.5, and XCH4 set at the typical background 262 

value of 1.822 ppm used in Section 3. Figure 5a shows the enhancement value as a function of XCH4. 263 

As the CH4 concentration increases, the enhancement value obtained by the MF method at first increases 264 

approximately linearly. However, the absorption changes in a nonlinear fashion with concentration, 265 

whereas the MF method applies a linear formalism to the change. Therefore, the enhancement value 266 

(which is correlated with the absorption signature) also shows a deviation from linear behavior at larger 267 

XCH4. Two aerosol scenarios (AOD = 0, 0.3) are compared in Figure 5a, which reveals that the effect of 268 

aerosol loading is similar to an underestimation of CH4 in the retrieval. The underestimation, which is 269 
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due to the shielding of CH4 absorption below the aerosol layer and the fact that multiple scattering effects 270 

between the aerosol and the surface are ignored, is clearly shown in Figure 5b, where the enhancement 271 

 value for fixed CH4 concentration (same concentration as the background) decreases from 0 ppm ´ m 272 

to -1532 ppm ́  m with increasing AOD. To clarify the impact of AOD at different surface albedo values, 273 

zoomed in versions of a as a function of XCH4 are presented in Figures 5c–f. For the AOD = 0 scenario, 274 

the results are independent of surface albedo. This is because there are no multiple scattering effects 275 

between the surface and the atmosphere (Rayleigh scattering is negligible in the retrieval wavelength 276 

range) when there is no aerosol loading. For the scenarios with aerosol loading, the dispersion in the 277 

zero-enhancement XCH4 value between different surface albedos indicates that results from the MF 278 

method are biased more at large AOD and surface albedo values (Figures 5d–f). This is a consequence 279 

of increased multiple scattering between the aerosol layer and the surface that is not accounted for by the 280 

retrieval algorithm. The maximum bias value is close to －700 ppm ´ m (equivalent to －0.06 × 1.822 281 

ppm relative to the background concentration of 1.0 × 1.822 ppm) for an AOD of 0.3 and surface albedo 282 

of 0.5 (Figure 5f). The implication of these results is that accurate knowledge of the surface albedo is 283 

important for MF retrievals, especially when the aerosol loading is large. 284 

A quantitative analysis of underestimation of CH4 concentration due to aerosol scattering is 285 

presented in Figure 6. The color bar shows the a bias — which is defined as the difference between the 286 

enhancement value without aerosol (true a value) and that with aerosol — for different CH4 287 

concentrations, surface albedos and AODs. A positive bias means that CH4 is underestimated. The a bias 288 

increases with increasing surface albedo and AOD, reaching a maximum value of about 700 ppm ´ m 289 

for the simulated cases. However, it is interesting that the bias decreases with increasing CH4 290 

concentration, which is different from the results obtained by the OE method (discussed in Section 4.3). 291 

This surprising behavior is a direct consequence of the physical basis of the MF method. The rate of 292 

increase in enhancement becomes smaller as XCH4 becomes larger (Figure 5a). Therefore, at higher 293 

XCH4 values, the addition of aerosols (which has a similar effect as a reduction in XCH4) results in a 294 

lower reduction in enhancement compared to that at lower XCH4 values, resulting in a net decrease in 295 

the enhancement bias. 296 

4.3 Aerosol impact in the OE method 297 

For the simulation of the synthetic spectra, we assume nonzero aerosol loading below 1 km elevation. 298 

The OE method is then used to perform retrievals using the same configuration (including, in particular, 299 

the same surface albedo) except that AOD is set to zero. This approach is similar to neglecting aerosol 300 

scattering in the CH4 retrieval; the retrieval bias is defined as the difference between the true XCH4 in 301 

the simulation and the retrieved value (positive values refer to underestimation). First, we study the 302 
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retrieval bias caused by different aerosol types and mixtures. Figure 7a shows CH4 retrieval biases as a 303 

function of SSA and g; surface albedo and AOD are kept constant at 0.3 and XCH4 is assumed to be 1.0 304 

× 1.822 ppm. The retrieval bias increases with SSA and decreases with g, with a maximum bias ratio 305 

(ratio of retrieval bias to the true value) of about 20%. This behavior can be explained as follows. At 306 

higher SSA values, there are more multiple scattering effects (that are ignored in the retrieval). On the 307 

other hand, larger values of g imply greater anisotropy of scattering (preference for forward scattering), 308 

leading to a reduction in multiple scattering effects. Since the retrieval bias is large for high SSA and 309 

low g, the water-soluble aerosol type (Table 1) and the maritime aerosol model (Table 2) can be expected 310 

to induce greater biases in the retrieval. In order to compare the impacts of SSA and g in further detail, 311 

retrieval results due to a ± 5% change in SSA and g for the three aerosol models from Table 2 are shown 312 

in Figures 7b and 7c. Note that for the maritime aerosol model, the SSA is set to 0.999 for the +5% 313 

scenario to ensure physicality. It is clear that (1) the maritime aerosol model induces larger retrieval 314 

biases than the other aerosol types, and (2) the retrieval results are more sensitive to changes in g than 315 

those in SSA. 316 

We then simulate synthetic spectra for different values of CH4 concentration, surface albedo and 317 

AOD. The impacts of aerosol scattering on the retrievals for these scenarios are demonstrated in Figure 318 

8. Figure 8a shows a 5 ´ 5 panel of boxes. Within each box, XCH4 is constant, while surface albedo 319 

increases from top to bottom and AOD increases from left to right. The variation of XCH4 across the 320 

boxes is shown in Figure 8b. We also show a zoomed in plot of the bottom right box (XCH4 = 5.8 ´ 321 

1.822 ppm) in Figure 8c, which illustrates the AOD and surface albedo changes within a box. These 322 

changes are identical for all boxes. Figure 8a indicates that OE retrievals produce larger CH4 biases at 323 

higher XCH4 values, in contrast with MF results. In addition, it is evident that the retrieved CH4 bias 324 

increases with increasing AOD. The CH4 bias induced by differences in the surface albedo is not as large 325 

as that due to AOD variations, but surface albedo effects are noticeable at large AOD. Figure 8d shows 326 

the sensitivity of retrieval biases to changes in AOD and surface albedo, again demonstrating the greater 327 

impact of AOD than surface albedo in the retrieval. 328 

The effects of changing the a priori, a priori error and RT simulation spectral resolution on the 329 

retrieved XCH4 are shown in Figure 9. For these calculations, the other parameters are set as follows: 330 

SSA = 0.95, g = 0.75, AOD = 1.0, surface albedo = 0.5 and true XCH4 = 5.8 ́  1.822ppm. The parameters 331 

were chosen to correspond to the scenario with the largest retrieval bias in Figure 8c (bottom right box 332 

in Figure 8c). Figure 9a shows that the retrieved XCH4 changes by about 9 ppb as the a priori changes 333 

from half to twice the true XCH4 value. Similarly, the XCH4 difference is less than 4 ppb when the a 334 

priori error changes from 0.05 to 0.5 (Figure 9b). Compared to the bias of about 923 ppb induced by 335 
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neglecting aerosol scattering for this scenario, it is clear that the impacts of the a priori and a priori error 336 

are very small. The effect of spectral resolution is larger, but XCH4 still changes by only about 100 ppb 337 

when the spectral resolution is changed from 0.5 to 0.1 cm-1 (Figure 9c). 338 

4.4 Comparison of the two retrieval techniques 339 

Figure 10 presents the bias ratios for the two retrieval techniques at different AODs (surface albedo 340 

= 0.3). In the MF method, the bias ratio is defined as the ratio of the bias to the true value of a. On the 341 

other hand, in the OE method, it is the ratio of the bias to the true XCH4. From Figure 10 it is clear that 342 

the bias ratio decreases with increasing CH4 concentration and has higher values at larger AODs. The 343 

bias ratio for the MF method (1.3–4.5%) is up to 53.6% less than that for the OE method (2.8–5.6%) for 344 

AOD = 0.3 when the CH4 concentration is high (2–5 times typical background values). On the other 345 

hand, the OE method performs better when enhancements are small and XCH4 is close to the background 346 

value. For example, the bias ratio for the MF method has a high value of about 42.6% at AOD = 0.3 for 347 

a 10% enhancement (XCH4 = 1.1 ́  1.822 ppm); the OE value for the same scenario is 8.6%. For scenarios 348 

where scattering is ignored, the two retrieval techniques seem to be complementary, with differing 349 

utilities for different enhancements. On the other hand, when RT models that account for scattering 350 

effects are employed, the MF technique is suboptimal. Further, MF retrievals rely on accurate 351 

characterization of the surface albedo, especially when the aerosol loading is large. Finally, the MF 352 

method does not retrieve concentrations, which are necessary to infer fluxes. Therefore, the OE technique 353 

is in general superior due to its ability to support simultaneous retrieval of aerosols, surface albedo and 354 

CH4 concentration. 355 

 356 

5 Summary and discussion 357 

Remote sensing measurements from airborne and satellite instruments are widely used to detect 358 

CH4 emissions. In our study, the traditional MF and the OE methods are used to quantify the effects of 359 

aerosol scattering on CH4 retrievals based on simulations of AVIRIS-NG measurements. The results 360 

show that the retrieval biases increase with increasing AOD and surface albedo for both techniques. In 361 

the OE method the biases increase with increasing CH4 concentration and SSA, but decrease with 362 

increasing aerosol asymmetry parameter. The CH4 retrieval bias increases with increasing XCH4 in the 363 

OE method but decreases for the same scenario in the MF method. The surprising MF trend is attributed 364 

to the inability of the MF method to treat nonlinear absorption effects at high XCH4 values. We also 365 

present bias ratios for the two techniques. The MF method shows smaller bias ratios at large CH4 366 

concentrations than the OE method; it is, therefore, the optimal method to detect strong CH4 emission 367 

sources when scattering effects can be ignored in the retrieval. For the same retrieval scenario, the OE 368 
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method seems to be more suitable for detecting diffuse sources. Further, the MF method relies on a 369 

comparison with the background CH4 concentration. It is difficult to get an accurate estimate of the 370 

background XCH4 value in polluted atmospheric environments. In contrast, the OE method provides 371 

retrievals based solely on the atmospheric scenario of interest; CH4, aerosols and surface albedo can be 372 

simultaneously inferred. Therefore, when scattering effects need to be considered, the OE method is the 373 

appropriate choice. Indeed, the MF method was intended for plume detection. OE enables accurate 374 

quantification of XCH4 in the presence of aerosol scattering. 375 

This study focused on a comparison of retrieval techniques. It is also important to accurately 376 

represent the physics of atmospheric RT, especially for scenarios with significant aerosol scattering. RT 377 

models traditionally used in retrievals of imaging spectroscopic data use simplified radiation schemes 378 

and predefined aerosol models, which may introduce inaccurate in the representation of atmospheric 379 

physics. The 2S-ESS model provides the capability to quantify aerosol impacts on CH4 retrieval for 380 

different aerosol types, optical depths and layer heights. In future work, we will compare retrievals using 381 

the 2S-ESS model against those from other commonly used models such as MODTRAN. We will also 382 

evaluate the impact of varying instrument spectral resolution and signal to noise ratio for simultaneous 383 

retrieval of CH4, surface albedo and AOD. This will be relevant for the design of imaging spectrometers 384 

for planned future missions such as the NASA Surface Biology and Geology (SBG) mission. 385 

 386 

Data availability 387 

The code and data are available from the authors upon request. 388 

 389 

Author contributions 390 

VN conceived the work, provided the radiative transfer and aerosol models, supervised YH, and 391 

assisted with manuscript preparation. YH designed and performed the retrievals, analyzed the results, 392 

and prepared the original manuscript. ZZ contributed to retrieval setup and assisted with analysis of the 393 

results. PK provided valuable inputs into the science of CH4 remote sensing. YLY supervised YH and 394 

participated in the evaluation of the retrieval results and intercomparison. All listed authors contributed 395 

to the review and editing of this manuscript. 396 

 397 

Competing interests 398 

The authors declare that they have no conflict of interest. 399 

 400 

Acknowledgements 401 



 14 

A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of 402 

Technology, under a contract with the National Aeronautics and Space Administration 403 

(80NM0018D0004). The authors gratefully acknowledge the insightful and constructive comments from 404 

the two anonymous reviewers, which improved the clarity and quality of the manuscript, and elevated 405 

the significance of the work beyond the original expectation. 406 

 407 

Financial Support 408 

VN acknowledges support from the NASA “Utilization of Airborne Visible/Infrared Imaging 409 

Spectrometer Next Generation Data from an Airborne Campaign in India” program (solicitation 410 

NNH16ZDA001N-AVRSNG), and the Jet Propulsion Laboratory Research and Technology 411 

Development program. PK was funded by the Japan Society for the Promotion of Science International 412 

Research Fellow Program. 413 

  414 



 15 

References 415 

 416 

Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., 417 

Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., 418 

Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., 419 

Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane emissions from the U.S. 420 

oil and gas supply chain, Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. 421 

 422 

Archer, D.: Methane hydrate stability and anthropogenic climate change, Biogeosci., 4, 521–544, 423 

https://doi.org/10.5194/bg-4-521-2007, 2007. 424 

 425 

Bradley, E. S., Leifer, I., Roberts, D. A., Dennison, P. E., and Washburn, L.: Detection of marine methane 426 

emissions with AVIRIS band ratios, Geophys. Res. Lett., 38, L10702, 427 

https://doi.org/10.1029/2011GL046729, 2011. 428 

 429 

Bubier, J. L., and Moore, T. R: An ecological perspective on methane emissions from northern wetlands, 430 

Trends in Ecology and Evolution, 9, 460–464, https://doi.org/10.1016/0169-5347(94)90309-3, 1994. 431 

 432 

Buchwitz, M., Reuter, M., Bovensmann, H., Pillai, D., Heymann, J., Schneising, O., Rozanov, V., Krings, 433 

T., Burrows, J. P., Boesch, H., Gerbig, C., Meijer, Y., and Löscher, A.: Carbon Monitoring Satellite 434 

(CarbonSat): Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization, Atmos. 435 

Meas. Tech., 6, 3477–3500, https://doi.org/10.5194/amt-6-3477-2013, 2013. 436 

 437 

Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: TROPOMI aboard Sentinel-5 438 

Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres, Remote 439 

Sens. Environ., 120, 267–276, https://doi.org/10.1016/j.rse.2011.05.030, 2012. 440 

 441 

Butz, A., Orphal, J., Checa-Garcia, R., Friedl-Vallon, F., von Clarmann, T., Bovensmann, H., Hasekamp, 442 

O., Landgraf, J., Knigge, T., Weise, D., Sqalli-Houssini, O., and Kemper, D.: Geostationary Emission 443 

Explorer for Europe (G3E): Mission concept and initial performance assessment, Atmos. Meas. Tech., 8, 444 

4719–4734, https://doi.org/10.5194/amt-8-4719-2015, 2015. 445 

 446 



 16 

Clerbaux, C., Hadji-Lazaro, J., Turquety, S., Mégie, G., and Coheur, P.-F.: Trace gas measurements from 447 

infrared satellite for chemistry and climate applications, Atmos. Chem. Phys., 3, 1495–1508, 448 

https://doi.org/10.5194/acp-3-1495-2003, 2003. 449 

 450 

Dennison, P. E., Thorpe, A. K., Pardyjak, E. R., Roberts, D. A., Qi, Y., Green, R. O., Bradley, E. S., and 451 

Funk, C. C.: High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne 452 

imaging spectroscopy: Radiative transfer modeling and power plant plume detection, Remote Sens. 453 

Environ., 139, 116-129, https://doi.org/10.1016/j.rse.2013.08.001, 2013. 454 

 455 

Etiope, G., Feyzullayev, A., and Baciu, C. L.: Terrestrial methane seeps and mud volcanoes: A global 456 

perspective of gas origin, Mar. Pet. Geol., 26, 333–344, https://doi.org/10.1016/j.marpetgeo.2008.03.001, 457 

2009. 458 

 459 

Fishman, J. L., Iraci, L. T., Al-Saadi, J., Chance, K., Chavez, F., Chin, M., Coble, P., Davis, C., 460 

DiGiacomo, P. M., Edwards, D., Eldering, A., Goes, J., Herman, J., Hu, C., Jacob, D. J., Jordan, C., Kawa, 461 

S. R., Key, R., Liu, X., Lohrenz, S., Mannino, A., Natraj, V., Neil, D., Neu, J., Newchurch, M., Pickering, 462 

K., Salisbury, J., Sosik, H., Subramaniam, A., Tzortziou, M.,Wang, J., and Wang, M.: The United States’ 463 

next generation of atmospheric composition and coastal ecosystem measurements: NASA’s 464 

Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 465 

https://doi.org/10.1175/BAMS-D-11-00201.1, 2012. 466 

 467 

Frankenberg, C., Platt, U., and Wagner, T.: Iterative maximum a posteriori (IMAP)-DOAS for retrieval 468 

of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of 469 

SCIAMACHY onboard ENVISAT, Atmos. Chem. Phys., 5, 9–22, https://doi.org/10.5194/acp-5-9-2005, 470 

2005. 471 

 472 

Frankenberg, C., Meirink, J. F., Bergamaschi, P., Goede, A., P. H., Heimann, M., Körner, S., Platt, U., 473 

van Weele, M., and Wagner, T.: Satellite chartography of atmospheric methane from SCIAMACHY on 474 

board ENVISAT: Analysis of the years 2003 and 2004, J. Geophys. Res., 111, D07303, 475 

https://doi.org/10.1029/2005JD006235, 2006. 476 

 477 

Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., 478 

Krings, T., Gerilowski, K., Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. 479 



 17 

O.: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region, 480 

Proc. Natl. Acad. Sci. U. S. A., 113, 9734–9739, https://doi.org/10.1073/pnas.1605617113, 2016. 481 

 482 

Gambacorta, A., Barnet, C. D., Smith, N., Pierce, R. B., Smith, J. W., Spackman, J. R., and Goldberg, 483 

M.: The NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS) for 484 

atmospheric thermal sounding: Recent algorithm enhancements tailored to near real time users 485 

applications, Abstract IN33D-07, presented at 2016 Fall Meeting, AGU, San Francisco, CA, 12–16 Dec., 486 

2016. 487 

	488 

Gedney, N., Cox, P. M., and Huntingford, C.: Climate feedback from wetland methane emissions, 489 

Geophys. Res. Lett., 31, L20503. https://doi.org/10.1029/2004GL020919, 2004. 490 

 491 

Glumb, R., Davis, G., and Lietzke, C.: The TANSO-FTS-2 instrument for the GOSAT-2 greenhouse gas 492 

monitoring mission, 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, 1238–493 

1240, https://doi.org/10.1109/IGARSS.2014.6946656, 2014. 494 

 495 

Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, 496 

J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R., and Williams, O.: Imaging spectroscopy and the 497 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Remote Sens. Environ., 65, 227–248, 498 

https://doi.org/10.1016/S0034-4257(98)00064-9, 1998. 499 

 500 

He, L., Zeng, Z.-C., Pongetti, T. J., Wong, C., Liang, J., Gurney, K. R., Newman, S., Yadav, V., Verhulst, 501 

K., Miller, C. E., and Duren, R.: Atmospheric methane emissions correlate with natural gas consumption 502 

from residential and commercial sectors in Los Angeles, Geophys. Res. Lett., 46, 8563–8571, 503 

https://doi.org/10.1029/2019GL083400, 2019. 504 

 505 

Henyey, L. G., and Greenstein, J. L.: Diffuse radiation in the galaxy, Astrophys. J., 93, 70–83, 506 

https://doi.org/10.1086/144246, 1941. 507 

 508 

Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., Wirsenius, S., Hristov, 509 

A. N., Gerber, P., Gill, M., Butterbach-Bahl, K., Valin, H., Garnett, T., and Shehfest, E.: Greenhouse gas 510 

mitigation potentials in the livestock sector, Nature Clim. Change, 6, 452–461, 511 

https://doi.org/10.1038/nclimate2925, 2016. 512 



 18 

 513 

Holmes, C. D., Prather, M. J., Søvde, O. A., and Myhre, G.: Future methane, hydroxyl, and their 514 

uncertainties: key climate and emission parameters for future predictions, Atmos. Chem. Phys., 13, 285–515 

302, https://doi.org/10.5194/acp-13-285-2013, 2013. 516 

 517 

Howarth, R. W.: Methane emissions and climatic warming risk from hydraulic fracturing and shale gas 518 

development: implications for policy, Energy and Emission Control Technologies, 3, 45–54, 519 

https://doi.org/10.2147/EECT.S61539, 2015. 520 

 521 

Howarth, R. W.: Ideas and perspectives: is shale gas a major driver of recent increase in global 522 

atmospheric methane?, Biogeosciences, 16, 3033–3046, https://doi.org/10.5194/bg-16-3033-2019, 2019. 523 

 524 

Howarth, R. W., Santoro, R., and Ingraffea, A.: Methane and the greenhouse gas footprint of natural gas 525 

from shale formations, Clim. Change, 106, 679, https://doi.org/10.1007/s10584-011-0061-5, 2011. 526 

 527 

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, 528 

J., and Frankenberg, C.: Satellite observations of atmospheric methane and their value for quantifying 529 

methane emissions, Atmos. Chem. Phys., 16, 14371–14396, https://doi.org/10.5194/acp-16-14371-2016, 530 

2016. 531 

 532 

Jervis, D., McKeever, J., Durak, B. O. A., Sloan, J. J., Gains, D., Varon, D. J., Ramier, A., Strupler, M., 533 

and Tarrant, E.: The GHGSat-D imaging spectrometer, Atmos. Meas. Tech. Discuss., 534 

https://doi.org/10.5194/amt-2020-301, in review, 2020. 535 

 536 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, 537 

G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, 538 

C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis 539 

project, Bull. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-540 

0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. 541 

 542 

Kiemle, C., Kawa, S. R., Quatrevalet, M., and Browell, E. V.: Performance simulations for a spaceborne 543 

methane lidar mission, J. Geophys. Res., 119, 4365–4379, https://doi.org/10.1002/2013JD021253, 2014. 544 

 545 



 19 

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, Josep G., Dlugokencky. E. J., Bergamaschi, 546 

P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., 547 

Fraser, A., Heimann, M, Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, 548 

J.-F., Langenfelds, R. L., Le Quere, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., 549 

Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M. Schmidt, M., Shindell, D. T., Simpson, I. 550 

J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van 551 

Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and 552 

sinks, Nature Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013. 553 

 554 

Kort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., and Wunch, D.: Four 555 

corners: the largest US methane anomaly viewed from space, Geophys. Res. Lett., 41, 6898–6903, 556 

https://doi.org/10.1002/2014GL061503, 2014. 557 

 558 

Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, 559 

Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, 560 

and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445–2461, 561 

https://doi.org/10.5194/amt-9-2445-2016, 2016. 562 

 563 

Kvenvolden, K. A.: Methane hydrate – A major reservoir of carbon in the shallow geosphere, Chem. 564 

Geol., 71, 41–51, https://doi.org/10.1016/0009-2541(88)90104-0, 1988. 565 

 566 

Kvenvolden, K. A., and Rogers, B. W.: Gaia’s breath – global methane exhalations, Mar. Pet. Geol., 22, 567 

579–590, https://doi.org/10.1016/j.marpetgeo.2004.08.004, 2005. 568 

 569 

Macdonald, J. A., Fowler, D., Hargreaves, K. J., Skiba, U., Leith, I. D., and Murray, M. B.: Methane 570 

emission rates from a northern wetland; response to temperature, water table and transport, Atmos. 571 

Environ., 32, 3219–3227, https://doi.org/10.1016/S1352-2310(97)00464-0, 1998. 572 

 573 

Manolakis, D., Truslow, E., Pieper, M., Cooley, T., and Brueggeman, M.: Detection algorithms in 574 

hyperspectral imaging systems: An overview of practical algorithms, IEEE Signal Proc. Mag., 31, 24–575 

33, https://doi.org/10.1109/MSP.2013.2278915, 2014. 576 

 577 



 20 

McKeever, J., Durak, B. O. A., Gains, D., Varon, D. J., Germain, S., and Sloan, J. J.: GHGSat‐D: 578 

Greenhouse gas plume imaging and quantification from space using a Fabry‐Perot imaging spectrometer, 579 

Abstract A33G-1360 presented at 2017 Fall Meeting, AGU, New Orleans, LA, 11–15 December, 2017. 580 

 581 

Merchant, C. J., Le Borgne, P., Roquet, H., and Legendre, G.: Extended optimal estimation techniques 582 

for sea surface temperature from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI), 583 

Remote Sens. Environ., 131, 287–297, https://doi.org/10.1016/j.rse.2012.12.019, 2013. 584 

 585 

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-586 

F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: 587 

Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis. 588 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 589 

Climate Change – IPCC, 2013. 590 

 591 

Nisbet, E. G., Dlugokencky, E, J., and Bousquet, P.: Methane on the rise-Again, Science, 343, 493–495, 592 

https//doi.org/10.1126/science.1247828, 2014. 593 

 594 

Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E., France, J. L., Michel, S. E., 595 

Miller, J. B., White, J. W. C., Vaughn, B., Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, 596 

R., Zazzeri, G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E. J., Brunke, E.-G., Labuschagne, 597 

C., Wolff, E. W., and Ganesan, A. L.: Rising atmospheric methane: 2007–2014 growth and isotopic shift, 598 

Glob. Biogeochem. Cycles, 30, 1356–1370, https://doi.org/10.1002/2016GB005406, 2016. 599 

 600 

NOAA Earth System Research Laboratory Global Monitoring Laboratory, 601 

https://esrl.noaa.gov/gmd/ccgg/trends_ch4/, 2019. 602 

 603 

O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., 604 

Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, 605 

V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, 606 

D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., 607 

Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, 608 

C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O. and Velazco, V. A.: Improved retrievals 609 



 21 

of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. 610 

Meas. Tech., 11(12), 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018. 611 

 612 

Polonsky, I. N., O’Brien, D. M., Kumer, J. B., O’Dell, C. W., and the geoCARB Team: Performance of 613 

a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations, 614 

Atmos. Meas. Tech., 7, 959–981, https://doi.org/10.5194/amt-7-959-2014, 2014. 615 

 616 

Roberts, D. A., Bradley, E. S., Cheung, R., Leifer, I., Dennison, P. E., and Margolis, J. S.: Mapping 617 

methane emissions from a marine geological seep source using imaging spectrometry, Remote Sens. 618 

Environ., 114, 592–606, https://doi.org/10.1016/j.rse.2009.10.015, 2010. 619 

 620 

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, 621 

Singapore, 2000. 622 

 623 

Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. E., Birk, M., Boudon, V., Brown, 624 

L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., 625 

Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., 626 

Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., 627 

Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., 628 

Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., 629 

and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. 630 

Radiat. Transfer, 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009. 631 

 632 

Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., 633 

Dlugokencky, E. J., Michel, S. E., Miller, J. M., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and 634 

White, J. W. C.: A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4, 635 

Science, 352, 80-84, https://doi.org/10.1126/science.aad2705, 2016. 636 

 637 

Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R.: The impact of the 638 

permafrost carbon feedback on global climate, Environ. Res. Lett., 9, 085003, 639 

https://doi.org/10.1088/1748-9326/9/8/085003, 2014. 640 

 641 



 22 

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., 642 

Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., 643 

Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, 644 

Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. 645 

 646 

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate 647 

Change, Wiley, New Jersey, USA, 2006. 648 

 649 

Spurr, R., and Natraj, V.: A linearized two-stream radiative transfer code for fast approximation of 650 

multiple-scatter fields, J. Quant. Spectrosc. Radiat. Transfer, 112, 2630–2637, 651 

https://doi.org/10.1016/j.jqsrt.2011.06.014, 2011. 652 

 653 

Themelis, N. J., and Ulloa, P. A.: Methane generation in landfills, Renewable Energy, 32, 1243–1257, 654 

https://doi.org/10.1016/j.renene.2006.04.020, 2007. 655 

 656 

Thompson, D. R., Leifer, I., Bovensmann, H.,  Eastwood, M., Fladeland, M., Frankenberg, C., 657 

Gerilowski, K., Green, R. O., Kratwurst, S., Krings, T., Luna, B., and Thorpe, A. K.: Real-time remote 658 

detection and measurement for airborne imaging spectroscopy: a case study with methane, Atmos. Meas. 659 

Tech., 8, 4383–4397, https://doi.org/10.5194/amt-8-4383-2015, 2015. 660 

 661 

Thorpe, A. K., Frankenberg, C., and Roberts, D. A.: Retrieval techniques for airborne imaging of 662 

methane concentrations using high spatial and moderate spectral resolution: Application to AVIRIS, 663 

Atmos. Meas. Tech., 7, 491–506, https://doi.org/10.5194/amt-7-491-2014, 2014. 664 

Thorpe, A. K., Roberts, D. A., Bradley, E. S., Funk, C. C., Dennison, P. E., and Leifer, I.: High resolution 665 

mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter 666 

technique and imaging spectrometry, Remote Sens. Environ., 134, 305–318, 667 

https://doi.org/10.1016/j.rse.2013.03.018, 2013. 668 

 669 

Varon, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey, S., Houweling, S., Aben, I., Scarpelli, 670 

T. and Jacob, D. J.: Satellite discovery of anomalously large methane point sources from oil/gas 671 

production, Geophys. Res. Lett., 2019. 672 

 673 



 23 

Veefkind, J. P., Aben, I., McMullan, K., Forster, H., de Vries, J.,Otter, G., Claas, J., Eskes, H. J., de Haan, 674 

J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, 675 

P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 676 

Precursor: A GMES mission for global observations of the atmospheric composition for climate, air 677 

quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, 678 

https://doi.org/10.1016/j.rse.2011.09.027, 2012. 679 

 680 

Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin III, F. S.: Methane bubbling from 681 

Siberian thaw lakes as a positive feedback to climate warming, Nature, 443, 71–75, 682 

https://doi.org/10.1038/nature05040, 2006. 683 

 684 

Wofsy, S. C., and Hamburg, S: MethaneSAT — A new observing platform for high resolution 685 

measurements of methane and carbon dioxide, Abstract A53F-02 presented at 2019 Fall Meeting, AGU, 686 

San Francisco, CA, 9–13 December, 2019. 687 

 688 

World Climate Research Program (WCRP): A preliminary cloudless standard atmosphere for radiation 689 

computation, International Association for Meteorology and Atmospheric Physics, Radiation 690 

Commission, Boulder, CO, USA, 1984, CSP-112, WMO/TD-No. 24, March 1986. 691 

 692 

Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M., Gorham, E., and Davidson, E.: Biotic 693 

feedbacks in the warming of the earth, Climatic Change, 40, 495–518, 694 

https://doi.org/10.1023/A:1005345429236, 1998. 695 

 696 

Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K., Cady-Peirara, K., Wecht, K., Lee, J.-697 

E., and Noone, D.: Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical 698 

resolution from Aura TES radiances, Atmos. Meas. Tech., 5, 397–411, https://doi.org/10.5194/amt-5-699 

397-2012, 2012. 700 

 701 

Xi, X., Natraj, V., Shia, R. L., Luo, M., Zhang, Q., Newman, S., Sander, S. P., and Yung, Y. L.: Simulated 702 

retrievals for the remote sensing of CO2, CH4, CO, and H2O from geostationary orbit, Atmos. Meas. 703 

Tech., 8, 4817–4830, https://doi.org/10.5194/amtd-8-5809-2015, 2015. 704 

 705 



 24 

Xiong, X., Barnet, C., Maddy, E., Sweeney, C., Liu, X., Zhou, L., and Goldberg, M.: Characterization 706 

and validation of methane products from the Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 707 

113, G00A01, https://doi.org/10.1029/2007JG000500, 2008. 708 

 709 

Xiong, X., Barnet, C., Maddy, E. S., Gambacorta, A., King, T. S., and Wofsy, S. C.: Mid-upper 710 

tropospheric methane retrieval from IASI and its validation, Atmos. Meas. Tech., 6, 2255–2265, 711 

https://doi.org/10.5194/amt-6-2255-2013, 2013. 712 

 713 

Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., 714 

Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P. O., Griffith, D. W. T., Deutscher, N. M., Warneke, 715 

T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., 716 

Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of 717 

the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, 718 

Atmos. Meas. Tech., 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, 2013. 719 

 720 

Zeng, Z.-C., Zhang, Q., Natraj, V., Margolis, J. S., Shia, R. -L., Newman, S., Fu, D., Pongetti, T. J., 721 

Wong, K. W., Sander, S. P., Wennberg, P. O., and Yung, Y. L.: Aerosol scattering effects on water vapor 722 

retrievals over the Los Angeles Basin, Atmos. Chem. Phys., 17, 2495–2508, https://doi.org/10.5194/acp-723 

17-2495-2017, 2017. 724 

 725 

Zeng, Z.-C., Natraj, V., Xu, F., Pongetti, T. J., Shia, R.-L., Kort, E. A., Toon, G. C., Sander, S. P., and 726 

Yung, Y. L.: Constraining aerosol vertical profile in the boundary layer using hyperspectral 727 

measurements of oxygen absorption, Geophys. Res. Lett., 45, 10772–10780, 728 

https://doi.org/10.1029/2018GL079286, 2018. 729 

 730 

Zhang, Q., Natraj, V., Li, K. -F., Shia, R. -L., Fu, D., Pongetti, T. J., Sander S. P., Roehl, C. M., and 731 

Yung, Y. L.: Accounting for aerosol scattering in the CLARS retrieval of column averaged CO2 mixing 732 

ratios, J. Geophys. Res., 120, 7205–7218, https://doi.org/10.1002/2015JD023499, 2015. 733 

 734 

Zhang, Q., Shia, R. -L., Sander, S. P., and Yung, Y. L.: XCO2 retrieval error over deserts near critical 735 

surface albedo, Earth Space Sci., 2, 1–10, https://doi.org/10.1002/2015EA000143, 2016. 736 

  737 



 25 

 738 

 739 
 740 

Figure 1: The target signature used for the Matched Filter method. 741 
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 743 

 744 

Figure 2: (a) RGB image of flight data from 4 September 2014 (ang20140904t204546). Adapted from 745 

Thompson et al. (2015). (b) CH4 enhancement value a (ppm ´ m) obtained by the MF method. An emission 746 

source is shown in the solid red box and the background region near the target for the MF calculation is 747 

indicated by the dashed green box. 748 
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 750 

 751 

Figure 3: (a) Real radiance and (b) normalized radiance at cross-track detector elements (in and out of plume) 752 

from the sample AVIRIS-NG measurement. The colored arrows in (b) show the main absorption features due 753 

to H2O (purple) and CH4 (green). 754 
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 756 

 757 

Figure 4: Retrieval image for the plume center (500 elements) based on the (a) MF method and (b) OE method. 758 
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 760 

 761 

Figure 5: (a) a as a function of XCH4 for AOD = 0 and AOD = 0.3 (surface albedo = 0.3). (b) a as a function 762 

of AOD (XCH4 = 1.0 × 1.822 ppm, surface albedo = 0.3). Zoomed in versions of a as a function of XCH4 for 763 

different surface albedos (0.1-0.5), where (c) AOD = 0, (d) AOD = 0.1, (e) AOD = 0.2, and (f) AOD = 0.3. 764 
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 766 

 767 

Figure 6: Bias in a as a function of XCH4 and surface albedo for (a) AOD = 0.1, (b) AOD = 0.2, and (c) AOD 768 

= 0.3. 769 
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 771 

 772 

                  773 

 774 

                 775 
Figure 7: (a) CH4 retrieval biases for different values of g and SSA. Surface albedo, AOD = 0.3, XCH4 = 1.0 776 

× 1.822 ppm. (b) CH4 retrieval biases for a ± 5% change in SSA for the three aerosol mixture models. (c) Same 777 

as (b), but for a ± 5% change in g.  778 
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           781 

Figure 8: (a) CH4 retrieval biases for different values of XCH4, AOD and surface albedo. g = 0.75, SSA = 0.95. 782 

(b) XCH4 for each box in (a). (c) Zoomed in plot of bottom right box (XCH4 = 5.8 ´ 1.822 ppm). The x and y 783 

axes show the variation of AOD and surface albedo, respectively. These changes are identical for every box 784 

in (a). (d) CH4 retrieval biases for a ± 5% change in AOD and surface albedo from a base value of 0.3 (g = 785 

0.75, SSA = 0.95, XCH4 = 5.8 ´ 1.822 ppm). 786 
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 788 
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 790 

 791 

Figure 9: Retrieved XCH4 for different values of (a) a priori (a priori error = 0.2), (b) a priori error (a priori = 792 

5.5 ´ 1.822 ppm) and (c) spectral resolution. g = 0.75, SSA = 0.95, AOD = 1.0, surface albedo = 0.5, XCH4 = 793 

5.8 ´ 1.822 ppm.  794 
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 795 

 796 

Figure 10: (a) Bias ratio as a function of CH4 concentration for the two retrieval techniques, where the XCH4 797 

ranges from 1.5 to 5 (´ 1.822 ppm). (b) Same as (a), but for XCH4 ranging from 1.1 to 2 (´ 1.822 ppm). Surface 798 

albedo is set to 0.3 for all cases; results for the MF and OE methods are shown by solid and dashed lines, 799 

respectively. 800 
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 802 

 Dust-like Water soluble Oceanic Soot 

SSA 0.805 0.799 0.970 0.014 

g 0.926 0.550 0.816 0.092 

Table 1: Optical properties of basic aerosol types (WCRP, 1986). 803 
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 Continental Maritime Urban/Industrial 

Aerosol 

component 

Dust-like 70%  17% 

Water soluble 29% 5% 61% 

Oceanic  95%  

Soot 1%  22% 

SSA 0.746 0.966 0.314 

g 0.764 0.810 0.586 

Table 2: Optical properties of three aerosol mixture models (WCRP, 1986). 805 
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 807 

Attribute                    Values 

Sensor height 1 km 

View zenith angle  11.91° 

Solar zenith angle  30.75° 

Relative azimuth angle 22.87° 

Aerosol loading region surface to 1 km 

SSA 0.95 

g 0.75 

Table 3: Inputs for the 2S-ESS model simulation. 808 

 809 


